
Guaranteeing Correctness in Privacy-Friendly
Outsourcing by Certificate Validation

Berry Schoenmakers and Meilof Veeningen
Eindhoven University of Technology, The Netherlands

{berry@win.,m.veeningen@}tue.nl

Abstract. With computation power in the cloud becoming a commod-
ity, it is more and more convenient to outsource computations to external
computation parties. Assuring confidentiality, even of inputs by mutually
distrusting inputters, is possible by distributing computations between
different parties using multiparty computation. Unfortunately, this typ-
ically only guarantees correctness if a limited number of computation
parties are malicious. If correctness is needed when all computation par-
ties are malicious, then one currently needs either fully homomorphic
encryption or “universally verifiable” multiparty computation; both are
impractical for large computations. In this paper, we show for the first
time how to achieve practical privacy-friendly outsourcing with correct-
ness guarantees, by using normal multiparty techniques to compute the
result of a computation, and then using slower verifiable techniques only
to verify that this result was correct. We demonstrate the feasibility of
our approach in a linear programming case study.

Keywords: multiparty computation, verifiable computation, multiparty
Fiat-Shamir heuristic, secure linear programming, certificate validation

1 Introduction

When outsourcing a computation, we want to be sure that the result is correct.
But if the computation involves confidential inputs, possibly of multiple mutually
distrusting input parties, we also want to guarantee the privacy of the inputs.
Separately, privacy and correctness can each be achieved. Correctness can be
achieved by replicating a computation and comparing the results [CL02] (but
this only protects against uncorrelated failure); or by relying on the use of trusted
hardware by the computation party [SZJVD04]. Recent cryptographic techniques
achieve correctness without assuming uncorrelated failure or trusted hardware,
by instead producing cryptographic proofs of correctness [PHGR13].

Achieving privacy is hard when outsourcing to a single computation party,
but feasible if the computation is distributed between several parties. Indeed,
having a single computation party perform arbitrary computations on encryp-
tions requires fully homomorphic encryption, a cryptographic primitive that is
still impractical for realistic applications [DM14]. But distributing computa-
tions between multiple computation parties in a privacy friendly way is possible,
and getting more and more practical, using multiparty computation protocols

(e.g., [BCD+09,DKL+13]). Unfortunately, such protocols typically guarantee pri-
vacy and correctness only if at least one of the computation parties is honest.

If correctness needs to be guaranteed even if all computation parties are cor-
rupted, then recent universally verifiable [SV15] (or publicly auditable [BDO14])
multiparty computation protocols can be used. Privacy is still only guaranteed
up to a certain maximum of corruptions: we cannot hope to circumvent this in
outsourcing scenarios (indeed, unconditional privacy requires fully homomorphic
encryption). Unfortunately, also these universally verifiable techniques are not
really practical: they require several cryptographic operations per multiplication
in the computation circuit, which is too much for most practical computations.

In this paper, we show that universally verifiable multiparty computation
can be made practical by only applying it to part of the computation. We ob-
serve that, for many computations, it is much easier to verify an obtained result
than to obtain the result in the first place. For instance, the solution to a linear
optimisation problem can be easily verified, but solving it with the simplex algo-
rithm takes many iterations. Hence, we use normal, privacy-friendly multiparty
computation techniques for the complicated computation, and slower verifiable
techniques only to prove correctness. In this paper, we consider a particular in-
stantiation of this idea (but other instantiations are possible): we distribute the
computation between three parties using protocols that privacy if at most one
of them is passively corrupted; and combine this with verifiability to ensure that
found solutions are correct. We demonstrate that for linear programming, this
leads to feasible performance; in particular, verifying the solution of the out-
sourced computation is much faster than performing the computation between
the input parties with the same correctness guarantees.

Outline We first present a protocol for proving and verifying that a set of en-
cryptions satisfy some given polynomial relations (Section 2). We then show
how to combine this protocol with fast, non-verifiable multiparty computation
(Section 3). We show with experiments that this gives rise to practical verifiable
secure linear programming (Section 4). We finish with a discussion of related
and future work (Section 5). Figure 1 shows notation used in this paper.

2 Proving Polynomial Relations on ElGamal Encryptions

In this section, we show how to prove correctness of computation results in
terms of ElGamal encryptions. Suppose that the encrypted inputs and outputs
of a computation are known as ElGamal encryptions. Suppose, also, that the
decryption key for these encryptions, as well as the plaintexts and randomness,
are shared between two computation parties. We show how these parties can
together produce a non-interactive zero-knowledge proof that the inputs and
outputs satisfy a set of polynomial relations, without learning any values.

The overall idea of our protocol is the following. For each polynomial relation
r(x1, . . . , xn) = 0 in the in/outputs x1, . . . , xn, the parties produce an encryption
R of the left-hand side. This requires additions, multiplications by a constant,
and multiplications of two encryptions. The first two can be computed locally

I/P/R input/computation/result parties
parties P / party P do S let parties P/party P (simultaneously) perform S
Encpk(x; r) ElGamal encryption under pk of x with randomness r
Decsk(x) ElGamal decryption of x with secret key (share) sk
p prime for ElGamal (plaintext/randomness space is Zp)
⊕,⊗ addition, multiplication by constant of encryptions
send(v;P); recv(P) send/receive v over secure and private channel (if P is

implicit, then communication is between P1, P2)
bcast(v) exchange v over broadcast channel
NizkVer(Σ; v;π; aux) verification of Fiat-Shamir proof (p. 5)
a ∈R S sample a uniformly at random from S
[x], [x′] own/other party’s additive share of x
H cryptographic hash function

Fig. 1. Notation in algorithms and protocols

using homomorphic properties of ElGamal. Multiplications of an encryption Y
by an encryption Xi of a shared plaintext xi can be performed verifiably by
letting the parties verifiably multiply their shares, and combining correctness
proofs on the shares into an overall correctness proof using techniques from
[SV15]. Finally, the protocol produces a proof that R encrypts zero, again by
homomorphically combining the decryption proofs of the computation parties.

This protocol is based on the universally verifiable protocols from [SV15],
adapted to the two-party ElGamal setting. We first review the threshold homo-
morphic ElGamal cryptosystem and associated proofs of correct multiplication
and decryption. We then provide the protocol for proving polynomial relations.

2.1 Threshold ElGamal Cryptosystem and Zero-Knowledge Proofs

First, recall the additively homomorphic ElGamal cryptosystem. In this cryp-
tosystem, the public key is a pair (g, h) of generators of a discrete logarithm
group of size p (p prime) such that s = logg h is unknown; the private key is
s; encryption of m ∈ Zp with randomness r ∈ Zp is (gr, gmhr); and decryption
of (a, b) is gm = ba−s. This cryptosystem is indeed additively homomorphic: if
(a, b) encrypts m and (a′, b′) encrypts m′, then (a · a′, b · b′) encrypts m +m′.
Moreover, if (a, b) encrypts m, then (aα, bα) encrypts mα; and (aαgr, bαhr) is a
random encryption of mα. Because ElGamal decrypts to gm and not to m, it is
only possible to decrypt small values for which the discrete logarithm problem
with respect to g is tractable. Suitable discrete logarithm groups include groups
of points on elliptic curves, e.g., [NIS99]. ElGamal is turned into a threshold
cryptosystem in which two parties together can perform decryption, by sharing
the private key s as s = s1 + s2; parties publish their decryption shares a−si ,
recombine to a−s, and compute gm from this [Ped91]. Verification keys vi = gsi

are published that the parties use to prove correctness of decryption shares.
The correctness of decryption shares and multiplications can be proven using

Σ-protocols. Recall that a Σ-protocol for a binary relation R is a three-move
protocol in which a potentially malicious prover convinces a honest verifier that

he knows a witness w for statement v such that (v, w) ∈ R. First, the prover
sends an announcement (computed using algorithm Σ.ann) to the verifier; the
verifier responds with a uniformly random challenge; and the prover sends his
response (computed using algorithm Σ.res), which the verifier verifies (using
predicate Σ.ver). Σ-protocols are defined as follows:

Definition 1. Let R ⊂ V ×W be a binary relation with language LR = {v ∈
V | ∃w ∈ W : (v, w) ∈ R}. Let Σ be a collection of PPT algorithms Σ.ann,
Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set
called the challenge space. Σ is a Σ-protocol for relation R if it satisfies:

Completeness If (a, s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special soundness If v ∈ V , c 6= c′, and Σ.ver(v; a; c; r) and Σ.ver(v; a; c′; r′)
both hold, then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v, w) ∈ R.

Special honest-verifier zero-knowledge If v ∈ LR, c ∈ C, then (a, r) ←
Σ.sim(v; c) has the same probability distribution as (a, r) obtained by (a, s)←
Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then (a, r) ← Σ.sim(v; c)
satisfies Σ.ver(v; a; c; r).

Completeness states that a protocol between a honest prover and verifier suc-
ceeds; special soundness essentially means that a successful prover must know
the witness; special honest-verifier zero-knowledge essentially means that a hon-
est verifier does not learn anything about the witness. For many Σ-protocols,
the announcement a can be computed from the challenge c, statement v, the
response r, denoted Σ.rea(c, v, r). This reduces space for storing non-interactive
proofs. Finally, we need that announcements are “non-trivial” [SV15] in the sense
that they are random from a large space. Our Σ-protocols indeed satisfy this.

For our proposes, we need three Σ-protocols: proof of knowledge ΣPK, proof
of correct multiplication ΣCM, and proof of correct decryption ΣCD. These pro-
tocols are standard; we give them in the Appendix for completeness. ΣPK (Σ-
protocol 1) proves knowledge of plaintext y and randomness r used to encrypt
(a, b) = (gr, hrgy). ΣCM (Σ-protocol 2) proves the following: given encryptions
(a1, b1), (a2, b2), and (a3, b3), the prover knows y, r, s such that a2 = gr and
b2 = hrgy (i.e., (a2, b2) encrypts plaintext y with randomness r); and a3 = ay1g

s

and b3 = by1h
s (i.e., (a3, b3) encrypts the product encryption, randomised with

s). For decryption, recall that each party has a share si of the decryption key
s = logg h, so that its decryption share of (a1, b1) is asi1 . Correctness of this de-
cryption share is proven with respect to verification keys hi = gsi generated as
part of key generation; hence, ΣCD is a standard equality proof (Σ-protocol 3).

2.2 Homomorphisms and Combined Proofs

Σ-protocols can be used to obtain non-interactive zero-knowledge proofs using
the well-known Fiat-Shamir heuristic [FS86]. Namely, a party proves knowledge
of a witness for statement v by generating announcement a using Σ.ann; setting
challenge c = H(v||a||aux) with some auxiliary information aux; and computing

response r with Σ.ver. If Σ.rea exists, then the proof is (c, r), which a verifier ac-
cepts if NizkVer(Σ; v; c, r; aux) := H(v||Σ.rea(v; c; r)||aux) = c holds. Security
holds in the random oracle model [BR93] of idealised hash functions.

If a party needs to prove multiple statements vi at the same time, then it is
possible to use the same challenge for all the proofs by computing announcements
ai and setting c = H(v1||a1||v2||a2|| . . . ||aux). Moreover, in our setting where
encryption plaintexts and decryption keys are shared between two parties, it
is possible to combine the two proofs about these shares into one proof about
the overall encryption. This is done by exploiting “homomorphic properties” of
ΣPK, ΣCM, and ΣCD. For instance, let ai be valid announcements for proving
that Zi is a correct multiplication of X and Yi, let c be a challenge, and let ri
be the responses to this challenge for the respective announcements ai; hence,
ΣCM.ver(X,Yi, Zi; ai; c; ri). Then, it is possible to combine the ai into a and ri
into r in such a way that (a, c, r) is a proof that ⊕iZi is a correct multiplication
of X and ⊕iYi, that is, that ΣCM.ver(X,⊕iYi,⊕iZi; a; c; r). This combined proof
can be shown to the verifier, who now needs to verify a single proof instead of
two separate proofs from the computation parties.

In general, such “homomorphic properties” need to satisfy two properties
[SV15]. First, the combination of valid transcripts is a valid transcript. Second,
the combination of different honest announcements with the same corrupted
announcements is likely to lead to a different combined announcement:

Definition 2. Let Σ be a Σ-protocol for R ⊂ V ×W . Let Φ be a collection of
partial functions Φ.stmt, Φ.ann, and Φ.resp. Φ is a homomorphism of Σ if:

Combination Let c be a challenge; I a set of parties; and {(vi, ai, ri)}i∈I a
collection of statements, announcements, and responses for parties in I. If
Φ.stmt({vi}i∈I) is defined and for all i, Σ.ver(vi, ai, c, ri) holds, then also
Σ.ver(Φ.stmt({vi}i∈I);Φ.ann({ai}i∈I); c;Φ.resp({ri}i∈I)).

Randomness Let c be a challenge; C (I sets of parties; {vi}i∈I statements
such that Φ.stmt({vi}i∈I) is defined; and {ai}i∈I∩C announcements. If for all
i ∈ I \C, (ai,_), (a′i,_)← Σ.sim(vi, c), then with overwhelming probability,
Φ.ann({ai}i∈I) 6= Φ.ann({ai}i∈I∩C ∪ {a′i}i∈I\C).

The above Σ-protocols ΣPK, ΣCD and ΣCM have simple homomorphisms. Ho-
momorphism ΦPK for ΣPK combines proofs of knowledge for (ai, bi) into a proof
of knowledge for (

∏
ai,
∏
bi). Homomorphism ΦCM for ΣCM combines proofs

of multiplication of (a1, b1) with several (ai2, bi2) into a proof of multiplication
of (a1, b1) with (

∏
ai2,
∏
bi2). Homomorphism ΦCD for ΣCD combines proofs of

correct decryption of a to shares di with respect to keys hi into a proof of correct
decryption of a to

∏
di with respect to key h =

∏
hi. Each homomorphism is de-

fined by taking the product of the announcements and the sum of the responses.
Now, a multiparty variant of the Fiat-Shamir heuristic can be applied to ob-

tain combined non-interactive proofs. Namely, suppose the two parties want to
provide a series of proofs for statements vi = Φ.stmt({v′i, v′′i }). They exchange
announcements a′i, a′′i for their shares v′i, v′′i of vi; compute ai = Φ.ann({a′i, a′′i });
take challenge h = H(v1||v2|| . . . ||a1||a2|| . . . ||aux); and exchange responses r′i, r′′i .

Taking ri = Φ.resp({r′i, r′′i }), the challenge h along with responses ri prove collec-
tive knowledge of witnesses corresponding to statements vi. (For security reasons,
the second party should not be able to choose a′′i based on a′i. Therefore, the first
party first provides a hash of its announcements; the second party then provides
its announcements, after which the first party opens the hash.)

2.3 Proving and Verifying Polynomial Relations

Protocol 1 shows our PolyProve protocol for producing a proof that ElGamal
encryptions X1, . . . , Xn satisfy a given set of polynomial relations. We assume
that the polynomial relations are given as equations xj = 0 (1 ≤ j ≤ N for some
N ≥ n), and an arithmetic circuit to compute these values xj . This arithmetic
circuit consists of gates xk = v, xk = xi+xj , xk = xi · v, and xk = xi ·xj (v any
constant). For the multiplication gate, we require 1 ≤ j ≤ n because we will
use the additive shares of [xj] of their plaintexts. Clearly, any set of polynomial
relations can be described like this.

The first step of the protocol is to evaluate the circuit (lines 3–10) to obtain
encryptions Xn+1, . . . , XN . All gates except xk = xi ·xj can be evaluated locally;
for xk = xi · xj , the parties use their additive shares of the plaintext of Xj

to obtain shares of Xk, randomised using randomness [sk]. Then, the parties
compute announcements for the proofs of correctness of their multiplications
(line 10). They use these announcements to make combined multiplication proofs
as described in Section 2.2: they exchange (line 11–15) and combine (line 17) their
announcements; compute one overall challenge (line 18); and compute (line 19–
20), exchange (line 21), and combine (line 23) the responses. For each equation
xj = 0, they compute decryption share [dk] (lines 24–25) and produce a combined
proof that decryption is to zero in the same way. (Note that the multiplication
and decryption proofs cannot use the same challenge: for security, values Xk

should be decrypted only after the multiplication proofs have been verified.)
The overall proof consists of the encrypted products, the challenges, and the
responses.

Algorithm 1 shows how to check if the proof produced by PolyEval is cor-
rect. First, all missing encryptions ∈ {Xn+1, . . . , XN} are computed, i.e., of gates
that are not inputs or multiplication results (line 3–6). Then, the announcements
for all multiplication (line 7) and decryption (line 8) proofs are computed. The
proof is correct when these announcements hash to challenges h1, h2 (line 9).

3 Combining Computation with Certificate Validation

In this section, we present our main protocol for privacy-friendly outsourcing
with correctness guarantees. In a nutshell, we compute a solution using normal
multiparty computation techniques, and then produce a proof of correctness of
this solution using the ElGamal-based proofs from Section 2.

The goal of our protocol is the following. We havem input parties I1, . . . , Im,
who want to perform a computation on their respective inputs x = x1, . . . , xm.
The input parties do not trust each other, so their inputs should be hidden from

Protocol 1 PolyProve: Prove polynomial equations over ElGamal ciphertexts
Require: G arithmetic circuit for xn+1, . . . , xN with multiplication gatesM⊂ G; set
E of equations xk = 0; X1, . . . , Xn ElGamal encryptions s.t. Xi = Encpk([xi]; [ri])

Ensure: h1, {Xk, rk}k∈M, h2, {Rk}k∈E prove that equations in E hold for X1, . . . , XN
1: protocol PolyProveE,G(pk; [pk]; [sk];X1, . . . , Xn; [x1], . . . , [xn]; [r1], . . . , [rn])
2: parties {P1,P2} do
3: for all gates ∈ G do . evaluate circuit; make ΣCM announcements
4: if 〈constant gate xk = v〉 then Xk ← Encpk(c; 0)
5: if 〈addition gate xk = xi + xj〉 then Xk ← Xi ⊕Xj
6: if 〈multiplication gate xk = xi · v〉 then Xk ← Xi ⊗ v
7: if 〈multiplication gate xk = xi · xj , 1 ≤ j ≤ n〉 then
8: [rk] ∈r Zp; [Xk]← (Xi ⊗ [xj])⊕ Encpk(0; [rk])
9: send([Xk]); [X ′k]← recv(); Xk ← [Xk]⊕ [X ′k]
10: ([ak], sk)← ΣCM.ann(Xi, [Xj], [Xk]; [xj], [rj], [rk])

11: party P1 do . build combined proofs of correct multiplication
12: h← H({[ak]}k∈M); send(h); {[a′k]}k∈M ← recv(); send({[ak]}k∈M)

13: party P2 do
14: h← recv(); send({[ak]}k∈M); {[a′k]}k∈M ← recv()
15: if h 6= H({[a′k]}k∈M) then fail

16: parties {P1,P2} do
17: for all k ∈M do ak ← ΦCM.ann([ak], [a

′
k])

18: h1 ← H({ak}k∈M)
19: for all multiplication gates xk = xi · xj , 1 ≤ j ≤ n inM do
20: [rk]← ΣCM.res(Xi, [Xj], [Xk]; [xj], [rj], [rk]; [ak]; sk;h1)

21: send({[rk]}k∈M); {[r′k]}k∈M ← recv()
22: for all k ∈M do if ¬ΣCM.ver([a

′
k];h1; [r

′
k]) then fail

23: for all k ∈M do rk ← ΦCM.resp([rk]; [r
′
k])

24: for all (xk = 0) ∈ E do [dk]← Dec[sk](Xk) . decrypt equations; prove
25: for all (xk = 0) ∈ E do ([Ak], Sk)← ΣCD.ann(Xk, [dk], [pk]; [sk])

26: party P1 do
27: h← H({[Ak]}k∈E); send(h); {[A′k]}k∈E ← recv(); send({[Ak]}k∈E)
28: party P2 do
29: h← recv(); send({[Ak]}k∈E); {[A′k]}k∈E ← recv()
30: if h 6= H({[A′k]}k∈E) then fail

31: parties {P1,P2} do
32: for all k ∈ E do Ak ← ΦCD.ann([Ak], [A

′
k])

33: h2 ← H({Ak}k∈E)
34: for all (xk = 0) ∈ E do [Rk]← ΣCD.res(Xk, [dk], [pk]; [sk]; [Ak];Sk;h2)
35: send({[Rk]}k∈E); {[R′k]}k∈E ← recv()
36: for all k ∈ E do if ¬ΣCD.ver([A

′
k];h2; [R

′
k]) then fail

37: for all k ∈ E do Rk ← ΦCD.resp([Rk], [R
′
k])

38: return (h1, {Xk, rk}k∈M, h2, {Rk}k∈E) . return mult., decryption proofs

each other, and they should not be able to adaptively choose their inputs based
on those of others. The computation is given by a function (a, r) = f(x), where
r is the outcome of the computation, and a is a certificate. The correctness of
the computation can be efficiently verified by means of a predicate φ(x,a, r)

Algorithm 1 PolyVer: Verify polynomial equations over ElGamal ciphertexts
Require: G is an arithmetic circuit for xn+1, . . . , xN with multiplication gatesM⊂ G;
E is a set of equations xk = 0

Ensure: all equations in E hold for X1, . . . , XN
1: function PolyVerE,G(pk;X1, . . . , Xn;h1, {Xk, rk}k∈M, h2, {Rk}k∈E)
2: . determine encryptions for all gates
3: for all gates ∈ G do
4: if 〈constant gate xk = v〉 then Xk ← Encpk(c; 0)
5: if 〈addition gate xk = xi + xj〉 then Xk ← Xi ⊕Xj
6: if 〈multiplication gate xk = xi · v〉 then Xk ← Xi ⊗ v
7: for all multiplications xk = xi · xj inM do ak ← ΣCM.rea(h1;Xi, Xj , Xk; rk)
8: for all equations xk = 0 in E do Ak ← ΣCD.rea(h2;Xk, g

0, pk;Rk)

9: return h1
?
= H({ak}k∈M) ∧ h2

?
= H({Ak}k∈E)

consisting of a set of polynomial relations. If (a, r) = f(x), then φ(x,a, r), but
we do not demand the converse: the outcome of the computation might not be
unique, and φ might merely check that some correct solution was found, not
that it was produced according to algorithm f . The computation is distributed
among three computation parties P1,P2,P3. They do not learn anything about
the inputs under the security assumptions of the protocol used to compute f : in
our case, if at most one of them is passively corrupted. A result party R obtains
the result (we later discuss changes when multiple parties need to get the result).

To compute (a, r) = f(x), we use passively secure multiparty computation
protocols based on (2, 3)-Shamir sharing. In these protocols, private values are
information-theoretically shared between three parties such that two parties are
needed to recover the value. Protocols exist to, e.g., multiply, bit-decompose,
compare, and open these shared values (see [dH12] for an overview); these pro-
tocols are secure against an adversary passively corrupting up to one party. Note
that the computation of f involves three parties and uses Shamir shares, whereas
the PolyEval involves two parties and uses additive shares. It is easy to switch
between the two: two parties holding additive shares can Shamir-share them
among all three; and two of the three parties holding Shamir shares can locally
convert them to additive shares by Lagrange interpolation.

3.1 The VerMPC Protocol

Given a protocol to compute ([a1], . . . , [ak], [r1], . . . , [rl])← f([x1], . . . , [xm]) and
the protocol PolyProveEφ,Gφ(X1, . . . ; [x1], . . . ; [rx,1], . . .) to prove that this re-
sult is correct, the question is how to combine them in a secure way. Our protocol
VerMPC (Protocol 2) achieves this with the following steps (cf. Figure 2):

Step 1 First, the input parties announce their inputs. The input parties encrypt
their respective inputs (line 3), and make a proof of knowledge of the corre-
sponding plaintext (lines 4–5). These encryptions and proofs are broadcast. To
prevent corrupted parties from adaptively choosing their input based on the in-
puts of others, this happens in two rounds: first, the parties provide hashes as

broadcast channel

 ([a],[r])=f([x])
 make A,R,
 π: φ(X, A, R)=1
5.
4.

3.

 publish X
 share [x]
 check [x]=X

1.
2. 2.

1.1.

2.

input
parties

computation
parties

result party

3.

5.
4. 6.

1.1.

1.1.

4.

4.

7.

6.
7.
 send A,π
 reconstruct [r]

Fig. 2. Overview of the VerMPC protocol (dotted lines are private, secure channels)

a commitment to their inputs; then they open the commitments (line 6). If any
party provides an incorrect input, the protocol is terminated (line 7).

Step 2 Next, the parties provide the plaintext x and randomness s of the en-
cryption to the two computation parties who will later perform the PolyProve
protocol, in additively secret-shared form (line 8).

Step 3 The two computation parties check if the provided sharing of the in-
put is consistent with the encryptions that were broadcast in step 1. (Without
this check, corrupted input parties could learns information about both their
encrypted and their secret-shared inputs, which should not be possible.) They
do this by simply encrypting their shares of the inputs using their shares of the
randomness; exchanging the result; and checking correctness using the homo-
morphic property of the cryptosystem (lines 11–12).

Step 4 Then, the actual computation takes place (line 13). This is the only
step that involves the third computation party. The two parties holding additive
shares of the input Shamir-share them between all three computation parties;
then the computation is performed between the three parties; and finally, P1

and P2 locally convert their Shamir shares to additive shares [ai], [ri].

Step 5 Two of the computation parties produce the encrypted result and prove its
correctness. First, they exchange encryptions of their respective additive shares
of the certificate and result (line 15–20). Then, they run the PolyProve pro-
tocol from Section 2.3 to obtain a proof that φ(X,A,R) = 1 (line 21). The
arithmetic circuit for φ should be such that each certificate value Ai and result
value Ri occurs at least once as right-hand side of a multiplication: because the

Protocol 2 VerMPC: Verifiable computation by certificate validation
Require: pk/sk ElGamal public/secret keys shared between P1, P2; {xi}i∈I inputs
Ensure: Party R returns r1, . . . , rl s.t. φ(x1, . . . , a1, . . . , r1, . . .) for some {ai}, or ⊥
1: protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I)
2: parties I1, . . . , Im do . step 1
3: rx,i ∈R Zp; Xi ← Encpk(xi; rx,i)
4: (ai, si)← ΣPK.ann(Xi;xi, rx,i); ci ← H(Xi||ai||i)
5: ri ← ΣPK.res(Xi;xi, rx,i; ai; si; ci); πx,i ← (ci, ri)
6: hi ← H(i||Xi||πx,i); bcast(hi); bcast(Xi, πx,i)
7: if ∃j : hj 6= H(j||Xj ||πx,j) ∨ ¬NizkVer(ΣPK;Xj ;πx,j ; j) then return ⊥
8: x′i ∈R Zp; r′x,i ∈R Zp; send(x′i, r′x,i;P1); send(xi − x′i, rx,i − r′x,i;P2)

9: parties {P1,P2} do
10: for all 1 ≤ i ≤ m do
11: [xi], [rx,i]← recv(Ii); [Xi]← Encpk([xi]; [rx,i]); send([Xi]) . step 3
12: [X ′i]← recv(); if Xi 6= [Xi]⊕ [X ′i] then return ⊥
13: parties {P1,P2,P3} do ([a1], . . . , [ak], [r1], . . . , [rl])← f([x1], . . . , [xm]) . st 4
14: parties {P1,P2} do . step 5
15: for all 1 ≤ i ≤ k do
16: [ra,i] ∈R Zp; [Ai]← Encpk([ai]; [ra,i]); send([Ai])
17: [A′i]← recv(); Ai ← [Ai]⊕ [A′i]

18: for all 1 ≤ i ≤ l do
19: [rr,i] ∈R Zp; [Ri]← Encpk([ri]; [rr,i]); send([Ri])
20: [R′i]← recv(); Ri ← [Ri]⊕ [R′i]

21: π ← PolyProveEφ,Gφ(pk; [pk]; [sk];X1, . . . , Rl; [x1], . . . ; [rx,1], . . .)
22: send({[ri], [rr,i]}i=1,...,l;R) . step 6
23: party P1 do send(A1, . . . , Ak, π;R) . step 7
24: party R do
25: {[ri](1), [rr,i](1)}i=1,...,l ← recv(P1); {[ri](2), [rr,i](2)}i=1,...,l ← recv(P2)
26: (A1, . . . , Ak, π)← recv(P1)
27: for all 1 ≤ i ≤ m do if ¬NizkVer(ΣPK;Xi;πx,i; j) then return ⊥
28: for all 1 ≤ i ≤ l do Ri ← Encpk([ri]

(1) + [ri]
(2); [rr,i]

(1) + [rr,i]
(2))

29: if ¬PolyVerEφ,Gφ(pk;X1, . . . , Rl;π) then return ⊥
30: return (r1, . . . , rl)

computation parties prove knowledge of these right-hand sides, this guarantees
that they know the corresponding plaintexts, which our security proof requires.

Step 6 The computation parties send their additive shares of the result and the
randomness of their encryption shares [Ri] to the result party (line 22).

Step 7 One of the computation parties also sends the encryptions of the certifi-
cate and computation result and their proof of correctness (line 23). The result
party checks the proofs of knowledge provided by the input parties which it reads
from the bulletin board (line 27); computes the encrypted result R1, . . . , Rl from
the shared inputs (line 28); and calls PolyVer to verify correctness (line 29).
If the proof checks out, then the plaintext result r1, . . . , rl is the outcome of the
computation (line 30).

Algorithm 2 Trusted party: verifiability by certificate validation w/threshold t
Require: Parties C corrupted, A ⊂ C actively corrupted
1: function IVerMPCf,φ(C,A)
2: . input phase
3: for all Ii ∈ I \ C do xi ← recv(Ii)
4: {xi}i∈I∩C ← recv(S)
5: if P ∩A 6= ∅ ∨ |P ∩ C| ≥ t then send({xi}i∈I\C ;S)
6: . computation phase
7: if P ∩A = ∅ then a1, . . . , rl ← f(x1, . . . , xm) else a1, . . . , rl ← recv(S)
8: if ∃i : xi = ⊥ ∨ ¬φ(x1, . . . , xm, a1, . . . , ak, r1, . . . , rl) then r1, . . . , rl ← ⊥
9: . result phase
10: send(r1 . . . , rl;R)

3.2 Security Model

We prove security of our protocol using the standard formalism used for mul-
tiparty computation: the ideal/real world paradigm [Can98]. We demand that
the outputs of the result party and the adversary in a protocol execution are
distributed similarly to those outputs in an ideal world where the function is
computed by an incorruptible trusted party. Because in the ideal world, the re-
sult party obtains the correct result and the adversary does not learn anything
it should not learn, the same must be true in the real world.

More precisely, let C be a set of corrupted parties, of which A are actively
corrupted. Let k be a security parameter. Let adversary A be a probabilistic
polynomial time Turing machine. Define real-world execution

RealC,AVerMPCf,φ,A(k, x1, . . . , xm)

as the distribution consisting of the output of the result party R and the ad-
versary A in an execution of the protocol (see [Can98,SV15] for details). This
execution consists of a secure set-up of the threshold ElGamal cryptosystem,
returning public key pk shared as threshold public/private keys [pk], [sk]; fol-
lowed by an execution of the protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I) with
adversary A.

Similarly, the ideal-world execution given set C of corrupted parties of which
A active, adversary S, security parameter k, and inputs x1, . . . , xm is called

IdealC,AIVerMPCf,φ,S(k, x1, . . . , xm)

and is defined as the distribution consisting of the outputs of the result party
R and the adversary S in an ideal-world protocol execution. In this ideal-world
execution, all parties communicate securely with an incorruptible trusted party
T executing algorithm IVerMPCf,φ (Algorithm 2). Honest input parties send
their inputs to T ; a honest result party outputs the values it receives from T ;
the adversary S can send arbitrary messages to T and return an arbitrary value.

Algorithm IVerMPCf,φ executed by the trusted party T prescribes the
outcome of the computation and the information learned by the adversary. The

trusted party first obtains the inputs from the honest input parties (line 3) and
from the adversary on behalf of the corrupted input parties (line 4). If there are
actively corrupted computation parties, or if the number of corrupted computa-
tion parties exceeds a certain threshold (in our case, t = 2), then we no longer
guarantee privacy, so we send all honest inputs to the adversary (line 5). Now,
the computation takes place. If there are no active corruptions, then the certifi-
cate a1, . . . , ak and function result r1, . . . , rl are computed according to function
f (line 7). If there are active corruptions, we can no longer guarantee that f will
be correctly computed, so we ask the adversary to supply a1, . . . , rl (line 7); but
we do guarantee that φ holds, so T checks if φ holds or sets the outcome to ⊥
(line 8). Note that, if one of the inputs is ⊥, then the computation output is ⊥.
Hence, in this model, any input party is able to prevent the computation from
giving an output. Finally, the result is sent to R (line 10).

Definition 3. Protocol Π is a secure multiparty protocol with verifiability by
certificate validation with threshold t if, for all probabilistic polynomial time ad-
versaries corrupting set C of parties and actively corrupting A ⊂ C, there ex-
ists a probabilistic polynomial time adversary S such that for all possible inputs
x1, . . . , xm:

RealC,AΠ,A(k, x1, . . . , xm) ≈ IdealC,AIVerMPCf,φ,S(k, x1, . . . , xm),

where ≈ denotes computational indistinguishability in security parameter k.

Theorem 1. Protocol VerMPC is a secure multiparty protocol with verifiability
by certificate validation with threshold t = 2 in the random oracle model.

We prove this theorem in Appendix A.
Because we use the Fiat-Shamir heuristic for non-interactive zero-knowledge

proofs, our construction is only secure in the random oracle model [BR93]. In
this model, evaluations of the hash function H are modelled as queries to a “ran-
dom oracle” O that evaluates a perfectly random function. Although security
in the random oracle model does not generally imply security in the standard
model [GK03], the model is commonly used to devise simple and efficient proto-
cols, and no security problems due to its use are known [Wee09]. In particular,
our variant of the model [Wee09,SV15] assumes that the random oracle has not
been used before the protocol starts: in practice, it should be instantiated with
a keyed hash function, with every computation using a fresh random key.

3.3 Extensions

Input range checking The multiparty computation protocols used to compute f
may only guarantee correctness and privacy if their inputs x are bounded, e.g.,
−2k ≤ x ≤ 2k. To guarantee that the inputs of corrupted parties lie in this
range, it is possible to use statistically secure additive shares over the integers
in line 8 of the protocol, i.e., by choosing x′i at random from [−2k−1, . . . , 2k−1].
The computation parties check if the shares they receive in line 11 lie in this
range. Privacy of honest inputs is guaranteed if they are smaller than 2k−1 by a
statistical security parameter.

Multiple result parties and universal verifiability In our model, only one party
learns the result. If multiple parties need to learn the result, then the encrypted
outputs R1, . . . , Rl should be broadcast to ensure consistency. Note that we
cannot guarantee fairness as the computation parties can always choose to send
their shares of the result to some result parties but not others.

At the end of the protocol, the result party obtains not only the result;
but also a non-interactive zero-knowledge proof that this result is correct. In
particular, the result party can also convince third parties that the encrypted
outputs R1, . . . , Rl are correct. In effect, this protocol achieves what is known
as “universal” verifiability [dH12,SV15]. Obtaining full universal verifiability in
a [SV15]-like security model requires a few changes in the way the output en-
cryptions are constructed; we elaborate on this in a forthcoming book chapter.

Basing it on Commitments Verifiability by certificate validation can be based
on Pedersen commitments instead of ElGamal encryptions. This requires a few
changes; in particular, to prove that a commitments is zero, one needs to know
the randomness, hence the randomness of product commitments needs to be com-
puted in a multiparty way. Using Pedersen commitments likely leads to smaller
proofs and quicker verification. Also, it is no longer needed to distribute decryp-
tion keys to the computation parties, hence a computation can be outsourced to
anybody without preparation. On the other hand, when using Pedersen commit-
ments, the correctness of the computation becomes conditional on the computa-
tion parties not knowing trapdoor logg h; in the present construction, knowing
this trapdoor breaks privacy but not correctness.

Load Balancing of the 2PC In the present protocol, two of the three computation
parties produce the proof in line 21 while the third party does nothing. If it is
important to balance the computation load, then it is possible to let let the three
pairs of parties each produce one third of this proof.

4 Secure and Verifiable Linear Programming

To demonstrate the feasibility of our approach, we apply it to linear program-
ming. Linear programming is a broad class of optimisation problems occurring in
many applications; for instance, it was used to compute the optimal price in the
Danish sugar beet auctions that were performed using multi-party computation
[BCD+09]. Precisely, the problem is to minimise the output of a linear function,
subject to linear constraints on its variables. One instance of this problem is
called a linear program (LP); it is given by a matrix A and vectors b and c. The
vector c = (c1, . . . , cn) gives the linear function cT · x = c1 · x1 + . . .+ cn · xn in
variables x = (x1, . . . , xn) that needs to be minimised. The matrix A and vector
b give the constraints A · x ≤ b that need to be satisfied. A has n columns,
and A and b have m rows, where m is the number of constraints. In addition to
these constraints, we require xi ≥ 0. For instance, the LP

A =

(
1 2 1
1 −1 2

)
, b =

(
2
1

)
, c =

−103
−4

represents the problem to find x1, x2, x3 satisfying x1 + 2x2 + x3 ≤ 2, x1 − x2 +
2x3 ≤ 1, and x1, x2, x3 ≥ 0, such that −10x1 + 3x2 − 4x3 is minimal.

To find the optimal solution of a linear program, typically an iterative algo-
rithm called the simplex algorithm is used. Each iteration involves several com-
parisons and a Gaussian elimination step, making it quite heavy for multiparty
computation. For relatively small instances, passively secure linear programming
is feasible [BCD+09,Tof09,dH12]; but actively secure MPC much less so when
including preprocessing (as we see later). Fortunately, given a solution x to an
LP, there is an easy way to prove that it is optimal using the optimal solution p
of the so-called dual LP “maximise bT ·p such that AT ·p ≤ c,p ≤ 0”: solutions
x ∈ Zn,p ∈ Zm with common denominator q ∈ Z are both optimal if [dH12]:

q ≥ 1; pT · b = cT · x; A · x ≤ q · b; x ≥ 0; AT · p ≤ q · c; p ≤ 0.

Also, the simplex algorithm for finding x turns out to also directly give p. To turn
the above criterion into a set of polynomial equations, we add bit decompositions
of (q · b−A ·x)i, xi, (q · c−AT · p)i, and −pi to the certificate, and prove that
each bit decomposition b0, b1, . . . sums up to the correct value v (with equation
v = b0 + 2 · b1 + . . .) and contains only bits (with equations bi · (1− bi) = 0).

To test our framework, we have made a prototype implementation. We used
the simplex implementation from the TUeVIFF distribution of VIFF1 as a start-
ing point, and modified it to produce the certificate of correctness, i.e., the dual
solution and required bit decompositions. We implemented the VerMPC proto-
col from Section 3.1 using SCAPI [EFLL12]. SCAPI is a high-level cryptographic
library that supports ElGamal encryption, Σ-protocols ΣPK and ΣCD, and the
Fiat-Shamir heuristic; to implement VerMPC, we needed to add threshold de-
cryption, ΣCD, and the PolyProve and PolyVer protocols from Section 2.3.

Figure 3 shows the performance of our prototype implementation on several
example LPs, run on one single modern desktop PC. ElGamal uses the NIST
P-224 [NIS99] elliptic curve, which is supported in SCAPI through the MIRACL
library. We ran the implementation on several LPs: randomly-generated small
LPs and larger LPs based on Netlib test programs2. We measured the time for
VIFF to solve the LP and to compute the certificate (this depends on the LP
size, number of iterations needed, and the bit length for internal computations);
the time for PolyProve to produce a proof; and for PolyVer to verify it (this
depends on the LP size and bit length for the proof).3

Our experiments show that, as the size of the linear program increases, pro-
ducing and verifying proofs becomes relatively more efficient. Indeed, both the
computation of the solution and the verification of its correctness scale in the size
of the LP; but computation additionally scales in the number of iterations needed
to reach the optimal solution; this number of iterations typically grows with the
LP size. For larger LPs, verifying is faster than (passively securely) computing
1 Available at http://www.win.tue.nl/~berry/TUeVIFF/
2 See http://www.netlib.org/lp/data/; coefficients were rounded for performance
3 We took the minimal bitlengths needed for correctness. In practice, these are not
known in advance: for VIFF, one takes a safe margin; for the proof, one can reveal
and use the maximal bit length of all bit decompositions in the certificate.

http://www.win.tue.nl/~berry/TUeVIFF/
http://www.netlib.org/lp/data/

●

●

●

●

●

●

■

■

■

■

■

■

◆

◆

◆
◆

◆

◆

▲

▲

▲
▲

▲

▲

● VIFF compute

■ VIFF compute+cert

◆ PolyProve

▲ PolyVer

5x5

(60,31,4)

20x20

(85,40,9)

48x70

(66,34,25)

48x70

(128,65,48)

103x150

(125,61,62)

288X202

(170,93,176)

10

100

1000

104

→ Size of linear program (#bits comp .,#bits verif ., # iterations)

→
C
om

pu
ta

tio
n

tim
e
(s
)

Fig. 3. Computation times of VerMPC on various LPs (the x-axis shows the LP size,
bit length for VIFF, bit length for the certificate, and number of iterations)

with three parties, so outsourcing both guarantees correctness and saves the ver-
ifier time. If outsourcing replaces a computation performed between more than
three parties then the performance effect is even bigger because computation
scales linearly in the number of parties involved. For smaller LPs, verification is
slower than three-party computation; but also here, it adds correctness and its
relative performance improves when more parties are involved.

Verifiability versus Active Security Correctness and privacy can alternatively be
guaranteed with (n−1)-out-of-n actively secure multiparty computation. In this
case, both correctness and privacy hold even if all other parties are corrupted:
a much stronger guarantee than we provide. To get an idea of the performance
difference between our approach and active security, we have solved several of
our LP instances with an LP solver based on the state-of-the-art SPDZ protocols
[DPSZ12,DKL+13]. SPDZ combines a slow preprocessing phase, in which many
random values are shared between the computation parties, with a fast on-line
phase with complexity comparable to passively secure protocols. Hence, after
preprocessing has been performed, SPDZ can perform a computation with full
privacy and correctness guarantees in about the same time as VIFF (in fact, due
to a more efficient implementation, the tested implementation is even faster).

However, preprocessing is slow. No public implementation of the preprocess-
ing phase is available, but it is possible to estimate the time it takes by measuring
the amount of randomness needed for the on-line phase and combining this with
the preprocessing performance figures from [DKL+13]. Even with estimates that
are very generous to SPDZ, one finds that the SPDZ preprocessing time is at
least 150 times more than the VIFF computation time. For instance, for the
first 48-by-70 linear program, we estimate that two-party preprocessing takes at
least 13 hours; VIFF computation time is 3.5 minutes and verification time is
2.5 minutes. Hence, verifiable outsourcing has favourable performance compared

to using SPDZ. Moreover, SPDZ preprocessing scales linearly with the number
of parties involved in the computation, including all input and result parties.

5 Concluding Remarks

In this paper, we have shown how to use certificate validation to obtain cor-
rectness guarantees for privacy-friendly outsourcing. We have instantiated this
idea by combining passively secure three-party computation with ElGamal-based
proofs. In the case of linear programming, verification time is much lower than
computation time for privacy-friendly computation with correctness guarantees.
For larger instances, it is even lower than computation time of privacy-friendly
computation without any correctness guarantees. Hence, for computations on
inputs of mutually distrusting parties, privacy-friendly outsourcing with cor-
rectness guarantees provides a compelling combination of correctness (always)
and privacy (against semi-honest, non-collaborating cloud computation parties).

Verifiable multiparty computation has been considered before. [dH12] in-
troduced universally verifiable multiparty computation, and proposed proto-
cols based on threshold homomorphic cryptosystems. Other proposals include
[BDO14,SV15]. However, these proposals make a full computation verifiable,
which is unrealistic for larger problems. (Indeed, verification times are compara-
ble to actively secure multiparty computation, which is slower than our approach
by several orders of magnitude.) De Hoogh [dH12] also first suggested to use
certificate validation for verifiability; we contribute the outsourcing application,
provide a full security model, and achieve large speed-ups by using ElGamal.

At the same time, there has been much recent interest in verifiable (but
usually not privacy-friendly) outsourcing. Without privacy, it is now sometimes
possible to check correctness of an outsourced computation faster than perform-
ing the computation itself [PHGR13]. Unfortunately, efforts at achieving privacy
in this line of work use costly primitives, e.g., fully homomorphic encryption with
verifiable computation [FGP14]; or functional encryption with garbled circuits
[GKP+13]. One recent work [ACG+14] uses multiparty techniques in the out-
sourcing setting; but it does not guarantee correctness if all computation parties
are corrupted, and may not be faster than verifiable multiparty computation.

We see several directions for improvement of our work. We have used pas-
sively secure protocols for computation; using protocols that guarantee privacy
(but not correctness) also against active attacks would offer stronger protection,
possibly at a low performance cost. Our implementation can be optimised, and
our alternative construction using Pedersen commitment should have smaller
proofs and faster verification. Much bigger speed-ups, however, (especially for
linear programming) would come from using efficient zero-knowledge proofs for
specific tasks, e.g., for showing that certain values are positive. In particular,
the range proofs of Boudot [Bou00] are much faster to verify than our bitwise
proofs; the work of Keller et al. [KMR12] suggests ways of distributing these
proofs that could be adapted to our setting. Alternatively, it may be possible
to achieve even faster certificate validation by combining verifiable outsourcing
techniques with the privacy guarantees of multiparty computation.

References

ACG+14. P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky.
Achieving Privacy in Verifiable Computation with Multiple Servers - With-
out FHE and without Pre-processing. In Proceedings of PKC ’14, 2014.

BCD+09. P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure Multiparty Computation Goes Live. In
Proceedings of Financial Crypto ’09, 2009.

BDO14. C. Baum, I. Damgård, and C. Orlandi. Publicly Auditable Secure Multi-
Party Computation. In Proceedings of SCN ’14, 2014.

Bou00. F. Boudot. Efficient Proofs that a Committed Number Lies in an Interval.
In Proceedings of EUROCRYPT ’00, 2000.

BR93. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of CCS ’93, 1993.

Can98. R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, 13:2000, 1998.

CL02. M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002.

dH12. S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University of
Technology, 2012.

DKL+13. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the
SPDZ Limits. In Proceedings of ESORICS ’13, 2013.

DM14. L. Ducas and D. Micciancio. FHEW: Bootstrapping Homomorphic Encryp-
tion in less than a second. Cryptology ePrint Archive, Report 2014/816,
2014. http://eprint.iacr.org/.

DPSZ12. I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In Proceedings of CRYPTO ’12.
2012.

EFLL12. Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The Secure
Computation Application Programming Interface. IACR Cryptology ePrint
Archive, 2012:629, 2012.

FGP14. D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation
on Encrypted Data. In Proceedings of CCS ’14, 2014.

FS86. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Proceedings of CRYPTO ’86,
1986.

GK03. S. Goldwasser and Y. T. Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In Proceedings of FOCS ’03, 2003.

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In
Proceedings of STOC ’13, 2013.

KMR12. M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient Threshold Zero-
Knowledge with Applications to User-Centric Protocols. In Proceedings
of ICITS ’12, 2012.

NIS99. Recommended elliptic curves for federal government use, 1999. Available
at http://csrc.nist.gov/encryption.

Ped91. T. P. Pedersen. A Threshold Cryptosystem without a Trusted Party (Ex-
tended Abstract). In Proceedings of EUROCRYPT ’91, 1991.

http://eprint.iacr.org/
http://csrc.nist.gov/encryption

Σ-Protocol 1 ΣPK: Proof of plaintext knowledge
1: . Relation: R = {(a, b; y, r) | a = gr ∧ b = hrgy}
2: function ΣPK.ann(a, b; y, r) . Announcement
3: u, v ∈R Fq; c← gv; d← hvgu; return (c, d;u, v)

4: function ΣPK.res(a, b; y, r; c, d;u, v; e) . Response
5: k ← u+ e · y; l← v + e · r; return (k, l)

6: function ΣPK.sim(a, b; e) . Simulator
7: k, l ∈R Fq; a← gla−e; b← hlgkb−e; return (a, b; e; k, l)

8: function ΣPK.ext(a, b; c, d; e; e
′; k, l; k′, l′) . Extractor

9: y ← (k − k′)/(e− e′); r ← (l − l′)/(e− e′); return (y, r)

10: function ΣPK.rea(e; k, l) . Announcement recomputation
11: c← gla−e; d← hlgkb−e; return (c, d)

12: function ΣPK.ver(a, b; c, d; e; k, l) . Verification
13: return ae

?
= glc−1 ∧ be

?
= hlgkd−1

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Prac-
tical Verifiable Computation. In Proceedings of S&P ’13, 2013.

SV15. B. Schoenmakers and M. Veeningen. Universally Verifiable Multiparty
Computation from Threshold Homomorphic Cryptosystems. Cryptology
ePrint Archive, Report 2015/058, 2015. Accepted at ACNS ’15.

SZJVD04. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and Implemen-
tation of a TCG-based Integrity Measurement Architecture. In Proceedings
of Usenix Security ’04, volume 13, 2004.

Tof09. T. Toft. Solving Linear Programs Using Multiparty Computation. In Pro-
ceedings of Financial Crypto ’09, 2009.

Wee09. H. Wee. Zero Knowledge in the Random Oracle Model, Revisited. In
Proceedings of ASIACRYPT ’09, 2009.

A Security Proof

Our approach is based on the Uvcdn protocol from [SV15]; we obtain Theorem 1
by adapting their security proof to our setting. Due to space constraints, we do
not present the full simulators; these follow in a forthcoming book chapter. We
distinguish two different cases: either at most one computation party is passively
corrupted, in which case we guarantee privacy; or not.

A.1 The Private Case

To prove Theorem 1 in the case when at most one computation party is pas-
sively corrupted, we construct an ideal-world attacker S that simulates a real-life
attacker A on the VerMPC protocol using zero inputs for the honest parties.
Let B be an encryption of zero or one. We show that it is possible to define an
algorithm that outputs ideal-world outcomes in case B encrypts zero, and real-
world outcomes in case B encrypts one. This implies that the real-world and

Σ-Protocol 2 ΣCM: Proof of correct multiplication
1: . R = {(a1, b1, a2, b2, a3, b3; y, r, s) | a2 = gr ∧ b2 = hrgy ∧ a3 = ay1g

s ∧ b3 = by1h
s}

2: function ΣCM.ann(a1, b1, a2, b2, a3, b3; y, r, s) . Announcement
3: u, v, w ∈R Fq; a← gv; b← hvgu; c← au1g

w; d = bu1h
w

4: return (a, b, c, d;u, v, w)

5: function ΣCM.res(a1, b1, a2, b2, a3, b3; y, r, s; a, b, c, d;u, v, w; e) . Response
6: k ← u+ e · y; l← v + e · r; m← w + e · s; return (k, l,m)

7: function ΣCM.sim(a1, b1, a2, b2, a3, b3; e) . Simulator
8: k, l,m ∈R Fq; a← gla−e2 ; b← hlgkb−e2 ; c← ak1g

ma−e3 ; d← bk1h
mb−e3

9: return (a, b, c, d; e; k, l,m)

10: function ΣCM.ext(a1, b1, a2, b2, a3, b3; a, b, c, d; e; e
′; k, l,m; k′, l′,m′) . Extractor

11: y ← (k − k′)/(e− e′); r ← (l − l′)/(e− e′); s← (m−m′)/(e− e′)
12: return (y, r, s)

13: function ΣPK.rea(a1, b1, a2, b2, a3, b3; e; k, l,m) . Announcement recomputation
14: a← gla−e2 ; b← hlgkb−e2 ; c← ak1g

ma−e3 ; d← bk1h
mb−e3

15: return (a, b, c, d)

16: function ΣCM.ver(a1, b1, a2, b2, a3, b3; a, b, c, d; e; k, l,m) . Verif.
17: return ae2

?
= gla−1 ∧ be2

?
= hlgkb−1 ∧ ae3

?
= ak1g

mc−1 ∧ be3
?
= bk1h

md−1

ideal-world outcomes must be computationally indistinguishable: indeed, oth-
erwise their distinguisher could distinguish encryptions of zero and one, which
contradicts the semantic security of the ElGamal cryptosystem.

The simulator S works as follows. Lines 2–7 of VerMPC are as in Uvcdn, so
S does the same as Uvcdn’s simulator. Lines 8–17 involve the passively secure
multiparty computation of f , which is not part of the Uvcdn protocol. S simply
performs this computation using shares of zero for the honest input parties.
Simulation of lines 18–20 depends on whether the result party is corrupted. If
so, then S gets the result of the computation from IVerMPCf,φ, and it makes
sure that Ri encrypt the result result; otherwise, it uses the zero values as before.
The PolyProve protocol is simulated by performing real multiplications of the
encryptions; but decryptions to zero. The remainder of the protocol is followed.

For security to follow, we need to argue that we can indeed simulate real/ideal-
world executions depending on an encrypted bit B. The argument is the same as
in [SV15], except that S additionally simulates the passively secure computation
of f . But the security of the protocol used to compute f implies that this sim-
ulation is statistically independent from the actual values computed with (i.e.,
the real inputs in the real-world execution and zero inputs in the ideal-world
execution). From this, the result follows.

A.2 The Correct Case

In case there are multiple corrupted computation parties, or at least one is
actively corrupted, our protocols do not guarantee privacy. Hence, the simulator
S receives the inputs of the honest parties from IVerMPCf,φ, which it can use
to run the protocol with respect to the adversary. In [SV15], this was shown for

Σ-Protocol 3 ΣCD: Proof of correct decryption
1: . Relation: R = {((a, d; p;h); s) | d = asp ∧ h = gs}
2: function ΣCD.ann((a, d; p;h); s) . Announcement
3: u ∈R Fq; b← au; c← gu; return (b, c;u)

4: function ΣCD.res((a, d; p;h); s; b, c;u; e) . Response
5: f = u+ e · s; return f

6: function ΣCD.sim((a, d; p;h); e) . Simulator
7: f ∈R Fq; b← afped−e; c← gfh−e; return (b, c; e; f)

8: function ΣCD.ext((a, d; p;h); b, c; e; e
′; f ; f ′) . Extractor

9: s← (f − f ′)/(e− e′); return s

10: function ΣPK.rea((a, d; p;h); e; f) . Announcement recomputation
11: b← afped−e; c← gfh−e; return (b, c)

12: function ΣCD.ver((a, d; p;h); b, c; e; f) . Verification
13: return dep−e

?
= afb−1 ∧ he = gfc−1

the case when enough computation parties are corrupted to perform threshold
decryption, i.e., when both P1 and P2 are corrupted.

If this is not the case, then the simulator cannot perform decryption, which
could be a problem. However, note that in our protocol, the simulator only has to
decrypt ciphertexts of which it already knows the plaintext. Namely, ciphertexts
are built from the Xi, Ai, and Ri. It has made the Xi for honest parties itself,
and it has extracted the inputs of corrupted input parties from their proofs of
knowledge. For the Ai and Ri, we have assumed that they occur at least once
as the right-hand-side of a multiplication in the PolyProve circuit. Hence, the
corrupted parties have had to prove knowledge of their contributions in lines 11–
23 of PolyProve, from which the simulator can extract their plaintexts.

So, in fact, the simulator has sufficient information to run the protocol with
respect to the adversary, so the adversary’s output is statistically indistinguish-
able in the real and ideal protocol runs. Moreover, [SV15] shows that the simu-
lator can extract the values a1, . . . , rl that it needs to provide to the simulator
(which must satisfy φ if the proofs verify, except with negligible probability),
which implies that also the output by the result party is statistically indistin-
guishable. This concludes the argument for this case.

	Guaranteeing Correctness in Privacy-Friendly Outsourcing by Certificate Validation

