
PAGES - A Family of Block Ciphers

Dieter Schmidt∗

May 3, 2015

Abstract

PAGES is block cipher family based on the design of Speck, see [1].
However, some intriguing design details of Speck were not used in the
design of PAGES. PAGES has block size of 256 bit and comes in three
version: PAGES-512, PAGES-768, and PAGES-1024, were the number
denotes the key length. The number of rounds is 64, 96, or 128, respec-
tively. PAGES uses variables of 128 bit, that is half the block size.

1 Introduction

The Simon and Speck Block Cipher Families, see [1], have an impressive
performance and are easy to program on modern CPU’s. In particu-
lar, the SSE performance, where eight encryptions are down in parallel
(Speck128), outperforms other existing block ciphers. The SSE register
in my laptop have a width of 128 bit, it sprang into my mind, that an im-
plementation which uses the register at full size, could have an increased
security. Since gcc version 4.8.2 supports the variables with 128 bit (un-
signed int128), it was easy to design a block cipher similar to Speck128,
which utilizes 128 bit variables. Since the days of register poor CPU’s
are over, both AMD and Intel microprocessors have enough registers to
store the variables of the cipher. The 128 bit variable are saved into two
general purpose registers of 64 bit. The cipher is called PAGES and its
reference implementation can be found in the appendix A. As NSA nor its
employees claim intellectual property for its block ciphers, PAGES is also
free of charge and I claim no intellectual property for this cipher. While
it was straightforward to implement PAGES, some intriguing details in
the Speck128 cipher were not used. In particular the eight bit rotation
of the lefthand side were not increased by the factor of two. Instead the
rotation amount was set to 19. The reason for that and the other changes
can be found in the Section 4. The block cipher comes in three versions,
PAGES-512, PAGES-768, and PAGES-1024, where the number denotes
the key size.

This paper is organized as follows: Section 2 contains the preliminaries
like definitions and so on. Section 3 comprises the assembly of PAGES.
The design rationale is given in Section 4. We present the software per-
formance of PAGES in Section 5 and conclude in Section 6.

∗dieterschmidt@usa.com

1

>>>19

<<<7

K

(a) Encryption

K

<<<19

>>>7

(b) Decryption

Figure 1: A round of PAGES

2 Preliminaries

F128
2 denotes the 128 dimensional vector space over GF(2). The following

symbols are used to build the block cipher PAGES: � denotes addition
modulo 2128, � denotes subtraction modulo 2128, ⊕ denotes addition mod-
ulo 2 in F128

2 (XOR), ≪ m denotes the left circular shift of m positions,
≫ m denotes the right circular shift of m positions, GCD denotes the
greatest common divisor, and LCM denotes the least common multiple.
PAGES has a block length of 256 bits and is divided into two halves of
equal length (128 bit).

3 Assembly of PAGES

3.1 Encryption

The left half of PAGES is circular shifted by 19 position to the right, see
figure 1a and the function encrypt of the reference implementation in the
appendix A. Then the right half is XORed to the left half. The right half
is then circular shifted by 7 bits to left. The round key is added modulo
2128 to the left half. Then the left half is added modulo 2128 to the right
half. That concludes one round of encryption. The number of rounds can
be 64, 96, or 128. The respective key sizes are 512 bit, 768 bit, or 1024
bit.

3.2 Decryption

The left half is subtracted from the right half modulo 2128, see figure 1b
and the function decrypt of the reference implementation in the appendix
A. Then the round key is subtracted modulo 2128 from the left half. The
right half is circular shifted to the right by 7 bits. The right half is
XORed to the left half. The left half is then circular shifted to the left by
19 positions. That concludes one round of decryption.

2

3.3 Key Schedule

The key schedule of PAGES resembles the key schedule of the block cipher
1024, 1024XKS, 2048XKS-F, and 4096XKS-F, see [4, 5, 6]. The number
of rounds can be 64, 96 , or 128. Divide the round number by 16 and you
will get the size of the array the userkey is saved in (i.e. 4, 6, or 8), see
the reference implementation in appendix A. Since the type of variable is

int128 the size of the key is 512 bit, 768 bit, and 1024 bit, respectively.
The userkey is stored in the first 4, 6, or 8 round keys, see the function
expand key in the reference implementation in appendix A. The userkey
is circular shifted by 61 bits to the left and stored in the next round keys.
This is repeated 15 times until all the round keys have received their
values. Then two 128 bit variables are set to 0 and encrypted. The output
is stored in first two round keys or in the last round keys, depending on
whether the macro FORWARD is defined. The block cipher is employed
in Output Feedback Mode until all the round keys have received their
values. The block cipher is now ready for encryption or decryption.

4 Design Rationale

The round key in Speck is added modulo 2 (XOR) to left half of the block
cipher and the right half is XORed with left half. However, when it comes
to linear cryptanalysis (see [2]) addition modulo 2n is more secure. The
bias or effectiveness ε = |p− 1/2| = 1

2i+1 , where p denotes the probability
of the linear approximation and i is the bit position (lsb=0). This was
presented by [8] and with a different proof by [3]. Since addition in PAGES
is modulo 2128 and the plaintext requirement for success is roughly 1/ε2,
the key is added modulo 2128 to the left half of the block cipher and
then the left half is added modulo 2128 to right half. The equation for
the bias holds also for the right half, since the additon of the left half
can be separated in the addditon of the left half without the key and
the addition of the key itself (i.e. addition is associative). To have three
different operation, namely addition modulo 2128, XOR, and rotation, the
addition of the right half to the left half of block cipher was replaced by
XOR.

The concept of diffusion in cryptography is known since Claude E.
Shannon, see [7]. If one looks at Speck and PAGES, diffusion means in
that case, that every plaintext bit is rotated to every bit position, provided
that the number of rounds is sufficient. In Speck128, the left half of the
block cipher is rotated by 8 bits to the right. Since GCD(8,64)=8, where
64 denotes half the block length and the bit length of the addition, a
possible bit flip in the left half of the plaintext is after eight rounds in
the same position as it was in the plaintext. Consequently, the amount of
rotation of the left half was not doubled to 16, but was set to 19. Since
19 and 128 are coprime, i.e. GCD(19,128)=1, a possible bit flip in the left
half of the plaintext is rotated to all the positions in left half of the block
cipher, if the number of rounds is 128. For the same reason, the amount
of circular shift to the left of the right half was not doubled to 6, but was
set to 7.

Since the circular shifts are opposed to each other, one also has the
sum taken into account. If the rotations are in the same direction, one
has to take the difference into consideration. The sum is 19+7=26. Since
GCD(26,128)=2, a possible bit flip in the left half is rotated to 64 positions
to the right half and vice versa (we did not consider the addition). If we

3

take 17 instead of 19, the sum ist 17+7=24 and GCD(24,128)=8. Then
the bit flip would have been rotated to 16 positions from the right half
to the left half and vice versa. Since odd+odd=even (or odd-odd=even),
one must take even values where power of 2 is one. When we come back
to Speck128, we can see that the right rotation of the left half would be
better with 10 positions, since GCD(10,64)=2. Thus a bit flip would be
circular shifted to 32 different positions.

The minimum number of rounds was set to 64. Carry propagation,
which is the only non-linear operation in F128

2 , is essentially local. Carry
propagation comes to a halt, when the two addends have at the same
bit position zeros. The probability for that is 1/4, if the addends are
pseudorandom, since two bits can have the values 00, 01, 10, and 11 with
equal probabilities. Thus the average length of carry propagation is four,
that is a halfbyte. Since every addition in the cipher propagates the carry
four additional positions in average, the number of rounds in which all the
128 bits of one half are changed is 32, if in the plaintext one bit is flipped.
To achieve an additonal security margin, to number of rounds was set to
at least 64.

In Speck128, the number of rounds, in which all the bits of one half are
changed due to carry propagation, if in the plaintext one bit is flipped, is
on average 16. Double that number, and you will have the minimum num-
ber rounds for Speck128, which is 32 for 128 bit key length. However, we
decided that PAGES-768 and PAGES-1024 should have an extra security
margin. Hence the number of rounds was set to 96 and 128, respectively.
The number of rounds for Speck128/192 and Speck128/256 is 33 and 34,
see [1], respectively. The bit changes that are due to operations between
the halves were not taken into consideration on the carry propagation,
except for addition in Speck.

5 Software Performance

On an AMD A6 6310 (Quadcore) with 1.8 GHz the optimized reference
implementation runs with throughput of approx. 400 Mbit/s, 265 Mbit/s,
and 200 Mbit/s for PAGES-512, PAGES-768, and PAGES-1024, respec-
tively. This represents 36 cycles/byte, 54 cycles/byte, and 72 cycles/byte,
respectively. The key schedule was not taken into consideration. The
operating system was Linux Mint 17 (64 bit) and the C-compiler was gcc
version 4.8.2 with optimization -O. The code size of the reference imple-
mentation is approx. 8.5 kB.

If the reference implementation source code is compiled with the op-
tions -funroll-loops und -O3 the throughput increases to 432 Mbit/s, 287
Mbit/s, and 213 Mbit/s for PAGES-512, PAGES-768, and PAGES-1024,
respectively. This represents 33.3 cycles/byte, 50.2 cycles/byte, and 67.6
cycles/byte, respectively. The code size is here approx. 12.5 kB. Note
that the decryption throughput is in both cases about 10 Mbit/s higher
then the encryption performance.

The following table summarizes the results (TP denotes throughput,
EC denotes encryption cost in cycles/byte):

4

Compiler Options -O -O3,-funroll-loops

Cipher TP EC TP EC
Mbit/s cyc/by Mbit/s cyc/by

PAGES-512 400 36.0 432 33.3
PAGES-768 265 54.0 287 50.2
PAGES-1024 200 72.0 213 67.6

6 Conclusion

I have presented the block cipher PAGES, which comes in three version
PAGES-512, PAGES-768, and PAGES-1024. The number denotes thee
key length, while the block size is 256 bit. The cryptographic community
is invited to determine the security of the block cipher, and, if need be,
make the necessary amendments. As its predecessor Speck, PAGES is free
from any intellectual property claims.

References

[1] Beaulieu, Ray et.al.: The Simon and Speck Families of Lightweight
Block Ciphers, IACR ePrint Archives, Report 2013/404 1, 4

[2] Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher, in Tor
Helleseth(ed.): Advances in Cryptology - EUROCRYPT 93, LNCS,
Springer Verlag, Berlin, 1993 3

[3] Mukhopadhyay, Debdeep and Dipanwita RoyChowdhury: Key Mixing
in Block Cipher through Addition modulo 2n, IACR ePrint Archives,
Report 2005/383 3

[4] Schmidt, Dieter: 1024 - A High Security Software Oriented Block Ci-
pher, IACR ePrint Archives, Report 2009/104 3

[5] Schmidt, Dieter: 1024XKS - A High Security Software Oriented Block
Cipher Revisited, IACR ePrint Archives, Report 2010/162 3

[6] Schmidt, Dieter: 2048XKS-F & 4096XKS-F - Two Software Oriented
High Security Block Ciphers, IACR ePrint Archives, Report 2013/136
3

[7] Shannon, Claude Elwood: Communication Theory of Secrecy Systems,
Bell Systems Technical Journal, v. 28, n. 4, 1949, pp. 656-715, reprint
in Sloane, N.J.A., A. Wyner (eds.): Claude Elwood Shannon: Collected
Papers, IEEE Press, Piscataway, USA 1993 3

[8] Wallén, Johan: Linear Approximations of Addition modulo 2n, in
Thomas Johansson(ed.): Fast Software Encryption (FSE) 2003,
LNCS, Springer Verlag, Berlin, 2003 3

A Reference Implementation

/*

The C reference implementation of the

block ciphers PAGES with 256 bit blocksize

for gcc compatible compilers.

Copyright 2015 by

5

http://eprint.iacr.org/2013/404.pdf
http://eprint.iacr.org/2005/383.pdf
http://eprint.iacr.org/2009/104.pdf
http://eprint.iacr.org/2010/162.pdf
http://eprint.iacr.org/2013/136.pdf

Dieter Schmidt

This software is subject to the GNU General Public License.

This program is FREE software; you can redistribute

and/or modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 3 of the

license, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY, without even the implied warranty of

MERCHENDABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for details.

You should have received a copy of the GNU General Public

License along with this program; if not, write to the

Free Software Foundation, Inc.,

59 Temple Place, Suite 330,

Boston, MA 02111-1307,

USA.

See http://www.gnu.org/licenses/gpl.txt for details.*/

#include<stdio.h>

#define INTLENGTH 128

#define NUMROUNDS 128 // 64 and 96 also possible

#define ROL(x,a) ((((x)<<(a))|((x)>>(INTLENGTH-(a)))))

#define ROR(x,a) ((((x)>>(a))|((x)<<(INTLENGTH-(a)))))

#define KEYLENGTH NUMROUNDS/16

#define ROTROUNDKEY 61

#define ROTROUNDDATA1 7

#define ROTROUNDDATA0 19

#define FORWARD

void encrypt(unsigned __int128 data[2],\

unsigned __int128 keys[NUMROUNDS]){

unsigned long i;

register unsigned __int128 a,b;

a=data[0];b=data[1];

for(i=0;i<NUMROUNDS;i++){

a=ROR(a,ROTROUNDDATA0);

a^=b;

b=ROL(b,ROTROUNDDATA1);

a+=keys[i];

b+=a;

}

data[0]=a;data[1]=b;

return;

}

6

void decrypt(unsigned __int128 data[2],\

unsigned __int128 keys[NUMROUNDS]){

unsigned long i;

register unsigned __int128 a,b;

a=data[0];b=data[1];

for(i=0;i<NUMROUNDS;i++){

b-=a;

a-=keys[NUMROUNDS-i-1];

b=ROR(b,ROTROUNDDATA1);

a^=b;

a=ROL(a,ROTROUNDDATA0);

}

data[0]=a;data[1]=b;

return;

}

void expand_key(unsigned __int128 userkey[KEYLENGTH],\

unsigned __int128 keys[NUMROUNDS]){

unsigned long i,j;

unsigned __int128 data[2],a;

for(i=0;i<KEYLENGTH;i++) keys[i]=userkey[i];

for(i=1;i<16;i++){

a=keys[(i-1)*KEYLENGTH];

a>>=(INTLENGTH-ROTROUNDKEY);

for(j=0;j<(KEYLENGTH-1);j++){

keys[i*KEYLENGTH+j]=(keys[(i-1)*KEYLENGTH+j]\

<<ROTROUNDKEY)|(keys[(i-1)*KEYLENGTH+j+1]\

>>(INTLENGTH-ROTROUNDKEY));

}

keys[i*KEYLENGTH+KEYLENGTH-1]=\

(keys[(i-1)*KEYLENGTH+KEYLENGTH-1]\

<<ROTROUNDKEY)|a;

}

data[0]=0;data[1]=0;

for(i=0;i<(NUMROUNDS/2);i++){

encrypt(data,keys);

#ifdef FORWARD

keys[2*i]=data[1];

keys[2*i+1]=data[0];

#else

keys[NUMROUNDS-2-2*i]=data[1];

keys[NUMROUNDS-2*i-1]=data[0];

#endif

}

return;

}

int main(){

unsigned __int128 data[2],userkey[KEYLENGTH],keys[NUMROUNDS];

7

unsigned long i,j;

data[0]=0;data[1]=1;

i=(long) data[0];

j=(long) data[1];

printf("Before encryption %20lx%20lx\n",i,j);

for(i=0;i<KEYLENGTH;i++) userkey[i]=i;

expand_key(userkey,keys);

encrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

printf("After encryption %20lx%20lx\n",i,j);

decrypt(data,keys);

i=(long) data[0];

j=(long) data[1];

printf("After decryption %20lx%20lx\n",i,j);

return(0);

}

8

	Introduction
	Preliminaries
	Assembly of PAGES
	Encryption
	Decryption
	Key Schedule

	Design Rationale
	Software Performance
	Conclusion
	Reference Implementation

