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Abstract. At CRYPTO 2013, Boneh and Zhandry initiated the study of
quantum-secure encryption. They proposed first indistinguishability def-
initions for the quantum world where the actual indistinguishability only
holds for classical messages, and they provide arguments why it might
be hard to achieve a stronger notion. In this work, we show that stronger
notions are achievable, where the indistinguishability holds for quantum
superpositions of messages. We investigate exhaustively the possibilities
and subtle differences in defining such a quantum indistinguishability
notion for symmetric-key encryption schemes. We justify our stronger
definition by showing its equivalence to novel quantum semantic-security
notions that we introduce. Furthermore, we show that our new security
definitions cannot be achieved by a large class of ciphers – those which
are quasi-preserving the message length. On the other hand, we provide
a secure construction based on quantum-resistant pseudorandom per-
mutations; this construction can be used as a generic transformation for
turning a large class of encryption schemes into quantum indistinguish-
able and hence quantum semantically secure ones.

1 Introduction

Quantum computers [NC00] threaten many cryptographic schemes. By using
Shor’s algorithm [Sho94] and its variants [Wat01], an adversary in possession of a
quantum computer can break the security of every scheme based on factorization
and discrete logarithms, including RSA, ElGamal, elliptic-curve primitives and
many others. Moreover, longer keys and output lengths are required in order to
maintain the security of block ciphers and hash functions [Gro96,BHT97]. These
difficulties led to the development of post-quantum cryptography [BBD09], i.e.,
classical cryptography resistant against quantum adversaries.



When modeling the security of cryptographic schemes, care must be taken in
defining exactly what property one wants to achieve. In classical security mod-
els, all parties and communications are classical. When these notions are used
to prove post-quantum security, one must consider adversaries having access to a
quantum computer. This means that, while the communication between the ad-
versary and the user is still classical, the adversary might carry out computations
on a quantum computer.

Such post-quantum notions of security turn out to be unsatisfying in cer-
tain scenarios. For instance, consider quantum adversaries able to use quantum
superpositions of messages

∑
x αx |x〉 instead of classical messages when commu-

nicating with the user, even though the cryptographic primitive is still classical.
This kind of scenario is considered, e.g., in [BZ13,DFNS13,Unr12,?,Zha12]. Such
a setting might for example occur in a situation where one party using a quan-
tum computer encrypts messages for another party that uses a classical computer
and an adversary is able to observe the outcome of the quantum computation
before measurement. Other examples are an attacker which is able to trick a
classical device into showing quantum behavior, or a classical scheme which is
used as subprotocol in a larger quantum protocol. Notions covering such set-
tings are often called quantum-security notions. In this work we propose new
quantum-security notions for encryption schemes.

For encryption schemes, the notion of semantic security [GM84,Gol04] has
been traditionally used. This notion models in abstract terms the fact that,
without the corresponding decryption key, it is impossible not only to correctly
decrypt a ciphertext, but even to recover any non-trivial information about the
underlying plaintext. The exact definition of semantic security is cumbersome
to work with in security proofs as it is simulation-based. Therefore, the simpler
notion of ciphertext indistinguishability has been introduced. This notion is given
in terms of an interactive game where an adversary has to distinguish the en-
cryptions of two messages of his choice. The advantage of this definition is that
it is easier to work with than (but equivalent to) semantic security.

To the best of our knowledge, no quantum semantic-security notions have
been proposed so far. For indistinguishability, Boneh and Zhandry introduced in-
distinguishability notions for quantum-secure encryption under chosen-plaintext
attacks in a recent work [BZ13]. They consider a model (IND-qCPA) where
a quantum adversary can query the encrypting device in superposition during
a learning phase, but is limited to classical communication during the actual
challenge phase. However, this approach has the following shortcoming: If we
assume that an adversary can get quantum access in a learning phase, it seems
unreasonable to assume that he cannot get such access when the actual message
of interest is encrypted. Boneh and Zhandry showed that a seemingly natural
notion of quantum indistinguishability is unachievable. In order to restore a
meaningful definition, they resorted to the compromise of IND-qCPA.

Our contributions. In this paper we achieve two main results. On the one hand,
we initiate the study of semantic security in the quantum world, providing new
definitions and a thorough discussion about the motivations and difficulties of
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modeling these notions correctly. This study is concluded by a suitable definition
of quantum semantic security under chosen plaintext attacks (qSEM-qCPA). On
the other hand, we extend the fundamental work initiated in [BZ13] in finding
suitable notions of indistinguishability in the quantum world. We show that
the compromise that had to be reached there in order to define an achievable
notion instead of a more natural one (i.e., IND-qCPA vs. fqIND-qCPA) can be
overcome – although not trivially. We show how various other possible notions
of quantum indistinguishability can be defined. All these security notions span
a tree of possibilities which we analyze exhaustively in order to find the most
suitable definition of quantum indistinguishability under chosen plaintext attacks
(qIND-qCPA). We prove this notion to be achievable, strictly stronger than IND-
qCPA, and equivalent to qSEM-qCPA, thereby completing an elegant framework
of security notions in the quantum world.

Furthermore, we formally define the notion of a core function and quasi–
length-preserving ciphers – encryption schemes which essentially do not increase
the plaintext size, such as stream ciphers and many block ciphers including AES –
and we show the impossibility of achieving our new security notion for this kind
of schemes. While this impossibility might look worrying from an application
perspective, we also present a transformation that turns a block cipher into an
encryption scheme fulfilling our notion.

The ‘frozen smart-card’ example. In order to clarify why quantum security
allows the adversary quantum superposition access to classical primitives - as
opposed to the case of post-quantum security - we give a motivating example. In
this mind experiment, we consider a not-so-distant future where the target of an
attack is a tiny encryption chip, e.g., integrated into an RFID tag or smart-card.
It is reasonable to assume that it will include elements of technology currently re-
searched but undeployed (i.e., extreme miniaturization, optical electronics, etc.)
Regardless, the chip we consider is a purely classical device, performing classical
encryption (e.g. AES) on classical inputs, and outputting classical outputs.

Consider an adversary equipped with some future technology which subjects
the device to a fault-injection environment, by varying the physical parameters
(such as temperature, power, speed, etc.) under which the device usually oper-
ates. As a figurative example, our ‘quantum hacker’ could place the chip into an
isolation pod, which keeps the device at a very low temperature and shields it
from any external electromagnetic or thermal interference. This situation would
be analogous to what happens when security researchers perform side channel
analysis on cryptographic hardware in nowaday’s labs, using techniques such as
thermal or electromagnetic manipulation which were previously considered fu-
turistic. There is no guarantee that, under these conditions, the chip does not
start to show full or partial quantum behaviour. At this point, the adversary
could query the device on a superposition of plaintexts by using, e.g., a laser
and an array of beam splitters when feeding signals into the chip via optic fiber.

It is unclear today what a future attacker might be able to achieve using
such an attack. As traditionally done in cryptography, we assume the worst-case
scenario where the attacker can actually query the target device in superposition.
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Classical security notions such as IND-CPA do not cover this scenario while our
new notion qIND-qCPA does. This setting is an example of what we mean by
‘tricking classical parties into quantum behaviour’.

Related work. The idea of considering scenarios where a quantum adversary
can force other parties into quantum behaviour has been considered in [DFNS13]
where the authors study superposition attacks for multi-party computation, se-
cret sharing, and zero-knowledge. The quantum security of zero-knowledge and
zero-knowledge proofs of knowledge has been investigated in [?] and [Unr12].
In [BZ13] the authors also consider the security of signature schemes where
the adversary can have quantum access to a signing oracle. Quantum super-
position queries have also been investigated relatively to the random oracle
model [BDF+11]. Another quantum indistinguishability notion has been sug-
gested (but not further analyzed) by Velema in [Vel13, Def. 5.3]. In concurrent
and independent work, Broadbent and Jeffery [BJ14] introduce indistinguisha-
bility notions for the public- and secret-key encryption of quantum messages in
the context of fully homomorphic quantum computation. We refer to Page 14
for a more detailed description of how their definitions relate to our framework.

2 Preliminaries

In this section, we briefly recall the classical security notions for encryption
schemes secure against chosen plaintext attacks (CPA). In addition, we revisit
the two existing indistinguishability notions for the quantum world. We start by
introducing notation we will use throughout the paper.

We say that a function f : N → R is polynomially bounded iff there exists
a polynomial p and a value n̄ ∈ N such that: for every n ≥ n̄ we have that
f(n) ≤ p(n); in this case we will just write f = poly (n). We say that a function
ε : N → R is negligible, if and only if for every polynomial p, there exists an
np ∈ N such that ε(n) ≤ 1

p(n) for every n ≥ np; in this case we will just write

ε = negl (n). In this work, we focus on secret-key encryption schemes. In all that
follows we use n ∈ N as the security parameter.

Definition 2.1 (Secret-key encryption scheme [Gol04]). A secret-key en-
cryption scheme is a triple of probabilistic polynomial-time algorithms (Gen, Enc,
Dec) operating on a message space M = {0, 1}m (where m = poly (n) ∈ N) that
fulfills the following two conditions:

1. The key generation algorithm Gen(1n) on input of security parameter n in
unary, outputs a bitstring k.

2. For all k in the range of Gen(1n) and any message x ∈ M, the algorithms
Enc (encryption) and Dec (decryption) satisfy Pr[Dec(k,Enc(k, x)) = x] = 1,
where the probability is taken over the internal coin tosses of Enc and Dec.

We also writeK for the range of Gen(1n) (the key space) and Enck(x) for Enc(k, x).
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2.1 Classical Security Notions: IND-CPA and SEM-CPA.

We turn to security notions for encryption schemes. In this work, we will only
look at the notions of indistinguishable ciphertexts under adaptively chosen
plaintext attacks (IND-CPA), and semantic security under adaptively chosen
plaintext attacks (SEM-CPA), which are known to be equivalent (see, e.g.,
[Gol04]).

Game-based definitions. In general these notions can be defined as a game
between a challenger C and an adversary A. First, C generates a legitimate key
running k ←− Gen(1n) which he uses throughout the game. The game starts
with a first learning phase. A challenge phase follows where A receives a chal-
lenge. Afterwards, a second learning phase follows, and finally A has to output a
solution. The learning phases define the type of attack, and the challenge phase
the notion captured by the game. We give all our definitions by referring to this
game framework and by defining a learning and a challenge phase.

The CPA learning phase: A is allowed to adaptively ask C for encryptions
of messages of his choice. C answers the queries using key k. Note that this is
equivalent to saying that A gets oracle access to an encryption oracle that was
initialized with key k.

The IND challenge phase: A defines a challenge template consisting of two
equal-length messages x0, x1, and sends it to C. The challenger C samples a

random bit b
$←− {0, 1} uniformly at random, and replies with the encryption

Enck(xb). A’s goal is to guess b.

Definition 2.2 (IND-CPA). A secret-key encryption scheme is called IND-
CPA secure if the success probability of any probabilistic polynomial-time adver-
sary winning the game defined by CPA learning phases and an IND challenge
phase is at most negligibly (in n) close to 1/2.

The SEM challenge phase: A sends C a challenge template consisting of a
poly-sized circuit Sm specifying a distribution over m-bit long plaintexts. The
challenger C replies with the pair (Enck(x), hm(x)) where x is sampled according
to Sm. A’s challenge is to output fm(x).

In the definition of semantic security it is not required that A’s probability
of winning the game is always negligible. Instead, A’s success probability is
compared to that of a simulator S that plays in a reduced game: On one hand,
S gets no learning phases. On the other hand, during the challenge phase, S
does not receive the ciphertext but only the output of the advice function. This
use of a simulator is what makes the notion hard to work with in proofs as one
has to give a construction of a simulator for every possible A to prove a scheme
secure.

Definition 2.3 (SEM-CPA). A secret-key encryption scheme is called SEM-
CPA secure if for any probabilistic polynomial-time adversary A there exists
a probabilistic polynomial-time simulator S such that the challenge templates
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produced by S and A are identically distributed and the success probability of A
winning the game defined by CPA learning phases and a SEM challenge phase
(computed over the coins of A, Gen, and Sm) is negligibly close (in n) to the
success probability of S winning the reduced game.

Semantic security models what we want an encryption scheme to achieve: An
adversary given a ciphertext can learn nothing about the encrypted message
which he could not also learn from his knowledge of the message distribution
and possibly existing side-information (modeled by hm). Indistinguishability of
ciphertexts is an equivalent technical notion introduced to simplify proofs.

2.2 Previous Notions of Security in the Quantum World

We briefly recall the results from [BZ13] about quantum indistinguishability no-
tions. We refer to [NC00] for commonly used notation and quantum information-
theoretic concepts. Given security parameter n, let {Hn}n be a family of complex
Hilbert spaces such that dimHn = 2poly(n). We assume that Hn contains all the
subspaces where the message states, the ciphertext states and any auxiliary state
live. For the sake of simplicity we will not make a distinction when writing that
a state |ϕ〉 belongs to one particular subspace, and we will omit the index n
when the security parameter is implicit, therefore writing just |ϕ〉 ∈ H. We will
denote pure states with ket notation, e.g., |ϕ〉, while mixed states will be denoted
by lowercase Greek letters, e.g. ρ. We start by defining what we call a classical
description of a quantum state:

Definition 2.4. [Classical Description] A classical description of a quantum
state ρ is a (classical) bitstring describing a quantum circuit S which (takes no
input but starts from a fixed initial state |0〉 and) outputs ρ.

This definition will be used later in our new notions of security. We deviate here
from the traditional meaning of ‘classical description’ referring to individual
numerical entries of the density matrix. The reason is that our definition also
covers the cases where those numerical entries are not easily computable, as
long as we can give an explicit constructive procedure for that state. Clearly,
every pure quantum state |ϕ〉 has a classical description (given by a description
of the quantum circuit which implements the unitary that maps |0〉 to |ϕ〉. The
classical description of a mixed state ρA is given by the circuit which first creates
a purification |ϕ〉AR of ρA and then only outputs the A register. Note that a state
admitting a classical description cannot be entangled with any other system.

For encryption, following the approach in [BZ13] and many other works, we
define the following:

Definition 2.5 (Quantum Encryption Oracle ([BZ13])). Let Enc be the
encryption algorithm of a secret-key encryption scheme E. We define the quan-
tum encryption oracle UEnck associated with E and initialized with key k as (a
family of) unitary operators defined by:

UEnck :
∑
x,y

αx,y |x〉 |y〉 7→
∑
x,y

αx,y |x〉 |y ⊕ Enck(x)〉 (1)
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where the same randomness r is used in superposition in all the executions of
Enck(x) within one query5 – for each new query, a fresh independent r is used.

The first indistinguishability notion proposed in [BZ13] replaces all classical
communication between A and C by quantum communication. A and C are now
quantum circuits operating on quantum states, and sharing a certain number of
qubits (the quantum communication register). The definition for the new security
game is obtained from Definition 2.2 by changing the learning and challenge
phases as follows:

Quantum CPA learning phase (qCPA): A gets oracle access to UEnck .

Fully quantum IND challenge phase (fqIND): A prepares the communica-
tion register in the state

∑
x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉, consisting of two m-qubit
states (the two input-message superpositions) and an ancilla state to store the

ciphertext. C samples a bit b
$←− {0, 1} and applies the transformation:∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉 7→
∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y ⊕ Enck(xb)〉 .

A’s goal is to output b.
The resulting security notion in [BZ13] is called indistinguishability under

fully quantum chosen-message attacks (IND-fqCPA). We decided to rename
it to fully quantum indistinguishability under quantum chosen-message attacks
(fqIND-qCPA) in order to fit into our naming scheme: It consists of a quantum
CPA learning phase and a fully quantum IND challenge phase.

Definition 2.6 (fqIND-qCPA). A secret-key encryption scheme is called fqIND-
qCPA secure if the success probability of any quantum probabilistic polynomial-
time adversary winning the game defined by qCPA learning phases and a fqIND
challenge phase is at most negligibly close (in n) to 1/2.

As already observed in [BZ13], this notion is unachievable. The separation
by Boneh and Zhandry exploits the entanglement of quantum states, namely the
fact that entanglement can be created between plaintext and ciphertext.

Theorem 2.7. [BZ attack ([BZ13], Theorem 4.2)] No symmetric-key encryp-
tion scheme can achieve fqIND-qCPA security.

Proof. The attack works as follows: The adversary A chooses as challenge mes-
sages the states |0m〉 and H |0m〉 (where H denotes the m-fold tensor Hadamard
transform), i.e. he prepares the register in the state

∑
x

1
2m/2

|0m, x, 0m〉. When
the challenger C performs the encryption, we can have two cases:

– if b = 0, i.e. the first message state is chosen, the state is transformed into∑
x

1

2m/2
|0m, x,Enck(0m)〉 = |0m〉 ⊗H |0m〉 ⊗ |Enck(0m)〉 ;

5 As shown in [BZ13], this is not restrictive.
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– if b = 1, i.e. the second message state is chosen, the state is transformed into∑
x

1

2m/2
|0m, x,Enck(x)〉 = |0m〉 ⊗

∑
x

1

2m/2
|x,Enck(x)〉 .

Notice that in the second case we have a fully entangled state between the second
and the third register. At this point, A does the following:

1. measures (traces out) the third register;
2. applies again H to the second register;
3. measures the second register;
4. outputs b′ = 1 iff the outcome of this last measurement is 0m, else outputs 0.

In fact, if b = 0, then the second register is left untouched: By applying again the
Hadamard transformation it will be reset to the state |0m〉, and a measurement
on this state will yield 0m with probability 1. If b = 1 instead, tracing out
one half of a fully entangled state results in a complete mixture in the second
register. Applying a Hadamard transform and measuring in the computational
basis necessarily gives a fully random outcome, and hence outcome 0m only with
probability 1

2m , which is negligible in n, because m = poly (n). ut

This implies that the fqIND-qCPA notion is too strong. In order to weaken
it, the following notion of indistinguishability under adaptively chosen quantum
plaintext attacks was introduced:

Definition 2.8 (IND-qCPA ([BZ13])). A secret-key encryption scheme is
called IND-qCPA secure if the success probability of any quantum probabilistic
polynomial-time adversary winning the game defined by qCPA learning phases
and a classical IND challenge phase is at most negligibly close (in n) to 1/2.

In this definition, the CPA queries are allowed to be quantum, but the challenge
query is required to be classical. It has been shown that IND-qCPA is strictly
stronger than IND-CPA6:

Theorem 2.9. [([BZ13],Theorem 4.8)] There exists an encryption scheme E
which is IND-CPA secure, but not IND-qCPA secure.

3 New Notions of Quantum Indistinguishability

IND-qCPA might be viewed as classical indistinguishability (IND) under a quan-
tum chosen plaintext attack (qCPA). The authors in [BZ13] resorted to this
definition in order to overcome their impossibility result on one seemingly nat-
ural notion of quantum indistinguishability (fqIND-qCPA) which turned out to
be too strong. This raises the question whether IND-qCPA is the only possible
quantum indistinguishability notion (and hence no classical encryption scheme

6 Under the assumption that classically secure PRFs exist, and that order-finding in
prime groups is classically hard.
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can achieve indistinguishability of ciphertext superpositions) or if there exists a
stronger notion which can be achieved.

In this section we show that by defining fqIND-qCPA, there are many choices
which are made implicitly, and that on the other hand there exist other possible
quantum indistinguishability notions. We discuss these choices spanning a binary
‘security tree’ of possible notions. Afterwards, we obtain a small set of candidate
notions, eliminating those that are either ill-posed or unachievable because of
the BZ attack from Theorem 2.7.

In all these notions, we implicitly assume ‘quantum CPA learning phases’,
as in the case of IND-qCPA. However, we limit the discussion in this section
to the design of a quantum challenge phase. In the end, we choose a suitable
‘qIND-’notion amongst the possible ones we present in this section.

3.1 The ‘Security Tree’

To define a general notion of indistinguishability in the quantum world, we have
to consider many different distinctions for possible candidate models. For exam-
ple, can we rule out certain forms of entanglement? How? Does the adversary
have complete control over the challenger device? Each of these distinctions
leads to a fork in a ‘security-model binary tree’. We analyze every ‘leaf’ of the
tree7. Some of them lead to unreasonable or ill-posed models, some of them yield
unachievable security notions, and others are analyzed in more detail.

Game model: oracle (O) vs. challenger (C). This distinction decides how
the game, and especially the challenge phase, is implemented. In the classical
world, the following two cases are equivalent but in the quantum world it turns
out that they differ. In the oracle model, the adversary A gets oracle access to
encryption and challenge oracles, i.e., he plays the game by performing calls to
unitary gates O1, . . . ,Oq. In this case A is modeled as a quantum circuit which
implements a sequence of unitary gates U0, . . . , Uq, intertwined by calls to the
Oi’s. Given an input state |ϕ〉, the adversary therefore computes the state:

UqOq . . . U1O1U0 |ϕ〉 .

The structure of the oracle gates Oi itself is unknown to A, who is only
allowed to apply them in a black-box way. The fqIND notion uses this model.

In what we call the challenger model instead, the game is played against
an external (quantum) challenger. Here, A is a quantum circuit which shares
a quantum register (the communication channel) with another quantum circuit
C. The main difference is that in this case we can also consider what happens
if C has additional input or output lines out of A’s control. Moreover, A does
not automatically gain access to the inverse (adjoint) of quantum operations
performed by C. This also covers the case of ‘unidirectional’ state transmission,
i.e., when qubits are sent over a quantum channel to an external entity, and they
are not available afterwards until the entity sends them back.

7 We do not rule out that some of them might eventually lead to the same model.
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In order to keep consistency with this choice of the model, when also con-
sidering qCPA queries, we implicitly assume the same access mode to the Enck
oracle as in the qIND game considered. That is, if we are in the (O) scenario,
during the qCPA phase A has quantum oracle access to Enck. In the (C) case,
instead, superposition access to Enck is provided to A by an external challenger.

At first glance, the (O) model intuitively represents the scenario where A
has almost complete control of some encryption device, whereas the (C) model is
more suited to a ‘network’ scenario where A wants to compromise the security
of some external target.

Plaintexts: quantum states (Q) vs. classical description (c). In the (Q)
model, the two m-qubit plaintexts chosen by A for the challenge template can
be arbitrary superpositions of basis elements and can be entangled with each
other and other states. In the (c) model, instead, A is only allowed to choose
classical descriptions of two m-qubit quantum states according to Definition 2.4,
thus being only allowed to send classical information to C: the challenger C will
read the states’ descriptions and will build one of the two states depending on
his challenge bit b.

In classical models, there is no difference between sending a description of
a message or the message itself. In the quantum case, there is a big difference
between these two cases as the message case allows A to establish entanglement
of the message(s) with other registers. This is not possible in case of classical
descriptions. It might intuitively appear that the (Q) model (considered for the
fqIND-qCPA notion) is more natural. However, the (c) scenario models the case
where A is well aware of the message that is encrypted, but the message is not
constructed by A himself. Giving A the ability to choose the challenge messages
for the IND game models the worst case that might happen: A knows that the
ciphertext he receives is the encryption of one out of the two messages that he
can distinguish best. This closely reflects the intuition behind the classical IND
notions: in that game, the adversary is allowed to send the two messages not
because in the real world he would be allowed to do so, but because we want to
achieve security even for the worst possible choice of messages. Notice that the
(c) model is in fact equivalent to the (Q) model with the additional assumption
that the transmitted states are not entangled8.

Relaying of plaintext states: Yes (Y ) vs. No (n). If C is not relaying (n),
this means that the two plaintext states chosen by A will not be ‘sent back’ to
A (in other words: their registers will not be available anymore to A after the
challenge encryption). In circuit terms, this means that at the beginning of the
game, C will have (one or two) ancilla registers in his internal (private) memory.
During the encryption phase, C will swap these register(s) with the content of
the original plaintext register(s), hence transferring their original content outside
of A’s control.
8 Actually the (c) model is limited to those states produced by quantum circuits

having classical representations, whereas the (Q) model allows for arbitrary states.
But since in our definitions any plaintext state must eventually be computed by a
quantum circuit, this restriction is already implied.

10



If the challenger is relaying (Y ) instead, this means that the two plaintext
states will be left in the original register (or channel), and may be possibly
accessed by A at any moment. This is the model considered for fqIND.

Again, the (Y ) case is more fitting to those cases whereA ‘implements locally’
the encryption device and has almost full control of it, whereas the (n) case is
more appropriate when the game is played against some external entity which is
not under A’s control. This is a rather natural assumption, for example, when
states are sent over some quantum channel and not returned. We stress that
this distinction in relaying is not trivial: it is not possible for A, in general, to
simulate relaying by keeping internal states entangled with the plaintexts. As an
example, consider the attack in Theorem 2.7: it is easy to see that this cannot
be performed without relaying.

Type of unitary transformation: (1) vs. (2). In quantum computing, the
‘canonical’ way of evaluating a function f(x) in superposition is by using an
auxiliary register: ∑

x,y

αx,y |x, y〉 7→
∑
x,y

αx,y |x, y ⊕ f(x)〉 .

This way ensures that the resulting operator is invertible, even if f is not. This
is what we call type-(1) transformations: if Enck is an encryption mapping m-bit
plaintexts to `-bit ciphertexts, the resulting operator in this case will act on
m+ ` qubits in the following way:∑

x,y

αx,y |x, y〉 7→
∑
x,y

αx,y |x, y ⊕ Enck(x)〉 ,

where the y’s are ancillary values. This approach is also used for fqIND.
In our case, though, we do not consider arbitrary functions, but encryptions,

which behave as bijections on some bit-string spaces (assuming that the ran-
domness is treated as an input.) Therefore, provided that the encryption does
not change the size of a message, the following transformation is also invertible:∑

x

αx |x〉 7→
∑
x

αx |Enck(x)〉 . (2)

For the more general case of arbitrary message expansion factors, we will consider
transformations of the form:∑

x,y

αx,y |x, y〉 7→
∑
x,y

αx,y |ϕx,y〉 ,

where the length of the ancilla register is |y|= |Enck(x)|− |x| and ϕx,0 = Enck(x)
for every x – i.e., initializing the ancilla y register in the |0〉 state produces a
correct encryption, which is what we expect from an honest quantum executor.
This is what we call type-(2) transformations.

Notice that, in general, type-(1) and type-(2) transformations are very dif-

ferent: having oracle quantum access to a type-(2) unitary U
(2)
Enc also gives access
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to the related type-(2) decryption oracle U
(2)
Dec :

∑
x αx |Enck(x)〉 7→

∑
x αx |x〉.

In fact, notice that (U
(2)
Enc)

† = U
(2)
Dec, while the adjoint of a type-(1) encryption

operator, (U
(1)
Enc)

†, is generally not a type-(1) decryption operator. In particular
type-(2) operators are ‘more powerful’, in the sense that knowledge of the se-
cret key is required in order to build any efficient quantum circuit implementing
them. However, we stress the fact that whenever access to a decryption ora-
cle is allowed, the two models are completely equivalent, because then we can
simulate a type-(2) operator by using ancilla qubits and ‘uncomputing’ the re-
sulting garbage lines (see Figure 1). Under this perspective, type-(2) transforma-
tions are a natural choice also when taking into account quantum CCA security,
which we leave as an interesting topic to explore. Moreover, since we are in the
symmetric-key scenario, knowledge of the secret key is anyway required even for
implementing the sole encryption oracle.

Fig. 1. Equivalence between type-(1) and type-(2) in the case of 1-qubit messages. Left:
building a type-(1) encryption oracle by using a type-(2) encryption oracle (and its
inverse) as a black-box. Right: building a type-(2) encryption oracle by using type-(1)
encryption and decryption oracles as black-boxes.

3.2 Analysis of the models

By considering these 4 distinctions in the security tree we have 16 possible can-
didate models to analyze. We label each of these candidate models by appending
each one of the 4 labels of every tree branch in brackets. Clearly, 16 different
definitions of quantum indistinguishability is too much, but luckily most of these
are unreasonable or unachievable. To start with, we can ignore the following:

Leaves of the form (Oc . . .). In the O scenario, the oracle is actually a
quantum gate inside A’s quantum circuitry. Therefore A has complete faculty of
querying the oracle on a superposition of states, possibly entangled with other
registers kept by A itself.

Leaves of the form (OQn . . .). Again, the oracle is here a gate, which has
no internal memory to store and keep the plaintext states sent by A.

Leaves of the form (. . . Y 2). Relaying is not taken into account in type-
(2) transformations. In these transformations, to some extent, one of the two
plaintext registers is always relayed (after having been ‘transformed’ into a ci-
phertext). If the other plaintext was to be relayed as well, this would immediately
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compromise indistinguishability (because one of the two states would be modified
and the other not, and both of them would be handed over to A).

This leaves us with 7 models, but it is easy to see that 3 of them are un-
achievable because of the attack from Theorem 2.7. This is the case for (OQY 1)
(which is exactly fqIND-qCPA), (CQY 1), and (CcY 1). We are now left with 4
candidate models of quantum indistinguishability (qIND) to analyze. Since all
of them are of the form (C . . . n . . .), from now on we will omit the C, n notation.

Fig. 2. The four candidate quantum indistinguishability notions. For the (c.) notions,
the picture omits the part where the adversary sends classical descriptions of |x0〉 , |x1〉.

3.3 Our Choice

Our choice for a suitable notion of quantum indistinguishability in the quantum
world is (c2)IND-qCPA, and from now on we will denote this security notion
as qIND-qCPA. Before explaining the reasons for this choice, we summarize the
resulting qIND challenge phase.

Quantum IND challenge phase (qIND): A chooses two quantum states
ρ0, ρ1, and sends to C a challenge template consisting of classical descriptions of
these two states according to Definition 2.4. C samples a bit b and replies to A
with the state obtained by applying the type-(2) operator U

(2)
Enck

as defined in (2)
to ρb. A’s goal is to output b.

Using this challenge phase and the notion of a qCPA learning phase, we
define qIND-qCPA as follows.
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Definition 3.1 (qIND-qCPA). A secret-key encryption scheme is said to be
qIND-qCPA-secure if the success probability of any quantum probabilistic poly-
nomial time adversary winning the game defined by qCPA learning phases and
the qIND challenge phase above is at most negligibly close (in n) to 1/2.

Notice that in the above definitions A is restricted to the choice of quantum
states having efficient (poly-sized) classical descriptions. Since we consider type-
(2) transformations, we will sometimes abuse notation and just write UEnck to
denote the type-(2) operator relative to Definition 2.5.

On the motivational side, we have already made clear in Section 3.1 why this
model cannot be regarded as too restrictive in practice. There are also more tech-
nical reasons for our choice. First of all one might object that, at a first glance,
the two (.1) models seem equivalent to the IND-qCPA notion from [BZ13]. The
reason is that from A’s perspective, a non-relaying C is indistinguishable from
a C tracing out (measuring) the plaintext register (otherwise A and C could
communicate faster than light). This measuring operation would make the ci-
phertext collapse into a single (classical) ciphertext. And since tracing out the

challenge register and applying the type-(1) operator U
(1)
Enc commute, one might

consider w.l.o.g that first A itself measures the plaintext register, and then ini-
tiates a classical IND query with C, therefore recovering a classical definition of
IND challenge query. However, we stress that this interpretation is not entirely
correct. In fact, one might consider composition scenarios where the IND query
is just an intermediate step, and the plaintext and ciphertext registers are re-
united at some later step. In such scenarios, not relaying would not be equivalent
to measuring. We ignore such considerations in this work, and leave the general
case of composable security as an interesting open question.

We also note that the q-IND-CPA-2 indistinguishability notion for secret-
key encryption of quantum messages introduced by Broadbent and Jeffery [BJ14,
Appendix B] resembles our (Q2) notion. They give their definition in the context
of ‘fully quantum encryption’, in the sense that their encryption schemes are
arbitrary quantum circuits acting natively on quantum data, while in this work
we consider the quantum security of classical encryption schemes. The fully
quantum homomorphic schemes which are shown to be secure in [BJ14] do not
fall into the category of classical encryption schemes which we are studying here.

Finally, notice that in the (c2) model, unlike in the (Q2), during a challenge
query A always receives back an unentangled state. In the (Q2) model A is
allowed to entangle himself with the plaintexts. It is important to note that
this does not automatically lead to attacks. For example, it is not clear how to
exploit this entanglement for a BZ-like attack (along the lines of Theorem 2.7),
so a (Q2) notion in our scenario might be achievable. However, the reduction to
a reasonable notion of quantum semantic security would become problematic,
for technical reasons which will become clear in the proof of Theorem 5.4.
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4 New Notions of Quantum Semantic Security

In this section, we initiate the study of suitable definitions of semantic security
in the quantum world. As in the classical case, we are particularly interested in
notions that can be proven equivalent to different notions of quantum indistin-
guishability. So these definitions actually describe the semantics of the equivalent
IND notions. As in the classical case, we present these notions in the non-uniform
model of computation.

In what follows, we only look at definitions for a quantum SEM challenge
phase. We implicitly assume that the adversary has access to a quantum encryp-
tion oracle during the ‘qCPA learning phase’, as in Definition 2.5. In the end, we
give a definition for quantum semantic security under quantum chosen-plaintext
attacks (qSEM-qCPA) which we later prove equivalent to qIND-qCPA. Thereby
adding semantics to our qIND-qCPA notion.

4.1 Classical Semantic Security under Quantum CPA

As a first notion of semantic security in the quantum world, we consider what
happens if, like in the IND-qCPA notion, we stick to the classical definition
but we allow for a quantum chosen-plaintext-attack phase. The definition uses
a SEM-qCPA game that is obtained by combining qCPA learning phases with
a classical SEM challenge phase as defined in Section 2. As in the classical case,
A’s success probability is compared to that of a simulator S that plays in a
reduced game: S gets no learning phase and during the challenge phase it only
receives the advice hm(x), not the ciphertext.

Definition 4.1. [SEM-qCPA] A secret-key encryption scheme is called SEM-
qCPA-secure if for every quantum polynomial-time machine A, there exists a
quantum polynomial-time machine S such that the challenge templates produced
by S and A are identically distributed and the success probability of A winning the
game defined by qCPA learning phases and a SEM challenge phase is negligibly
close (in n) to the success probability of S winning the reduced game.

Spoiler. It is easy to see that the SEM-qCPA notion of semantic security is
equivalent to IND-qCPA, see Theorem 5.1.

In Appendix C we discuss what happens if one also allows quantum advice
states in this scenario, and why this option would not add anything meaningful.

4.2 Quantum Semantic Security

Here we define quantum semantic security under chosen-plaintext attacks (qSEM-
qCPA). As in the classical case, we want the definition of semantic security to
formally capture what we intuitively understand as a strong security notion.
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In the quantum case, there are several choices to be made. We start by giv-
ing our formal definition of quantum semantic security, and justify our choices
afterwards.

Quantum SEM (qSEM) challenge phase: A sends to C a challenge template
consisting of classical decriptions of

– a quantum circuit Gm taking poly (n)-bit classical input and outputting m-
qubit plaintext states,

– a quantum circuit hm taking m-qubit plaintexts as input and outputting
poly (n)-qubit advice states,

– a quantum circuit fm taking m-qubit plaintexts as input and outputting
poly (n)-qubit target states.

The challenger C samples y
$←− {0, 1}poly(n) and computes two copies of the

plaintext ρy = Gm(y). One is used to compute auxiliary information hm(ρy)

and one to compute the ciphertext UEnck ρy U
†
Enck

. C then replies with the pair(
UEnck ρy U

†
Enck

, hm(ρy)
)

. A’s goal is to output fm(ρy). We say that A wins the

qSEM-qCPA game if no quantum polynomial-time distinguisher can distinguish
A’s output from the target state fm(ρy) with non-negligible advantage.

In the reduced game, S receives no encryption, but only the auxiliary infor-
mation hm(ρy) from C. Analogously to the above case, Swins the qSEM-qCPA
game if no quantum polynomial-time distinguisher can distinguish S’s output
from the target state fm(ρy) with non-negligible advantage.

Definition 4.2. [qSEM-qCPA] A secret-key encryption scheme is called qSEM-
qCPA-secure if for every quantum polynomial-time machine A, there exists a
quantum polynomial-time machine S such that the challenge templates produced
by S and A are identically distributed and the success probability of A winning the
game defined by qCPA learning phases and a qSEM challenge phase is negligibly
close (in n) to the success probability of S winning the reduced game.

When defining quantum semantic security, we have to deal with several is-
sues: First, we have to define how the plaintext distribution is described. In the
classical definition, the distribution is produced by a (classical) circuit Gm run-
ning on uniform input bits. We take the same approach here, but let Gm output
m-qubit plaintexts.

The second question is how to define the advice function. While the input
should be the plaintext quantum state ρy, the output could be either quantum
or classical. We decided to allow quantum advice as it leads to a more general
model as it includes classical outputs as a special case. In order for the challenger
to compute both the encryption of the plaintext state ρy and the advice state
hm(ρy) without violation of the no-cloning theorem, we exploit how we generate
the message state. We simply run Sm twice on the same classical randomness y
to generate two copies of the plaintext state ρy. Another option would have been
to allow for entanglement between the plaintext message ρy and the advice state
hm(ρy). Allowing such entanglement would model side-channel information the
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attacker could obtain, for instance by learning the content of some internal regis-
ter of the attacked device. However, the resulting notion would not be equivalent
with qIND-qCPA anymore, because in qIND-qCPA, the challenge plaintexts are
provided by their classical descriptions and can therefore not be entangled with
the attacker.

Third, we have chosen to model the target function fm in the same way as
the advice function hm, i.e. we allow arbitrary quantum circuits that might out-
put quantum states. The reasoning behind allowing quantum output is again to
use the strongest possible, most general model. Allowing quantum output how-
ever leads to the problem that, in general, we cannot physically test anymore
if an adversary A outputs exactly the result of the target function fm(ρy). One
option would be to require A’s output to be close to fm(ρy) in terms of their
trace distance. But two quantum states can be quantum-polynomial-time indis-
tinguishable even if their trace distance is large9. Since we are only interested
into computational security notions, we solve this problem by requiring QPT
indistinguishability as success condition for winning the SEM game.

Spoiler. Our qSEM-qCPA notion of semantic security is equivalent to qIND-
qCPA, and unachievable for those schemes which leave the size of the message
unchanged (like most block ciphers), see Section 6.1.

5 Relations

We show the relations between our new notions of indistinguishability and se-
mantic security in the quantum world. It is already known [GM84,Gol04] that
classically, IND-CPA and semantic security are equivalent. Our goal is to show
a similar equivalence for our new notions, plus to show a hierarchy of equivalent
security notions. Our results are summarized in Figure 3.

Fig. 3. The relations between notions of indistinguishability and semantic security.

9 Think of two different classical ciphertexts which are encrypted using a quantum-
computationally secure encryption scheme. Then, the ciphertext states are orthog-
onal (and hence their trace distance is maximal), but they are computationally
indistinguishable.
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Theorem 5.1. [IND-qCPA ⇔ SEM-qCPA] Let E be a symmetric-key encryp-
tion scheme. Then E is IND-qCPA secure if and only if E is SEM-qCPA secure.

We split the proof of Theorem 5.1 into two propositions – one per direction.
They closely follow the proofs for the classical case (see [Gol04, Proof of Theo-
rem 5.4.11]), we recall them as they work as a guideline for the following proofs.

Proposition 5.2. [IND-qCPA ⇒ SEM-qCPA.]

Proposition 5.3. [SEM-qCPA ⇒ IND-qCPA]

Proof (of Proposition 5.2 – Sketch.). The idea of the proof is to hand the simu-
lator S as non-uniform advice A’s circuit. S runs A’s circuit and impersonates
the challenger C by generating a new key and answering all of A’s queries using
this key. When it comes to the challenge query, S encrypts the 1 . . . 1 string of
the same length as the original message. It follows from the indistinguishability
of encryptions that the adversary’s success probability in this game must be neg-
ligibly close to its success probability in the real semantic security game, which
concludes the proof. The only difference in the -qCPA case is that A and S
are quantum circuits, and that S has to emulate the quantum encryption oracle
instead of a classical one. ut

Proof (of Proposition 5.3). We recall here the full proof as it is short. Assume
there exists an efficient distinguisher A against the IND-qCPA security of E .
Then we show how to construct an oracle machineMA that has access to A and
breaks the SEM-qCPA security of the scheme.MA runs A, emulating the quan-
tum encryption oracle by simply forwarding all the CPA queries to its own oracle.
As A executes an IND challenge query on m-bit messages (x0, x1),MA produces
the SEM template (Gm, hm, fm) with Gm describing the uniform distribution
over {x0, x1 } , hm = 1n (or any other function such that hm(x0) = hm(x1)), and
fm a function that fulfills fm(x0) = 0 and fm(x1) = 1 (i.e., the distinguishing
function). Then MA performs a SEM challenge query with this template, and
given challenge ciphertext c, uses it to answer A’s query. If, at that point, A per-
forms more CPA queries, MA answers again by forwarding all these queries to
its own oracle. Finally,MA outputs A’s output. As A distinguishes encryptions
of x0 and x1 with non-negligible success probability, A will return the correct
value of fm with recognizably higher probability than guessing. As hm is inde-
pendent of the encrypted message, no simulator can do better than guessing.
Hence, MA has a non-negligible advantage to output the right value of fm. ut

Theorem 5.4. [qIND-qCPA⇔ qSEM-qCPA] Let E be a symmetric-key encryp-
tion scheme. Then E is qIND-qCPA secure if and only if E is qSEM-qCPA secure.

Again, we split the proof of Theorem 5.4 into two propositions.

Proposition 5.5. [qIND-qCPA ⇒ qSEM-qCPA.]

Proposition 5.6. [qSEM-qCPA ⇒ qIND-qCPA]
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Proof (of Proposition 5.5 – Sketch.). The proof follows that of Proposition 5.2,
with some careful observations. Since A is a QPT adversary against the qSEM-
qCPA game, A’s circuit has a short classical representation ξ. So S gets ξ as non-
uniform advice and hence can implement and run A. The simulator S simulates
C for A by generating a new key and answering all of A’s qCPA queries. When
it comes to the challenge query, A produces a qSEM template, which S forwards
to the real C. Then S forwards C’s reply, plus a bogus encrypted state (e.g.,
UEnck |1 . . . 1〉), to A. If at this point A outputs a state ϕ which can be efficiently
distinguished from the correct fm(ρy) computed by the real C, we would have
an efficient distinguisher against the qIND-qCPA security of the scheme. Hence,
A’s (and therefore also S’s) output must be indistinguishable from fm(ρy) for
any QPT distinguisher, which concludes the proof. ut

Proof (of Proposition 5.6). This is also similar to the proof of Proposition 5.3.
Given an efficient distinguisher A for the qIND-qCPA game, our adversary for
the qSEM-qCPA game is an oracle machine MA running A and acting as fol-
lows. Concerning A’s qCPA queries, as usualMA just forwards everything to the
qSEM-qCPA challenger C. When A performs a challenge qIND query by send-
ing the classical descriptions of two states ϕ0 and ϕ1, MA prepares the qSEM
template (Gm, hm, fm), with Gm outputing ϕ0 for half of the possible y values
and ϕ1 for the other half, hm(ρy) = 1n , and fm the identity map fm(ρy) = ρy.
ThenMA performs a qSEM challenge query with this template. Given challenge
ciphertext state UEnck ϕb U

†
Enck

(for b ∈ {0, 1}), he forwards it as an answer to

A’s challenge query. As A distinguishes UEnck ϕ0 U
†
Enck

from UEnck ϕ1 U
†
Enck

with
non-negligible success probability, A returns the correct value of b with non-
negligible advantage over guessing. Then MA, having recorded a copy of the
classical descriptions of ϕ0 and ϕ1, is able to compute the state fm(ϕb) exactly,
and consequently win the qSEM-qCPA game with non-negligible advantage. As
hm generates the same advice state hm(ρy) = 1n independently of the encrypted
message, no simulator can do better than guessing the plaintext. This concludes
the proof. ut

Finally, we show the separation result between the two classes of security we
have identified (we show it between IND-qCPA and qIND-qCPA). This shows
that qIND-qCPA (eq., qSEM-qCPA) is a strictly stronger notion than IND-
qCPA (eq., SEM-qCPA).

Theorem 5.7. [IND-qCPA ; qIND-qCPA] There exists a symmetric-key en-
cryption scheme E which is IND-qCPA secure but not qIND-qCPA secure.

Proof (of Theorem 5.7). The scheme we use as a counterexample is the one
from [Gol04](Construction 5.3.9). It has been proven in [BZ13] that this scheme
is IND-qCPA secure if the used PRF is post-quantum secure. We exhibit a
distinguisher A which breaks the qIND-qCPA security of this scheme with high
probability. For ease of notation we restrict to the case of single-bit messages 0
and 1. A will simply choose as challenge states: |ϕ0〉 = H |0〉 = 1√

2
|0〉+ 1√

2
|1〉,

and |ϕ1〉 = H |1〉 = 1√
2
|0〉 − 1√

2
|1〉. When the challenger C applies the type-2
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transformation to either of these two states, it is easy to see that in any case the
state is left unchanged. This is because UEnck just applies a permutation in the
space of the basis elements, but |ϕ0〉 and |ϕ1〉 have the same amplitudes on all
their components, except for the sign. As these two states are orthogonal, they
can be reliably distinguished by A, which can then win the qIND-qCPA game
with probability 1. ut

The above proof can be generalized to message states of arbitrary length, as our
impossibility result in Section 6.1 shows.

6 Impossibility and Achievability Results

In this section we show that qIND-qCPA (equivalently, qSEM-qCPA) is impos-
sible to achieve for encryption schemes which do not expand the message (such
as stream ciphers and many block ciphers, ignoring the randomness part in the
ciphertext). Therefore, for a scheme to be secure according to this new definition,
it is necessary (but not sufficient) to increase the message size during the encryp-
tion. Interestingly, such an increase happens in most public-key post-quantum
encryption schemes, like for example LWE based schemes [LP11] or the McEliece
scheme [McE78].

Then we propose a construction of a qIND-qCPA–secure symmetric-key en-
cryption scheme. Our construction works for any (quantum-secure) pseudoran-
dom permutation (PRP). Given that block ciphers are usually modelled as PRPs,
it seems reasonable to assume that we can obtain a secure scheme when using
block ciphers with sufficiently large key and block size. Hence, our construc-
tion can be used to patch existing schemes, or as a guideline in the design of
quantum-secure encryption schemes from block ciphers.

6.1 Impossibility Result

First we formally define what it means for a cipher to expand or keep con-
stant the message size by defining the core function of a (secret-key) encryption
scheme. Intuitively, the definition splits the ciphertext into the randomness and
a part carrying the message-dependent information. This definition covers most
encryption schemes in the literature.

Definition 6.1. [Core function] Let (Gen,Enc,Dec) be a secret-key encryption
scheme. We call the function f : K × {0, 1}τ ×M→ Y the core function of the
encryption scheme if, for some τ ∈ N:

– for all k ∈ K and x ∈ M, Enck(x) can be written as (r, f(k, r, x)), where
r ∈ {0, 1}τ is independent of the message; and

– there exists a function f ′ such that for all k ∈ K, r ∈ {0, 1}τ , x ∈ M, we
have: f ′(k, r, f(k, x, r)) = x.

For example, in case of Construction 5.3.9 from [Gol04] (Enck(x) = (r, Fk(r)⊕x)
for a PRF F ) the core function is f(k, r, x) = Fk(r) ⊕ x, with f ′(k, r, z) =
z ⊕ Fk(r).
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Definition 6.2 (Quasi–length-preserving encryption). We call a secret-
key encryption scheme with core function f quasi–length-preserving if

∀x ∈M, r ∈ {0, 1}τ , k ∈ K ⇒ |f(k, x, r)| = |x|,

i.e., if the output of the core function has the same bit length as the message.

Continuing the above example, Construction 5.3.9 from [Gol04] is quasi–length-
preserving.

The crucial observation is the following: For a quasi–length-preserving en-
cryption scheme, the space of possible input and (core function) output bit-
strings (in respect to plaintext and ciphertext) coincide, therefore these ciphers
act as permutations on this space. This means that if we start with an input
state which is a superposition of all the possible basis states, all of them with the
same amplitude, this state will be unchanged by the encryption unitary type-2
operation (because it will just ‘shuffle’ in the basis-state space amplitudes which
are exactly the same).

Theorem 6.3. [Impossibility result for quasi–length-preserving schemes.] No
quasi–length-preserving secret-key encryption scheme can be qIND-qCPA secure.

Proof. Let (Gen,Enc,Dec) be a quasi–length-preserving scheme. We show an
attack that is a generalization of the distinguishing attack in Theorem 5.7.

1. for m-bit message strings, the distinguisher D sets the two plaintext states
for the qIND- game to be: |ϕ0〉 = H |0m〉 , |ϕ1〉 = H |1m〉, where H is the
m-fold tensor Hadamard transformation.

2. The challenger flips a random bit b and returns |ψ〉 = UEnck |ϕb〉.
3. D applies H to the core-function part of the ciphertext |ψ〉 and measures it

in the computational basis. D outputs 0 if and only if the outcome is 0m,
and outputs 1 otherwise.

As already observed, applying UEnck to H |0m〉 leaves the state untouched:
since the encryption oracle merely performs a permutation in the basis space,
and since |ϕ0〉 is a superposition of every basis element with the same amplitude,
it follows that whenever b is equal to 0, the ciphertext state will be unchanged.
In this case, after applying the self-inverse transformation H again, D obtains
measurement outcome 0m with probability 1. On the other hand, if b = 1,
|ϕ1〉 = 1

2m/2

∑
y(−1)y·1

m |y〉 where a·b denotes the bitwise inner product between
a and b. Hence, |ϕ1〉 is a superposition of every basis element where (depending
on the parity of y) half of the elements have a positive amplitude and the other
half have a negative one, but all of them will be equal in absolute value. Applying
UEnc,k to this state, results in 1

2m/2

∑
y(−1)y·1

m |Enck(y)〉. After re-applying H,

the amplitude of the basis state |0m〉 becomes
∑
y(−1)y·1

m+Enck(y)·0m which is
easily calculated to be 0. Hence, the above attack gives D a way of perfectly
distinguishing between encryptions of the two plaintext states. ut
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Notice that the above attack also works if A is allowed to send quantum
states to C. Therefore, it also holds for the (Q2) notion of quantum indistin-
guishability described in Section 3. In particular, the above theorem shows that
[Gol04, Construction 5.3.9], which was shown to be IND-qCPA if the used PRF
is quantum secure does not fulfill any of these two indistinguishability notions.

This attack is a consequence of the well-known fact that, in order to perfectly
(information-theoretically) encrypt a single quantum bit, two bits of classical in-
formation are needed: one to hide the basis bit, and one to hide the phase (i.e.
the signs of the amplitudes). The fact that we are restricted to quantum opera-
tions of the form UEnck - that is, quantum instantiations of classical encryptions
- means that we cannot afford to hide the phase as well, and this restriction
allows for an easy distinguishing procedure.

6.2 Secure Construction

Here we propose a construction of a qIND-qCPA secure symmetric-key encryp-
tion scheme from any family of quantum-secure pseudorandom permutations
(see Appendix A for a definition).

Construction 6.4. For security parameter n, let m = poly (n) and τ = poly (n).
Consider an efficient family of permutations Πm+τ = (I, Π,Π−1) with key space
KΠ that operates on bit strings of length m+τ , and consider a plaintext message
space M = {0, 1}m, key space K = KΠ , and ciphertext space C = {0, 1}m+τ .
The construction is given by the following algorithms:

Key generation algorithm k ←− Gen(1n): on input of security parameter n,
the key generation algorithm runs k ←− I(1m+τ ) and returns secret key k.

Encryption algorithm y ←− Enck(x): on input of message x ∈ M and key

k ∈ K, the encryption algorithm samples a τ -bit string r
$←− {0, 1}τ uni-

formly at random, and outputs y = πk(x‖r) (‖ denotes string concatenation).
Decryption algorithm x←− Deck(y): on input of ciphertext y ∈ C and key

k ∈ K, the decryption algorithm first runs x′ = π−1k (y), and then returns the
first m bits of x′.

The soundness of the construction can be easily checked.

Theorem 6.5. [qIND-qCPA security of Construction 6.4] If Πm+τ is a fam-
ily of quantum-secure pseudorandom permutations (qPRP), then the encryption
scheme (Gen,Enc,Dec) defined in Construction 6.4 is qIND-qCPA secure.

Proof. We want to show that no QPT distinguisher D can win the qIND-qCPA
game with probability substantially better than guessing. We first transform the
game through a short game-hopping sequence into an indistinguishable game for
which we can bound the success probability of any such D.

Game 0. This is the original qIND-qCPA game.

Game 1. This is like Game 0, but instead of using a permutation drawn from
the qPRP family Πm+τ , a random permutation π ∈ S2m+τ is chosen from the
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set of all permutations over {0, 1}m+τ . The difference in the success probability
of D winning one or the other of these two games is negligible. Otherwise, we
could use D to distinguish a random permutation drawn from Πm+τ from one
drawn from S2m+τ . This would contradict the assumption that Πm+τ is a qPRP.

Game 2. This is like Game 1, but D is guaranteed that the randomness used for
each encryption query is a new random value that was not used before. In other
words, the challenger keeps track of all random values used so far and excludes
those when sampling a new randomness. Since in Game 0, the same randomness
is sampled twice only with negligible probability, it is clear that the probability
of winning these two games differs by at most a negligible amount.

Game 3. This is like Game 2 except that the answer to each query asked by
D also contains the randomness r used by the challenger for answering that
query. Clearly, D’s probability of winning this game is at least the probability
of winning Game 2.

We now show that D’s probability of success in winning Game 3 is negligible
in the security parameter. This follows from the fact that the trace distance
between the encryption of two arbitrary quantum states ϕ0 and ϕ1 is negligible.
Due to the convexity of the trace distance [NC00, (9.51)], it suffices to show
closeness for pure states.10 Let |ϕ〉 =

∑
x∈{0,1}m αx |x〉 be a m-qubit state. For

a τ -bit string r ∈ {0, 1}τ and a permutation π ∈ S2m+τ , define |Encr,π(|ϕ〉)〉 =∑
x∈{0,1}m αx |π(x‖r)〉.
When the modified qIND game starts, D chooses two different superpositions

of messages and sends them to the challenger, who will then choose one of them
and send it back encrypted with a fresh randomness r̂. Let Q denote the set
of q = poly(n) query values used during the previous qCPA-phase. We have to
consider that from this phase, D knows a set T ⊂ {0, 1}m+τ of ’taken’ outputs,
i.e. he knows that π(m‖r̂) will not take one of these values as r̂ has not been
used before. So, from the adversary’s point of view, π is a permutation randomly
chosen from S′, the set of those permutations over {0, 1}m+τ that fix these |T |
values. In order to simplify the proof, we will consider a very conservative bound
where |T | = q · 2m, and the size of S′ is |S′| = (2m+τ − |T |)! (notice that this
bound is very conservative because it assumes that the adversary learns 2m

different ciphertexts for every of the q ‘taken’ randomnesses, but as we will see,
this knowledge will be still insufficient to win the game.)

As D receives an unknown pure state picked at random from some set, this
state is a mixture of every possible state in the set from his point of view. We
are interested in the resulting mixture when r̂ ←$ {0, 1}τ is known, and π ←$ S

′

10 For ϕ0 =
∑

i pi|ei〉〈ei| and ϕ1 =
∑

j qj |fj〉〈fj |, we have that ‖ϕ0 − ϕ1‖tr ≤∑
i pi

∑
j qj‖|ei〉〈ei| − |fj〉〈fj |‖tr ≤ maxi,j ‖|ei〉〈ei| − |fj〉〈fj |‖tr.
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is picked uniformly at random:

ρϕ =
1

(2m+τ − |T |)!
∑
π∈S′

|Encr̂,π(|ϕ〉)〉〈Encr̂,π(|ϕ〉)| (3)

=
1

(2m+τ − |T |)!
∑
π∈S′

∑
x,y∈{0,1}m

αxαy |π(x‖r̂)〉 〈π(y‖r̂)| .

For i ∈ [0, 1, . . . , 2m+τ − 1], the ith diagonal entry of ρϕ is

〈i|ρϕ|i〉 =
1

(2m+τ − |T |)!
∑
π∈S′

∑
x,y∈{0,1}m

αxαy 〈i|π(x‖r̂)〉 〈π(y‖r̂)|i〉

=
1

(2m+τ − |T |)!
∑
π∈S′

∑
x∈{0,1}m

|αx|2 〈i|π(x‖r̂)〉 〈π(x‖r̂)|i〉 (4)

=
1

(2m+τ − |T |)!
∑

x∈{0,1}m
|αx|2

∑
π∈S′

π(x‖r̂)=i

〈i|π(x‖r̂)〉 〈π(x‖r̂)|i〉 (5)

where (4) follows from the fact that x = y must hold if both π(x‖r̂) and π(y‖r̂)
have to be equal to i as π is a permutation. (5) is changing the order of summation
and again requiring that π(x‖r̂) = i. If i ∈ T , the ith diagonal entry of ρϕ
vanishes, because no permutation in S′ maps to i. Otherwise, if i 6∈ T ,

〈i|ρϕ|i〉 =
(2m+τ − |T | − 1)!

(2m+τ − |T |)!
∑

x∈{0,1}m
|αx|2 (6)

=
1

2m+τ − |T |
,

(6) follows from the fact that there are exactly (2m+τ − |T | − 1)! permutations
that fix |T | + 1 input/output pairs. Hence, all but |T | diagonal elements of ρϕ
are equal to 1

2m+τ−|T | and the others are 0.

Let us perform a similar calculation to determine the off-diagonal element
(ρϕ)ij for i 6= j:

〈i|ρϕ|j〉 =
1

(2m+τ − |T |)!
∑
π∈S′

∑
x,y∈{0,1}m

αxαy 〈i|π(x‖r̂)〉 〈π(y‖r̂)|j〉

=
1

(2m+τ − |T |)!
∑
π∈S′

∑
x∈{0,1}m

∑
y 6=x

αxαy 〈i|π(x‖r̂)〉 〈π(y‖r̂)|j〉 (7)

=
1

(2m+τ − |T |)!
∑

x∈{0,1}m
αx
∑
y 6=x

αy
∑
π∈S′

π(x‖r̂)=i
π(y‖r̂)=j

〈i|π(x‖r̂)〉 〈π(y‖r̂)|j〉 (8)

where (7) follows from the fact that x 6= y must hold if both π(x‖r̂) = i and
π(y‖r̂) = j have to hold and i 6= j. (8) is changing the order of summation
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and again requiring that π(x‖r̂) = i and π(y‖r̂) = j. If either i ∈ T or j ∈ T
(or both), then the i, jth entry of ρϕ vanishes, as no permutation maps to an
element in T . Otherwise, if both i and j are not in T ,

〈i|ρϕ|j〉 =
(2m+τ − |T | − 2)!

(2m+τ − |T |)!
∑

x∈{0,1}m
αx
∑
y 6=x

αy (9)

=
1

(2m+τ − |T |) · (2m+τ − |T | − 1)

∑
x∈{0,1}m

αx
∑
y 6=x

αy ,

where (9) follows from the fact that there are exactly (2m+τ − |T | − 2)! permu-
tations that fix |T |+ 2 different input/output pairs. It follows that all non-zero
off-diagonal elements of ρϕ are equal.

Let us define a :=
∑
x∈{0,1}m αx

∑
y 6=x αy and derive an upper bound on a

using that
∑
x |αx|2 = 1:

a =
∑

x∈{0,1}m
αx

∑
y 6=x

αy

+ αx − αx


=
∑
x

αx
∑
y

αy −
∑
x

αxαx

=

∣∣∣∣∣∑
x

αx

∣∣∣∣∣
2

− 1 (10)

≤
∑
x

|αx|2 · 2m − 1 = 2m − 1 ,

where the inequality is Cauchy-Schwarz. Note that the upper bound is achieved
for instance for uniform amplitudes αx = 1

2m/2
. On the other hand, we can also

conclude from Equation (10) that a ≥ −1 which is achieved for αx = (−1)x·1
m

.
When investigating how well one can distinguish between the encryption of

two different quantum states |ϕ〉 =
∑
x∈{0,1}m αx |x〉 and |ψ〉 =

∑
x∈{0,1}m βx |x〉,

we have to consider the trace distance between the resulting density matri-
ces [FvdG99]

‖ρϕ − ρψ‖tr =
1

2
tr |ρϕ − ρψ| ,

where |A| :=
√
A†A is the positive square root of A†A. Hence, we have to sum

the absolute eigenvalues of ρϕ−ρψ [NC00]. From the structure of the ρ matrices
derived above, we know that ρϕ − ρψ is a 2m+τ × 2m+τ matrix with 0’s on the
diagonal and

c :=
1

(2m+τ − |T |) · (2m+τ − |T | − 1)

 ∑
x∈{0,1}m

αx
∑
y 6=x

αy −
∑

x∈{0,1}m
βx
∑
y 6=x

βy


as off-diagonal elements, whenever i 6∈ T and j 6∈ T and zero otherwise.
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It is easy to verify that the spectrum of such matrices is

{(2m+τ − |T | − 1) · c,
|T |︷ ︸︸ ︷

0, . . . , 0,

2m+τ−|T |−1︷ ︸︸ ︷
−c, . . . ,−c} ,

because the eigenvectors are:

– the vector that has 0 entries at every position with indices in T and 1 entries
everywhere else, with associated eigenvalue (2m+τ − |T | − 1) · c,

– vectors of the form (0, . . . , 0, 1, 0, . . . , 0)T , where the single 1 entry spaces all
the positions with indices in T , with associated eigenvalues 0, and

– vectors of the form (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0)T , where the −1 entry is
at the first position with index not in T and the 1 entry of the ith such vector
is at the (i+1)th position with index not in T , for i ∈ {1, . . . , 2m+τ−|T |−1},
with associated eigenvalues −c.

Therefore, the sum of the absolute eigenvalues is

1

2
tr |ρϕ − ρψ| =

1

2
· 2 · (2m+τ − |T | − 1) · |c|

=
2m+τ − |T | − 1

(2m+τ − |T |) · (2m+τ − |T | − 1)

∣∣∣∣∣∣
∑

x∈{0,1}m
αx
∑
y 6=x

αy −
∑

x∈{0,1}m
βx
∑
y 6=x

βy

∣∣∣∣∣∣
≤ 1

2m+τ − |T |
2m =

1

2τ − q
,

where the inequality follows from the upper and lower bounds on the off-diagonal
elements derived above. Recalling that both τ and q are polynomials in n, we
conclude that the trace distance between two encryptions of arbitrary quantum
states is negligible in the security parameter n and hence, they cannot be dis-
tinguished except with negligible probability. ut

7 Conclusions and Further Directions

We believe that many of the current security notions used in different areas of
cryptography are unsatisfying in case quantum computers become reality. In this
respect, our work contributes to a better understanding of which properties are
important for the long-term security of modern cryptographic primitives. Our
work opens many interesting follow-up questions.

There are many other directions to investigate, once the basic framework
of ‘indistinguishability versus semantic security’ presented in this work is com-
pleted. A natural direction is to look at quantum CCA security in this framework.
This topic was also initiated in [BZ13] relative to the IND-qCPA model; it is
intriguing to extend the definition of CCA security to stronger notions obtained
by starting from our qIND-qCPA model.

With respect to qIND-qCPA, we have left as an open problem a detailed
study of three other possible notions, namely the models (Q1), (Q2), and (c1).
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As we already noticed, (Q1) and (c1) might behave quite differently from IND-
qCPA if we take into account composition scenarios where the registers used by
the challenger are relayed to the adversary at some later stage of the protocol.
The notion (Q2) is closely related to q-IND-CPA-2 considered in [BJ14], but the
authors only study it in the case of arbitrary quantum encryption circuits, i.e.
in a ‘fully quantum’ scenario. It is interesting to study this notion in respect to
the model of security we consider in this work, where the encryption scheme is
classical but the adversaries are interacting quantumly with it.

We have so far not taken into account models where the adversary is allowed
to initialize the ancilla qubits used in the encryption operation used by the
challenger (i.e. the |y〉 in |x, y〉 7→ |x, y ⊕ Enck(x)〉). These models lead to the
study of quantum fault attacks, because they model cases where the adversary
is able to ‘watermark’ or tamper with part of the challenger’s internal memory.
Moreover, we have not considered superpositions of keys or randomness: these
lead to a quantum study of weak-key and bad-randomness models. The authors
of this paper are not aware of any results in these directions.

Our secure construction shows how to turn block ciphers into qIND-qCPA
secure schemes. An interesting research question is whether there exists a general
patch transforming an IND-qCPA secure scheme into a qIND-qCPA secure one.
It is important to study how our transformation can be applied to general modes
of operation.

Finally, although much different in scope, it is possible to study fully quantum
encryption, i.e., encryption schemes for protecting quantum information, meant
to be run on quantum computers, where all the data and parties involved be-
have fully quantum, and the encryption and decryption operations are arbitrary
quantum operators.
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A Formal Definitons

Here we give some formal definitions that we omitted in the main body as they
are somewhat standard. We include them for the paper to be self-contained. We
begin with detailed formal definitions for Sem-CPA and IND-CPA. Afterwards
we define quantum-secure pseudorandom permutations.

Sem-CPA and IND-CPA. The following definitions are more precise than
the ones we use in the main text. They are included here for reference and were
taken from Goldreich ([Gol04]).

28

http://arxiv.org/abs/1307.3753


Definition A.1 (Sem-CPA). A secret-key encryption scheme, (Gen,Enc,Dec),
is said to be semantically secure under chosen plaintext attacks if for every pair
of probabilistic polynomial-time oracle machines A1 and A2, there exists a pair
of probabilistic polynomial-time algorithms A′1 and A′2 such that the following
two conditions hold:

1. For every positive polynomial p(·), and all sufficiently large n and z ∈
{0, 1}poly(n) it holds that

Pr


v = fm(x) where

k ←− Gen(1n)

((Sm, hm, fm), σ)←− AEnck
1 (1n, z)

c←− (Enck(x), hm(x)),where x←− Sm(Upoly(n))

v ←− AEnck
2 (σ, c)



< Pr


v = fm(x) where

((Sm, hm, fm), σ)←− A′1(1n, z)
x←− Sm(Upoly(n))
v ←− A′2(σ, 1|x|, hm(x))

+ 1
p(n) (11)

Recall that (Sm, hm, fm) is a triplet of circuits produced as in Step 3 of the
foregoing description, and that x is a sample from the distribution induced
by Sm.

2. For every n and z, the first elements (i.e., the (Sm, hm, fm) part) in the

random variables A′1(1n, z) and A
EncGen(1n)

1 (1n, z) are identically distributed.

Definition A.2 (IND-CPA). A secret-key encryption scheme, (Gen,Enc,Dec),
is said to have indistinguishable encryptions under chosen plaintext attacks if for
every pair of probabilistic polynomial-time oracle machines, A1 and A2, for ev-
ery positive polynomial p(·), and all sufficiently large n and z ∈ {0, 1}poly(n) it
holds that ∣∣∣p(1)n,z − p(2)n,z∣∣∣ < 1

p(n)

where

p(i)n,z
def
= Pr


v = i where

k ←− Gen(1n)

((x1, x2), σ)←− AEnck
1 (1n, z)

c←− Enck(xi)

v ←− AEnck
2 (σ, c)


where |x1| = |x2|.

Please note that there are no restrictions regarding A’s oracle queries, i.e. A1 as
well as A2 are allowed to ask for encryptions of x1 and x2.

Quantum PRP. We now define quantum-secure pseudorandom permutation
families. We restrict ourselves to efficient permutation families that have as do-
main binary strings of a certain length as these are the only ones we are using
in this work. Let S2n be the set of all permutations of n-bit strings.
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Definition A.3 (Efficient permutation family). Let n ∈ N, we call a family
of permutations Πn = {πk : {0, 1}n → {0, 1}n} ⊂ S2n with key space KΠ and
domain {0, 1}n efficient if there exists a triple of probabilistic polynomial-time
algorithms (I, Π,Π−1) such that:

1. The initialization algorithm I(1n) takes as input the parameter n and outputs

a random function key k
$←− KΠ from the key space.

2. The function Π takes as input a function key k and a domain element x and
outputs πk(x).

3. The function Π−1 takes as input a function key k and a domain element x
and outputs π−1k (x).

We sometimes abuse notation and write π instead of πk and π
$←− Πn for the

process of running I(1n). A quantum-secure pseudorandom permutation family
(qPRP) is an efficient permutation family that achieves the pseudorandomness
property in presence of a quantum adversary that can query the permutation π
with superpositions of domain elements x. It is defined as follows:

Definition A.4 (Quantum PRP). An efficient permutation family Πn is said
to be a quantum-secure pseudorandom permutation family if for every quantum
polynomial-time oracle machine A, it holds that∣∣∣Pr

π
$←−Πn

[
A|π〉(1n) = 1

]
− Pr

π
$←−S2n

[
A|π〉(1n) = 1

]∣∣∣ ≤ negl (n) ,

where the superscript |·〉 denotes oracle access in superposition.

Note that the permutations are chosen by the game. Hence, keys are classical.
A permutation family Πn is called a strong quantum PRP, if a random mem-

ber of Πn is computationally indistinguishable from a uniform permutation even
if the attacker A can query (in superposition) both the permutation π and the
inverse permutation π−1. Notice that the construction in Theorem 6.5 does not
require strong quantum PRPs. The reason is that, even if we are considering
type-(2) transformations (which could be used to compute π−1), these transfor-
mations are implemented by the challenger, because we are in the (C) model.
And since we only consider CPA scenarios here, and not CCA, the adversary is
never granted access to the decryption oracle. Hence, π−1 is not needed by the
reduction.

B Example Encryption Schemes

In this section we recall Construction 5.3.9 from [Gol04] which achieves IND-
CPA security starting from a pseudorandom function family.

Construction B.1 ([Gol04],Construction 5.3.9). Let n ∈ N be the security
parameter, τ,m ∈ poly (n), F = {Fk : {0, 1}τ → {0, 1}m | k ∈ K} be a pseudo-
random function family with key space K. Then the following triple of algorithms
form a symmetric-key encryption scheme with message space {0, 1}m:
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Gen(1n): On input of the security parameter, returns a uniformly random key

k
$←− K for the PRF F as secret key.

Enc(x, k): On input of message x and key k returns cipher text c = (r, c′) where

randomness r
$←− {0, 1}τ is a uniformly random τ bit string and c′ is com-

puted as
c′ ←− Fk(r)⊕ x.

Dec(c, k): On input of cipher text c = (r, c′) and key k returns plain text

x←− c′ ⊕ Fk(r).

C Semantic Security with Quantum Advice States

In Section 4.1 we left open the question of what happens if the messages (and the
function to be computed about the message) are still classical, but the auxiliary
advice can be a quantum state. Here we discuss this scenario.

A first approach we try is the following: Let Uξm be a unitary (the advice
unitary) that takes as input a basis element |x〉 representing a classical m-bit
message x as well as (if required) an auxiliary register prepared by C and com-
putes a quantum advice state |ξm〉. Then we can define the following challenge
phase and the corresponding notion.

Quantum-advice SEM challenge phase(qaSEM): A sends C a challenge
template consisting of: a poly-sized classical circuit Sm specifying a distribution
over m-bit plaintexts x, a classical description of the advice unitary Uξm , and a
target function fm : {0, 1}m → {0, 1}poly(n) for an m ∈ N of A’s choice. C replies
with the pair (Enck(x), |ξm〉), where x is sampled according to Sm and |ξm〉
is computed by constructing and evaluating Uξm on |x〉. A’s goal is to output
fm(x). Again, S plays in the reduced game and learns only |ξm〉.

Definition C.1. [qaSEM-qCPA] A secret-key encryption scheme is said to be
qaSEM-qCPA-secure if for every quantum polynomial-time machine A, there
exists a quantum polynomial-time machine S such that the challenge templates
produced by S and A are identically distributed and the success probability of A
winning the qaSEM-qCPA game is negligibly close (in n) to the success proba-
bility of S winning the reduced game.

At a first glance it might seem as if qaSEM-qCPA is equivalent to SEM-
qCPA as a security notion because having a classical advice function h(x) is just
a special case of a quantum advice circuit depending on x. Notice however that
as we restrict Uξm to be a circuit computing a unitary operator U |x〉 this notion
is meaningless because it is trivially achievable by any encryption scheme. The
reason is that, in this case, both A and S can always apply U−1 to |ξm〉 to
recover the message – it is like restricting the classical notion to the case where
the advice function h is just a permutation chosen by A (resp. S).

To fix this problem, we have to allow more general quantum circuits U ′ξm
that can somehow provide non-reversible information, for example by applying
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some partial measurement at the end, or by providing A (resp. S) only with
some output qubits, while C keeps the others. Towards this end let U ′ξm be an
arbitrary quantum circuit (the advice circuit) that takes as input a basis element
|x〉 representing a classical m-bit message x, a quantum state ρm provided by
A (resp. S) (that includes possibly needed auxiliary registers), and computes a
quantum advice state ξm. This leads to the following definition:

Ideal quantum advice, classical SEM challenge phase (iqSEM): A sends
C a challenge template consisting of: a poly-sized classical circuit Sm specifying
a distribution over m-bit plaintexts, a classical description of the quantum ad-
vice circuit U ′ξm , a quantum state ρm, and a target function fm : {0, 1}m →
{0, 1}poly(n) for an m ∈ N of A’s choice. C replies with the pair (Enck(x), ξm),
where x is sampled according to Sm and ξm is computed by constructing and
executing U ′ξm . A’s goal is to output fm(x).

The iqSEM-qCPA game is defined by qCPA learning phases and a iqSEM
challenge phase. This leads to the following definition:

Definition C.2. [iqSEM-qCPA] A secret-key encryption scheme is said to be
iqSEM-qCPA-secure if for every quantum polynomial-time machine A, there ex-
ists a quantum polynomial-time machine S such that the challenge templates
produced by S and A are identically distributed and the success probability of A
winning the iqSEM-qCPA game is negligibly close (in n) to the success probability
of S winning the reduced game.

This notion turns out to be equivalent to SEM-qCPA (and IND-qCPA). The
reason is that having a quantum advice state does not really give any additional
power to A in the case of classical messages and target functions. This can be
seen from the reduction between IND-qCPA and SEM-qCPA – see the proofs of
Propositions 5.2 and 5.3 below. In one case, the advice state is only used to pass
A’s code from the first circuit of S to the second one (which can also be done
with a quantum advice state), in the other case it is set to a constant function.

It seems like introducing arbitrary quantum advice circuits (as opposed to
superpositions of classical advices) is not meaningful as long as the messages
are still classical. Consequently, we proceed in Section 4.2 with our search for
a notion of quantum semantic security considering quantum superpositions of
messages.
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