
sp-AELM: Sponge based Authenticated Encryption Scheme for Memory
Constrained Devices

Megha Agrawal, Donghoon Chang, and Somitra Sanadhya

Indraprastha Institute of Information Technology, Delhi (IIIT-D), India
{meghaa,donghoon,somitra}@iiitd.ac.in

Abstract. In authenticated encryption schemes, there are two techniques for handling long ciphertexts while working
within the constraints of a low buffer size: Releasing unverified plaintext (RUP) or Producing intermediate tags (PIT).
In this paper, in addition to the two techniques, we propose another way to handle a long ciphertext with a low buffer
size by storing and releasing only one (generally, or only few) intermediate state without releasing or storing any part of
an unverified plaintext and without need of generating any intermediate tag. In this paper we explain this generalized
technique using our new construction sp-AELM. sp-AELM is a sponge based authenticated encryption scheme that
provides support for limited memory devices. We also provide its security proof for privacy and authenticity in an ideal
permutation model, using a code based game playing framework. Furthermore, we also present two more variants of
sp-AELM that serve the same purpose and are more efficient than sp-AELM. The ongoing CAESAR competition has 9
submissions which are based on the Sponge construction. We apply our generalized technique of storing single intermediate
state to all these submissions, to determine their suitability with a Crypto module having limited memory. Our findings
show that only ASCON and one of the PRIMATE’s mode(namely GIBBON) satisifes the limited memory constraint using
this technique, while the remaining 8 schemes (namely, Artemia, ICEPOLE, Ketje, Keyak, NORX, π-Cipher, STRIBOB
and two of the PRIMATEs mode: APE & HANUMAN) are not suitable for this scenario directly.

Keywords: Authenticated encryption, CAESAR, Cryptographic module, Remote key authenticated encryption,
Decrypt-then-mask protocol, Privacy, Authenticity.

1 Introduction

Authenticated encryption (AE), formalized in [3, 4], is a technique that combines encryption and authentication to
provide both privacy and authenticity of the data by means of a single construction, usually with a single key. The
formal definition of privacy and authenticity are provided in [4], where AE is introduced as a block cipher mode of
operation with the same block cipher performing both encryption and authentication. Informally, an AE scheme
receives a message and a secret key as inputs and generates a ciphertext and a tag during encryption process.
On the receiver side, the ciphertext and tag pair is verified, and the corresponding plaintext after decryption is
returned only if the AE scheme verifies the supplied tag.

There exist a wide variety of AE modes. Some of the popular AE modes are GCM [28], OCB [30], EAX [6],
CCM [15] and CWC [24]. In these “offline” AE modes, the device needs to store the complete plaintext, in
the encryption mode, to produce the tag. Not all devices possess large memory to completely store a message
and hence the modes mentioned earlier can’t be directly used in the case of a long message. Consequently, the
concept of online authenticated encryption was proposed in [18], in which encryption can be done on the fly. If the
message (resp. ciphertext) blocks are denoted by M1,M2, . . . (resp. C1, C2, . . .), then the requirement of online AE
means that the ciphertext block Ci can be computed without the knowledge of plaintext block Mj for any j > i.
Most of the block-cipher based authenticated encryption schemes can be used in online encryption mode. Many
authenticated encryption schemes that support online encryption have been submitted to the currently on going
CAESAR competition [1]. Some of these are APE [2], NORX [23], AEGIS [31] etc.

However, decryption in an AE scheme can never be online due to the fact that the ciphertext needs to be verified
before producing the plaintext. If this was not the case then an attacker could simply ask for the decryption of a
ciphertext of his choice, while associating any arbitrary tag with the ciphertext. The requirement of verifying the
tag before producing the decrypted text can be solved in two different ways. In one case, the system implementing
the decryption process could store the complete plaintext and produce it only if the tag verifies. In the other
case, the system first applies the tag verification algorithm and then produces the plaintext, block by block, only
if the tag verifies. It may be possible to achieve the implementation of the first method in a single pass over the
ciphertext, whereas the second method can’t be implemented in less than 2 passes over the ciphertext. However, the
first method requires potentially large memory on the device while the second method could be implemented even

on low memory devices. In fact, with the increasing usage of low cost RFID devices, sensors and trusted platform
modules (TPM), the need for an AE scheme which can supports both the encryption and the decryption functions
in online form is increasing day by day. None of the schemes submitted in the CAESAR competition consider this
limited memory constraint explicitly.

Related work: At FSE 1996, Blaze [10] proposed a new paradigm for secret-key block ciphers: Remotely keyed
encryption (RKE). RKE is concerned with the problem of “high-bandwidth encryption with low bandwidth
smartcards”. A scheme to achieve the same was proposed in this work, but some limitations of the scheme were also
mentioned in the same work. Later, Lucks [25] provided the first formal model for RKE and chose to interpret the
question as that of implementing a remotely key pseudorandom permutation (RKPRP). The work [25] was further
improved, both in terms of formal modelling and the actual construction, by an influential work of Blaze et. al [11].
It was observed in this later work that the PRP’s length preserving property implies that it can not be semantically
secure when viewed as encryption function alone. Thus, in addition to the RKPRP which was termed “length
preserving RKE”, the work [11] also introduced the notion of “length increasing RKE” which was also referred
to as “remote key authenticated encryption” (RKAE). While the definition given in [11] was important and the
first step towards formalizing this new notion, it turns out to be quite non-standard (it involves an “arbiter” who
can fool any adversary). The notion of such an arbiter looks quite artificial. Later, Dodis et al. [14] provided the
formal definition of a remote key authenticated encryption. The RKAE scheme solves the problem where one wishes
to split the task of high bandwidth authenticated encryption between a secure client (but limited bandwidth or
computationally limited device) and an insecure (but computationally powerful) host. Though RKAE is efficient,
but the Crypto device (e.g. a card) that performs encryption and decryption doesn’t know the actual value of plaintext
and ciphertext (Refer Table 1). Rather, it trusts the insecure host to provide these values, making it unsuitable for
real world applications. Further, the security of this scheme is proved in a setting where the adversary has oracle
access only to the combined functionality of the host and the card. However, the host is assumed to be insecure
(subject to break-in by an adversary) in this scheme, i.e., the adversary can have access to the internal state of an
encryption algorithm executed on the host side. So, the underlying assumption of having oracle access to combined
functionality is not justified for defining security of the scheme.

Later, Fouque et al. at SAC 2003 proposed a decryption protocol named Decrypt-Then-Mask (DTM) [18].
The main idea behind this protocol is to blind the plaintext blocks obtained after decryption by XORing them
with a pseudorandom sequence of bits and return it to the sender. These blocks do not “look” meaningful to the
attacker until “unmasking” is applied. Once a tag gets verified at the receiver end, the seed of the pseudorandom
number generator(PRNG) used to mask the plaintext blocks is returned to the sender. This allows the sender
to run the same PRNG and un-mask the plaintext blocks. However this protocol has a drawback. The DTM
requires two additional passes excluding no. of passes required for underlying AE during decryption, which makes it
computationally expensive, specially in the case of long messages. These two extra passes (one at the crypto module
and another one at the user side) in DTM are due to the use of PRNG, which creates extra overhead particularly in
case of long message. The scenarios mentioned above point towards the need of an authenticated encryption scheme
which remains efficiently implementable with low memory crypto module even while handling long messages.

Recently, Andreeva et. al in ASIACRYPT 2014 [16] provides definitions to formalize an AE scheme’s security
against release of unverified plaintexts. Even though these settings provide support for the devices with limited
memory constraint but from the security point of view, it is essential to have a tag verification before releasing the
plaintext.

The issue of releasing unverified plaintest has also been discussed in on going CAESAR competition [1]. Its
feature page explicitly states: “Beware that security questions are raised by any authenticated cipher that handles
a long ciphertext in one pass without using a large buffer: releasing unverified plaintext to applications often means
releasing it to attackers and also requires an analysis of how the applications will react”. However releasing unverified
plaintext is not the only solution to handle large ciphertexts in memory constrained environment. In this work, we
present a new solution that serves the same purpose, even though, it requires two passes, among them only one
pass is effective as another pass takes place on user side and we usually assume that the user has enough memory
on their side.

Another requirement regarding intermediate tags mentioned in CAESAR [1] feature page states: “If a long
plaintext is split into separate packets, each of which is separately authenticated (and encrypted), then a long
forgery need not be buffered before it is rejected. Applying this split to any MAC (or authenticated cipher) produces
a new MAC (or authenticated cipher) with different performance properties; perhaps the same type of fast rejection

can be better achieved in another way”. These settings still require significant memory to store the decrypted text
and tags for every packet, which may not be available for the devices with the limited memory constraint. However
the scheme proposed in this paper can support intermediate tag even for devices with the limited memory as we
only need to store one intermediate state for all the packets and can also support fast rejection by checking those
intermediate tags. For more details one can refer to Appendix A.

Our Contribution: In this paper, we introduced a new generalized technique for authenticated encryption
which store only one intermediate state instead of entire plaintext during tag verification. And then this intermediate
state is used by the user on their side to decrypt ciphertext. Without releasing unverified plaintext this technique
allow us to do a tag verification for a long message on the devices with limited memory settings. We explained this
generalized technique using our new construction sp-AELM and its variants. This new construction and its two more
variants support both online encryption as well as tag verification in constrained memory setting for long messages,
which makes it suitable for implementation on devices that have limited memory. The Sponge construction supports
arbitrarily long input and output sizes, and hence allows building various cryptographic primitives such as a hash
function or a stream cipher [8]. More recently, use of Sponge based hash functions as an authenticated encryption
primitive has been proposed in [7]. Keccak, the winner of the SHA-3 competition, is also built on the Sponge
construction. Considering the acceptability and future adaptability of the Sponge construnction in Cryptographic
software/hardware, we choose the Sponge function as a basic primitive for the construction of our authenticated
encryption scheme sp-ALEM.
In sp-AELM, instead of returning all the plaintext blocks, we provide only one internal state to the user, using
which plaintext can be computed easily at his side. Our scheme requires a total of three passes, one for encryption
and two for decryption. This compares favourably with the DTM scheme, which requires overall more number of
passes (discussed in Table 1), making our scheme more efficient. In sp-AELM, all computations are proposed to
be done inside a cryptographic module, where the actual plaintext and ciphertext values are securely known, as
opposed to the RKAE scheme [14]. More details about sp-AELM are given in Section 4. In addition to this, we
also present two more efficient variants of sp-AELM. More detail about these variants are given in Section 6.

Table 1 Description: This table shows the comparison of RKAE, DTM, the proposed scheme sp-AELM
and sp-AELM variants. Our proposed scheme and its variants support online encryption. However, in the case
of RKAE and DTM, it depends on the underlying AE scheme that is used. All these three schemes support low
memory verification, i.e., there is no need to store message blocks on a cryptographic module during decryption.
Next we compare these schemes on the basis of number of passes required for encryption and decryption. For a
given message M of n blocks, we use the usual notion of a “pass” as the processing of all n blocks of M once. The
RKAE scheme requires two passes1 for encryption during execution of Conceal algorithm (one pass for encrypting
n block message and another pass for computing the hash value on the output of the first pass, explained in
Fig. 1(a)), while the number of passes required for DTM depends on the underlying AE scheme. sp-AELM and
its variants require only one pass for encryption i.e. it visits the n block message exactly once. For decryption and
verification, RKAE requires two passes1 as shown in Fig. 1(b) (one pass for computing the hash value and another
one for decryption). DTM uses two additional passes for pseudo random number generator (one pass for masking
the n block message and another for unmasking the n blocks) apart from the number of passes for the underlying
authenticated decryption algorithm. sp-AELM and its variants require only two passes (one at the receiver side
and another one at the sender side as shown in Fig. 4(b)) for the decryption and verification. We have also used
communication overhead between the host and the Crypto module as a comparison parameter in terms of the
number of message blocks n. RKAE require only 2 communications(shown in Fig. 1b in), DTM require 2n + 2
communications(shown in Fig. 2(b)) whereas sp-AELM and its variants require n + 2 communications(shown in
Fig. 4(b)).

1 For RKAE encryption/decryption we neglect the computations carried out at the Crypto module, as it is processed on a small data.

Parameters RKAE DTM sp-AELM sp-AELM variants
[14] [18] [This paper] [This paper]

Online Encryption Depends on underlying AE Depends on underlying AE Yes Yes
Support for low memory verification Yes Yes Yes Yes
No. of Passes required for Encryption and tag
generation

Two Depends on underlying AE One One

No. of Passes required for Decryption and
Verification

Two 2 + Depends on underlying AE Two Two

Communications overhead b/w Host and Crypto
module during verification and decryption

2 2n+ 2 n+ 2 n+ 2

Knowledge of Plaintext and Ciphertext to Crypto
module

No Yes Yes Yes

Table 1. Comparison of RKAE, DTM, sp-AELM and sp-AELM variants:(a) One pass is defined as processing of n blocks of a message
once.(b)The communication overhead is given in terms of number of blocks n for a message M .

In addition to this, we also applied the same technique used in sp-AELM on all Sponge based authenticated
encryption schemes submitted to the CAESAR competition, to evaluate their suitability for supporting low memory
constraint. Currently there are nine Sponge based AE schemes in the CAESAR competition. We addressed all these
nine schemes using the same technique that we used in sp-AELM, i.e., during verification and decryption, storing
only one intermediate state instead of storing all decrypted text and returning this intermediate state only when tag
gets verified. Detailed analysis of the individual scheme is provided in Section 7. Our findings are briefly summarized
in Table 2.

Sponge based AE Schemes submitted in CAESAR Support for limited memory devices

(shown in Section 7)

Artemia [22], ICEPOLE [29], Ketje [20], Keyak [21], NORX [23], π-Cipher [13],
PRIMATEs(APE, HANUMAN) [17], STRIBOB [27]

No

Ascon [12], PRIMATEs(GIBBON) [17] Yes

Table 2. Analysis of CAESAR schemes showing their suitability for supporting limited memory constraint.

Roadmap : The rest of this paper is organized as follows: Section 2 gives the brief description of Remote Key
Authenticated Encryption [14] and the protocol defined in [18]. Section 3 defines some preliminaries followed by
Section 4 that defines the construction of the proposed AE scheme (sp-AELM). We provide the security proof of the
proposed scheme in Section 5. In Section 6, we present two more efficient variants of sp-AELM. Section 7 presents
the brief analysis of all Sponge base AE schemes submitted to the CAESAR competition. Finally, we conclude this
paper in Section 8.

2 Previous Work

2.1 Remotely Keyed Authenticated Encryption

In [14] Dodis et al. proposed a formalized solution to the problem of remotely keyed authenticated encryption
(RKAE). One round of the proposed scheme consists of seven different algorithms that run between two parties
called the host and the cryptographic module: (RKG, StartAE, CardAE, FinishAE, StartAD, CardAD, FinishAD).
In this scheme, the authors used the smart card as the Crypto module. The host is assumed to be powerful but
insecure, and the Crypto module is assumed to have low bandwidth and limited memory but taken to be secure.
For a given authenticated encryption scheme AE, we explain the RKAE using an example. First, the RKG runs
and produces the secret key K and this key gets stored on the Crypto module. The process of encryption is divided
into 3 parts (shown in Fig. 1(a)):

1. First, the host runs a probabilistic algorithm StartAE on input M (which we conveniently rename Conceal
and produces (h, b) pair, where |b| << |h|, h ← Eτ (M), b = τ‖H(h), E is any one time symmetric encryption
algorithm, τ is the session key and H(.) is a collision resistant hash function. Next, b is sent to the Crypto
module while h will be used as a part of the final ciphertext.

2. On receiving b, the Crypto module runs an authenticated encryption algorithm CardAE, which could be any
AE scheme using secret key K, which produces C = AEK(b) and sends it to the host. Note that the key K is
only known to the Crypto module.

3. At the end, the host runs FinishAE by producing C ′= 〈C, h〉 pair as the resulting authenticated encryption of
M .

Similarly, the process of decryption is divided into 3 parts (shown in Fig. 1(b)):

1. For decryption, the host initially has the pair C ′= 〈C‖h〉, out of which he sends C to the Crypto module.

2. Crypto module receives C and runs CardAD which is an authenticated decryption algorithm AD using secret
key K, and outputs b = ADK(C) that will be sent to the host.

3. Finally, the host runs FinishAD (which we conveniently rename Open(h, b)). This deterministic algorithm
Open(h, b) outputs M if (h, b) is a“valid” pair, otherwise it returns the invalid operator ⊥. Open(h, b) first
parses b into τ‖H(h), and then uses τ to decrypt h.

Host H Crypto Module CM
〈C‖h〉 (K)

C′ = 〈C, h〉
C

b = ADK(C)b

M or⊥ = Open(h, b)

Host H Crypto Module CM
(M) (K)

(h, b) = Conceal(M)

b
C = AEK(b)

C

Return C′ = 〈C, h〉

where h = Eτ (M),
b = τ‖H(h)

(a) Encryption (b) Decryption
Parse b = τ‖H(h)
M or ⊥ = Dτ (h)

Fig. 1. Remote Key Authenticated Encyprion

2.2 Decrypt-Then-Mask Protocol

In [18], Fouque et al. proposed a generic construction called Decrypt-then-mask. Their construction doesn’t affect
encryption, only the decryption part is modified. They use a pseudorandom number generator to mask the plaintext
blocks, to eliminate the need of storing plaintext blocks. Once the tag gets verified, the scheme returns the seed of
the PRNG that has been used to mask the plaintext blocks. We use CM to denote cryptographic module and U
to represent user of this device in further description of the scheme. For a given authenticated encryption scheme
AE, the encryption and decryption component work as follows (shown in Fig. 2):

User R Crypto Module CM
(C, T) (K)

C = c1‖c2‖...‖cn s0 ← {0, 1}s
c1
p1

c2

p2

cn

pn

T

s

for i = 1, 2...., n
mi = ADK(ci)

(ri, si)← PRNG(si−1)
pi = mi ⊕ ri

if T is valid
s = s0

else
s = ⊥

if s = ⊥, C is invalid
else

s0 = s
for i = 1, 2...., n

(ri, si)← PRNG(si−1)
mi = pi ⊕ ri

$

User R Crypto Module CM
(M)

M = m1‖m2‖...‖mn

(C, T) = AEK(M)

(K)

(a) Encryption (b) Decryption with Masking

where C = c1‖c2‖...‖cn
(C, T)

M

(C, T)

Fig. 2. Encryption and Decryption using Decrypt-Then-Mask Protocol: In (b)decryption, to represent it diagrammatically we assume
ADK(ci) returns the intermediate value mi.

1. User U is given ciphertext-tag (C, T) pair,where C = c1‖c2‖...‖cn, and he wants to decrypt it only if it has not
been modified.

2. Crypto module CM executes the seed generation algorithm to generate a random seed s0 for the PRNG and
generates (r1, s1) = PRNG(s0). User U sends first ciphertext block c1 to CM . Crypto module CM initializes
the tag computation and decrypts c1 to generate m1 =ADK(c1) and masks m1 to obtain p1= m1⊕r1 and sends
it to U . In general, ADK(.) takes (C, T) pair as input and returns plaintext M or invalid operator ⊥ (if the tag
T is not valid). For better explaination, we assume ADK(ci) returns the intermediate mi.

3. U sends ciphertext block one by one to CM . Upon receiving each ciphertext block ci, it updates the tag
computation and decrypt ci followed by masking pi= mi ⊕ ri where ri is generated as (ri, si)= PRNG(si−1).
Then pi is returned back to the user U . This process repeats until all ciphertext blocks get processed.

4. Once the processing of all ciphertext blocks get done, U sends tag T to CM and the Crypto module CM checks
validity of the tag. If the tag is valid then it returns s0 to U , otherwise it returns invalid symbol ⊥.

5. If U receives s0, i.e., tag is valid and it decrypts p1‖p2‖....‖pn. For i = 1, 2...n, it generates (ri, si)= PRNG(si−1),
and decrypt pi as mi= pi ⊕ ri. Finally plaintext M= m1‖m2‖....‖mn. If U receives ⊥ then the tag is invalid
and the plaintext M can not be generated.

3 Preliminaries

Definition 1 (Ideal Online Function) Let func(A,B) be defined as set of all functions from set A to set B.
Now, we define ideal online function $pad as:

$pad(N,A,M, flag)→
{

(C, T) if flag is 1,
C if flag is 0,

where,
pad(X)= X‖10t where t is a non-negative integer s.t |X‖10t|= pr for p > 0 and some fixed r.
N= nonce of r bit,
A= Associated data, where |A| < r and A′=pad(A),
M= input message that can be partial or complete depending on the flag value,

flag =

{
0 ; if user has queried partial message M ,
1 ; if user has queried complete message M .

In case flag = 0, we are assuming user has supplied incomplete message and wlog length of supplied message
(|M |) is multiple of r.

M ′ =
{
m0‖ . . . ‖mn−1 = M,where n = |M |/r and |mi| = r ; if flag=0 ,
m0‖ . . . ‖mn−1 = pad(M) s.t. |mi| = r for 0 ≤ i ≤ n− 1 ; if flag=1 .

C = c0‖c1‖ . . . ‖cn−1 where cj = g(N,A′,m0‖ . . . ‖mj) for j = 0, . . . , n− 1, and

g
$←− func({0, 1}r × {0, 1}r × ({0, 1}r)+, {0, 1}r),

T = g′(N,A′,M ′), where g
′ $←− func({0, 1}r × {0, 1}r × ({0, 1}r)+, {0, 1}t).

Notice that above function is online: here prefixes of outputs remain the same if prefixes of the inputs remain
constant. Furthermore, if we consider that nonce and associated data are unique for each function invocation in the
ideal online function, then we acheive full privacy. This is because the inputs to g and g′ will then be unique for
each invocations, and since g and g′ are functions randomly chosen from func, we get outputs that are independent
and uniformly distributed.

Definition 2 (Privacy) For a given authenticated encryption scheme AE = (K, E ,D), we define privacy in terms
of the ability of an adversary A to distinguish between the output of an encryption oracle E from the output of an
ideal online function $pad. We define

AdvprivAE (A) = Pr[K
$←− K : AEK(.,.,.,.) ⇒ 1]− Pr[A$pad(.,.,.,.) ⇒ 1]

The oracle EK on input (N,A,M, flag), returns the C or (C, T) depending on the flag value whereas the oracle
$pad on input (N,A,M, flag), works as defined in Def. 1. Here the advantage of an adversary A will be its ability
to distinguish between the ciphertext outputs from the EK and $pad .

Definition 3 (Authenticity). Here we give a notion of authenticity of the ciphertext tag pair of an authenticated
encryption scheme. For a given authenticted encryption scheme AE = (K, E ,D), let A be an adversary having an
encryption oracle EK . We say that A forges if it outputs a (N,A,C, T) tuple where DK(N,A,C, T) 6= INV ALID
and adversary A didn’t ask a query EK(N,A,M, flag) that resulted in response (C, T).
Let ExpAuthΠ (A) be the forging experiment for a given AE. Then the forging experiment is defined as follows:

1. Adversary A can query encryption oracle E, decryption oracle D atmost qenc, qdec times respectively.

2. All the query responses of encryption oracle E, are stored in a set, say R. This R set contain (N,A,C, T) tuple.

3. If adversary A is able to generate a (N,A,C, T) tuple /∈ R that produces valid message M , then he wins and
output is 1 otherwise output is 0, after trying qdec number of queries.

We say adversary wins i.e. he succeed in creating forgery if ExpAuthAE (A) = 1. So, the advantage of adversary in
forging the scheme is defined as:

AdvAuthAE (A) = Pr[ExpAuthAE (A) = 1]

4 Our Construction: sp-AELM

A cryptographic module should not reveal any information about the plaintext until ciphertext-tag pair gets verified.
Once the ciphertext gets verified, then crypto device is allowed to reveal the plaintext. However, a cryptographic
module is likely to have some storage restriction. Therefore, it can not store a large plaintext M , verify the tag and
output M only when M is valid. Traditional authenticated encryption schemes do not satisfy this usage scenario.
We propose a new sponge based authenticated encryption scheme sp-AELM that considers this situation. sp-AELM
uses a permutation as the underlying cryptographic primitive. Section 4.1 gives detail of the proposed scheme.

4.1 Description of sp-AELM

We now describe the new authenticated encryption scheme sp-AELM that addresses the low memory issue
mentioned earlier. Schematic structure of sp-AELM is shown in Fig. 3. Our authenticated encryption scheme
takes key K, nonce N , associated data A, plaintext M and flag as inputs and returns C or (C, T) depending
on the value of the flag, where C represents the ciphertext and T denotes tag or message authentication code
(MAC). We denote cryptographic module by CM and the user of this module by U . The user U uses the crypto
module CM for encryption, decryption and verification. The encryption and decryption procedures are given in
Algorithm 1 and Algorithm 2 respectively.

π

K N

π π

A0 m0

π

c0

π

mn−2 mn−1

π

cn−1cn−2

π

K A0

ππ

N

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕

⊕ ⊕
π

Aj−1

⊕0r

0c

Kr

Kc

⊕ ⊕

⊕

⊕

⊕ ⊕

Nr

Nc

a1

b1

an−2

bn−2

an−1

bn−1

an

bn

a0

b0
π

Aj−1

⊕

⊕

Z0

K′
r

K′
c

N ′
r

N ′
c

Fig. 3. sp-AELM Construction

4.1.1 Encryption
The algorithm for encryption, EK(., ., ., .) is explained in Algorithm 1. It takes an input, the secret key K of r bits,
nonce N of r bits and associated data A, plaintext M and a flag value. This flag value can be 0 or 1, where 0
represents continue i.e. partial M is provided as an input and 1 represents stop i.e., M is complete, we can do
the tag computation. Associatd data A is partitioned into r bit blocks(A0‖ . . . Aj−1) and 10∗ padding is used for
last block if required. We use two initialization vectors IV1 and IV2 of size r and c respectively, each of which
is initialized to zero. Further, flag value is checked, if it is 1, then the message M is padded using Pad(M) and
divided into n blocks (M = m0‖m1‖ . . .mn−1), each block is of r bit (i.e. |M |/r = n). Otherwise it is just processed
into r bit blocks. Algorithm iterates a fixed permutation π : A × B → A × B, where |A| = r and |B| = c. First
(IV1 ⊕K)‖IV2 is given input to π and the output is Kr‖Kc. Then IV2 is XORed with Kc(say this value X). The
next input to π is (Kr ⊕ N)‖X and the corresponding output is Nr‖Nc. Then this Nc valus is XORed with X.
Similarly associated data A is processed. After that message block m′is for i = 0, 2, ..(n−1) get processed. Note that
encryption is online here, we don’t need to know message blocks in advance i.e., ci can be calculated without prior
knowledge of mj for any j > i. Once all the message blocks are processed and flag is 0, then C = c0‖c1‖....‖cn−1

is return to the user and algorithm terminates. Otherwise K,N,A are processed again in a order followed by tag
generation. Tag T is generated from Z0 value. Z0 is the initial r bits of final output of π and tag T is extraction of

required initial bits of Z0 (if tag is of 128 bit, then T is initial 128 bit of Z0). Finally (C, T) pair is returned to the
user, where C = c0‖c1‖....‖cn−1.

Algorithm 1: Encryption EK(N,A,M, flag)

1 Initialization: IV1 = 0r, IV2 = 0c, Kr‖Kc $←− {0, 1}b,
Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)}

2 if (flag = 1) then
3 M = m0‖m1‖.....‖mn−1, Where |mi| = r and 0 ≤ i < (n− 1)

4 Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

5 else
6 M = m0‖m1‖...‖mn−1, Where |mi| = r
7 if |mn−1| < r then {return Invalid;}
8 Pad(A) = A0‖A1 . . . ‖Aj−1 s.t. |Ai| = r and 0 ≤ i < (j − 1)
9 x = Kr ⊕N , w = Kc

10 Nr‖Nc = π(x‖w)
11 x = Nr, w = Nc ⊕ w
12 for i = 0→ j − 1 do
13 x′‖w′ = π(x⊕Ai‖w)
14 w = w′ ⊕ w, x = x′

15 a0 = x′, b0 = w′

16 c0 = a0 ⊕m0

17 for i = 1→ n− 1 do

18 x
′‖w′ = π(ci−1‖bi−1)

19 bi = bi−1 ⊕ w
′

20 ai = x
′

21 ci = ai ⊕mi
22 C = c0‖c1‖.....‖cn−1

23 if (flag = 0) then
24 Return C; Exit

25 an‖bn = π(cn−1‖bn−1)
26 x = an, w = bn
27 x = x⊕K
28 K

′
r‖K

′
c = π(x‖w)

29 x = K
′
r ⊕N , w = K

′
c ⊕ w

30 N
′
r‖N

′
c = π(x‖w)

31 x = N
′
r, w = N

′
c ⊕ w

32 for i = 0→ j − 1 do
33 x′‖w′ = π(x⊕Ai‖w)
34 w = w′ ⊕ w, x = x′

35 T = Z0 = x
36 Return (C, T)

Algorithm 2: Decryption DK (N,A,C, T)

1 Initialization: IV1 = 0r, IV2 = 0c, Kr‖Kc $←− {0, 1}b,
Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)}

2 |Pad(A)| = r
3 x = Kr ⊕N , w = Kc
4 Nr‖Nc = π(x‖w)
5 x = Nr, w = Nc ⊕ w
6 for i = 0→ j − 1 do
7 x′‖w′ = π(x⊕Ai‖w)
8 w = w′ ⊕ w, x = x′

9 a0 = x, b0 = w
10 m0 = a0 ⊕ c0
11 for i = 1→ n− 1 do

12 x
′‖w′ = π(ci−1‖bi−1)

13 bi = bi−1 ⊕ w
′

14 ai = x
′

15 mi = ai ⊕ ci
16 M = m0‖m1‖.....‖mn−1

17 x = an, w = bn
18 x = x⊕K
19 K

′
r‖K

′
c = π(x‖w)

20 x = K
′
r ⊕N , w = K

′
c ⊕ w

21 N
′
r‖N

′
c = π(x‖w)

22 x = N
′
r, w = N

′
c ⊕ w

23 for i = 0→ j − 1 do
24 x′‖w′ = π(x⊕Ai‖w)
25 w = w′ ⊕ w, x = x′

26 Z0 = x
27 if (Z0 == T) then
28 Return (a0, b0)
29 else
30 Return ⊥

4.1.2 Decryption and Verification
The algorithm for decryption DK(., ., ., .) is given in Algorithm 2. The decryption process is similar to encryption.
All the steps are same except for XORing with the message. The only difference is rather than XORing with
mi, we XOR with ci. Once the message block mi is evaluated we use that as input just like encryption. Here in
this decryption algorithm, we just store (a0, b0) value, all m′is block not get stored anywhere. Finally tag Z0 is
calculated. Once the tag becomes available , the given tag T is compared with Z0. If tag gets verified, i.e., Z0 = T ,
then algorithm returns (a0, b0) value. Once the user get this value, he can easily recover plaintext M from C as
m0= c0⊕a0, m1 = c1⊕π(c0, b0)[initial r bit] and so on (explained in Algorithm 2). If tag doesn’t get verified, then
it returns invalid operator, i.e., plaintext cannot be calculated in this case. Fig. 4(b) shows the decryption protocol
used in this new scheme.

5 Security Proof

In this section, we provide security proofs for the privacy and authenticity of spALEM. We have used recently
evolved game playing technique proposed by Bellare and Rogaway in [5]. We prove security of sp-AELM in the
ideal permutation model, where the underlying permutation is assumed to behave perfectly random. We also restrict
our proof to the assumption that nonce N will always be generated different and randomly by the attacker. As
it is not practically feasible by the algorithm to generate it randomly and differently everytime. To maintain the

User U Crypto Module CM

c1
C = c0‖c1‖.......‖cn−1

s
m0 = a0 ⊕ c0

For i = 1 to n − 1,
x′‖w′ = π(ci−1‖bi−1)
bi = bi−1 ⊕ w′

ai = x′

mi = ai ⊕ ci
M = m0‖m1‖....‖mn−1

s = DK(N,A,C, T)
where s = (a0, b0)or⊥

if s = ⊥, C is invalid
else

Crypto Module CMUser U
(N,C, T)

(K)
(M) (K)

M = m0‖m1‖.......‖mn−1

(C, T) =

(C, T)

(a) Encryption (b) Decryption

EK(N,A,M)

(C, T)
where C = c0‖c1‖.......‖cn−1

M cn
T

Fig. 4. Encryption and Decryption protocol for sp-AELM

simplicity of proof, we have considered associated data of one block only. This can be further extended with minor
changes in proof.

5.1 Privacy

We obtain an upper bound for the advatnage of the adversary who can distinguish the output of the proposed
scheme with a random oracle in the ideal permutation model.

Theorem 1. Let Π = (K, E ,D) denote the proposed Authenticated Encryption scheme with defined padding rule
and an permutation π, which operates on b bits. The adversary A has given access to π, π−1. Then the advantage
of A relative to E is given by

AdvprivΠ (A) = Pr[K
$←− K : AEK(),π,π−1

= 1]− Pr[K $←− K : A$pad(),π,π−1
= 1] .

AdvprivΠ (A) ≤ σ(σ − 1)

2b + 1
+
σ(σ − 1)

2c + 1
+

(qπ + qπ−1).qenc
2r

+
2(qπ + qπ−1)σ

2c − σ
+
qπ
2r

.

where $pad is defined in Def. 1, σ is the maximum number of block calls to π, π−1 by encryption E and decryption
D algorithm . qenc, qπ and qπ−1 are the maximum number of queries to encryption oracle Enc, π and π−1 oracle
respectively by adversary A. b(= r + c) is the size on which π permutation operates.

Proof . The advantage of the adversary is his ability to distinguish the proposed scheme from a random oracle.
We used the game based framework to compute this advantage. We define a sequence of nine games from G0 to
G8 given in supporting document along with this paper, where Game G0 represents the proposed scheme and
G8 represents completely random output. Computations for probability difference between consecutive games are
provided below.
Game G0: In this game encryption oracle perfectly simulates the proposed algorithm AE − Eπ,pad and π, π−1

oracle simulate an ideal permutation and its inverse.

Pr[AEk,π,π
−1

= 1] = Pr[AG0 = 1]

Game G1: Game G1 is exactly same as game G0.

Pr[AG0 = 1]= Pr[AG1 = 1]

Game G2: Game G1 and G2 differs only when bad event occurs, otherwise, in absense of bad event, both
games are same.

| Pr[AG1 = 1]-Pr[AG2 = 1] | ≤ Pr[bad]

Bad event occurs when input to π and π−1 collide with the elements in set Iπ. So, the probability of bad event will
be equal to the probability of collision in π and π−1. Let Pr[coll] be the probability of collision in π and π−1, then

Pr[bad] ≤ Pr[coll]

Let Pr[colli] = (i− 1)/2b be the probability that there is no collision till i− 1 queries and it occurs in ith query.
Thus Pr[coll] can be calculated as:

Pr[coll] = Pr[coll1 ∨ coll2 ∨collσ]

≤ Pr[coll1] + Pr[coll2] ++ Pr[collσ]

≤ 1

2b
+

2

2b
++

σ − 1

2b

≤ σ(σ − 1)

2b+1
.

Hence, the probability difference between G1 and G2 is

| Pr[AG1 = 1]-Pr[AG2 = 1] | ≤ σ(σ − 1)

2b+1

Game G3: Game G2 and G3 are identical. In game G3, Enc oracle simulates behaviour of π, so it becomes
independent of π. Hence, Game G2 and G3 are same from adversary point of view.

Pr[AG2 = 1]= Pr[AG3 = 1]

Game G4: Game G3 and G4 differ only when bad event occurs, otherwise both are exactly same. This bad
event occurs if collision happens over c bits inside Ic set in G4.

| Pr[AG3 = 1]− Pr[AG4 = 1] |≤Pr[bad]

And, Pr[bad] ≤ Pr[collision over c bits]

Pr[collision over c bits] ≤ 1

2c
+

2

2c
++

σ − 1

2c

≤ σ(σ − 1)

2c+1

Hence, | Pr[AG3 = 1]− Pr[AG4 = 1] | ≤ σ(σ − 1)

2c+1

Game G5: Game G4 and G5 are exactly same from adversarial point of view. We have created two new sets
I
′
π and I

′′
π , where, I

′
π keeps store for all the queries to encryption oracle and I

′′
π keeps store for all the queries to π

and π−1 oracle. Now, set Iπ is union of I
′
π and I

′′
π . This doesn’t make any difference in functionality of game G4

and G5.

Pr[AG4 = 1] = Pr[AG5 = 1]

Game G6: Game G5 and G6 are same, except G6 makes an additional check in sets I
′
π and I

′′
π . But from

adversary’s perspective both games are exactly same.

Pr[AG5 = 1] = Pr[AG6 = 1]

Game G7:Game G6 and G7 will differ in presence of bad1, bad2 and bad event.

| Pr[AG6 = 1]-Pr[AG7 = 1] | ≤ Pr[bad1] + Pr[bad2] + Pr[bad]

We are assuming here that qπ and qπ−1 query already has been queried to π and π−1 oracle respectively. And
maximum number of encryption queries are qenc.
Calculation for bad1 event : bad1 is an event of having collision at the first block over r bits in set I

′′
π for G6, as c

bits are fixed here. So,
Pr[bad1] ≤ Pr[collision over r bits]

And, Pr[collision over r bits] ≤ (qπ + qπ−1).qenc
2r

Calculation for bad2 event : bad2 is an event of having collision over c bits in set I
′′
π for G6, as r bits can be

controlled by adversary (by changing message). And these c bits are generated randomly and different each time.
Pr[bad2] ≤ Pr[collision over c bits]

And, Pr[collision over c bits] ≤ (qπ + qπ−1)σ

2c − σ
Calculation for probability of bad event : Here, bad is an event of having collision in the set I

′′
π . This can happen

either if collision occurs over c bit for a message M , as r bits can be controlled by an adversary or he is able to
guess the key correctly. Hence,

Pr[bad] ≤ Pr[correct key guess] + Pr[collision over c bits]

Here, Pr[collision over c bits] ≤ (qπ + qπ−1)σ

2c − σ
(same as computed above)

And, Pr[correct key guess] ≤ qπ
2r

So, | Pr[AG6 = 1]-Pr[AG7 = 1] | ≤ (qπ + qπ−1).qenc
2r

+
2(qπ + qπ−1)σ

2c − σ
+
qπ
2r

Game G8: In game G7 each ciphertext block is generated randomly, then concatenated and return to an
adversary. Similarly Tag is also generated randomly. However, in Game G8, ciphertext and tag of desired length is
selected as a random string and returned to an adversary. This move from G7 to G8 doesn’t make any difference,
as in both the games output is generated as completely random value. So,

Pr[AG7 = 1] = Pr[AG8 = 1]

Finally, using the fundamental lemma of game based framework,

AdvprivΠ (A) = Pr[K
$←− K : AEK ,π,π

−1
= 1]− Pr[K $←− K : A$pad(),π,π−1

= 1]

= |Pr[AG0 = 1]− Pr[AG8 = 1]|
= | (Pr[AG0 = 1]− Pr[AG1 = 1]) | + | (Pr[AG1 = 1]− Pr[AG2 = 1]) |

+ | (Pr[AG2 = 1]− Pr[AG3 = 1]) | + | (Pr[AG3 = 1]− Pr[AG4 = 1]) |
+ | (Pr[AG4 = 1]− Pr[AG5 = 1]) | + | (Pr[AG5 = 1]− Pr[AG6 = 1]) |
+ | (Pr[AG6 = 1]− Pr[AG7 = 1]) | + | (Pr[AG7 = 1]− Pr[AG8 = 1]) |

≤ 0 +
σ(σ − 1)

2b + 1
+ 0 +

σ(σ − 1)

2c + 1
+ 0 + 0

+
(qπ + qπ−1).qenc

2r
+

2(qπ + qπ−1)σ

2c − σ
+
qπ
2r

.

5.2 Authenticity

In this section, we analyze the security of authenticity of the tag produced in our scheme. The forgery of an AE
scheme is defined as the ability of an adversary A to generate a valid (N,A,C, T) tuple, without directly querying
it to the encryption oracle. The adversary is allowed to make limited number of queries to encryption, decryption,
π and π−1 oracles. For an AE scheme, we say the adversary A is successful in forging if it outputs a (N,A,C, T)
tuple where DK(N,A,C, T) 6= INV ALID and adversary A didn’t ask a query EK(N,A,M, flag) that resulted in
response (C, T) .

Theorem 2. Let Π = (K, E ,D) be the proposed authenticated encryption scheme with defined padding rule (pad)
and ideal permutation (π) which operate on b(= r + c) bits. The adversary A is given access to Encryption oracle
E, Decryption oracle D, π and π−1 oracle. Then Π = (K, E ,D) is forgeable with the probability

Pr[ExpAuthΠ (A) = 1]≤ σ(σ − 1)

2b+1
+
σ(σ − 1)

2c + 1
+
qdec
2|T |

+
qπ
2r

.

where σ is maximum number of blocks to π, π−1 by encryption oracle E, and decryption oracle D, qdec is the number
of queries to decryption oracle, qπ is the number of queries to π oracle and |T | is the tag length.

Proof: We used code base gaming framework to calculate the adversary advantage. Here we used the set of
five games(G0′, G1′, G2′, G3′, G4′) that is same as initial five games for privacy proof except that decryption oracle
will also work here. Games are given in supporting document with this paper. Our goal is to bound the adversary’s
advantage which is defined as follows:

AdvAuthΠ (A) = Pr[ExpAuthΠ (A) = 1] (1)

Here, probability calculations will be same as that of initial five games of privacy explained in Section 5.1. So,
we will directly use the results from there.
Calculations for Pr[ExpAuthG4′ (A = 1)]: In this game G4′, adversary gets a success in generating valid tag pair either
by choosing tag randomly after trying qdec number of queries or he guesses the key correctly. Hence adversary’s
ability to win in this game will be:

Pr[ExpAuthG4 (A = 1)] ≤ Pr[correct key guess] + Pr[random tag generation]

≤ qπ
2r

+
qdec
2|T |

On combining the results obtained in all the games, equation (1) becomes,

AdvAuthΠ (A) = Pr[ExpAuthΠ (A) = 1]

≤ | Pr[ExpAuthG1′ (A) = 1]− Pr[ExpAuthG2′ (A) = 1] | +Pr[ExpAuthG2′ (A) = 1]

≤ σ(σ − 1)

2b+1
+ Pr[ExpAuthG3′ (A) = 1]

≤ σ(σ − 1)

2b+1
+ | Pr[ExpAuthG3′ (A) = 1]− Pr[ExpAuthG4′ (A) = 1] | +Pr[ExpAuthG4′ (A) = 1]

≤ σ(σ − 1)

2b+1
+
σ(σ − 1)

2c+1
+

qπ
(2c − qπ)2

+ Pr[ExpAuthG4′ (A) = 1]

≤ σ(σ − 1)

2b+1
+
σ(σ − 1)

2c+1
+
qdec
2|T |

+
qπ
2r

.

AdvAuthAE (A) ≤ 0 +
σ(σ − 1)

2b + 1
+ 0 +

σ(σ − 1)

2c + 1
+

qπ
(2c − qπ)2

+
1

2|T |
.

6 More variants of sp-AELM

In this section, we present two more variants of sp-AELM that is more efficient than its actual construction as it
doesn’t consider the feed forward operation. Two variants are shown in Fig. 5 and 6, both of these support low
memory constraint by storing only one intermediate state(shown using red line in Fig. 5 and 6) instead of storing
complete text. Security proof for both these variants are not provided here due to space restrictions, although, it
can be proved in same manner as sp-AELM. Intuitively, we can say that both the variants are secure as releasing
intermediate state will not result for the adversary to gain any information about key.

π

K K

π π

A m0

π

c0

π

mn−2 mn−1

π

cn−1cn−2

K

Z0

. . .

⊕. . .⊕ ⊕ ⊕ ⊕ ⊕ ⊕N

0c
π

Fig. 5. sp-AELM variant 1

π

K N

π π

A m0

π

c0

π

mn−2 mn−1

π

cn−1cn−2

K

Z0

. . .

⊕. . .⊕ ⊕ ⊕ ⊕ ⊕ ⊕0r

0c
π

K

π
⊕

Fig. 6. sp-AELM variant 2

7 Analysis of Sponge based AE schemes submitted in CAESAR

In this section, we apply our newly proposed generalized technique, which stores only one intermediate state instead
of entire plaintext during tag verification, on various sponge based schemes submitted to the CAESAR competition
to determine their suitability for supporting devices having limited memory constraint. There are ten sponge based
AE schemes submitted to CAESAR for the first round, out of which one scheme (CBEAM [26]) has been withdrawn.
Currently there are nine sponge based AE schemes competing for the next round. In the following subsections we
present the brief analysis of each of these 9 schemes after applying the same technique used in sp-AELM.

7.1 ARTEMIA [22]

Artemia is family of dedicated authenticated encryption scheme. It has two variants Artemia-256 which uses 512
bit permutation and Artemia-128 which uses 256 bit permutation in the JHAE mode(shown in Fig. 7).

While analyzing this mode, we find that it can not support low memory device constraint. Our analysis is based
on the same technique proposed in sp-AELM i.e., storing only one intermediate state(shown using red line in Fig. 7)
instead of storing whole message during decryption, can not be applied here. Using this intermediate state attacker
can find the value of key as he already knows the value of T and can do the forward computation using Csi to get
the state value after last π block, XORing this value with T will result in value of K.

⊕ ⊕

⊕

⊕

⊕

⊕

⊕⊕ ⊕

⊕ ⊕

⊕ ⊕

⊕

⊕ ⊕ ⊕

π π π π

πππ

IV

K

N

K

T

A1 A2 Ai−1 Ai

M1 M2 Mj−1 Mj

C1 C2 Cj

Fig. 7. JHAE Mode

⊕

⊕

⊕ ⊕

⊕

⊕

⊕ ⊕

pa papbpbpbpbpb

K‖N

k‖a‖b‖0∗
A1 Ai

C1

P1 Pj

Cj

0∗‖K 0∗‖1 K‖0∗

K

T

Fig. 8. ASCON

7.2 ASCON [12]

ASCON is a family of authenticated encryption designs ASCONa,b − k. The family members are parameterized
by the key length k ≤ 128 and internal round numbers a and b. Each design specifies an authenticated encryption
algorithm Ek,a,b and decryption algorithm Dk,a,b.

On analyzing this scheme, we find out that it can support low memory devices by storing only one intermediate
value(shown using red line in Fig. 8) instead of storing all decrypted blocks during decryption, without breaking
the security of construction. Further, this intermediate value can be used to decrypt the message at user side.

7.3 ICEPOLE [29]

ICEPOLE is a family of authenticated ciphers with three parameters: key length, secret message number legth,
nonce length. The construction of ICEPOLE is shown in Fig. 9.

Here, if we store intermediate state(shown using red line in Fig. 9) instead of whole decrypted text blocks to
support low memory feature, it will result in revealing the key value, as attacker can do calculation in reverse
direction to get the actual value of key.

⊕ ⊕

pad
⊕

P12

⊕

pad

⊕

pad

⊕

pad
⊕

⊕

pad
⊕

P6 P6 P6 P6 P6

K‖N
T

σSMN

CSMN
σAD
0 σAD

i
σP
0

C0 σP
j

Cj

Fig. 9. ICEPOLE

⊕ ⊕ ⊕ ⊕⊕

IV

r

c

π π π π π π π

p0 p1 p...
t0 t...c0 c1 c...

d0 d...

Fig. 10. STRIBOB. Key, nonce and padded associated data are
represented by di and tag is givenn by ti.

7.4 STRIBOB [27]

STRIBOB is an algorithm for authenticated encryption with associated data. It is built on basic sponge mode of
authenticated encryption(shown in Fig. 10).It uses a 512 512 bit permutation π as its cryptographic foundation.
Π in turn is built from 12 iterations of LPS transformation, interleaved with exclusive-or operation with round
constants.

In STRIBOB, if we store only intermediate state(shown using red line in Fig. 10), instead of storing all P
′
i s,

attacker can get the actual key value by using inverse permutation.

7.5 Π Cipher [13]

Π-Cipher is parallel, incremental, nonce based, tag second-preimage resistant, authenticated encryption cipher with
associated data. Its construction is shown in Fig. 11.

Here, if we store only CIS′ and ctr + i + 1 values instead of storing all decrypted text blocks to support low
memory feature, it will result in breaking of the scheme. As for the valid message attacker will be able to calculate
T ′′ using T , which in turn result in finding value of T ′. Using this T ′ and CIS′, he can get the value of CIS, which
will result in getting value of K using π−1.

⊕

K‖PMN‖10∗

π

⊕
π

⊕
π

⊕
π

⊕
π

⊕
π

A1

Ai

t′1

t′i T ′

ctr + 1

ctr + i
C

om
m

on
In

te
rn

al
st

at
e

(C
IS

)

C
om

m
on

In
te

rn
al

st
at

e
(C

IS
)

C
om

m
on

In
te

rn
al

st
at

e
(C

IS
)

C
om

m
on

In
te

rn
al

st
at

e
(C

IS
)

C
om

m
on

In
te

rn
al

st
at

e
(C

I
S

′)

⊕
π

⊕
π

⊕

⊕
π π

⊕
π π

⊕
⊕

⊕
⊕

SMN T ′

t0
T ′′

C1 M1

Mj
Cj

t1

tj

T ′′

T

(ctr + i) + 1

(ctr + i+ 1) + 1

(ctr + i+ 1) + j

C
om

m
on

In
te

rn
al

st
at

e
(C

I
S

′)
C

om
m

on
In

te
rn

al
st

at
e

(C
I
S

′′
)

C
I
S

′′

C0

C
om

m
on

In
te

rn
al

st
at

e
(C

I
S

′′
)

Fig. 11. Π Cipher

7.6 PRIMATE [17]

The authenticated encryption family PRIMATEs is defined by two parameters: the security level s ∈ {10, 15} and
mode of operation scheme ∈ {GIBBON, HANUMAN, APE}. These modes are shown in Fig. 12, 13, 14.

Out of these three modes of operation of PRIMATE authenticated encryption family, only GIBBON can support
low memory feature by storing only one intermediate state(shown using red line in Fig. 12), without revealing key
to the attacker. HANUMAN can be easily broken to get the key, when storing only intermediate state as T is
known to the attacker and can do the forward computation to get the state after last permutation block, XORing
this value with T will result in finding key. Similarly APE can also be broken, if we implement the low memory
feature in it. As the intermediate state can be used to calculate the key by just applying permutation once and
then XORing the last |T | bits with known tag value T .

⊕

⊕ ⊕ ⊕ ⊕

⊕ ⊕

P1 P2 P1

T

0c/2‖K K

A1

. . .

. . .

Ai P1

C1

Pj

Cj

. . .

. . .

P2 P3 P3 P3

0c/2‖K

0r

N‖K

Fig. 12. GIBBON

7.7 NORX [23]

NORX is an authenticated encryption scheme supporting an arbitrary parallelism degree, based on ARX
primitives yet not using modular additions. NORX has a unique parallel architecture based on the monkeyDuplex
construction [19]. Fig. 15 represents layout of NORX corresponding to D = 1. Here also, revealing the intermediate
state(shown using red line in Fig. 15) will result in finding value of key by doing computation in reverse direction
using inverse permutation, breaking the security of construction.

⊕ ⊕ ⊕ ⊕

⊕

P1

T

K

A1

. . .

. . .

Ai P1

C1

Pj

Cj

. . .

. . .

P4 P1 P1 P1

0r

N‖K

Fig. 13. HANUMAN

⊕ ⊕ ⊕ ⊕

⊕

P1

T

K

A1

. . .

. . .

Ai P1

C1
Pj−1

Cj−1

. . .

. . .

P1 P1 P1 P1

0r

K
⊕

0b−1‖1

⊕

Cj

Pj

P1

Fig. 14. APE

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

FR FR FR FR FR FRFR FR FR FR

Tag

init(K,N,W,R,D, |T |)

0

0

01 01 02 02 04 04 08

H . . . HmH P . . .
C . . .

PmP

CmP

T . . . TmT

Fig. 15. NORX for D=1

7.8 Ketje [20]

Ketje is a set of two authenticated encryption functions with support for message associated data. Ketje builds
on round-reduced versions of Keccak-f[400] and Keccak-f[200].The construction calling these permutations is
MonkeyDuplex [19], a variant of the duplex construction [9]. The mode that runs on top of MonkeyDuplex is
called MonkeyWrap. The MonkeyWrap differ from SpongeWrap as it is built on MonkeyDuplex construction rather
than on Duplex, it updates a whole state of b bits using key and nonce together instead of updating only bitrate
part (r bits) in SpongwWrap and uses a different MonkeyDuplex call when transitioning to tag generation phase.

Implementation of low memory constraint is not possible for this scheme. As shown in the Fig. 16, storing
intermediate state(shown using red line in Fig. 16), will result in finding value of key K using inverse permutation.

pad pad

A1 Ai

pad

P1

C1

pad

Pj

Cj

t1|| . . . ||

πstep πstep πstep πstep πstride

(K,N)

pad

⊕
⊕ ⊕ ⊕ ⊕0

0

crop crop

πstep

tk = Tag

r

c

Fig. 16. MonkeyWrap mode of Authenticated Encryption

7.9 Keyak [21]

Keyak is a set of four authenticated encryption functions with support for message associated data. It builds on
round-reduced versions of the Keyak-f [800] and Keyak-f [1600] permutations. It uses the duplex construction [7] on
top of one of these permutations. The mode that runs on duplex construction is the DuplexWrap which is almost
similar to SpongeWrap. In addition, DuplexWrap defines an explicit forget call(calling it is optional) to ensure
forward secrecy. Because of this forget call it is not possible to get the key from the intermediate state. But the
forgery attack is possible by generating valid ciphertext tag pair for a different message using same key and nonce.

8 Conclusion

In this paper, we proposed a new generalized technique for AE schmes to support devices with limited memory.
This new technique has been explained in this paper through a new sponge based AE scheme sp-AELM. sp-AELM
can be used to support cryptographic modules having limited storage capabilities. We provided its security proof
in an ideal permutation model using code based game playing framework for both privacy and authenticity. In
addition to this, we also present two more variants of sp-AELM that serve the same purpose and are more efficient
than sp-AELM. Further, we applied this newly introduced technique to all Sponge based AE schemes submitted
to the CAESAR competition for determining their suitability to support devices with limited memory constraint.

References

1. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness, 2014. http://competitions.cr.yp.

to/caesar.html.

2. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda. APE: Authenticated
permutation-based encryption for lightweight cryptography. IACR Cryptology ePrint Archive, 2013:791, 2013.

3. Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations Among Notions and Analysis of the Generic
Composition Paradigm. J. Cryptol., 21(4):469–491, September 2008.

4. Mihir Bellare and Phillip Rogaway. Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for
Efficient Cryptography. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages
317–330. Springer, 2000.

5. Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of Triple Encryption. IACR Cryptology
ePrint Archive, 2004:331, 2004.

6. Mihir Bellare, Phillip Rogaway, and David Wagner. EAX: A Conventional Authenticated-Encryption Mode. IACR Cryptology
ePrint Archive, 2003:69, 2003.

7. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Duplexing the Sponge: Single-Pass Authenticated Encryption
and Other Applications. In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of Lecture Notes in
Computer Science, pages 320–337. Springer, 2011.

8. Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Cryptographic sponge functions, 2011. http://sponge.

noekeon.org/.

9. Bertoni, Guido and Daemen, Joan and Peeters, Michaël and Van Assche, Gilles. Duplexing the Sponge: Single-pass Authenticated
Encryption and Other Applications. In Proceedings of the 18th International Conference on Selected Areas in Cryptography, SAC’11,
pages 320–337, 2012.

10. Matt Blaze. High-Bandwidth Encryption with Low-Bandwidth Smartcards. In Dieter Gollmann, editor, FSE, volume 1039 of
Lecture Notes in Computer Science, pages 33–40. Springer, 1996.

11. Matt Blaze, Joan Feigenbaum, and Moni Naor. A Formal Treatment of Remotely Keyed Encryption. In Kaisa Nyberg, editor,
EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages 251–265. Springer, 1998.

12. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schlaffer. Ascon v1. http://competitions.cr.yp.to/round1/

asconv1.pdf.

13. Danilo Gligoroski, Hristina Mihajloska, Simona Samardjiska, Hakon Jacobsen, Mohamed El-Hadedy and Rune Erlend Jensen.
PiCipher v1. http://competitions.cr.yp.to/round1/picipherv1.pdf.

14. Yevgeniy Dodis. Concealment and Its Applications to Authenticated Encryption. In Alexander W. Dent and Yuliang Zheng, editors,
Practical Signcryption, Information Security and Cryptography, pages 149–173. Springer, 2010.

15. Morris J. Dworkin. Sp 800-38c. recommendation for block cipher modes of operation: The CCM mode for authentication and
confidentiality. Technical report, Gaithersburg, MD, United States, 2004.

16. Elena Andreeva and Andrey Bogdanov and Atul Luykx and Bart Mennink and Nicky Mouha and Kan Yasuda. How to Securely
Release Unverified Plaintext in Authenticated Encryption. In Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, pages 105–125, 2014.

17. Elena Andreeva, Begul Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel , Bart Mennink, Nicky Mouha, Qingju Wang and
Kan Yasuda . PRIMATEs v1. http://competitions.cr.yp.to/round1/primatesv1.pdf.

18. Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Authenticated On-Line Encryption. In Mitsuru
Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes in Computer Science,
pages 145–159. Springer, 2003.

19. Guido Bertoni and Joan Daemen and Michal Peeters and Gilles Van Assche. G.V.: Permutationbased encryption, authentication
and authenticated encryption, 2012.

20. Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, Ronny Van Keer. Ketje v1. http://competitions.cr.yp.to/

round1/ketjev11.pdf.

21. Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, Ronny Van Keer. Ketje v1. http://keyak.noekeon.org/

Keyak-1.2.pdf.

22. Javad Alizadeh, Mohammad Reza Aref and Nasour Bagheri. Artemia v1. http://competitions.cr.yp.to/round1/artemiav1.pdf.

23. Samuel Neves Jean-Philippe Aumasson, Philipp Jovanovic. NORX: Parallel and Scalable AEAD, 2014. https://norx.io/.

24. Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A High-Performance Conventional Authenticated Encryption Mode. In
Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 408–426. Springer, 2004.

25. Stefan Lucks. On the Security of Remotely Keyed Encryption. In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Computer
Science, pages 219–229. Springer, 1997.

26. Markku-Juhani O. Saarinen. The CBEAMr1 Authenticated Encryption Algorithm. http://competitions.cr.yp.to/round1/

cbeamr1.pdf.

27. Markku-Juhani O. Saarinen. The STRIBOBr1 Authenticated Encryption Algorithm. http://competitions.cr.yp.to/round1/

stribobr1.pdf.

28. David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In Anne
Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 343–355.
Springer, 2004.

29. Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz, Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and
Marcin Wojcik. ICEPOLE v1. http://competitions.cr.yp.to/round1/icepolev1.pdf.

30. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for efficient authenticated encryption.
ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

31. Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In Tanja Lange, Kristin Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography, volume 8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

A sp-AELM variant supporting Intermediate tag

This section shows the sp-AELM variant that support intermediate tag generation and fast rejection of forgery
for the long messages. Pictorial view is shown on Fig. 17. In this variant message M(=m1‖m2 . . . ‖mn−1) is
divided into small packets(m1..mi,mi+1..mj , . . . ,mk..mn−1)and individual tag is caluclated for every packet.
Then ciphertext and tag for each packet is sent to receiver. At the receiver side ciphertext for first packet gets
decrypted and tag computation id done. If computed tag for first packet matches with received tag then only
further computation proceeds otherwise message gets rejected at the early stage only. During decryption only
one intermediate state(shown by red line in Fig. 17) is stored instead of storing all decrypted text blocks and
this intermediate state is returned to the user once complete message gets verified. Now, user can find the actual
plaintext using this received intermediate state.

⊕ ⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕

⊕ ⊕

⊕

⊕

⊕

⊕ ⊕

π π π π π π

πππ

K N A m0
c0

0r

0c

mi
ci T1

mi+1
ci+1 mj

cj T2

⊕

⊕

⊕

⊕
ππ

mn−1

cn−1

⊕ ⊕

⊕

⊕

⊕ ⊕
π π π

K N A Tmk
ck

Fig. 17. sp-AELM variant with Intermediate tag generation

B Games for Privacy Proof

Game G0: Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)}

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = Kr ⊕N , w = Kc

4. Nr‖Nc = π(x‖w)
5. x = Nr ⊕A, w = Nc ⊕ w
6. Ar‖Ac = π(x‖w)
7. x = Ar,w = Ac ⊕ w
8. a0 = x, b0 = w
9. c0 = a0 ⊕m0

10. for i = 1→ n do

x
′
‖w
′

= π(ci−1‖bi−1)

bi = bi−1 ⊕ w
′
, ai = x

′

ci = ai ⊕mi

11. C = c0‖c1‖.....‖cn
12. if (flag = 0) then

return C.
13. x = an, w = bn
14. x = x⊕K
15. K

′
r‖K

′
c = π(x‖w)

16. x = K
′
r ⊕N , w = K

′
c ⊕ w

17. Nr‖Nc = π(x‖w)
18. x = Nr ⊕A, w = Nc ⊕ w
19. Ar‖Ac = π(x‖w)
20. x = Ar,w = Ac ⊕ w
21. T = z0 = x
22. return (C, T)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ},

where ∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ}, where ∗ ∈ {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return m;

Fig. 18. Game G0

Game G1 and Game G2 : Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, Iπ = {((IV1 ⊕ K)‖IV2,Kr‖Kc)}

On Encryption-Query (N,A,M, flag)
Same as Game 0

On π-Query m,where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then bad←true and

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ} , where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return v;

On π−1-Query v, where v ∈ {0, 1}b

1. let (v1||v2)=m,where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m
$←− {0, 1}b

4. if ∃ v′ s.t (m, v′)∈ Iπ, then bad←true and

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ} , where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return m;

Fig. 19. Game G1 and Game G2

Game G3 and Game G4 : Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)},
Ic = {w}

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = IV1, w = IV2

4. x = Kr ⊕N ,w = Kc

5. if ∃v s.t.(x‖w, v) ∈ Iπ, then
Nr‖Nc = v

else

Nr‖Nc
$←− {0, 1}b

if (Nc ⊕ w) ∈ Ic then bad← true

Nc
$←− {0, 1}c \ {N

′
c : (N

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Nr‖Nc)}
6. x = Nr ⊕A ,w = Nc ⊕ w
7. Ic = Ic ∪ {w}
8. if ∃v s.t. (x‖w, v) ∈ Iπ, then

Ar‖Ac = v
else

Ar‖Ac
$←− {0, 1}b

if (Ac ⊕ w) ∈ Ic then bad← true

Ac
$←− {0, 1}c \ {A

′
c : (A

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Ar‖Ac)}
9. x = Ar ,w = Ac ⊕ w

10. Ic = Ic ∪ {w}
11. a0 = x, b0 = w
12. c0 = a0 ⊕m0

13. for i = 1→ n do
if ∃v s.t. (ci−1‖bi−1, v) ∈ Iπ, then

x
′
‖w
′

= v
else

x
′
‖w
′ $←− {0, 1}b

if (bi−1 ⊕ w
′
) ∈ Ic then bad← true

w
′ $←− {0, 1}c \ {w

′′
: (bi−1 ⊕ w

′′
) ∈ Ic}

Iπ = Iπ ∪ {(ci−1‖bi−1, x
′
‖w
′
)}

bi = bi−1 ⊕ w
′

Ic = Ic ∪ {bi}
ai = x

′

ci = ai ⊕mi

14. C = c0‖c1‖.....‖cn
15. if (flag = 0) then

return C.
16. x = an, w = bn
17. x = x⊕K

Continue...

18. if ∃v s.t.(x‖w, v) ∈ Iπ, then
K
′
r‖K

′
c = v

else

K
′
r‖K

′
c

$←− {0, 1}b

if (w ⊕K
′
c) ∈ Ic then bad← true

K
′
c

$←− {0, 1}c \ {K
′′
c : (w ⊕K

′′
c) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,K
′
r‖K

′
c)}

19. x = K
′
r ⊕N , w = K

′
c ⊕ w

20. Ic = Ic ∪ {w}
21. Repeat step from 5 to 8.
22. z0 = x
23. T = z0
24. return (C, T)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if ∃ {v1, v2, ...vt} s.t. (m, vi)∈ Iπ then return

v
$←− {v1, v2, ...vt}

3. else v
$←− {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if ∃ {m1,m2, ...mt} s.t. (mi, v)∈ Iπ then return

m
$←− {m1,m2, ...vmt}

2. else m
$←− {0, 1}b

3. Iπ = Iπ
⋃
{(m, v)}

4. return m;

Fig. 20. Game G3 and Game G4

Game G5 and Game G6 : Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, I
′
π = {((IV1 ⊕K)‖IV2,Kr‖Kc)},

I
′′
π = φ, Iπ = I

′
π ∪ I

′′
π , Ic = {Kc},I ′c = φ

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = IV1, w = IV2

4. x = Kr ⊕N ,w = Kc

5. if ∃v s.t.(x‖w, v) ∈ Iπ, then

if ∃v s.t. (x‖w, v) ∈ I
′′
π , then bad1 ← true

Nr‖Nc = v
else

Nr‖Nc
$←− {0, 1}b

if ((Nc ⊕ w) ∈ Ic OR Nc ∈ I ′c), then
Nc

$←− {0, 1}c \ {N
′
c : (N

′
c ⊕ w) ∈ Ic, N ′c ∈ I ′c},

I
′
π = I

′
π ∪ {(x‖w,Nr‖Nc)}, Iπ = Iπ ∪ I

′
π

6. x = Nr ⊕A ,w = Nc ⊕ w
7. Ic = Ic ∪ {w}, I ′c = I ′c ∪ {Nc}
8. if ∃v s.t.(x‖w, v) ∈ Iπ, then

if ∃v s.t. (x‖w, v) ∈ I
′′
π , then bad2 ← true

Ar‖Ac = v
else

Ar‖Ac
$←− {0, 1}b

if ((Ac ⊕ w) ∈ Ic OR Ac ∈ I ′c) then

Ac
$←− {0, 1}c \ {A

′
c : (w ⊕A

′
c) ∈ Ic, A′c ∈ I ′c}

I
′
π = I

′
π ∪ {(x‖w,Ar‖Ac)}, Iπ = Iπ ∪ I

′
π

9. x = Ar ,w = Ac ⊕ w
10. Ic = Ic ∪ {w}, I ′c = I ′c ∪ {Ac}
11. a0 = x, b0 = w
12. c0 = a0 ⊕m0

13. for i = 1→ n do
if ∃v s.t. (ci−1‖bi−1, v) ∈ Iπ, then

if ∃v s.t. (ci−1‖bi−1, v) ∈ I
′′
π , then bad2 ← true

x
′
‖w
′

= v
else

x
′
‖w
′ $←− {0, 1}b

if ((bi−1 ⊕ w
′
) ∈ Ic OR w′ ∈ I ′c) then

w
′ $←− {0, 1}c \ {w′′ : (bi−1 ⊕ w′′) ∈ Ic, w′′ ∈ I ′c}

I
′
π = I

′
π ∪ {(ci−1‖bi−1, x

′
‖w
′
)}, Iπ = Iπ ∪ I

′
π

bi = bi−1 ⊕ w
′

Ic = Ic ∪ {bi}, I ′c = I ′c ∪ {w′}
ai = x

′
, ci = ai ⊕mi

14. C = c0‖c1‖.....‖cn
15. if (flag = 0) then

return C.
16. x = an, w = bn
17. x = x⊕K

Continue..

18. if ∃v s.t. (x‖w, v) ∈ Iπ, then

if ∃v s.t. (x‖w, v) ∈ I
′′
π , then bad2 ← true

K
′
r‖K

′
c = v

else

K
′
r‖K

′
c

$←− {0, 1}b

if ((w ⊕K
′
c) ∈ Ic OR w′ ∈ I ′c), then

K
′
c

$←− {0, 1}c \ {K
′′
c : (w ⊕K

′′
c) ∈ Ic, K′′c ∈ I ′c}

I
′
π = I

′
π ∪ {(x‖w,K

′
r‖K

′
c)}, Iπ = Iπ ∪ I

′
π

19. x = K
′
r ⊕N , w = K

′
c ⊕ w

20. Ic = Ic ∪ {w}, I ′c = I ′c ∪ {K′c}
21. Repeat step from 5 to 8.
22. z0 = x
23. T = z0
24. return (C, T)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if ∃v s.t. (x‖w, v) ∈ I

′
π, then bad← true

return v;
3. if ∃ {v1, v2, ...vt} s.t. (m, vi)∈ I

′′
π then

return v
$←− {v1, v2, ...vt}

4. else v
$←− {0, 1}b

5. I
′′
π = I

′′
π

⋃
{(m, v)}

6. Iπ = Iπ ∪ I
′′
π

7. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if ∃m s.t. (m, v) ∈ I
′
π, then bad← true

return m
2. if ∃ {m1,m2, ...mt} s.t. (mi, v)∈ I

′′
π then

return m
$←− {m1,m2, ...,mt}

3. else m
$←− {0, 1}b

4. I
′′
π = I

′′
π

⋃
{(m, v)}

5. Iπ = Iπ ∪ I
′′
π

6. return m;

Fig. 21. Game G5 and Game G6

Game G7: Initialise Iπ = ∅, IV1 = 0r IV2 = 0c, K
$←− {0, 1}r, Im = φ

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = IV1, w = IV2

4. if (flag = 0) then
if ∃C′ s.t.(N,A,m0‖ . . . ‖mj , C

′) ∈ Im where
0 ≤ j < (n− 1) then

c0‖ . . . ‖cj ← C′

for i = (j + 1)→ (n− 1) do

ci
$←− {0, 1}r

C = c0‖ . . . ‖cj‖cj+1 . . . ‖cn−1

else
for i = 0→ n− 1 do

ci
$←− {0, 1}r

C = c0‖ . . . ‖cn−1

Im = Im ∪ {(N,A,M,C)}
return C

5. for i = 0→ n− 1 do

ci
$←− {0, 1}r

6. C = c0‖ . . . ‖cn−1

7. T
$←− {0, 1}r

8. return (C, T)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ},

where ∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ}, where ∗ ∈ {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return m;

Fig. 22. Game G7

C Games for Authenticity Proof

Game G0′: Initialize IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = Kr ⊕N , w = Kc

4. Nr‖Nc = π(x‖w)
5. x = Nr ⊕A, w = Nc ⊕ w
6. Ar‖Ac = π(x‖w)
7. x = Ar,w = Ac ⊕ w
8. a0 = x, b0 = w
9. c0 = a0 ⊕m0

10. for i = 1→ n do

x
′
‖w
′

= π(ci−1‖bi−1)

bi = bi−1 ⊕ w
′

ai = x
′

ci = ai ⊕mi

11. C = c0‖c1‖.....‖cn
12. x = an, w = bn
13. x = x⊕K
14. K

′
r‖K

′
c = π(x‖w)

15. x = K
′
r ⊕N , w = K

′
c ⊕ w

16. Nr‖Nc = π(x‖w)
17. x = Nr ⊕A, w = Nc ⊕ w
18. Ar‖Ac = π(x‖w)
19. x = Ar,w = Ac ⊕ w
20. z0 = x
21. T = z0
22. Return (C, T)

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ},

where ∗ ∈ {0, 1}b
5. Iπ = Iπ

⋃
{(m, v)}

6. return v;

On Decryption-Query (N,A,C, T)

1. Pad(C) = c0‖c1‖.....‖cn, Where |ci| = r
2. |Pad(N)| = |Pad(A)| = r
3. x = Kr ⊕N , w = Kc

4. Nr‖Nc = π(x‖w)
5. x = Nr ⊕A, w = Nc ⊕ w
6. Ar‖Ac = π(x‖w)
7. x = Ar,w = Ac ⊕ w
8. a0 = x, b0 = w
9. m0 = a0 ⊕ c0

10. for i = 1→ n do

x
′
‖w
′

= π(ci−1‖bi−1)

bi = bi−1 ⊕ w
′

ai = x
′

mi = ai ⊕ ci
11. M = m0‖m1‖.....‖mn

12. x = an, w = bn
13. x = x⊕K
14. K

′
r‖K

′
c = π(x‖w)

15. x = K
′
r ⊕N , w = K

′
c ⊕ w

16. Nr‖Nc = π(x‖w)
17. x = Nr ⊕A, w = Nc ⊕ w
18. Ar‖Ac = π(x‖w)
19. x = Ar,w = Ac ⊕ w
20. z0 = x
21. if (z0 == T) then

Return (a0, b0)
else

Return ⊥

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if (m, v)∈ Iπ then return m

2. m
$←− {0, 1}b

3. if ∃ v′ s.t (m, v′)∈ Iπ, then

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ}, where ∗ ∈ {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return m;

Fig. 23. Game G0′

Game G1′ and Game G2′ : Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)}

On Encryption-Query (N,A,M, flag)
Same as Game 0

On π-Query m,where m ∈ {0, 1}b

1. let (x||w)=m,where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return v

3. v
$←− {0, 1}b

4. if ∃ m′ s.t (m′, v)∈ Iπ, then bad←true and

v
$←− {0, 1}b \ {v : (∗, v) ∈ Iπ} , where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return v;

On Decryption-Query (N,A,C, T)
Same as Game 0

On π−1-Query v, where v ∈ {0, 1}b

1. let (v1||v2)=m,where v1 ∈ {0, 1}r, v2 ∈ {0, 1}c,
2. if (m, v)∈ Iπ then return m

3. m
$←− {0, 1}b

4. if ∃ v′ s.t (m, v′)∈ Iπ, then bad←true and

m
$←− {0, 1}b \ {m : (m, ∗) ∈ Iπ} , where ∗ ∈ {0, 1}b

5. Iπ = Iπ
⋃
{(m, v)}

6. return m;

Fig. 24. Game G1′ and Game G2′

Game G3′ and Game G4′ : Initialise IV1 = 0r, IV2 = 0c, K
$←− {0, 1}r, Kr‖Kc

$←− {0, 1}b, Iπ = {((IV1 ⊕K)‖IV2,Kr‖Kc)},
Ic = {w}

On Encryption-Query (N,A,M, flag)

1. if (flag = 1) then
M = m0‖m1‖.....‖mn−1, Where |mi| = r and
0 ≤ i < (n− 1)
Pad(M) = m0‖m1‖.....‖(mn−1‖10r−(|mn−1|+1))

else
M = m0‖m1‖...‖mn−1, Where |mi| = r
if |mn−1| < r then {return Invalid;}

2. |Pad(N)| = |Pad(A)| = r
3. x = IV1, w = IV2

4. x = Kr ⊕N ,w = Kc

5. if ∃v s.t.(x‖w, v) ∈ Iπ, then
Nr‖Nc = v

else

Nr‖Nc
$←− {0, 1}b

if (Nc ⊕ w) ∈ Ic then bad← true

Nc
$←− {0, 1}c \ {N

′
c : (N

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Nr‖Nc)}
6. x = Nr ⊕A ,w = Nc ⊕ w
7. Ic = Ic ∪ {w}
8. if ∃v s.t. (x‖w, v) ∈ Iπ, then

Ar‖Ac = v
else

Ar‖Ac
$←− {0, 1}b

if (Ac ⊕ w) ∈ Ic then bad← true

Ac
$←− {0, 1}c \ {A

′
c : (A

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Ar‖Ac)}
9. x = Ar ,w = Ac ⊕ w

10. Ic = Ic ∪ {w}
11. a0 = x, b0 = w
12. c0 = a0 ⊕m0

13. for i = 1→ n do
if ∃v s.t. (ci−1‖bi−1, v) ∈ Iπ, then

x
′
‖w
′

= v
else

x
′
‖w
′ $←− {0, 1}b

if (bi−1 ⊕ w
′
) ∈ Ic then bad← true

w
′ $←− {0, 1}c \ {w

′′
: (bi−1 ⊕ w

′′
) ∈ Ic}

Iπ = Iπ ∪ {(ci−1‖bi−1, x
′
‖w
′
)}

bi = bi−1 ⊕ w
′

Ic = Ic ∪ {bi}
ai = x

′

ci = ai ⊕mi

14. C = c0‖c1‖.....‖cn
15. x = an, w = bn
16. x = x⊕K
17. if ∃v s.t.(x‖w, v) ∈ Iπ, then

K
′
r‖K

′
c = v

else

K
′
r‖K

′
c

$←− {0, 1}b

if (w ⊕K
′
c) ∈ Ic then bad← true

K
′
c

$←− {0, 1}c \ {K
′′
c : (w ⊕K

′′
c) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,K
′
r‖K

′
c)}

18. x = K
′
r ⊕N , w = K

′
c ⊕ w

19. Ic = Ic ∪ {w}
20. Repeat step from 5 to 9.
21. z0 = x
22. T = z0
23. Return (C, T)

On Decryption-Query (N,A,C, T)

1. Pad(C) = c0‖c1‖.....‖cn, Where |ci| = r
2. |Pad(N)| = |Pad(A)| = r
3. x = Kr ⊕N , w = Kc

4. if ∃v s.t.(x‖w, v) ∈ Iπ, then
Nr‖Nc = v

else

Nr‖Nc
$←− {0, 1}b

if (Nc ⊕ w) ∈ Ic then bad← true

Nc
$←− {0, 1}c \ {N

′
c : (N

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Nr‖Nc)}
5. x = Nr ⊕A, w = Nc ⊕ w
6. Ic = Ic ∪ {w}
7. if ∃v s.t. (x‖w, v) ∈ Iπ, then

Ar‖Ac = v
else

Ar‖Ac
$←− {0, 1}b

if (Ac ⊕ w) ∈ Ic then bad← true

Ac
$←− {0, 1}c \ {A

′
c : (A

′
c ⊕ w) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,Ar‖Ac)}
8. x = Ar,w = Ac ⊕ w
9. Ic = Ic ∪ {w}

10. a0 = x, b0 = w
11. m0 = a0 ⊕ c0
12. for i = 1→ n do

if ∃v s.t. (ci−1‖bi−1, v) ∈ Iπ, then
x
′
‖w
′

= v
else

x
′
‖w
′ $←− {0, 1}b

if (bi−1 ⊕ w
′
) ∈ Ic then bad← true

w
′ $←− {0, 1}c \ {w

′′
: (bi−1 ⊕ w

′′
) ∈ Ic}

Iπ = Iπ ∪ {(ci−1‖bi−1, x
′
‖w
′
)}

bi = bi−1 ⊕ w
′

Ic = Ic ∪ {bi}
ai = x

′

mi = ai ⊕ ci
13. M = m0‖m1‖.....‖mn

14. x = an, w = bn
15. x = x⊕K
16. if ∃v s.t.(x‖w, v) ∈ Iπ, then

K
′
r‖K

′
c = v

else

K
′
r‖K

′
c

$←− {0, 1}b

if (w ⊕K
′
c) ∈ Ic then bad← true

K
′
c

$←− {0, 1}c \ {K
′′
c : (w ⊕K

′′
c) ∈ Ic}

Iπ = Iπ ∪ {(x‖w,K
′
r‖K

′
c)}

17. x = K
′
r ⊕N , w = K

′
c ⊕ w

18. Ic = Ic ∪ {w}
19. Repeat step from 4 to 8.
20. z0 = x
21. if (z0 == T) then

Return (a0, b0)
else

Return ⊥

Fig. 25. Game G3’ and Game G4’

On π-Query m, where m ∈ {0, 1}b

1. let (x||w) = m, where x ∈ {0, 1}r, w ∈ {0, 1}c,
2. if ∃ {v1, v2, ...vt} s.t. (m, vi)∈ Iπ then return

v
$←− {v1, v2, ...vt}

3. else v
$←− {0, 1}b

4. Iπ = Iπ
⋃
{(m, v)}

5. return v;

On π−1-Query v = {v1||v2}. where
v1 ∈ {0, 1}r, v2 ∈ {0, 1}c, v ∈ {0, 1}b

1. if ∃ {m1,m2, ...mt} s.t. (mi, v)∈ Iπ then return

m
$←− {m1,m2, ...vmt}

2. else m
$←− {0, 1}b

3. Iπ = Iπ
⋃
{(m, v)}

4. return m;

Fig. 26. Game G3′ and Game G4′

