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Abstract

In this paper, we consider the cycle structures of feedback shift registers (FSRs).

At the beginning, the cycle structures of two special classes of FSRs, pure circulating

registers (PCRs) and pure summing registers (PSRs), are studied and it is proved that

there are no other FSRs have the same cycle structure of an PCR (or PSR). Then, we

regard n-stage FSRs as permutations over 2n elements. According to the group theory,

two permutations have the same cycle structure if and only if they are conjugate with

each other. Since a conjugate of an FSR may no longer an FSR, it is interesting

to consider the permutations that always transfer an FSR to an FSR. It is proved

that there are exactly two such permutations, the identity mapping and the mapping

that map every state to its dual. Furthermore, we prove that they are just the two

permutations that transfer any maximum length FSR to an maximum length FSR.

Keywords: feedback shift register, cycle structure, symmetric group, pure circulating reg-

ister, pure summing register.

1 Introduction

Feedback shift registers (FSRs) are useful in generating periodic sequences, and they are

mostly used in communication and cryptographic systems [5]. Non-linear feedback shift
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registers (NFSRs) are a generalization of linear feedback shift registers (LFSRs) in which

the feedback function is non-linear. LFSRs were widely used in stream cipher designs due

to their simplicity and fast implementation. However, stream ciphers based on LFSRs have

been found to be susceptible to algebraic attacks and correlation attacks [2, 3, 13]. As an

alternative, NFSRs become popular building blocks for stream ciphers recently. For example,

the eSTREAM Stream Cipher project hardware finalists, Grain, Mickey and Trivium.

The investigation of NFSRs started in the pioneering book of Golomb [5] and has con-

tinued for decades. However, while the theory behind LFSRs is well understood, many

fundamental problems related to NFSRs remain open. For example, it is not known how to

determine the cycle structure of a general NFSR, though the cycle structures of few special

types of NFSRs were adequately investigated, say symmetric NFSRs [7,11,12], and it is also

not known how to efficiently construct NFSRs that output sequences with large periods.

Sequences generated by maximum length NFSRs are known as de Bruijn sequences [9]. In

a de Bruijn sequences of order n all 2n different binary n-tuples appear exactly once. An

n-stage LFSR has the maximum period of 2n − 1 if and only if its characteristic polynomial

is primitive, however, for NFSRs no similar property has been found so far. An excellent

survey of algorithms for generating de Bruijn sequences is given in [4].

Our work aims to get insight into the cycle structures of FSRs. At the beginning, we

consider the cycle structures of pure circulating registers (PCRs) and pure summing registers

(PSRs). A PCR is an FSR with feedback from the first stage to the last stage. Many

properties about PCRs, such as the cycle structures and adjacency graphs, are clear [8, 10].

In this paper we show the uniqueness of the cycle structures of PCRs, that is, there are no

other FSRs with the same cycle structure of an PCR. An PSR is an FSR that feed back

the sum of all stages to the last stage. Similar to PCRs, we calculate the cycle structures of

PSRs and show their uniqueness.

Determining the cycle structure of a general FSR is known to be notoriously hard. Usually

the characteristic function is analysed, and the operation of joining and disjoining cycles was

discussed in Golomb’s book [5]. But this method doesn’t work when the number of minterms

which need to be analysed is big. So we take a different approach in this paper. We consider

the symmetric group of Fn2 which contains all the permutation of Fn2 . It is well known that,

an n-stage FSR can be treated as a permutation of Fn2 , but a permutation of Fn2 may not

correspond to an n-stage FSR. Denote the FSR with characteristic function f by FSRf and

the corresponding permutation by θf , then according to the group theory the cycle structure

of FSRf is the same as that of FSRg if and only if θf is conjugate with θg, i.e., there exists a

permutation σ such that σ−1θfσ = θg. Since a permutation of Fn2 may not an n-stage FSR,

we consider the permutation σ such that σ−1θfσ is an n-stage FSR for any θf , and show

that, there are only two such bijections, the identity mapping and the mapping maps every

2



state to its dual. Furthermore we show that, they are just the two bijections that transfer

any maximum length FSR to an maximum length FSR.

The rest of this paper is organized as follows. In section 2, we present some basic

knowledge of FSRs. In section 3, we consider the cycle structures of PCRs and PSRs. In

section 4, we pay attention to the transition mappings between FSRs, and at the end, we

conclude this paper.

2 Preliminaries

The purpose of this section is to briefly review the basic knowledge about feedback shift

registers and de Bruijn graphs, and explain some notations that will be used in this paper.

2.1 Feedback shift registers

Let F2 be the finite field of two elements, and Fn2 be the vector space of dimension n over

F2. A Boolean function f(x0, x1, . . . , xn−1) in n variables is a mapping from Fn2 to F2, and

it can be uniquely represented by its algebraic normal form (ANF), which is a multivariate

polynomial.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a char-

acteristic function f regulated by a single clock, where f is a Boolean function in (n + 1)

variables. The FSR with characteristic function f is usually denoted by FSRf . A state

of an FSR is a vector (x0, x1, . . . , xn−1) ∈ Fn2 , where xi indicates the content of stage i

for i ∈ {0, 1, · · · , n − 1}. At every clock pulse, the state (x0, x1, . . . , xn−1) is updated by

(x1, x2, . . . , xn−1, xn) satisfying f(x0, x1, . . . , xn) = 0, therefore, f induces a next-state oper-

ation from Fn2 to itself

θf : (x0, x1, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, xn).

It is well known that, θf is a bijection if and only f is nonsingular, i.e., of the form f =

x0 + F (x1, . . . , xn−1) + xn, where F is a Boolean function in n − 1 variables, and in this

case, we say FSRf is nonsingular. Without specification, all the FSRs and characteristic

functions in this paper are nonsingular. From an initial state X0 = (x0, x1, . . . , xn−1), after

consecutive clock pulses, FSRf will generate a cycle C = (X0,X1, . . . ,Xl−1), where Xi+1 is

the next state of Xi for i = 0, 2, . . . , l − 1 and X0 is the next state of Xl−1. In this way,

the set Fn2 is divided into cycles C1, C2, . . . , Ck by FSRf , and reversely, it is easy to see, a

partition of Fn2 into cycles determines an n-stage FSR. So we can treat FSRf as a set of

cycles, and use the notation

FSRf = {C1, C2, . . . , Ck}.
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The set of 2n sequences x = x0x1 · · · satisfying f(xt, xt+1, . . . , xt+n) = 0 for any t ≥ 0 is

denoted by G(f). For a state X = (x0, x1, . . . , xn−1), its conjugate X̂, companion X̃ and dual

X are defined as X̂ = (x0, x1, . . . , xn−1), X̃ = (x0, x1, . . . , xn−1) and X = (x0, x1, . . . , xn−1),

where x denotes the binary complement of x. We call (X, X̂) a conjugate pair, (X, X̃) a

companion pair, and (X,X) a dual pair.

2.2 De Bruijn graphs

The n-th order de Bruijn graph Gn is a directed graph of 2n vertices and 2n+1 directed edges.

The vertices, also be called states, are labelled by the 2n binary n-tuples (x1, x2, . . . , xn) ∈ Fn2 .

The graph is regular of degree 2 with two edges into and out of each vertex. There is

an directed edge from (x1, x2, · · · , xn) to (y1, y2, · · · , yn) if and only if yi = xi+1 for i =

1, 2, . . . , n− 1. We call X a predecessor of Y and Y a successor of X if there is an directed

edge from X to Y. (X0,X1, . . . ,Xl−1) is called a cycle in Gn if Xi+1 is a successor of Xi for

i = 0, 1, . . . , l − 2, and X0 is a successor of Xl−1 in Gn. The de Bruijn graph of order 3 is

shown below.

000 010 101 111

001 011

100 110

We call σ an automorphism of Gn if σ is a bijection of the vertices in Gn and there is a

an directed edge from X to Y implies there is a an directed edge from σ(X) to σ(Y). Let

I and D be the identity mapping and the dual mapping of the vertices in Gn respectively,

that is, I(X) = X and D(X) = X for any vertex X in Gn. It can be verified, both I and D

are automorphisms of Gn, and it was proved in [14] that, there are no other automorphisms.

Lemma 1. [14] There are only two automorphisms of Gn, that is, I and D.

3 The Cycle Structures of PCRs and PSRs

In this section, we consider the cycle structures of pure circulating registers (PCRs) and

pure summing registers (PSRs) and show their uniqueness. To begin with, we present the

definition of the cycle structures of FSRs.
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Definition 1. Let FSRf be a feedback shift register with characteristic function f . Suppose

FSRf contains n1 cycles with length l1, n2 cycles with length l2, · · · , and nk cycles with

length lk. Then the cycle structure of FSRf is denoted by

Σf = n1[l1] + n2[l2] + · · ·+ nk[lk].

Two n-stage feedback shift registers FSRf and FSRg are said to be with the same cycle

structure, denoted by Σf = Σg, if for any integer 1 ≤ l ≤ 2n, FSRf and FSRg contain the

same number of cycles with length l.

Let Σf = n1[l1] + n2[l2] + · · ·+ nk[lk] be the cycle structure of n-stage FSRf . Since there

are 2n states in the cycle structure of an n-stage FSR, we have n1 ·l1+n2 ·l2+· · ·+nk ·lk = 2n.

Example 1. Let f1(x) = x0 + x1 + x1x2 + x3 and f2(x) = x0 + x2 + x1x2 + x3. It can be

verified that, Σf1 = Σf2 = 2[1] + 1[6]. The cycle structures of the two FSRs are shown below.

000

111

100 010

110 101

001

011

000

111

100 011

010 110

001

101

Let D and R be two operations on Boolean functions such that:

D(f(x0, x1, . . . , xn)) = f(x0 + 1, x1 + 1, . . . , xn + 1),

R(f(x0, x1, . . . , xn)) = f(xn, xn−1, . . . , x0),

then for any Boolean function f , we have

Σf = ΣD(f) = ΣR(f).

It can be verified, the two Boolean functions f1 and f2 in Example 1 are related by: f1 =

D(f2) = R(f2).

The FSR with characteristic function f = x0 + xn is called the n-stage pure circulating

register (PCR). For any cycle C in the n-stage PCR, the length of C is a divisor of n. Let d

be a divisor of n, then there are M(d) = 1
d

∑
d′|d µ(d′)2d/d

′
cycles with length d in the n-stage

PCR, therefore the cycle structure of the n-stage PCR is given by

Σ(x0+xn) =
∑
d|n

M(d)[d].

The FSR with characteristic function f = x0 + x1 + · · · + xn is called the n-stage pure

summing register (PSR). For the cycle structures of PSRs, we have
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Theorem 1. The cycle structure of the n-stage PSR is
∑

d|n+1N(d)[d], where

N(d) =


1
d

∑
d′|d µ(d′)2d/d

′
in the case n+1

d
is even

1
2d

∑
d′|d
d′odd

µ(d′)2d/d
′

in the case n+1
d

is odd

Proof. Let f = x0 + xn+1 and g = x0 + x1 + · · · + xn, then we have G(g) ⊂ G(f). So the

length of any cycle in FSRg is a divisor of n+ 1. Let C be a cycle in FSRf and X be a state

in C, then C is a cycle in FSRg if and only if g(X) = 0. For an (n+ 1)-stage state X, define

p(X) be the least positive integer d such that X can be written as

X = (x0, x1, . . . , xd−1, x0, x1, . . . , xd−1, · · · , x0, x1, . . . , xd−1).

It is easy to see, p(X)|(n + 1). Let A(d) be the number of elements in {X|p(X) = d} and

B(d) be the number of elements in {X|p(X) = d, g(X) = 0}. In the case n+1
d

is even, we

have A(d) = B(d) because p(X) = d implies g(X) = 0. For A(d), we have
∑

d′|dA(d′) = 2d.

Using the Möbius transformation, we get A(d) =
∑

d′|d µ(d′)2d/d
′
. Next, we calculate B(d).

From the discussion above, we just need to consider the case n+1
d

is odd. Let d = 2kd1, where

d1 is odd. Then we have
∑

d′|d
d′odd

B(2kd′) = 2d−1. Using the Möbius transformation, we get

B(d) = 1
2

∑
d′|d
d′odd

µ(d′)2d/d
′
. Finally, it is easy to see N(d) = 1

d
B(d).

Example 1 shows that, there exist g 6= f such that Σg = Σf . In particular, all the n-stage

FSRs that output de Bruijn sequences have the same cycle structure, i.e., 1 · [2n]. But for

the cycle structure of PCR, we have

Theorem 2. If Σf = Σ(x0+xn), then f = x0 + xn.

Proof. Suppose f 6= x0+xn. Then there exists a state X = (x0, x1, . . . , xn−1) whose successor

is Y = (x1, x2, . . . , xn−1, x0). Let C be the cycle in FSRf that contains X and Y. Since

θnf (x0, x1, . . . , xn−1) = (x0, ∗, . . . , ∗) and (x0, x1, . . . , xn−1) 6= (x0, ∗, . . . , ∗), the length of C

cannot be a divisor of n. Since the lengths of any cycle in the pure circulating shift register

is a divisor of n, the cycle structure of FSRf is not the same as that of the pure circulating

shift register.

Similarly, for the cycle structure of PSR, we have

Theorem 3. For odd n, if Σf = Σ(x0+x1+···+xn), then f = x0 + x1 + · · ·+ xn. For even n, if

Σf = Σ(x0+x1+···+xn), then f = x0 + x1 + · · ·+ xn or f = x0 + x1 + · · ·+ xn + 1.

Proof. Suppose Σf = Σ(x0+x1+···+xn). From the theory of LFSRs we know, the length of any

cycle in FSR(x0+x1+···+xn) is a divisor of n + 1, therefore, the length of any cycle in FSRf

is a divisor of n + 1. That implies G(f) ⊂ G(x0 + xn+1). So f = x0 + x1 + · · · + xn
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or f = x0 + x1 + · · · + xn + 1. In the case n is odd, the two cycles 0 and 1 belong to

FSR(x0+x1+···+xn) but not FSR(x0+x1+···+xn+1), therefore Σ(x0+x1+···+xn) 6= Σ(x0+x1+···+xn+1). So

we get f = x0 + x1 + · · · + xn. In the case n is even, Σ(x0+x1+···+xn) = Σ(x0+x1+···+xn+1). So

we get f = x0 + x1 + · · ·+ xn or f = x0 + x1 + · · ·+ xn + 1.

4 Transition Mappings between FSRs

Let S(2n) denote the symmetric group of Fn2 , i.e., S(2n) = {σ|σ is a permutation of Fn2}. It

is well known that there are (2n)! elements in S(2n). For two elements σ and τ in S(2n),

the product στ is defined to be: στ(X) = σ(τ(X)). The order of σ, denoted by ord(σ), is

the least integer k such that σk = I, where I is the identity in group S(2n). We call σ1 is

conjugate with σ2 if there exists an element σ such that, σ−1σ1σ = σ2, and the element σ is

called a transition mapping from σ1 to σ2.

Let FSRf be an n-stage FSR with characteristic function f , then θf is a permutation of

Fn2 , i.e., an element in S(2n). But we should note that, not every element in S(2n) correspond

to an n-stage FSR. There are exactly 22n−1
elements in S(2n) that can be treated as FSRs.

If σ = θf for some f , then σ is called an FSR for simplicity.

For σ ∈ S(2n), we can define the cycle structure of σ just like what we have done for

feedback shift register θf . C = (X0,X1, . . . ,Xl−1) is called a cycle of σ if Xi+1 = σ(Xi) for

i = 0, 1, . . . , l − 2 and X0 = σ(Xl−1). The cycle structure of σ is a set of cycles such that

these cycles form a partition of Fn2 . Suppose σ contains n1 cycles with length l1, n2 cycles

with length l2, · · · , and nk cycles with length lk. Then the cycle structure of σ is denoted by

Σσ = n1[l1] + n2[l2] + · · ·+ nk[lk]. In the case σ is an FSR, say FSRf , the cycle structure of

σ is the same as Σf . For the cycle structure of Σσ we have the following conclusions, which

can be found in a book that introduce the basic knowledge of symmetric group.

Lemma 2. Denote the cycle structure of σ by Σσ.

1. Let Σσ = n1[l1] + n2[l2] + · · ·+ nk[lk], then ord(σ) = lcm(l1, l2, . . . , lk).

2. Σσ1 = Σσ2 if and only if σ1 is conjugate with σ2.

3. Let Σσ1 = Σσ2 = n1[l1]+n2[l2]+· · ·+nk[lk], then there are n1!(l1)
n1n2!(l2)

n2 · · ·nk!(lk)nk

transition mappings from σ1 to σ2.

Let FSRf be an FSR that generates de Bruijn sequences, then Σf = 1 · [2n]. From Case

1 of Lemma 2 we know, ord(θf ) = 2n. Conversely, if ord(θf ) = 2n, it is not hard to see that

Σf = 1 · [2n]. Therefore, FSRf generates de Bruijn sequences if and only if ord(θf ) = 2n.

Let FSRf and FSRg be two FSRs. From Case 2 of Lemma 2 we know, Σf = Σg if and

only if θf is conjugate with θg. For any σ ∈ S(2n), the cycle structure of σ−1θfσ is the same

7



as that of θf . If furthermore σ−1θfσ is an FSR, we get an FSR whose cycle structure is the

same as that of FSRf . So it is important to investigate the transition mappings between

FSRs, especially the mappings that transfer any FSR to an FSR.

Example 2. Let FSRf be an n-stage LFSR with f = x0 + c1x1 + · · ·+ cn−1xn−1 + xn. The

companion matrix of f is

Af =


0 0 · · · 0 1

1 0 · · · 0 c1

0 1 · · · 0 c2

. . . . . . . . . . . . . . . . . .

0 0 · · · 1 cn−1


Let σ be a nonsingular linear transformation on Fn2 defined by σ(X) = XBσ, where Bσ is

the matrix of σ. Then σ−1θfσ(X) = XBσAfB
−1
σ . If σ−1θfσ is an FSR, then BσAfB

−1
σ will

be of rational canonical form. It can be seen, Af is in rational canonical form. From the

uniqueness of rational canonical form, we know BσAfB
−1
σ = Af .

Let D be a permutation of Fn2 defined by

D(x0, x1, . . . , xn−1) = (x0 + 1, x1 + 1, . . . , xn−1 + 1).

Let θf be an n-stage FSR and X = (x0, x1, . . . , xn−1) be a state, then

D−1θfD(X) = D−1θfD(x0, x1, . . . , xn−1)

= D−1θf (x0 + 1, x1 + 1, . . . , xn−1 + 1)

= D−1(x1 + 1, x2 + 1, . . . , xn + 1)

= (x1, x2, . . . , xn),

where xn is an element in F2 satisfying f(x0 + 1, x1 + 1, · · · , xn + 1) = 0. Therefore, we have

D−1θfD = θD(f), where D(f) = f(x0 + 1, x1 + 1, . . . , xn + 1). The permutation D has the

property that: for any FSR θf , D
−1θfD is also an FSR. The identity I in S(2n) is another

permutation with such property, i.e., I−1θfI = θf . In the following we will show that, they

are the only two permutations with such property. Firstly, we need a lemma.

Lemma 3. Let C be a cycle in the n-stage de Bruijn graph, then there exists an FSR that

contains C. Let |C| = s and |{X|X /∈ C, X̂ ∈ C}| = t, then there are 2
2n−(s+t)

2 such FSRs.

Proof. A mapping θ : Fn2 → Fn2 is an n-stage FSR if and only if θ is a permutation and

θ(∗, x1, . . . , xn−1) = (x1, . . . , xn−1, ∗) for any (x1, . . . , xn−1) ∈ Fn−12 . In the following, we will

construct such a mapping.
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For every state X in C, define θ(X) = Y, where Y is the successor of X in C. Let

B = {X|X /∈ C, X̂ ∈ C}. For every state X in B, define θ(X) = Ỹ, where Y is the successor

of X̂ in C. Let A = Fn2 \ (B ∪ C). It is easy to see, there are 2n − (s + t) elements in A.

Since the states in A take the form of conjugate pairs, there are 2n−(s+t)
2

conjugate pairs in

A. For a conjugate pair (X, X̂) in A, let Y and Ỹ be the two possible successor of X and

X̂. Define θ(X) = Y and θ(X̂) = Ỹ (or θ(X) = Ỹ and θ(X̂) = Y). It is obvious that, θ is a

bijection and θ(∗, x1, . . . , xn−1) = (x1, . . . , xn−1, ∗) for any (x1, . . . , xn−1) ∈ Fn−12 . So the first

assertion is proved. Since for any conjugate pair (X, X̂) in A there are exactly two ways to

define its’ image under θ, there are 2
2n−(s+t)

2 such FSRs.

Generally, for any set of non-intersecting cycles C1, C2, · · · , Ck in the n-stage de Bruijn

graph, there exists an FSR contains these cycles. Let |A| = s and |{X|X /∈ A, X̂ ∈ A}| = t

where A = C1 ∪ C2 ∪ · · · ∪ Ck, then there are 2
2n−(s+t)

2 such FSRs.

Theorem 4. Let σ be a permutation of Fn2 such that, σ−1θfσ is an n-stage FSR for any

n-stage FSR θf . Then σ = I or D.

Proof. Let σ be such a permutation that, σ−1θfσ is an n-stage FSR for any n-stage FSR θf .

According to Lemma 1, it is sufficient to show that σ is an automorphism of the n-th order

de Bruijn graph Gn, that is, X→ Y in Gn implies σ(X)→ σ(Y) in Gn for any X and Y.

Let C = (X1,X2, . . . ,Xl) be a cycle in Gn. According to Lemma 2, there exists an FSRf

that contains C. By the definition of σ, we know σ−1θfσ is also an FSR, denoted by FSRg.

It is easy to see, E = (σ(X1), σ(X2), . . . , σ(Xl)) is a cycle in FSRg, therefore, E is a cycle in

Gn. Let X and Y be two states such that X is a predecessor of Y in Gn. Then there exist

a cycle C1 in Gn such that C1 = (X,Y, ∗, . . . , ∗). Since (σ(X), σ(Y), ∗, . . . , ∗) is also a cycle

in Gn, we know σ(X) is a predecessor of σ(Y) in Gn. Considering that σ is a bijection, we

get the conclusion that σ is an automorphism of Gn.

In the following, we consider the case θf is a maximum-length FSR. Let Mn be the set

of n-stage maximum-length FSRs and define

A(Mn) = {σ|σ−1θfσ is an FSR for any θf ∈Mn}.

It is obvious that, both I and D belong to A(Mn). An interesting question is: whether

A(Mn) contains some other elements except I and D? The answer to this question is no,

and some lemmas are needed before the proof.

Lemma 4. Let (x0, x1, . . . , xn−1) be an n-stage state such that (x1, x2, . . . , xn−1) 6= (0, 0, . . . , 0)

or (1, 1, . . . , 1), then both (x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 0) and (x0, x1, . . . , xn−1) →
(x1, . . . , xn−1, 1) can be extended to full cycles.
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Proof. Let f be a linear Boolean function that correspond to a primitive polynomial p(x)

of degree n. FSRf contains two cycles, i.e., the cycle C0 contains only the all zero state

(0, 0, . . . , 0) and the cycle C1 contains all the states except the all zero state. Without

lose of generality, suppose (x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 0) is in C1. Then FSRf+1

contains two cycles, i.e., the cycle C2 that contains only the all one state (1, 1, . . . , 1)

and the cycle C3 that contains all the state except the all one state. It can be verified,

(x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 1) is in C3. So (x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 0) can

be extended to the full cycle generated by FSR with characteristic function f+x01x
0
2 · · ·x0n−1,

and (x0, x1, . . . , xn−1)→ (x1, . . . , xn−1, 1) can be extended to the full cycle generated by FSR

with characteristic function f + 1 + x11x
1
2 · · ·x1n−1, where xa11 x

a2
2 · · ·x

an−1

n−1 denote the Boolean

function that takes value 1 on the point (a1, a2, . . . , an−1) and takes value 0 on the other

points.

Lemma 5. Let σ be a bijection of Fn2 such that, σ−1θfσ is an n-stage FSR for any n-stage

maximum length FSR θf , then we have

1. σ(X) = (0, 0, . . . , 0) implies X = (0, 0, . . . , 0) or (1, 1, . . . , 1);

2. σ(X) = (1, 1, . . . , 1) implies X = (0, 0, . . . , 0) or (1, 1, . . . , 1).

Proof. We just consider the case σ(X) = (0, 0, . . . , 0), and the other case can be proved

similarly. Assume X = (x0, x1, . . . , xn−1). The proof is divided into three cases.

Suppose (x1, x2, . . . , xn−1) 6= (0, 0, . . . , 0) or (1, 1, . . . , 1). According to Lemma 4, both

(x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 0) and (x0, x1, . . . , xn−1) → (x1, . . . , xn−1, 1) can be ex-

tended to full cycles, say M1 and M2 respectively. Let σ(M) be the full cycle derived from the

image of the full cycle M under σ. From the definition of σ, both σ(M1) and σ(M2) are full

cycles that contain σ((x0, x1, . . . , xn−1)) → σ((x1, . . . , xn−1, 0)) and σ((x0, x1, . . . , xn−1)) →
σ((x1, . . . , xn−1, 1)) respectively. Since

σ((x0, x1, . . . , xn−1)) = (0, 0, . . . , 0),

one of

σ((x0, x1, . . . , xn−1))→ σ((x1, . . . , xn−1, 0))

and

σ((x0, x1, . . . , xn−1))→ σ((x1, . . . , xn−1, 1))

will be (0, 0, . . . , 0)→ (0, 0, . . . , 0) which is impossible.

Suppose (x1, x2, . . . , xn−1) = (0, 0, . . . , 0). We need to show x0 = 0. Suppose the opposite,

i.e., x0 = 1, then the two predecessor of X = (1, 0, . . . , 0) in the n-th order de Bruijn graph

Gn are (0, 1, 0, . . . , 0) and (1, 1, 0, . . . , 0). According to Lemma 4, both (0, 1, 0, . . . , 0) →
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(1, 0, . . . , 0) and (1, 1, 0, . . . , 0)→ (1, 0, . . . , 0) can be extended to full cycles, say M1 and M2

respectively. From the definition of σ, both σ(M1) and σ(M2) are full cycles that contain

σ((0, 1, 0, . . . , 0)) → σ((1, 0, . . . , 0)) and σ((1, 1, 0, . . . , 0)) → σ((1, 0, . . . , 0)) respectively.

Since

σ((1, 0, . . . , 0)) = (0, 0, . . . , 0),

one of

σ((0, 1, 0, . . . , 0))→ σ((1, 0, . . . , 0))

and

σ((1, 1, 0, . . . , 0))→ σ((1, 0, . . . , 0))

will be (0, 0, . . . , 0)→ (0, 0, . . . , 0) which is impossible.

The proof for the case (x1, x2, . . . , xn−1) = (1, 1, . . . , 1) is similar.

Lemma 6. Let σ be a permutation of Fn2 such that, σ−1θfσ is an n-stage FSR for any

n-stage maximum length FSR θf , then there are two cases may happen:

1. σ((0, 0, . . . , 0)) = (0, 0, . . . , 0), σ((1, 1, . . . , 1)) = (1, 1, . . . , 1),

σ((0, . . . , 0, 1)) = (0, . . . , 0, 1), σ((1, 0, . . . , 0)) = (1, 0, . . . , 0),

σ((0, 1, . . . , 1)) = (0, 1, . . . , 1), σ((1, . . . , 1, 0)) = (1, . . . , 1, 0)

2. σ((0, 0, . . . , 0)) = (1, 1, . . . , 1), σ((1, 1, . . . , 1)) = (0, 0, . . . , 0),

σ((0, . . . , 0, 1)) = (1, . . . , 1, 0), σ((1, 0, . . . , 0)) = (0, 1, . . . , 1),

σ((0, 1, . . . , 1)) = (1, 0, . . . , 0), σ((1, . . . , 1, 0)) = (0, . . . , 0, 1)

Proof. According to Lemma 5, there are two cases may happen:

1. σ((0, 0, . . . , 0)) = (0, 0, . . . , 0), σ((1, 1, . . . , 1)) = (1, 1, . . . , 1),

2. σ((0, 0, . . . , 0)) = (1, 1, . . . , 1), σ((1, 1, . . . , 1)) = (0, 0, . . . , 0),

We just consider Case 1, and the other case can be proved similarly.

It is easy to see, (0, 0, . . . , 0)→ (0, 0, . . . , 1) can be extended to a full cycle, say M1. From

the definition of σ, σ(M1) is a full cycle that contains σ((0, 0, 0, . . . , 0)) → σ((0, 0, . . . , 1)).

Since σ((0, 0, . . . , 0)) = (0, 0, . . . , 0), we have: σ((0, 0, 0, . . . , 0)) → σ((0, 0, . . . , 1)) is just

(0, 0, 0, . . . , 0) → (0, 0, . . . , 1), therefore, σ((0, . . . , 0, 1)) = (0, . . . , 0, 1). Similarly we can

show that σ((1, 0, . . . , 0)) = (1, 0, . . . , 0), σ((0, 1, . . . , 1)) = (0, 1, . . . , 1) and σ((1, . . . , 1, 0)) =

(1, . . . , 1, 0).

Theorem 5. Let σ be a bijection of Fn2 such that, σ−1θfσ is an n-stage FSR for any n-stage

maximum length FSR θf , then σ = I or D.
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Proof. Let σ be such a bijection that, σ−1θfσ is an n-stage FSR for any n-stage maximum

length FSR θf . According to Lemma 6, there are two cases may happen. In the rest of this

proof, we always assume Case 1 of Lemma 6.

According to Lemma 1, it is sufficient to show σ is an automorphism of the n-th order

de Bruijn graph Gn, that is, X → Y in Gn implies σ(X) → σ(Y) in Gn for any X and Y.

Let A be a set that contains the following eight edges in the n-stage de Bruijn graph

(0, 0, . . . , 0)→ (0, 0, . . . , 0), (0, 0, . . . , 0)→ (0, . . . , 0, 1),

(1, 0, . . . , 0)→ (0, 0, . . . , 0), (1, 0, . . . , 0)→ (0, . . . , 0, 1),

(1, 1, . . . , 1)→ (1, 1, . . . , 1), (1, 1, . . . , 1)→ (1, . . . , 1, 0),

(0, 1, . . . , 1)→ (1, . . . , 1, 1), (0, 1, . . . , 1)→ (1, . . . , 1, 0).

Let X→ Y be an edge in Gn. If X→ Y ∈ A, then we have

σ(X) = X and σ(Y) = Y,

therefore, σ(X) → σ(Y) is in Gn. If X → Y /∈ A, then X → Y can be extended to a full

cycle, say M . From the definition of σ, σ(M) is a full cycle that contains σ(X) → σ(Y).

Therefore, σ(X)→ σ(Y) is in Gn.

At the end of this paper, we present an example supporting Theorem 5.

Example 3. There are two de Bruijn cycles of order 3:

C1 = (000, 001, 011, 111, 110, 101, 010, 100),

C2 = (000, 001, 010, 101, 011, 111, 110, 100).

Denote the corresponding FSRs by FSRf and FSRg respectively. Define

A(f) = {σ|σ−1θfσ is an FSR}.

Then we have

A(f) = {I,D, θf , θ2f , . . . , θ7f , Dθf , Dθ2f , . . . , Dθ7f},

A(g) = {I,D, θg, θ2g , . . . , θ7g , Dθg, Dθ2g , . . . , Dθ7g}.

For simplicity of presentation, we denote a state (x0, x1, . . . , xn−1) ∈ Fn2 by a decimal number

between 0 and 2n − 1: x02
n−1 + x12

n−2 + · · ·+ xn−1. A bijection of F3
2

σ =

(
0 1 2 3 4 5 6 7

i0 i1 i2 i3 i4 i5 i6 i7

)
is denoted by σ = (i0, i1, i2, i3, i4, i5, i6, i7). The table below shows the elements in A(f) and

A(g), from which we know A(M3) = A(f) ∩ A(g) = {I,D}.
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Table 1: The elements in A(f) and A(g)

elements in A(f) elements in A(g)

I = (0, 1, 2, 3, 4, 5, 6, 7) I = (0, 1, 2, 3, 4, 5, 6, 7)

D = (7, 6, 5, 4, 3, 2, 1, 0) D = (7, 6, 5, 4, 3, 2, 1, 0)

θf = (1, 3, 4, 7, 0, 2, 5, 6) θg = (1, 2, 5, 7, 0, 3, 4, 6)

θ2f = (3, 7, 0, 6, 1, 4, 2, 5) θ2g = (2, 5, 3, 6, 1, 7, 0, 4)

θ3f = (7, 6, 1, 5, 3, 0, 4, 2) θ3g = (5, 3, 7, 4, 2, 6, 1, 0)

θ4f = (6, 5, 3, 2, 7, 1, 0, 4) θ4g = (3, 7, 6, 0, 5, 4, 2, 1)

θ5f = (5, 2, 7, 4, 6, 3, 1, 0) θ5g = (7, 6, 4, 1, 3, 0, 5, 2)

θ6f = (2, 4, 6, 0, 5, 7, 3, 1) θ6g = (6, 4, 0, 2, 7, 1, 3, 5)

θ7f = (4, 0, 5, 1, 2, 6, 7, 3) θ7g = (4, 0, 1, 5, 6, 2, 7, 3)

Dθg = (6, 5, 2, 0, 7, 4, 3, 1) Dθf = (6, 4, 3, 0, 7, 5, 2, 1)

Dθ2g = (5, 2, 4, 1, 6, 0, 7, 3) Dθ2f = (4, 0, 7, 1, 6, 3, 5, 2)

Dθ3g = (2, 4, 0, 3, 5, 1, 6, 7) Dθ3f = (0, 1, 6, 2, 4, 7, 3, 5)

Dθ4g = (4, 0, 1, 7, 2, 3, 5, 6) Dθ4f = (1, 2, 4, 5, 0, 6, 7, 3)

Dθ5g = (0, 1, 3, 6, 4, 7, 2, 5) Dθ5f = (2, 5, 0, 3, 1, 4, 6, 7)

Dθ6g = (1, 3, 7, 5, 0, 6, 4, 2) Dθ6f = (5, 3, 1, 7, 2, 0, 4, 6)

Dθ7g = (3, 7, 6, 2, 1, 5, 0, 4) Dθ7f = (3, 7, 2, 6, 5, 1, 0, 4)

5 Conclusion

In this paper, the conditions for two feedback shift registers (FSRs) with the same cycle

structure are considered. We determine the cycle structures of PSRs and prove the unique-

ness of the cycle structures of PCRs and PSRs. In the view of group theory, two FSRs have

the same cycle structure if and only if they are conjugate with each other. Since a conjugate

of an FSR may no longer an FSR, it is interesting to consider the permutations that always

transfer an FSR to an FSR, and it is showed that there are exactly two such permutations,

i.e., I and D. Furthermore, we show that they are just the two bijections that transfer any

maximum length FSR to an maximum length FSR.
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