
Modular Hardware Architecture for Somewhat
Homomorphic Function Evaluation

Sujoy Sinha Roy1, Kimmo Järvinen1, Frederik Vercauteren1, Vassil Dimitrov2,
and Ingrid Verbauwhede1

1 KU Leuven ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
2 The University of Calgary, Canada and Computer Modelling Group, Ltd.

2500 University Dr. NW, Calgary, AB, Canada, T2N 1N4
vdvsd103@gmail.com

Abstract. We present a hardware architecture for all building blocks re-
quired in polynomial ring based fully homomorphic schemes and use it to
instantiate the somewhat homomorphic encryption scheme YASHE. Our
implementation is the first FPGA implementation that is designed for
evaluating functions on homomorphically encrypted data (up to a certain
multiplicative depth) and we illustrate this capability by evaluating the
SIMON-64/128 block cipher in the encrypted domain. Our implemen-
tation provides a fast polynomial operations unit using CRT and NTT
for multiplication combined with an optimized memory access scheme;
a fast Barrett like polynomial reduction method; an efficient divide and
round unit required in the multiplication of ciphertexts and an efficient
CRT unit. These building blocks are integrated in an instruction-set co-
processor to execute YASHE, which can be controlled by a computer
for evaluating arbitrary functions (up to the multiplicative depth 44 and
128-bit security level). Our architecture was compiled for a single Virtex-
7 XC7V1140T FPGA, where it consumes 23 % of registers, 53 % of LUTs,
53 % of DSP slices, and 38 % of BlockRAM memory. The implementation
evaluates SIMON-64/128 in approximately 171.3 s (at 143 MHz) and it
processes 2048 ciphertexts at once giving a relative time of only 83.6 ms
per block. This is 24.5 times faster than the leading software implemen-
tation on a 4-core Intel Core-i7 processor running at 3.4 GHz.

Keywords. Fully homomorphic encryption, YASHE, FPGA, NTT, CRT

1 Introduction

The concept of fully homomorphic encryption (FHE) was introduced by Rivest,
Adleman, and Dertouzos [34] already in 1978 and allows evaluating arbitrary
functions on encrypted data. Constructing FHE schemes proved to be a dif-
ficult problem that remained unsolved until 2009 when Gentry [22] proposed

c©IACR 2015. This article is a minor revision of the version published by Springer-
Verlag available at DOI: 10.1007/978-3-662-48324-4 9.

1

the first FHE scheme by using ideal lattices. Despite its groundbreaking na-
ture, Gentry’s proposal did not provide a practical solution because of its low
performance. Since then, many researchers have followed the blueprints set out
by Gentry’s proposal with an objective to improve the performance of FHE [6,
7, 14, 17, 20, 24, 25, 32]. Most schemes are either based on (ring) learning with
errors ((R)LWE) or N -th degree truncated polynomial ring (NTRU) and thus
manipulate elements in modular polynomial rings, or on the approximate great-
est common divisor (GCD) problem which manipulates very large integers. In
this paper, we focus on the former category. Although major advances have been
made, we are still lacking FHE schemes with performance levels that would allow
large-scale practical use. Software implementations still require minutes or hours
to evaluate even rather simple functions. For instance, evaluating the lightweight
block cipher SIMON-64/128 [4] requires 4193 s (an hour and 10 minutes) on a
4-core Intel Core-i7 processor [29]. Note that homomorphic evaluation of a block
cipher decryption is required to reduce the network communication to the data
size following the proposal in [32]: data is encrypted with a block cipher by the
user and then the server decrypts the ciphertext by evaluating the block cipher
homomorphically by using a homomorhic encryption of the key. If FHE could
achieve performance levels that would permit large-scale practical use, it would
have a drastic effect on cloud computing: users could outsource computations to
the cloud without the need to trust service providers and their mechanisms for
protecting users’ data from outsiders.

Application-specific integrated circuits (ASIC) and field-programmable gate
arrays (FPGA) have been successfully used for accelerating performance-critical
computations in cryptology (see, e.g, [28]). Hence, it is somewhat surprising that,
so far, mainly standard software implementations of FHE have been published,
because hardware acceleration could bring FHE significantly closer to practical
feasibility. Only few publications have reported results on (hardware) accelera-
tion of FHE and most are dealing with manipulation of very large integers. Wang
et al. [38] implemented primitives for the Gentry-Halevi (GH) FHE scheme [23]
using Graphics Processing Unit (GPU) and observed speedups up to 7.68. They
focused particularly on the multi-million-bit modular multiplication by using
Strassen multiplication and Barrett reduction. Wang and Huang [39, 40] later
showed that this multiplication can be further accelerated by a factor of approx-
imately two together with significant reductions in power consumption by using
FPGA and ASIC. Doröz et al. [18] presented a million-bit multiplier for the GH
scheme on ASIC. They reported that the performance remains roughly the same
as on Intel Xeon CPU, but with a significantly smaller area than the CPU. Moore
et al. [31] studied the use of hardwired multipliers inside FPGAs for accelerating
large integer multiplication. The same researchers later presented the first im-
plementation of the full FHE encryption in [10]. They reported a speedup factor
of 44 compared to a corresponding software implementation. Cousins et al. [15,
16] drafted an architecture of an FPGA accelerator for FHE using Simulink ex-
tension to Matlab but they did not provide any implementation results for their
architecture. To conclude, only few works are available on hardware accelera-

tion of FHE schemes. So far, no results are available on hardware acceleration
of function evaluation on homomorphically encrypted data, although this is the
most crucial part of FHE schemes in application scenarios.

We present the first efficient FPGA implementation of the building blocks
required in modular polynomial ring based fully homomorphic schemes such as
those built on RLWE [8] or NTRU [30]. These building blocks are sufficiently
generic to allow implementation of such FHE schemes, and to illustrate this,
we integrate these building blocks into a coprocessor architecture that can eval-
uate functions encrypted with the FHE scheme called Yet Another Somewhat
Homomorphic Encryption (YASHE) [6]. To the best of our knowledge, it is
the first FPGA implementation that supports function evaluation of homomor-
phically encrypted data. We use several standard optimization techniques such
as the Chinese remainder theorem (CRT) representation, the number theoretic
transformation (NTT) and fast modular polynomial reduction, but introduce
several optimizations specific for the FPGA platform such as a specific mem-
ory access scheme for the NTT. We compile the architecture for Xilinx Virtex-7
XC7V1140T FPGA. We show that a single FPGA achieves speedups up to factor
26.6 in executing SIMON-64/128 compared to a corresponding software imple-
mentation running on a 4-core Intel Core i7 processor from [29].

The paper is structured as follows. Section 2 describes the mathematical
objects underlying FHE and recaps the YASHE scheme. Section 3 contains a high
level description of known optimization techniques to speed-up computations in
modular polynomial rings and describes how we represent polynomials using
CRT in order to parallelize computations. We present our hardware architecture
for the primitives of YASHE in Section 4. We provide implementation results
on a Xilinx Virtex-7 FPGA and compare them to existing software results in
Section 5. We end with conclusions and future work in Section 6.

2 System Setup

2.1 Modular Polynomial Rings

The FHE schemes based on RLWE [8] or NTRU [30] compute in modular poly-
nomial rings of the form R = Z[x]/(f(x)) where f(x) is a monic irreducible
polynomial of degree n. A very popular choice is to take f(x) = xn + 1 with
n = 2k, since this is compatible with a 2n-degree NTT and reduction modulo
f(x) comes for free due to the NTT. However, we put no restriction on f(x),
which allows us to deal with any cyclotomic polynomial Φd(x) and thus to utilize
single instruction multiple data (SIMD) operations [36, 37].

For an integer q, we denote by Rq = R/qR, i.e. the polynomial ring where the
coefficients are reduced modulo q. The plaintext space in FHE schemes typically
will be R2, and if one wants to utilize SIMD operations the polynomial f(x)
should be chosen such that f(x) mod 2 splits into many different irreducible
factors, each factor corresponding to “one slot” in the SIMD representation. It
is easy to see that this excludes the most popular choice xn+1 with n = 2k, since

it results in only one irreducible factor modulo 2. In most polynomial ring based
FHE schemes, a ciphertext consists of one or two elements in Rq. However, not
all operations take place in the ring Rq; sometimes (see below for an illustration
with YASHE) one is required to temporarily work in R itself before mapping
down into Rq again using (typically) a divide and round operation.

2.2 YASHE

The YASHE scheme was introduced by Bos et al. in [6] in 2013. The scheme works
in the ring R = Z[x]/(f(x)), with f(x) = Φd(x) the d-th cyclotomic polynomial.
The plaintext space is chosen as Rt for some small t (typically t = 2) and a
ciphertext consists of only one element in the ring Rq for a large integer q. The
main security parameters of the scheme are the degree of f(x) and the size of
q. We note that q is not required to be a prime and can be chosen as a product
of small primes to speed-up computations (see Section 3). To define the YASHE
scheme we also require two probability distributions defined on R, namely χkey

and χerr. In practice one often takes χerr to be a discrete Gaussian distribution,
whereas χkey can be simply sampling each coefficient from a narrow set like
{−1, 0, 1}. Given an element a ∈ Rq and a base w, we can write a in base w by
splicing each of its coefficients, i.e. write a =

∑u
i=0 aiw

i with each ai ∈ R and
coefficients in (−w/2, w/2] and u = blogw(q)c. Decomposing an element a ∈ Rq

into its base w components (ai)
u
i=0 is denoted by WordDecompw,q(a). For an

element a ∈ Rq, we define PowersOfw,q(a) = (awi)ui=0, the vector that consists of
the element a scaled by the different powers of w. Both operations can be used
to provide an alternative description of multiplication in Rq, namely:

〈WordDecompw,q(a),PowersOfw,q(b)〉 = a · b mod q .

The advantage of the above expression is that the first vector contains small
elements, which limits error expansion in the homomorphic multiplication.

An FHE scheme is an augemented encryption scheme that defines two ad-
ditional operations on ciphertexts, YASHE.Add and YASHE.Mult that result in
a ciphertext encrypting the sum (respectively the product) of the underlying
plaintexts. The YASHE scheme is then defined as follows (full details can be
found in the original paper [6]).

– YASHE.ParamsGen(λ): For security parameter λ, choose a polynomial Φd(x),
moduli q and t and distributions χerr and χkey attaining security level λ. Also
choose base w and return the system parameters (Φd(x), q, t, χerr, χkey, w).

– YASHE.KeyGen(Φd(x), q, t, χerr, χkey, w): Sample f ′, g ← χkey and set f =
(tf ′ + 1) ∈ Rq. If f is not invertible in Rq choose a new f ′. Define h =
tgf−1 ∈ Rq. Sample two vectors e, s of u+1 elements from χerr and compute
γ = PowersOfw,q(f) + e + hs ∈ Ru+1

q and output (pk, sk, evk) = (h, f, γ).
– YASHE.Encrypt(h,m): To encrypt a message m ∈ Rt sample s, e← χerr and

output the ciphertext c = ∆ ·m+ e+ sh ∈ Rq with ∆ = bq/tc.
– YASHE.Decrypt(f, c): Recover m as m = b tq · [f · c]qe ∈ Rt with [·]q reduction

in the interval (−q/2, q/2].

Input: Polynomial a(x) ∈ Zq [x] of degree N − 1 and N-th primitive root ωN ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)

1 begin
2 A← BitReverse(a);
3 for m = 2 to N by m = 2m do

4 ωm ← ω
N/m
N ;

5 ω ← 1 ;
6 for j = 0 to m/2− 1 do
7 for k = 0 to N − 1 by m do
8 t← ω · A[k + j + m/2] ;
9 u← A[k + j] ;

10 A[k + j]← u + t ;
11 A[k + j + m/2]← u− t ;

12 ω ← ω · ωm ;

Algorithm 1: Iterative NTT [13]

– YASHE.Add(c1, c2): Return c1 + c2 ∈ Rq.
– YASHE.KeySwitch(c, evk): Return 〈WordDecompw,q(c), evk〉 ∈ Rq

– YASHE.Mult(c1, c2, evk): Return c = YASHE.KeySwitch(c′, evk) with c′ =
b tq c1c2e ∈ Rq.

YASHE Paramater Set: We use the parameter set Set-III from [29] that sup-
ports homomorphic evaluations of SIMON-64/128; in particular d = 65535 (and
thus the degree of f(x) is 32768 = 215), log2(q) = 1228 and χerr a discrete
Gaussian distribution with parameter σ = 8. The paper [29] claims that this set
has security level 128-bits, but this is an underestimate due to a small error in
the security derivation. We chose SIMON because it has a smaller multiplica-
tive depth (e.g. AES), and because it offers direct comparability to the existing
software implementation [29].

3 High Level Optimizations

To efficiently implement YASHE we have to analyze the two main operations in
detail, namely homomorphic addition and homomorphic multiplication. Homo-
morphic addition is easy to deal with since this simply corresponds to polynomial
addition in Rq. Homomorphic multiplication is much more involved and is the
main focus of this paper. As can be seen from the definition of YASHE.Mult in
Section 2.2, to multiply two ciphertexts c1 and c2 one first needs to compute
c1 · c2 over the integers, then scale by t/q and round, before mapping back into
the ring Rq. The fact that one first has to compute the result over the integers
(to allow for the scaling and rounding) has a major influence on how elements
of Rq are represented and on how the multiplication has to be computed.

First we will consider polynomial multiplication in Rq where the modulus
f(x) is an arbitrary polynomial of degree n. Since each element in Rq therefore
can be represented as a polynomial of degree n − 1, the resulting product will
have degree 2n − 2. As such we choose the smallest N = 2k > 2n − 2, and
compute the product of the two polynomials in the ring Zq[x]/(xN −1) by using

the N -fold NTT (see Alg. 1). The NTT requires the N -th roots of unity to
exist in Zq, so we either choose q a prime with q ≡ 1 mod N or q a product of
small primes qi with each qi ≡ 1 mod N . It is the latter choice that will be used
throughout this paper.

The product of two elements a, b ∈ Rq is then computed in two steps: firstly,
the product modulo xN − 1 (note that there will be no reduction, since the
degree of the product is small enough) is computed using two NTT’s,N pointwise
multiplications modulo q and then finally, one inverse NTT. To recover the result
in Rq, we need a reduction modulo f(x). For general f(x) this reduction does not
come for free (unlike the choice f(x) = xn+1) and for the parameters used in the
YASHE scheme the polynomial f(x) is in fact quite dense (although almost all
coefficients are ±1). We have to consider general f(x) because the most obvious
choice f(x) = xn +1 does not allow SIMD operations, since f(x) mod 2 has only
one irreducible factor. The polynomial Φd(x) from the YASHE parameter set
splits modulo 2 in 2048 different irreducible polynomials, which implies that we
can work on 2048 bits in parallel using the SIMD method first outlined in [36].

To speed-up the reduction modulo f(x) we rely on a polynomial version of
Barrett reduction [21], where one precomputes the inverse of xnf(1/x) mod-
ulo xn. The quotient and remainder can then be recovered at the cost of two
polynomial multiplications.

Note that the multiplication of c1 and c2 in YASHE.Mult is performed over
integers. To get the benefit of NTT based polynomial multiplication, we perform
this multiplication in a ring RQ where Q is a sufficiently large modulus of size
∼ 2 log q such that the coefficients of the result polynomial are in Z.

CRT Representation of Polynomials: In the cryptosystems based on the
RLWE problem, computations are performed on the polynomials of a ring Rq.
The reported FPGA-based architectures [3, 33, 35] of such cryptosystems use
BRAM slices to store the polynomials and use arithmetic components made up
of DSP multipliers and LUTs. The biggest challenge while designing a homo-
morphic processor is the complexity of computation. During a homomorphic
operation, computations are performed on polynomials of degree 215 or 216 and
coefficients of size ∼1,200 or ∼2,500 bits. If we use a bit-parallel coefficient mul-
tiplier, then a 2, 500 × 2, 500-bit multiplier will not only result in an enormous
area, but will also result in a very low operating frequency. On the other side, a
word-serial multiplier is too slow for homomorphic computations.

To tackle the problem of long integer arithmetic, we take inspiration from
the application of the CRT in the RSA cryptosystems. We choose the moduli q
and Q as products of many small prime moduli qi, such that q =

∏l−1
0 qi and

Q =
∏L−1

0 qi, where l < L. We map any long integer operation modulo q or Q
into small computations moduli qi, and apply CRT whenever a reverse mapping
is required. We use the term small residue to represent coefficients modulo qi
and the term large residue to represent coefficients modulo q or Q.

Parallel Processing: Beside making the long integer operations easy, such
small-residue representation of the coefficients have a tremendous effect on the
computation time. Since the computations in the small-residue representations
are independent of each other, we can exploit this parallelism and speedup the
computations using several parallel cores.

The size of the moduli qi is an important design decision and depends on the
underlying platform. We use the largest Xilinx Virtex-7 FPGA XC7VX1140T
to implement our homomorphic processor and tune the design decisions accord-
ingly. The FPGA has 3,360 25×18-bit DSP multipliers [1]. One could implement
a slightly larger multiplier by combining DSP multipliers with LUTs. For the
set of moduli, we choose in total 84 primes (hence l = 41 and L = 84) of size
30 bits, (the primes from 1008795649 onwards) satisfying qi ≡ 1 mod N . The
reasons for selecting only 30-bit of primes are: 1) there are sufficiently many
primes of size 30-bit to compose 1,228-bit q and 2,517-bit Q, 2) the data-paths
for performing computations modulo qi become symmetric, and 3) the basic com-
putation blocks, such as adders and multipliers of size 30-bit can be implemented
efficiently using the available DSP slices and a few LUTs.

4 Architecture

We propose an architecture (Fig. 1) to perform the operations in the YASHE
scheme. The central part of the architecture is an FPGA based accelerator that
works as a coprocessor of a computer and executes the computationally intensive
operations. We call this coprocessor the HE-coprocessor. The HE-coprocessor
supports the following operations: NTT of a polynomial, coefficient wise addi-

q
0
,q

h
,
.
.
.

m
o
d
u
li

DRU

DRU

DRU

DRU

DRU

DRU

h
−

1

q
,q

1
h
+

1
,.

 .
 .

q
h
−

1
.
.
.

,

FSMs for NTT, Coefficient−wise Addition, Subtraction,

and Multiplication of Polynomials, CRT, and Division−Round HE−Coprocessor
FPGA

DRU: Division and Rounding Unit

CRTU: CRT Unit

PAU: Polynomial Arithmetic Unit

E
x
te

rn
al

 M
em

o
ry

P
ro

ce
ss

o
r

P
A

U
 +

 C
R

T
U

P
ro

ce
ss

o
r

1

P
A

U
 +

 C
R

T
U

P
ro

ce
ss

o
r

0

P
A

U
 +

 C
R

T
U

m
o
d
u
li

m
o
d
u
li

Computer
(Master Mode)

External Memory Control
Instruction

Fig. 1. Overview of the HE Architecture

tion/subtraction/multiplication of two polynomials, computation of the residues
using the CRT, computation of the coefficients modulo Q from the residues, and
the scaling of the coefficients. The external memory in this architecture is imple-
mented using high-speed RAMs and is used to store the polynomials during a
homomorphic computation. The computer in Fig. 1 works in master-mode and
instructs the HE-coprocessor and the controller of the external memory. Since
the execution of the homomorphic scheme is controlled by a software program
in the computer, a level of flexibility to implement other homomorphic schemes
based on a similar set of elementary operations is offered.

The HE-coprocessor comprises of three main components: the polynomial
arithmetic unit (PAU), the CRT unit (CRTU), and the division and rounding
unit (DRU). We do not implement the discrete Gaussian sampling in the HE-
coprocessor as sampling is required only during an encryption, which is a less
frequent operation. Since the samples from a narrow discrete Gaussian distri-
bution can be generated very efficiently using lookup tables in software [11], we
use the master-computer (Fig. 1) for this purpose.

4.1 Polynomial Arithmetic Unit

To exploit the parallelism provided by the small-residue representation of the
polynomials, the PAU has h parallel processors to perform computations on
h residue polynomials simultaneously. We call this horizontal parallelism. Since
the targeted FPGA does not provide sufficient resources to process all the small-
residue polynomials in parallel, we design the processors in a generic way such
that a processor can be time-shared by a group of dL/he prime moduli. To add
an additional degree of acceleration, we add v parallel cores in each processor.
We call this vertical parallelism. The cores in a processor are connected to a
group of BRAMs through a switching matrix.

Optimization in the Routing: During an NTT computation (Alg. 1), coeffi-
cients are fetched from the memory and then butterfly operations are performed
on the coefficients. Let us assume that a residue polynomial of N = 216 coeffi-
cients is stored in b BRAMs and then processed using v butterfly cores. If v is a
divisor of b, then we can split the NTT computation in equal parts among the v
parallel butterfly cores. However there are two main technical issues related to
the memory access that would affect the performance of the NTT computation.
The first one is: all the parallel cores read and write simultaneously in the mem-
ory blocks. Since a simple dual port BRAM has one port for reading and one
port for writing, it can support only one read and write in a clock cycle. Hence a
memory block can be read (or written) by one butterfly core in a cycle and thus
address generation by the parallel butterfly cores should be free from conflicts.
The second issue is related to the routing complexity. Since a residue polynomial
is stored in many BRAMs, access of data from a BRAM that is very far from a
butterfly core will result in a very long routing distance. Now in Alg. 1 we see
that the maximum difference between the indexes of the two coefficients is N/2.

In the FPGA, fetching data from memory locations at a relative distance of 215

will result in a long routing, and thus could drastically reduce the frequency.

To address these two technical challenges, we have developed a memory access
scheme by analysing the address generation during different iterations of the
loops in the NTT (Alg. 1) We segment the set of b BRAMs into b/v groups.
The read ports of a group are accessed by only one butterfly core. This dedicated
read prevents any sort of conflict during the memory read operations. Moreover,
in the FPGA the group of BRAMs can be placed close to the corresponding
butterfly core and thus the routing complexity can be reduced.

We describe the proposed memory access scheme during an execution of the
NTT by parallel cores in Alg. 2. The module butterfly-core performs butterfly
operations on two coefficent pairs following the optimization technique in [35].
In the algorithm the v parallel butterfly cores of a processor are indexed by c
where c ∈ [0, v − 1]. During the m-th loop of a NTT, the twiddle factor in the
c-th core is initialized to a constant value ωm,c. In the hardware, these constants
are stored in a ROM. The counter Itwiddle denotes the interval between two
consecutive calculations of the twiddle factors. Whenever the number of butter-
fly operations (Nbutterfly) becomes a multiple of Itwiddle, a new twiddle factor is
computed. The c-th butterfly core reads the c−th group of BRAMs MEMORYc
using two addresses address1 and address2. The addresses are computed from
the counters: base, increment, and offset, that represent the starting memory
address, the increment value, and the difference between address1 and address2
respectively. A butterfly core outputs the two addresses and the four coefficients
s1,c, s2,c, s3,c, s4,c. These output signals from the parallel butterfly cores are col-
lected by a set of parallel modules memory-write that are responsible for writing
the groups of BRAMs. The input coefficients that will be read by the adjacent
butterfly core in the next iteration of the m-th loop, are selected for the writing
operation in MEMORYc by the c-th memory-write module. The top module
Parallel-NTT instantiates v butterfly cores and memory write blocks. These
instances run in parallel and exchange signals.

Internal Architecture of the PAU: In Fig. 2 we show the internal architec-
ture of the vertical cores that we use inside the horizontal processors in Fig. 1.
We follow the pipelined RLWE encryption architecture presented in Fig. 2 of
[35] and design our cores to support additional computations required in the
YASHE scheme. We design the cores in a more generic way such that a single
core can perform computations with respect to several moduli.

The input register bank in Fig. 2 contains registers to store data from the
BRAMs and data from the CRTUs. In addition, the register bank also contains
shift registers to delay the input coefficients in a pipeline during a NTT compu-
tation (see [35] for more details). The register bank has several ports to provide
data to several other components present in the core. We use the common name
Dregbank to represent all data-outputs from the register bank. The small ROM
block in Fig. 2 contains the twiddle factors and the value of N−1 to support
the computation of NTT and INTT. Though the figure shows only one such

/* This module computes butterfly operations */
1 module butterfly-core(input c; output m, address1, address2, s1,c, s2,c, s3,c, s4,c)
2 begin
3 (Itwiddle, offset)← (N/2, 1)
4 for m = 0 to logN − 1 do
5 ωm ← 2m-th primitiveroot(1)
6 Nbutterfly ← 0 /* Counts the number of butterfly operation in a m-loop */
7 ω ← ωm,c /* Initialization to a power of ωm for a core-index c */
8 for base = 0 to base < offset do
9 increment← 0

10 while base + offset + increment < N
2v do

11 (address1, address2)← (base + increment, base + offset + increment)
12 (t1, u1)←MEMORYc[address1] /* Read from c-th group of RAMs */
13 (t2, u2)←MEMORYc[address2]
14 if m < logN − 1 then
15 (t1, t2)← (ω · t1, ω · t2)
16 (s1,c, s2,c, s3,c, s4,c)← (u1 + t1, u1 − t1, u2 + t2, u2 − t2)
17 Nbutterfly ← Nbutterfly + 2
18 increment = increment + 2 · offset

19 if Nbutterfly ≡ Itwiddle then ω ← ω · ωv/2
m

20 else

21 t1 ← ω · t1; ω ← ω · ωv/2
m

22 t2 ← ω · t2; ω ← ω · ωv/2
m

23 (s1,c, s2,c, s3,c, s4,c)← (u1 + t1, u1 − t1, u2 + t2, u2 − t2)
24 Nbutterfly ← Nbutterfly + 2
25 increment = increment + 2 · offset

26 Itwiddle ← Itwiddle/2
27 if offset < v/2 then offset← 2 · offset

/* This module writes the coefficients computed by two butterfly-cores */
28 module memory-write(input c,m, address1, address2, s1,0, . . . s4,v−1)
29 begin
30 if 2m < v

2 then gap← 2m

31 else gap← v
2 /* This represents the index gap between the two cores */

32 if c < v/2 then
33 MEMORYc[address1]← (s2,c, s1,c)
34 MEMORYc[address2]← (s2,c+gap, s1,c+gap)

35 else
36 MEMORYc[address1]← (s4,c, s3,c)
37 MEMORYc[address2]← (s4,c+gap, s3,c+gap)

/* This is the top module that executes butterfly-core in parallel */
38 module Parallel-NTT()
39 begin
40 butterfly-core bc0(0, m, address1, address2, s1,0, s2,0, s3,0, s4,0)
41 memory-write mw0(0, m, address1, address2, s1,0, . . . s4,v−1)
42 . . .
43 butterfly-core bcv−1(v − 1,m, address1, address2, s1,v−1, s2,v−1, s3,v−1, s4,v−1)
44 memory-write mwv−1(v − 1,m, address1, address2, s1,0, . . . s4,v−1)

Algorithm 2: Routing Efficient Parallel NTT using v cores

ROM block, there are actually dLh e such ROM blocks, since a core is shared by

dLh e primes. The integer multiplier (shown as a circle in Fig. 2) is a 30× 30-bit
multiplier. We maintain a balance between area and speed by combining two
DSP multipliers and additional LUT based small multipliers to form this mul-
tiplier. After an integer multiplication, the result is reduced using the Barrett
reduction circuit shown in Fig. 2. We use the Barrett reduction technique due to

two reasons. The first reason is that the primes used in this implementation are
not of pseudo-Mersenne type which support fast modular reduction technique
[26]. The second reason is that the cores are shared by several prime moduli,
and hence, a generic reduction circuit is more preferable than several dedicated
reduction circuits. The Barrett reduction circuit is bit parallel to process the
outputs from the bit-parallel multiplier in a flow. The reduction consists of three
31 × 31-bit multipliers and additional adders and subtractors. The multipliers
are implemented by combining two DSP multipliers with additional LUTs. Thus
in total, the Barrett reduction block consumes six DSP multipliers. Beside per-
forming the modular reduction operations, the multipliers present in the Barrett
reduction circuit can be reused to perform 30×59-bit multiplications during the
CRT computations. The adder/subtracter and the subtracter circuits after the
Barrett reduction block in Fig. 2 are used to compute the butterfly operations
during a NTT computation and to perform coefficient-wise additions and sub-
tractions of polynomials. Finally, the results of a computation are stored in the
output register bank and then the registers are written back in the memory.
To achieve high operating frequency, we follow the pipelining technique from
[35] and put pipeline registers in the data paths of the computation circuits. In
Fig. 2, the pipeline registers are shown as magenta colored lines.

4.2 CRT Unit

We accelerate polynomial arithmetic by representing the polynomials of Rq as
smaller residue polynomials moduli qj , j ∈ [0, l−1]. However, this representation
also has the following overhead:

– The multiplication of the input polynomials c1 and c2 in YASHE.Mult is
performed in the larger ring RQ (see Section 2.2). Since c1 and c2 are in Rq,
we need to first lift the polynomials from Rq to RQ. This lifting operation
essentially computes the residue polynomials moduli qj , j ∈ [l, L − 1] from
the residue polynomials moduli qi, i ∈ [0, l − 1] by applying the CRT. We
call this operation the small-CRT.

...

DRegBank

DRegBank

... ...

DRegBank D
at

a
to

B
R

A
M

Data from BRAM Data CRT−ROMsfrom

Twiddle

Factors

Reduction

Vertical Core

Integer Multiplier

Result of Rounding,

and Small CRT

Barrett

Register Bank

Output

30−by−59 bit Multiplication

Small

ROM for

NTT

Constants in

Input
Register Bank

Cache for

Fig. 2. Architecture for the Vertical Cores

– After the multiplication of c1 and c2, the result is a set of residue polynomials
moduli qj , j ∈ [0, L− 1]. The scaling operation in YASHE.Mult requires the
coefficients of the result in the form of modulo Q. Hence, we apply the CRT
to get back the coefficients modulo Q from the small residue polynomials
moduli qj , j ∈ [0, L− 1]. We call this operation the large-CRT.

Architecture for the Large-CRT Unit: We compute simultaneous solution
with respect to the large modulus Q from the residues [q]qi for i ∈ [0, L− 1].

[a]Q =
[∑

[a]qi · (
Q

qi
) · [(Q

qi
)−1]qi

]
Q

=
[∑

[a]qi · bi
]
Q

(1)

Our large-CRT architecture is shown in the right half of Fig. 3. The constant
values bi are stored in a ROM and then multiplied word-serially with the coeffi-
cients from the BRAMs. We set the word size of the ROMs to 59 bits in order
to reuse the 31 × 59-bit multipliers of the Barrett reduction circuits (Fig. 2)
for the 30-by-59 bit multiplications. The computation is distributed among the
vertical cores of a processor. In our HE-coprocessor, there are 16 vertical cores
in a processor. These cores are divided into two CRT groups: Core-0 to Core-7
form the first group, whereas Core-8 to Core-15 form the second group. Each
group computes one large-CRT in parallel. Since there are 84 bi constants (Equa-
tion 1), each core in a group computes multiplications with a maximum of 11
bi constants in parallel and in pipeline. The results of the multiplications are
accumulated in the accumulation registers. The partially accumulated results
from the cores are added together as follows: the register acc0 is added with acc1
and the result is stored in acc1. Then acc1 is added with acc2 and finally acc2
is added with acc3. In parallel, acc7 down to acc4 are added together and the
result is stored in acc4. Finally acc4 is added with acc3 and the result is stored
in acc3. This final result is then stored in a small distributed RAM (not shown
in the figure) which is read by the DRU. Similar computations are performed in
the group consisting of Core-8 to Core-15.

Architecture for the Small-CRT Unit: During a small-CRT computation
we first compute the sum of products using the following equation for i ∈ [0, l−1].

a =
∑

[a]qi · (
q

qi
) · [(q

qi
)−1]qi =

∑
[a]qi · bi (2)

This computation is similar to the sum calculation in the large-CRT, but the
number of operands is less (maximum of 6 per core) and the size of bi are small.
We use a similar computation strategy as described in the large-CRT unit. After
the computation of a we compute [a′]qj for j ∈ [l, L − 1] using the following
equation.

[a′]qj =
[∑

[a]qi · [bi]qj
]
qj

(3)

Here [bi]qj are 30-bit integers. The architecture for this computation is shown
in the left half of Fig. 3. For the modular multiplications we use the modular

acc0

acc1

acc0

bacc1

q
0

q
1

a[q
11

[0]]

a[q
12

[0]]

a[q
21

[0]]

b
0

[0]

1
b [0]

b [1]
0

1
b [1]

b
12

[1]

11
b [1]

ROM

[a]q
5

00

b

b
0

b

b
5

30

Multiplier
Modular

BRAM

30

en_acc

en_acc

Integrated architecture for Large−CRT

en_acc

b

11
[0]

12
[0]

89

Multiplier

BRAM
en_acc

D
at

a
fo

 a
cc

u
m

u
la

ti
o

n

Data to the CRT unit in Core 2 for accumulation

a[]

[a]

Multiplier
Modular

BRAM

a][

[a]

[0]q
0

q
1
[0]

q

q [0]

[]a

Multiplier

89

[0]

[a] [0]

BRAM

31−by−59

31−by−59

Integrated architecture for Eq. (3) in Small−CRT

 [0]

]

ROM

[

[]

b

[b

6

7

]
11

]

ROM

Data to the CRT unit in Core 2 for accumulation

Core 0

Core 1 Core 1

Core 0

6

7

[a]q
11

[0]

 [0]

[

[]

1 q

][q

q

q
l

l

l

ql

q
l

l

Fig. 3. Architecture for the Small and Large CRT. The computation blocks are aligned
along a horizontal processor. Exchange of data between the cores occur during a Large-
CRT computation.

multiplier that is present inside the vertical cores present of a processor in our
HE-coprocessor. The cores in the two CRT groups compute in parallel and in
pipeline. Each core computes a maximum of 6 modular multiplications (since
there are 43 qj modulus and 8 cores in a CRT group). The accumulation of the
partially computed results from one core to the next core is performed in the
same way as described in the large-CRT unit. Finally, we compute the residues
[a]qj for j ∈ [l, L− 1] using the following equation:

[a]qj =
[
[a′]qj − [ba/qc]qj · [q]qj

]
qj

(4)

This computation involves a division of a by q which is performed using the
division unit in parallel to the computation of (3). The division architecture is
described in the next section.

4.3 Division and Rounding Unit

The DRU computes btc/qe where t = 2, c is a coefficient from the Large-CRTU,
and b·e denotes rounding towards the nearest integer. The division is carried out
by precomputing the reciprocal r = 2/q and then computing r × c. The DRU
outputs 59-bit words that can be directly reduced modulo the 30-bit qi using
the existing Barrett reduction circuitries in the PAU that operate on inputs of

en

118 × 118-bit

236

multiplier

595959 59

5959

ROM
for r

118 118

control signals

din

doutb douta

for additions

5

59

1

0

59
59 59

64

controladdr
ready
busy

0

Fig. 4. The Division and Rounding Unit (DRU)

size < q2i . The word size of the DRU was selected to be 118 bits (2 × 59) as a
compromise between area and latency.

To round a division of two k-bit integers correctly to k-bits, the quotient
must be computed correctly to 2k + 1 bits [27, Theorem 5.2]. In our case, the
computation of btc/qe requires a division of a k1-bit dividend by a k2-bit divisor.
The precision that we will need in this case to guarantee correct rounding, based
on the above, is k1 + k2 + 1 bits. The divisor q is a 1228-bit constant integer
and the dividend c is an at most 2492-bit integer1, which gives a bound of 3721
bits. Hence, the reciprocal r is computed up to a precision of 32 118-bit words,
of which 22 words are nonzero.

Figure 4 shows the architecture of the DRU. The multiplication r × c is
computed by using a 118 × 118-bit multiplier that computes 222 = 484 partial
multiplications. This multiplier performs a 118-bit Karatsuba multiplication by
using three 59×59-bit multipliers generated with the Xilinx IP Core tool (which
supports only up to 64-bit multipliers). The 59-bit multipliers each require 16
DSP blocks giving the total number of 48 DSP blocks. In order to achieve a high
clock frequency, the 118-bit multiplier utilizes a 23-stage pipeline, of which 18
stages are in the 59-bit multipliers (the optimal number according to the tool).

The partial products from the 118-bit multiplier are accumulated into a 241-
bit (2 × 118 + 5) register using the Comba algorithm [12]. These additions are
computed in a 4-stage pipeline with three 59-bit adders and one 64-bit adder,

1 The dividend c is a sum of 216 integers, each in [0, (q − 1)2] (2455-bit integers).
Further growth by 14 bits is introduced by the polynomial modular reduction and
7 bits by the large-CRT computation.

Table 1. The area results on Xilinx Virtex-7 XCV1140TFLG1930-2 FPGA

Resource Used Avail. Percentage

Slice Registers 323,120 1,424,000 22.6 %
Slice LUTs 377,368 712,000 53 %
BlockRAM 640 BRAM36, 144 BRAM18 1,880 37.8 %
DSP48 1,792 3,360 53 %

which are all implemented with LUTs. Whenever all partial products of an out-
put word have been computed, the register is shifted to the right by 118 bits
and the overflowing bits are given at the output of the DRU. Once the compu-
tation proceeds to the first word after the fractional point, then the msb of the
fractional part is added to the register in order to perform the rounding. The
DRU has a constant latency of 687 clock cycles per coefficient.

The DRU is reused for computing bc/qc during the small-CRT. The compu-
tation proceeds analogously to the above. The differences are that the reciprocal
is now r = 1/q and it needs to be computed only to a precision of 2493 bits (12
nonzero words) because c can be only 36 bits longer than q. The computation
has a latency of 246 clock cycles per division.

5 Results

The HE-coprocessor proposed in Sect. 4 was described using mixed Verilog and
VHDL. We compiled the processor for Xilinx Virtex-7 XC7V1140T-2, the largest
device of the Virtex-7 FPGA family, by using the Xilinx ISE 13.4 Design Suite.
We set the optimization goal in the ISE tool to speed. All results reported in the
section have been obtained after place-and-route analysis.

The HE-coprocessor has h = 8 horizontal processors, each having v = 16 par-
allel vertical cores for performing polynomial arithmetic, two small-CRT com-
putation groups, two large-CRT computation groups and two DRUs. The area
counts of our HE-coprocessor are shown in Table 1. As seen from the table,
our HE-coprocessor consumes nearly 50% of the computational elements (LUTs
and DSP multipliers) available in the FPGA. To know the maximum number
of processors that we can implement in a single FPGA, we performed a de-
sign exploration using the Xilinx PlanAhead tool. This tool allows the designer
to manually place different components in the FPGA. The Virtex-7 XCV1140
FPGA consists of four super large logic regions (SLRs). From the design explo-
ration we have found that we can put two processors in one SLR. If we put three
processors in one SLR (occupies around 70% of the SLR-area), then the Xilinx
tool reports congestion of routing channels and the place-and-route analysis fails.
From this design exploration we conclude that we can implement two processors
per SLR, and hence eight processors in one Virtex-7 XCV1140 FPGA.

Table 2 gives the latencies of different operations supported by our HE-
coprocessor. The operating frequency of our HE-coprocessor is 143 MHz after

Table 2. Latencies and timings at 143 MHz after place-and-route

Operation Clocks Time Rel. time†

NTT 47,795 0.334 ms 0.163 µs
INTT 51,909 0.363 ms 0.177 µs
Poly-add/sub/mult 4,096 0.029 ms 0.014 µs
Small-CRT 821,248 5.743 ms 2.804 µs
Large-CRT 2,752,512 19.248 ms 9.398 µs
Divide-and-round 2,813,952 19.678 ms 9.559 µs

YASHE.Add? 24,576 0.172 ms 0.083 µs
YASHE.Mult? 17,399,987 121.678 ms 59.413 µs

SIMON-32/64? 8,908,793,344 62.299 s 30.419 ms
SIMON-64/128? 24,499,181,696 171.323 s 83.653 ms
† Time per slot in SIMD operations (in total 2048 slots)
? Excluding interfacing with the computer and the external memory

place-and-route analysis. NTT and INTT computations are performed on poly-
nomials of N = 216 coefficients. To save memory requirement, we compute the
twiddle factors on the fly at the cost of N integer multiplications. One NTT
computation using v = 16 cores requires (N + N

2 log2(N))/16, i.e. 36,864 mul-
tiplications. However the computation of the twiddle factors in the pipelined
data path of the PAU (Fig. 2) has data dependencies and thus causes bubbles
in the pipeline. Following [35], we use a small register-file that stores four con-
secutive twiddle factors, and reduce the cycles spent in the pipeline bubbles to
around 10,000. In the case of an INTT computation, the additional cycles are
spent during scaling operation by N−1. Cycle count per coefficient for the small-
CRT is 401. Since there are two CRT groups per processor and there are total
eight processors in our HE-coprocessor, for a polynomial with 215 = 32, 768
coefficient, the total cost of small-CRT is 821,248 cycles. Similarly, the costs
of large-CRT and the division-and-rounding are 672 and 687 cycles per coeffi-
cient respectively. However, the cycles spent for the large-CRT operations are
not a part of the actual cost, as the large-CRT operation runs in parallel with
the division-and-rounding operations during a homomorphic multiplication. The
division-and-rounding operations are computed 216 times using 16 DRUs (two
from each horizontal processor) at the cost of 2,813,952 cycles.

Table 2 includes estimates for the latencies of YASHE.Add and YASHE.Mult as
well as the evaluations of SIMON-32/64 and SIMON-64/128. The YASHE.Mult
computes small-CRT, polynomial multiplication, scaling and YASHE.KeySwitch
operations. The cycle count for YASHE.Mult is derived as follows. First the in-
put polynomials c1 and c2 are lifted from Rq to RQ using small-CRTs of the
two polynomials; then a polynomial multiplication (including Barrett polyno-
mial reduction) is performed using 4 NTTs, 3 INTTs, 3 Poly-mul and 1 Poly-
sub. Since there are 84 moduli, we compute these operations in 11 batches us-
ing h = 8 processors. After the polynomial multiplication, a scaling operation

by t/q is performed to compute c′. The YASHE.KeySwitch operation, which is
〈WordDecompw,q(c′), evk〉, uses NTT of the fixed evk (22 polynomials) and de-
composes c′ into 22 polynomials. First 22 NTTs and then 22 coefficient-wise
multiplications, followed by 21 coefficient-wise additions are performed. Finally
one INTT is computed and the result is reduced using Barrett reduction (2
NTTs, 2 INTTs, 2 coefficient-wise multiplications, and 1 coefficient-wise sub-
traction). All these computations are performed in six batches. Estimates for
SIMON consider only YASHE.Mult, which dominate the costs of function evalu-
ations. SIMON-32/64 and SIMON-64/128 require 512 (32 rounds with 16 ANDs)
and 1,408 (44 rounds with 32 ANDs) YASHE.Mult, respectively. In addition to
the latencies and timings for a single execution of the operations, we also provide
the relative timings which represent the timings per slot (in total 2048 slots).

Lepoint and Naehrig [29] presented C++ implementations for homomorphic
evaluations of SIMON-32/64 and SIMON 64/128 with YASHE running on a 4-
core Intel Core i7-2600 at 3.4 GHz. They reported computation times of 1029 s
(17.2 min) and 4193 s (69.9 min) for SIMON-32/64 and SIMON-64/128 using all
4 cores, respectively. The implementations included 1800 and 2048 slots and,
hence, the relative times per slot were 0.57 s and 2.04 s, respectively. With one
core, they achieved 16500 s (275 min) for SIMON-64/128. The homomorphic
evaluation of SIMON-64/128 on our FPGA implementation takes 171.3 s (2.85
min) and it also allows 2048 slots giving a relative time of only 83.6 ms per slot.
Hence, our single FPGA implementation offers a speedup of up to 24.5 (or 96.32)
times compared to the 4-core (or 1-core) software implementation.

6 Conclusions and Future Work

We showed that modern high-end FPGAs (such as Virtex-7) have sufficient logic,
hardwired multipliers, and internal memory resources for efficient computation
of primitives required for evaluating functions on FHE encrypted data. Despite
this, memory requirements and the speed of memory access is critical. Only ci-
phertexts that are currently being processed fit into the internal memory of the
FPGA and other ciphertexts must be stored in external memory. Interface with
the external memory may become a bottleneck unless it is done with special care.
Sufficiently fast memory access can be achieved by using high bandwidth mem-
ory and/or parallel memory chips. Many FPGAs include dedicated transceivers
for fast interfacing that could be used for fast data access in FHE computa-
tions. Moreover, most of the memory access can be performed in parallel with
computation using a ping-pong scheme of two sets of BRAMs in the FPGA.
The FPGA and the master-computer operate on these two sets alternatively
between two consecutive instructions: when the FPGA operates on the first set,
the master-computer operates on the second, and vice versa.

We presented a single-FPGA design of homomorphic evaluation with YASHE.
An obvious way to improve the performance would be to use a multi-FPGA de-
sign (a cluster). We see four parallelization approaches. The first and simplest
option is to instantiate parallel FPGAs so that each of them computes different

homomorphic evaluations independently of each other. This approach improves
throughput, but the latency of an individual evaluation remains the same. The
second approach is to divide independent homomorphic operations inside a single
homomorphic evaluation to parallel FPGAs. Thanks to the numerous indepen-
dent computations included, e.g., in homomorphic evaluations of block ciphers,
this approach is likely to improve both throughput and latency. While this is
conceptually a simple approach, it may still face difficulties because data needs
to be transferred between multiple FPGAs. The third option is to divide dif-
ferent parts of a homomorphic multiplication to different FPGAs and perform
them in a pipelined fashion in order to increase throughput. The fourth option
is to mix the other three options and it may lead to good tradeoffs that avoid
the disadvantages of the other options. The techniques represented in this paper
can be extrapolated to support these options.

The SIMD approach achieves high throughput, but it has been argued that
low latency can be more important in practice [29]. The leading software imple-
mentation [29] requires as much as 200 s for a single slot evaluation of SIMON-
32/64 with YASHE. Our FPGA-based implementation achieves smaller latencies
even for SIMON-64/128 with an implementation that allows 2048 slots. Reduc-
ing the number of slots to one would allow more efficient parameters (see Sect. 2).
We plan to investigate such schemes in the future.

We evaluated the performance of our architecture for YASHE by providing
performance values for SIMON in order to provide straightforward comparisons
to the leading software implementation from [29]. However, SIMON is not neces-
sarily an optimal cipher for FHE purposes. For instance, the low-latency Prince
cipher [5] may lead to better performance [19]. FHE-friendly symmetric encryp-
tion that is designed to minimize the multiplicative size and depth can offer
significant improvements over SIMON (and Prince) [2, 9]. Our architecture is
able to evaluate arbitrary functions (up to a certain multiplicative depth) and,
hence, these options will be studied in the future. Performance can be further in-
creased by tuning the parameters of the architecture for these specific functions.
Such changes can be easily done because our architecture is highly flexible.

We presented the first FPGA implementation for function evaluation on ho-
momorphically encrypted data. Although it already achieves competitive per-
formance compared to leading software implementations, we see several ways
to optimize the architecture and these issues will be explored further in the
future. For instance, we can increase throughput of NTT by precomputing cer-
tain values. We used Barrett reduction for the primes but choosing ‘nice’ primes
and optimizing reduction circuitries by hand could offer speedups. However, in
that case the performance would be bounded by the worst prime and finding
suitably many ‘nice’ primes may be challenging. The architecture uses simple
data-flow and pipelining in order to keep high clock frequency, but it results in
pipeline bubbles that increase the latencies of operations. A more elaborated
data-flow could allow removing the pipeline bubbles and reducing the latencies.
More research is required also in balancing the pipelines so that even higher
clock frequencies can be achieved for the architecture. The architecture utilizes

parallelism on various levels and degrees of parallelism in different parts of the
architecture should be fine-tuned to achieve optimal resource utilization and
performance. Our source code is highly flexible and significant parts of it were
generated with scripts. This allows us to perform parameter space explorations
that will enable us to find more optimal parameters for the architecture.

Acknowlegments

S. Sinha Roy was supported by Erasmus Mundus PhD Scholarship, K. Järvinen
was funded by FWO Pegasus Marie Curie Fellowship and V. Dimitrov was sup-
ported by NSERC. This work was supported by the Research Council KU Leu-
ven: TENSE (GOA/11/007), by iMinds, by the Flemish Government, FWO
G.0550.12N, G.00130.13N and FWO G.0876.14N, by the Hercules Foundation
AKUL/11/19, by the European Commission through the ICT programme un-
der contract FP7-ICT-2013-10-SEP-210076296 PRACTICE, and by H2020-ICT-
644209 HEAT. We thank Nele Mentens, Jochen Vandorpe, and Jo Vliegen for
their help with the Xilinx PlanAhead tool and we thank Ho Truong Phu Truan
from NTU, Singapore.

References

1. Xilinx 7 Series FPGAs Overview, DS180 (v1.16.1) December 17, 2014, http://www.
xilinx.com/support/documentation/data sheets/ds180 7Series Overview.pdf

2. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Advances in Cryptology – EUROCRYPT 2015. Lecture Notes
in Computer Science, vol. 9056, pp. 430–454. Springer Berlin Heidelberg (2015)

3. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and Area-efficient FPGA Imple-
mentations of Lattice-based Cryptography. In: HOST. pp. 81–86. IEEE (2013)

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/

5. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE — a low-latency block cipher for pervasive computing ap-
plications. In: Wang, X., Sako, K. (eds.) Advances in Cryptology — ASIACRYPT
2012. Lecture Notes in Computer Science, vol. 7658, pp. 208–225. Springer (2012)

6. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) Proceedings of the 14th
IMA International Conference on Cryptography and Coding (IMACC 2013). Lec-
ture Notes in Computer Science, vol. 8308, pp. 45–64. Springer (2013)

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology
— CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 868–886.
Springer (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryp-
tology — CRYPTO 2011, Lecture Notes in Computer Science, vol. 6841, pp. 505–
524. Springer Berlin Heidelberg (2011)

9. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: How to compress homomorphic ciphertexts. Cryptology ePrint
Archive, Report 2015/113 (2015), http://eprint.iacr.org/

10. Cao, X., Moore, C., O’Neill, M., Hanley, N., O’Sullivan, E.: High-speed fully
homomorphic encryption over the integers. In: Böhme, R., Brenner, M., Moore,
T., Smith, M. (eds.) Financial Cryptography and Data Security Workshops, the
2nd Workshop on Applied Homomorphic Cryptography and Encrypted Comput-
ing (WAHC 2014). Lecture Notes in Computer Science, vol. 8438, pp. 169–180.
Springer (2014)

11. de Clercq, R., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: Efficient soft-
ware implementation of ring-LWE encryption. Cryptology ePrint Archive, Report
2014/725 (2014), http://eprint.iacr.org/

12. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Systems Journal
29(4), 526–538 (1990)

13. Cormen, T., Leiserson, C., Rivest, R.: Introduction To Algorithms. http://staff.
ustc.edu.cn/∼csli/graduate/algorithms/book6/toc.htm

14. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) Public-Key Cryptography — PKC
2014, Lecture Notes in Computer Science, vol. 8383, pp. 311–328. Springer (2014)

15. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: SIPHER: Scalable implemen-
tation of primitives for homomorphic encryption — FPGA implementation using
Simulink. In: Proceedings of the 15th Annual Workshop on High Performance Em-
bedded Computing (HPEC 2011) (2011)

16. Cousins, D.B., Rohloff, K., Peikert, C., Schantz, R.: An update on SIPHER (scal-
able implementation of primitives for homomorphic encryption) — FPGA imple-
mentation using Simulink. In: Proceedings of the 2012 IEEE High Performance
Extreme Computing Conference (HPEC ’12). pp. 1–5 (2012)

17. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) Advances in Cryptology — EURO-
CRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 24–43. Springer
(2010)

18. Doröz, Y., Öztürk, E., Sunar, B.: Evaluating the hardware performance of a
million-bit multiplier. In: Proceedings of the 16th Euromicro Conference on Digital
System Design (DSD 2013). pp. 955–962 (2013)

19. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomor-
phic evaluation of block ciphers using Prince. In: Böhme, R., Brenner, M., Moore,
T., Smith, M. (eds.) Financial Cryptography and Data Security Workshops, the
2nd Workshop on Applied Homomorphic Cryptography and Encrypted Comput-
ing (WAHC 2014). Lecture Notes in Computer Science, vol. 8438, pp. 208–220.
Springer (2014)

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

21. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, New York, NY, USA (1999)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing (STOC 2009). pp. 169–178
(2009)

23. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) Advances in Cryptology — EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 129–148. Springer (2011)

24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology — CRYPTO 2012,
Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer (2012)

25. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology — CRYPTO 2013, Lecture Notes
in Computer Science, vol. 8042, pp. 75–92. Springer (2013)

26. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)

27. Karp, A.H., Markstein, P.: High-precision division and square root. ACM Trans-
actions on Mathematical Software 23(4), 561–589 (1997)

28. Koç, C.K. (ed.): Cryptographic Engineering. Springer (2009)
29. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes

FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in Cryptology
— AFRICACRYPT 2014. Lecture Notes in Computer Science, vol. 8469, pp. 318–
335. Springer (2014)

30. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing. pp. 1219–1234.
ACM, New York, NY, USA (2012)

31. Moore, C., Hanley, N., McAllister, J., O’Neill, M., O’Sullivan, E., Cao, X.: Tar-
geting FPGA DSP slices for a large integer multiplier for integer based FHE. In:
Adams, A., Brenner, M., Smith, M. (eds.) Financial Cryptography and Data Se-
curity Workshops, the 1st Workshop on Applied Homomorphic Cryptography and
Encrypted Computing (WAHC 2013). Lecture Notes in Computer Science, vol.
7862, pp. 226–237. Springer (2013)

32. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop (CCSW 2011). pp. 113–124. ACM (2011)

33. Pöppelmann, T., Güneysu, T.: Towards Practical Lattice-Based Public-Key En-
cryption on Reconfigurable Hardware. In: Selected Areas in Cryptography – SAC
2013, pp. 68–85. Lecture Notes in Computer Science, Springer Berlin Heidelberg
(2014)

34. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of secure computation 4(11), 169–180 (1978)

35. Sinha Roy, S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-lwe cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) Cryptographic
Hardware and Embedded Systems CHES 2014, Lecture Notes in Computer Sci-
ence, vol. 8731, pp. 371–391. Springer Berlin Heidelberg (2014)

36. Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Public Key Cryptography PKC 2010, Lecture Notes
in Computer Science, vol. 6056, pp. 420–443. Springer Berlin Heidelberg (2010)

37. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, Codes
and Cryptography 71(1), 57–81 (2014)

38. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully homomor-
phic encryption using GPU. In: IEEE Conference on High Performance Extreme
Computing (HPEC 2012). pp. 1–5 (2012)

39. Wang, W., Huang, X.: FPGA implementation of a large-number multiplier for
fully homomorphic encryption. In: IEEE International Symposium on Circuits and
Systems (ISCAS 2013). pp. 2589–2592 (2013)

40. Wang, W., Huang, X.: VLSI design of a large-number multiplier for fully homo-
morphic encryption. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 22(9), 1879–1887 (2014)

