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Abstract. We revisit the question of achieving differential privacy with
realistic imperfect randomness. In the design of differentially private
mechanisms, it’s usually assumed that uniformly random source is avail-
able. However, in many situations it seems unrealistic, and one must
deal with various imperfect random sources. Dodis et al. (CRYPTO’12)
proposed that differential privacy can be achieved with Santha-Vazirani
(SV) source via adding a stronger property called SV-consistent sampling
and left open the question if differential privacy is possible with more re-
alistic (i.e., less structured) sources than SV source. A new source, called
Bias-Control Limited (BCL) source, introduced by Dodis (ICALP’01),
as a generalization of the SV source and sequential bit-fixing source, is
more realistic. Unfortunately, if we nationally expand SV-consistent sam-
pling to the BCL source, the expansion is hopeless to achieve differential
privacy. One main reason is that SV-consistent sampling requires “con-
secutive” strings, while some strings can’t be generated from “non-trivial”
BCL source.

Motivated by this question, we introduce a new appealing property, called
compact BCL-consistent sampling, the degeneration of which is different
from SV-consistent sampling proposed by Dodis et al. We prove that if
the mechanism based on the BCL source satisfies this property, then it’s
differentially private. Even if the BCL source is degenerated into the SV-
source, our proof is much more intuitive and simpler than that of Dodis
et al. Further, we construct explicit mechanisms using a new truncation
technique as well as arithmetic coding. We also propose its concrete
results for differential privacy and accuracy. While the results of [DY14]
imply that if there exist differentially private mechanisms for imperfect
randomness, then some parameters should have some constraints, ours
show explicit construction of such mechanisms whose parameters match
the prior constraints.

1 Introduction

Traditional cryptographic models take for granted the availability of perfect
randomness, i.e., sources that output unbiased and independent random bit-
s. However, in many settings this assumption seems unrealistic, and one must



2 Y.Q. Yao, Z.J. Li

deal with various imperfect sources of randomness. Some well known examples
of such imperfect random sources are physical sources, biometric data, secrets
with partial leakage, and group elements from Diffie-Hellman key exchange. To
abstract this concept, several formal models of realistic imperfect sources have
been described. Please see [DY14] for a summary. Roughly speaking, they can
be divided into extractable and non-extractable. Extractable sources allow for
deterministic extraction of nearly perfect randomness. Moreover, while the ques-
tion of optimizing the extraction rate and efficiency has been very interesting,
from the qualitative perspective such sources are good for any application where
perfect randomness is sufficient. Unfortunately, it was quickly realized that many
realistic sources are non-extractable [SV86,CG88,Dod01]. The simplest example
is Santha-Vazirani (SV) source [SV86], which produces an infinite sequence of
bits r1, r2, . . ., with the property that Pr[ri = 0 | r1 . . . ri−1] ∈ [ 1−δ2 , 1+δ

2 ], for
any setting of the prior bits r1, . . . , ri−1. Santha and Vazirani [SV86] showed
that there exists no deterministic extractor Enc : {0, 1}n → {0, 1} capable of
extracting even a single bit of bias strictly less than δ from the δ-SV source,
irrespective of how many SV bits r1, . . . , rn it is willing to wait for.

Despite this pessimistic result, ruling out the “black-box compiler” from per-
fect to imperfect (e.g., SV) randomness for all applications, people still hope that
specific “non-extractable” sources (e.g., SV sources), are sufficient for concrete
applications. Indeed, there are already a series of positive results for simulating
probabilistic polynomial-time algorithms [VV85, SV86, CG88, Zuc96, ACRT99]
and authentication applications [MW97,DOPS04,DKRS06,ACM+14]. Unfortu-
nately, the situation appears to be much less bright when dealing with privacy
applications, such as encryption, commitment, zero-knowledge, and some others.
Please see [DLMV12,DY14] for a survey. While a series of negative results seem
to strongly point in the direction that privacy inherently requires extractable
randomness, a recent work of Dodis et al. [DLMV12] put a slight dent into this
consensus, by showing that SV sources are provably sufficient for achieving a
more recent notion of privacy, called differential privacy (DP) [DMNS06].

The motivating scenario of differential privacy is a statistical database. The
purpose of a privacy-preserving statistical database is to enable the user to learn
released statistical facts without compromising the privacy of the individual
users whose data is in the database. Differential privacy ensures the removal or
addition of a single database item does not (substantially) affect the outcome of
any analysis [Dwo08]. More formally, a differentially private mechanism M(D, r)
uses its randomness r to “add enough noise” to the true answer f(D), where D
is some sensitive database of users, and f is some useful aggregate information
(query) about the users of D. On one hand, to preserve individual users’ privacy,
we want M to satisfy ξ-differential privacy, that is, for any neighboring databases
D1 and D2 (i.e., D1 and D2 differ on a single record), and for any possible output
z, e−ξ ≤ Pr

r
[M(D1, f ; r) = z]/Pr

r
[M(D2, f ; r) = z] ≤ eξ for small ξ > 0. On the

other hand, to keep the utility (or accuracy) of M , we hope the expected value
of |f(D) −M(D, f ; r)| over random r to be as small as possible. Usually, we
should make a tradeoff between differential privacy and utility.
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Additive-noise mechanisms [DMNS06,GRS09,HT10] have the form M(D, f ; r)
= f(D) +X(r), where X is an appropriately chosen “noise” distribution added
to guarantee ξ-DP. For instance, for counting queries, the right distribution is
the Laplace distribution [DMNS06]. However, we can not generate a “good e-
nough” sample of the Laplace distribution with SV sources. In fact, any accurate
and private additive-noise mechanism for a source R implies the existence of a
randomness extractor for R, essentially collapsing the notion of differential pri-
vacy to that of traditional privacy, and showing the impossibility of accurate and
private additive-noise mechanisms for SV sources [DLMV12]. From another per-
spective, an additive-noise mechanism must satisfy T1 ∩ T2 = ∅, based on which
an SV adversary can always succeed in amplifying the ratio Pr[r ∈ T1]/Pr[r ∈ T2]
(see [DLMV12]), or |Pr[r ∈ T1]−Pr[r ∈ T2]| (see [DY14]), where Ti is the set of
coins r with M(Di, f ; r) = z for i = 1, 2.

Dodis et al. [DLMV12] observed a necessary condition, called consistent sam-
pling (i.e., informally, |T1 ∩ T2| ≈ |T1| ≈ |T2|), to build SV-robust mechanisms.
They also introduced another condition to match the bit-by-bit property of SV
sources. The combination of the above two conditions is called SV-consistent
sampling. They builded a concrete accurate and private Laplace mechanism by
using some truncation and arithmetic coding techniques. Such a mechanism is
capable to work with all such distributions, provided that the utility ρ is now
relaxed to be polynomial of 1/ε, whose degree and coefficients depend on δ,
but not on the size of the database D. Coupled with the impossibility of tradi-
tional privacy with SV sources, this result suggested a qualitative gap between
traditional and differential privacy, but left the following open problem.

Open Question. Is differential privacy possible with more realistic (i.e., less
structured) sources than SV sources?

Dodis et al. [Dod01] introduced more realistic source, called Bias-Control
Limited (BCL) source, denoted as BCL(δ, b), which generates a sequence of bits
x1, x2, . . ., where for i = 1, 2, . . ., the value of xi can depend on x1, . . . , xi−1 in
one of the following two ways: (A) xi is determined by x1, . . . , xi−1, but this
happens for at most b bits, or (B) 1−δ

2 ≤ Pr[xi = 1 | x1, . . . , xi−1] ≤ 1+δ
2 ,

where 0 ≤ δ < 1. (See Definition 2.) In particular, when b = 0, it degenerates
into SV source of [SV86]; when δ = 0, it yields the bit-fixing source of [LLS89];
when b = 0 and δ = 0, it corresponds to the perfect randomness. If b ̸= 0 and
δ ̸= 0, we say the BCL source is non-trivial. The BCL source models the problem
that each of the bits produced by a streaming source is unlikely to be perfectly
random: slight errors (due to noise, measurement errors, and imperfections) of
the source are inevitable, and the situation that some of the bits could have
non-trivial dependencies on the previous bits (due to internal correlations, poor
measurement or improper setup), to the point of being completely determined
by them.

Hence, compared with SV source, the BCL source appears much more real-
istic, especially if the number of interventions b is somewhat moderate. Indeed,
since it naturally (and realistically!) relaxes SV source, for which non-trivial dif-
ferential privacy is possible, it will be interesting to see whether existing results
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can be expanded using BCL sources (especially for reasonably high b raised by
Dodis [Dod14]). Recently, Dodis and Yao [DY14] have shown an impossibil-
ity result for BCL source: when b ≥ Ω(log(ξρ)/δ), it’s impossible to achieve
(BCL(δ, b), ξ)-differentially private (see Definition 3) and (U , ρ)-accurate (see
Definition 4) mechanism for Hamming weight queries. In other words, if there
exists a (BCL(δ, b), ξ)-differentially private and (U , ρ)-accurate mechanism for
Hamming weight queries, then b ≤ O(log(ξρ)/δ). This result gives us a bit hope
to design differentially private and accurate mechanisms for some b.

Our Results and Techniques.
We try to naturally expand SV-consistent sampling to BCL-consistent sam-

pling, but can’t get positive results. It’s not surprising, as the “interval” property
(see Definition 9) is crucial to achieve SV-differential privacy, while the mecha-
nism based on BCL(δ, b) with b ̸= 0 can’t be an interval one.

Essentially, to achieve differential privacy, we need to restrict Pr
r←BCL(δ,b,n)

[r ∈

T1\T2]/ Pr
r←BCL(δ,b,n)

[r ∈ T2]. Similar to [DLMV12], consistent sampling is still a

necessary condition for building BCL-robust, differentially private mechanisms.
From the generation procedure of BCL(δ, b, n), we can upper bound the numer-
ator and lower bound the denominator by introducing the common prefix u of
T1 and T2. Instead of limiting |SUFFIX(u, n)|/|T1 ∪ T2| = 2n−|u|/|T1 ∪ T2| as
in [DLMV12], we limit n−|u|. The concept of compact BCL-consistent sampling
(Definition 10) emerges from this motivation.

However, we are confronted with some difficulties to construct explicit differ-
entially private mechanisms. According to the method of yielding finite precision
mechanisms in [DLMV12], we can’t upper bound n− |u| as a constant! To solve
this problem, we find a new truncation trick and hence design a new mechanism
(see Section 4.1). Our contributions are as follows.
– We introduce a new concept, called compact BCL-consistent sampling (see

Definition 10), to study differentially private mechanisms. It should be noted
that if b = 0, the degenerated BCL-consistent sampling is not the same as
the SV-consistent sampling (see Definition 9) proposed by [DLMV12].

– We prove that if the BCL source satisfies this property, then the correspond-
ing mechanism is differentially private (see Theorem 1). Even if the BCL
source is degenerated into SV source, compared with [DLMV12], our proof
is much more intuitive and simpler(see Theorem 1 with b = 0 and Theorem
4.4 of [DLMV12]).

– We use a new truncation technique and arithmetic coding in the design of a
finite-precision mechanism to satisfy compact BCL-consistent sampling (see
Section 4.1).

– We also give rigorous proofs about differential privacy and accuracy of this
kind of mechanism(Theorems 2 and 3).

– While the result of [DY14] implies if there exists a (BCL(δ, b), ξ)−differentially
private and (U , ρ)-accurate mechanism for the Hammimg weight queries,
then the parameters should satisfy ρ > 2b·log(1+δ)−9

ξ , we build such explicit
mechanisms and the parameters match the above condition (Theorem 4).
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2 Preliminaries

Let {0, 1}∗ def
=

∪
m∈Z+

{0, 1}m. We consider a distribution over {0, 1}∗ as continu-

ously outputting (possibly correlated) bits. We call a family R of distributions
over {0, 1}∗ a source. Denote U as the uniform source, which is the set contain-
ing only the distribution U on {0, 1}∗ that samples each bit independently and
uniformly at random. For a set S, we write US to denote the uniform distribu-
tion over S. For a distribution or a random variable R, let r ← R denote the
operation of sampling a random r according to R. For a positive integer n, let
[n]

def
= {1, 2, . . . , n}. Denote ⌊·⌉ as the nearest integer function.

Definition 1. ( [SV86]) Let x1, x2, . . . be a sequence of Boolean random vari-
ables and 0 ≤ δ < 1. A probability distribution X = x1x2 . . . over {0, 1}∗ is a
δ-Santha-Vazirani (SV) distribution, denoted by SV (δ), if for all i ∈ Z+ and for
every string s of length i−1, we have 1−δ

2 ≤ Pr[xi = 1 | x1x2 . . . xi−1 = s] ≤ 1+δ
2 .

We define the δ-Santha-Vazirani source SV(δ) to be the set of all δ-SV dis-
tributions. For SV (δ) ∈ SV(δ), we define SV (δ, n) as SV (δ) restricted to the
first n coins x1x2 . . . xn. We let SV(δ, n) be the set of all distributions SV (δ, n).

Definition 2. ( [Dod01]) Let x1, x2, . . . be a sequence of Boolean random vari-
ables and 0 ≤ δ < 1. A probability distribution X = x1x2 . . . over {0, 1}∗ is a
(δ, b)-Bias-Control Limited (BCL) distribution, denoted by BCL(δ, b), if for all
i ∈ Z+ and for every string s of length i − 1, the value of xi can depend on
x1, x2, . . . , xi−1 in one of the following two ways:

(A) xi is determined by x1, . . . , xi−1, but this happens for at most b bits.
This process of determining a bit is called intervention.

(B) 1−δ
2 ≤ Pr[xi = 1 | x1x2 . . . xi−1 = s] ≤ 1+δ

2 .
We define the (δ, b)-Bias-Control Limited source BCL(δ, b) to be the set of

all (δ, b)-BCL distributions. For a distribution BCL(δ, b) ∈ BCL(δ, b), we de-
fine BCL(δ, b, n) as the distribution BCL(δ, b) restricted to the first n coins
x1x2 . . . xn. We let BCL(δ, b, n) be the set of all distributions BCL(δ, b, n).

This source models the facts that physical sources can never produce com-
pletely perfect bits and some of the bits generated by a physical source could be
determined from the previous bits.

Remark 1. In particular, if b = 0, BCL(δ, b, n) degenerates into SV(δ, n) [SV86];
if δ = 0, it yields the sequential-bit-fixing source of Lichtenstein, Linial, and
Saks [LLS89]. The definitions and results in the reminder of this paper can be
degenerated into the counterparts for SV and sequential bit-fixing sources.

Consider a statistical database as an array of rows from some countable
set. Two databases are neighboring if they differ in exactly one row. Let D be
the space of all databases. For simplicity, we only consider the query function
f : D → Z. Recall some concepts mentioned in [DLMV12] as follows.
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Definition 3. Let ξ ≥ 0, R be a source, and F = {f : D → Z} be a family of
functions. A mechanism M is (R, ξ)-differentially private for F if for all neigh-
boring databases D1, D2 ∈ D, all f ∈ F , all possible outputs z ∈ Z, and all
distributions R ∈ R: Pr

r←R
[M(D1, f ; r) = z]/ Pr

r←R
[M(D2, f ; r) = z] ≤ 1 + ξ.

In what follows we employ the upper bound of the ratio of probabilities
introduced in [DLMV12] other than the traditional upper bound “eξ” to make
later calculations a little simpler. It’s reasonable since when ξ ∈ [0, 1], which is
the main useful range, we have eξ ≈ 1 + ξ, and when ξ ≥ 0, we always have
1 + ξ ≤ eξ.

Remark 2. As observed by Dodis et al. [DLMV12], here we assume that the
randomness r as input of the mechanism M is in {0, 1}∗, i.e., M has at its
disposal a possibly infinite number of random bits, but for two neighboring
databases D1, D2 ∈ D, query f ∈ F , and fixed outcome z, M needs only a
finite number of coins n

def
= τ̃(D1, D2, f, z), where τ̃ is a function, to determine

whether M(D1, f) = z and M(D2, f) = z. Furthermore, we assume that if
M(D1, f ; r) = z and M(D2, f ; r̃) = z where r, r̃ ∈ {0, 1}n, then providing M
with extra coins doesn’t change the output. Namely, for any r′ with r as its prefix
and r̃′ with r̃ as its prefix, we still have M(D1, f ; r

′) = z and M(D2, f ; r̃
′) = z.

Definition 4. Let ρ > 0, R be a source, and F = {f : D → Z} be a family of
functions. A mechanism M has (R, ρ)-utility (or accuracy) if for all databases
D ∈ D, all queries f ∈ F , and all distributions R ∈ R: Er←R[|M(D, f ; r) −
f(D)|] ≤ ρ.

One core problem in the area of differential privacy is to design accurate and
private mechanisms.

Definition 5. We say a function family F admits accurate and private mecha-
nisms w.r.t.R if there exists function g(·) s.t. for all ξ > 0 there exists mechanism
M(ξ) that is (R, ξ)-differentially private and has (R, g(ξ))-utility. M = {M(ξ)}
is called a class of accurate and private mechanisms for F w.r.t. R.

Though there are already some infinite additive mechanisms based on gaus-
sian, binomial, and Laplace distributions, we must specify how to approximate
them under finite precision in practice. When perfect randomness is available, we
can simply approximate a continuous sample within some “good enough” finite
precision, which is omitted in most differential privacy papers. Dodis et al. build-
ed finite-precision mechanisms under imperfect randomness SV(δ) [DLMV12].

Definition 6. For query f : D → Z, the sensitivity of f is defined as ∆f
def
=

max
D1,D2

∥f(D1) − f(D2)∥ for all neighboring databases D1, D2 ∈ D. For d ∈ Z+,

denote Fd = {f : D → Z | ∆f ≤ d}.

For clarity, in this paper we only consider the case d = 1. It’s straightforward
to extend all our results to any sensitivity bound d.
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Definition 7. The Laplace (or double exponential) distribution with mean µ

and standard deviation
√
2
ε , denoted as Lapµ, 1ε , has probability density func-

tion PDFLap
µ, 1ε

(x) = ε
2 · e

−ε|x−µ|. The cumulative distribution function is given by

CDFLap
µ, 1ε

(x) = 1
2 + 1

2 · sgn(x− µ) · (1− e−ε·|x−µ|).
If a random variable X has this distribution, denote X ∼ Lapµ, 1ε

1.

3 Compact BCL-Consistent Sampling and SV-Consistent
Sampling

Dodis et al. [DLMV12] introduced SV-consistent sampling. However, the proof
of “SV-consistent sampling implies differential privacy” (see Theorem 4.4 in
[DLMV12] for details) is complex. Moreover, its natural expansion to BCL source
is difficult and unknown to achieve differential privacy, as the proof of Theorem
4.4 in [DLMV12] depends on the fact that the values in T2 (resp. T1) constitutes
an interval (see Definition 9), while it may not be the case for BCL sources.

In this section, we introduce the concept of compact (ζ, c)-BCL-consistent
sampling. If b = 0, we get the concept of compact (ζ ′, c)-SV-consistent sampling.
Then we observe that these concepts are sufficient to design finite-precision dif-
ferentially private and accurate mechanisms based on BCL and SV sources.

Consider a mechanism M with randomness space {0, 1}∗. Denote T̃ (Di, f, z)
def
= {r ∈ {0, 1}∗ | z = M(Di, f ; r)}, where i ∈ {1, 2}, as the set of all coins
such that M outputs z when running on two neighboring databases D1 and
D2, query f , and randomness r. It should be noted that in our model only
n

def
= τ̃(D1, D2, f, z) coins need to be sampled to determine if M(D1, f) = z and

M(D2, f) = z. Therefore, let T (Di, f, z)
def
= {r ∈ {0, 1}n | z = M(Di, f ; r)} for

i ∈ {1, 2}, wlog, we assume that T̃ (Di, f, z) = T (Di, f, z) for i ∈ {1, 2}.
For m ∈ Z+ and x = x1, . . . , xm ∈ {0, 1}m, let SUFFIX(x)

def
= {y =

y1, y2, . . . ∈ {0, 1}∗ | xi = yi for all i ∈ [m]} as the set of all bit strings having x

as a prefix. For n ∈ Z+ where n ≥ m, let SUFFIX(x, n)
def
= SUFFIX(x)∩{0, 1}n.

Now consider two neighboring databases D1 and D2, f ∈ F , and a pos-
sible outcome z. Denote n

def
= τ̃(D1, D2, f, z). Let T1

def
= T (D1, f, z), T2

def
=

T (D2, f, z), and u
def
= argmax{|u′| | u′ ∈ {0, 1}≤n and T1∪T2 ⊆ SUFFIX(u′, n)}.

Then the ratio is
Pr

r←BCL(δ,b,n)
[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
=

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2 | r ∈ SUFFIX(u)]

Pr
r←BCL(δ,b,n)

[r ∈ T2 | r ∈ SUFFIX(u)]
.

Since SV source and BCL source both generate strings bit by bit, the calculation
of the ratio can be simplified.

Recall that the concepts of consistent sampling, interval mechanism, and
SV-consistent sampling [DLMV12] are as follows.
1 In this paper, we only consider the case that 1

ε
∈ Z.
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Definition 8. A mechanism M has ζ-consistent sampling if for all potential
outputs z ∈ Z, all queries f ∈ F , all neighboring databases D1, D2 ∈ D: |T1\T2|

|T2| ≤

ζ, where T1
def
= T (D1, f, z), T2

def
= T (D2, f, z) ̸= ∅.

Definition 9. Let c̃ > 1 and ζ > 0. We say a mechanism M is an interval
mechanism if for all f ∈ F , all D ∈ D, and all possible outcomes z ∈ Z,

T
def
= T (D, f, z), set {

n∑
i=1

ri · 2n−i | r1 . . . rn ∈ T} contains consecutive integers.

An interval mechanism has (ζ, c̃)-SV-consistent sampling if it has ζ-consistent
sampling and for all f ∈ F , all neighboring databases D1, D2 ∈ D, all possible
outcomes z ∈ Z, which define T1, T2, and u as above, |SUFFIX(u,n)|

|T1∪T2| ≤ c̃ holds.

Note that when b ̸= 0, BCL(δ, b, n) can’t generate all n-bit strings. The
corresponding mechanism can’t be an interval mechanism. Though Dodis et
al. [DLMV12] proposed that if M has (ζ, c̃)-SV-consistent sampling, then M is
(SV(δ), ξ)-differentially private. In that proof, the “interval” property is a basic
condition, we can’t follow that thought. We resort to a new property instead.

Definition 10. Let c be a constant and ζ > 0. A mechanism is a compact (ζ, c)-
BCL-consistent sampling mechanism if it has ζ-consistent sampling and for all
queries f ∈ F , all neighboring databases D1, D2 ∈ D, and all possible outcomes
z ∈ Z, which define T1, T2 and u as above, we have n− |u| ≤ c.

Theorem 1. If Mechanism M is a compact (ζ, c)-BCL-consistent sampling mech-
anism for (δ, b)-BCL-sources, then M is (BCL(δ, b), ξ)-differentially private, where
ξ ≤ ( 1+δ

1−δ )
c · [ 12 (1 + δ)]−b · ζ. In particular, for δ ∈ [0, 1), and c = O(1), we have

lim
ζ→0

( 1+δ
1−δ )

c · [ 12 (1 + δ)]−b · ζ = 0.

Proof. Assume that |T1\T2|
|T2| ≤ ζ and n− |u| ≤ c. For any r, r′ ∈ {0, 1}n, denote

r = r1 . . . rn and r′ = r′1 . . . r
′
n where ri, r

′
i ∈ {0, 1} for i ∈ [n]. Then

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
=

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2 | r ∈ SUFFIX(u)]

Pr
r←BCL(δ,b,n)

[r ∈ T2 | r ∈ SUFFIX(u)]

=

∑
r′∈T1\T2

Pr
r←BCL(δ,b,n)

[r = r′ | r′ ∈ SUFFIX(u)]∑
r′∈T2

Pr
r←BCL(δ,b,n)

[r = r′ | r′ ∈ SUFFIX(u)]

For any fixed r′ ∈ {0, 1}n, we have Pr
r←BCL(δ,b,n)

[r = r′ | r′ ∈ SUFFIX(u)] =

Pr
r←BCL(δ,b,n)

[r|u|+1 = r′|u|+1 | r1 . . . r|u| = u] × . . . × Pr
r←BCL(δ,b,n)

[rn = r′n |

r1 . . . r|u|r|u|+1 . . . rn−1 = ur′|u|+1 . . . r
′
n−1]. Therefore, Pr

r←BCL(δ,b,n)
[r ∈ T2] ≥

[ 12 (1 − δ)]n−|u| · |T2| and Pr
r←BCL(δ,b,n)

[r ∈ T1\T2] ≤ [ 12 (1 + δ)]n−|u|−b · |T1\T2|.

Correspondingly,
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Pr
r←BCL(δ,b,n)

[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
≤

[ 12 (1 + δ)]n−|u|−b

[ 12 (1− δ)]n−|u|
· |T1\T2|
|T2|

≤ (
1 + δ

1− δ
)n−|u| · [ 1

2
(1 + δ)]−b · ζ ≤ (

1 + δ

1− δ
)c · [ 1

2
(1 + δ)]−b · ζ

2

Remark 3. When b = 0, Theorem 1 holds for SV sources, while Theorem 4.4
of [DLMV12] can be naturally expanded for BCL sources, mainly because of the
“consecutive strings” requirement in the latter. Further, the proof here is much
simpler and more intuitive than that of [DLMV12].

4 Accurate and Private BCLCS Mechanisms

In this section, we construct finite-precision mechanisms that achieve compact
(ζ,O(1))-BCL-consistent sampling with sensitivity 1. We also propose that the
precision of the specific mechanism based on Laplace distribution introduced by
Dodis et al. [DLMV12] can be modified via this technique such that it becomes
a compact SV-consistent sampling mechanism. Then by Theorems 1 and 2, the
mechanism here and the modified mechanism of [DLMV12] are (BCL(δ, b), ξ)-
differentially private and (SV(δ), ξ′)-differentially private, where ξ′ is a specific
ξ by letting b = 0. We also show that these mechanisms have good bound on
utility when the random sampling is generated from the BCL source.

4.1 Explicit Construction

We construct an infinite-precision mechanism, called MCBCLCS
ε , then modify it to

a finite precision one, denoted as M
CBCLCS
ε . Recall that some truncation method

was proposed in [DLMV12] in order to get a finite mechanism, which leads to the
non-intuitive notion of SV-consistent sampling. However, it can’t be transplanted
to BCL sources. In this section, we develop another truncation technique. The
finite-precision mechanism is designed as follows.

Explicit Construction of the Mechanism:
Step 1 On input any neighboring databases D1, D2 ∈ D, f ∈ F , the infinite-

precision mechanism MCBCLCS
ε computes f(D1) and f(D2). Without loss of gen-

erality, assume that f(D1) = y and f(D2) = y − 1. MCBCLCS
ε (D1, f) (resp.

MCBCLCS
ε (D2, f)) outputs z1 ← 1

ε · ⌊ε · (y + Lap0, 1ε )⌉ (resp. z2 ← 1
ε · ⌊ε · (y − 1 +

Lap0, 1ε )⌉). Denote Zy (resp. Zy−1) as the output distribution of MCBCLCS
ε (D1, f)

(resp. MCBCLCS
ε (D2, f)) using arithmetic coding (see [DLMV12]).

Step 2 Suppose that y is fixed. Let sy(k)
def
= CDFLap

y, 1ε
(
k+ 1

2

ε ) and sy−1(k)
def
=

CDFLap
y−1, 1ε

(
k+ 1

2

ε ) for all k ∈ Z. Denote Iy(k) = [sy(k − 1), sy(k)) and Iy−1(k) =
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[sy−1(k − 1), sy−1(k)). Let s̄y−1(k − 1) (resp. s̄y−1(k)) be sy−1(k − 1) (resp.

sy−1(k)), rounded to the first n
def
= τ(min(f(D1), f(D2)), k/ε) = τ(y − 1, k/ε)

bits after the binary point. We round sy(k−1) (resp. sy(k)) to the first n def
= τ(y−

1, k/ε) bits after the binary point. Assume the binary decimal representation of
the rounded sy(k − 1) (resp. sy(k)) is 0.r1r2 . . . rn (resp. 0.q1q2 . . . qn), then let
s̄y(k−1) = 0.r1r2 . . . rn+0.r′1r

′
2 . . . r

′
n (resp. s̄y(k) = 0.q1q2 . . . qn+0.q′1q

′
2 . . . q

′
n),

where r′i = 0 for i ∈ [n− 1], and r′n = 1 (resp. q′i = 0 for i ∈ [n− 1] and q′n = 1).
Denote Īy−1(k) = [s̄y−1(k − 1), s̄y−1(k)) and Īy(k) = [s̄y(k − 1), s̄y(k)).

Step 3 Denote Zy (resp. Zy−1) as the output distribution of M
CBCLCS
ε (D1, f)

(resp. M
CBCLCS
ε (D2, f)), which approximates Zy (resp. Zy−1). For any sequence

r = r1, . . . , rn ∈ {0, 1}n, the real representation of r is REAL(r)
def
= 0.r1 . . . rn ∈

[0, 1]. We obtain distribution Zy (resp. Zy−1) by sampling a sequence of bits
r ∈ {0, 1}n (resp. r′ ∈ {0, 1}n) from a distribution BCL(δ, b, n) and outputting
k1

ε (resp. k2

ε ) where k1 ∈ Z (resp. k2 ∈ Z) is the unique integer such that
REAL(r) ∈ Īy(k1) (resp. REAL(r′) ∈ Īy−1(k2)).

2

From the above construction, for all k ∈ Z, we have

Pr[M
CBCLCS
ε (D1, f) =

k
ε ]

Pr[M
CBCLCS
ε (D2, f) =

k
ε ]

=
Pr[Zy = k

ε ]

Pr[Zy−1 = k
ε ]

=
|Īy(k)|
|Īy−1(k)|

.

Remark 4. It’s easy to prove that Iy−1(k)∩Iy(k) ̸= ∅. The set of points {sy(k)}k∈Z
partitions the interval [0, 1] into infinitely many intervals {Iy(k)

def
= [sy(k −

1), sy(k))}k∈Z. Similarly, the set of points {sy−1(k)}k∈Z partitions the interval

[0, 1] into infinitely many intervals {Iy−1(k)
def
= [sy−1(k − 1), sy−1(k))}k∈Z.

Remark 5. Note that we can view Iy−1(k) as having “shifted” Iy(k) slightly to
the right. Hence the truncation methods for the endpoints of Iy(k) and Iy−1(k)
are different in order to guarantee BCL-complete sampling.

4.2 Concrete Results for Differential Privacy and Accuracy

In this section, we show that our construction satisfies compact (ζ,O(1))-BCL-
consistent sampling and hence it’s differentially private. Then, we give a relation
between the result of [DY14] and ours.

Lemma 2 is one core step to achieve consistent sampling. Though it has
essentially been proved by Dodis et al. [DLMV12], there still exist some typos
there and the upper bound is not tight prior our work. Hence, we modify the
Lemma A.1 of [DLMV12] and get Lemma 2. More concretely, recall that Lemma
A.1. of [DLMV12] and partial proof are as follows.

Lemma 1. For all y, k ∈ Z, |I′
y(k)|

|Iy−1(k)| ≤ 6ε.
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Proof.
. . .
Case 3: If sy(k− 1) < sy−1(k− 1) < 1

2 ≤ sy−1(k− 1), then |I′
y(k)|

|Iy−1(k)| ≤
1−e−ε

2(e−1) .
. . .

2

It should be noted that: (1) It’s obvious that “ sy−1(k−1) < 1
2 ≤ sy−1(k−1)”

never holds. (2) “ |I
′
y(k)|

|Iy−1(k)| ≤
1−e−ε

2(e−1) ” is wrong! Since −1 − 1
ε ≤ v < −1, without

loss of generality, assume that 1
ε is an even integer and v = −1− 1

2ε . Then

|I ′y(k)|
|Iy−1(k)|

=
eε − 1

2 · e−εv − e−2εv−ε−1 − eε
=

1− e−ε

2(e
1
2 − 1)

>
1− e−ε

2(e− 1)
,

which stands in contradiction to the inequality |I′
y(k)|

|Iy−1(k)| ≤
1−e−ε

2(e−1) .
By modifying Lemma 1, we get that

Lemma 2. Denote I ′y(k)
def
= Iy(k) \ Iy−1(k) = [sy(k − 1), sy−1(k − 1)). For all

y, k ∈ Z and ε ∈ (0, 1), we have |I ′y(k)|/|Iy−1(k)| < e · ε.

Proof. Note that if x < y, CDFLap
y, 1ε

(x) < 1
2 ; otherwise, CDFLap

y, 1ε
(x) ≥ 1

2 .

|I ′y(k)|
|Iy−1(k)|

=
sy−1(k − 1)− sy(k − 1)

sy−1(k)− sy−1(k − 1)
=

CDFLap
y−1, 1ε

(
k− 1

2

ε )− CDFLap
y, 1ε

(
k− 1

2

ε )

CDFLap
y−1, 1ε

(
k+ 1

2

ε )− CDFLap
y−1, 1ε

(
k− 1

2

ε )
.

We consider four cases:
Case 1: If 1

2 ≤ sy(k − 1) < sy−1(k − 1) < sy−1(k), then |I′
y(k)|

|Iy−1(k)| =
eε+1−e
e−1 .

Case 2: If sy(k − 1) < 1
2 ≤ sy−1(k − 1) < sy−1(k), then

|I ′y(k)|
|Iy−1(k)|

=
1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)] − 1
2 · e

ε(
k− 1

2
ε −y)

1− 1
2 · e

−ε[
k+1

2
ε −(y−1)] − {1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)]}
.

For simplicity, denote v
def
=

k− 1
2

ε −y. By the assumption, we have that −1 ≤ v <
0. Correspondingly,

|I ′y(k)|
|Iy−1(k)|

=
1− 1

2e
−ε(v+1) − 1

2e
εv

−1
2e
−ε(v+1+ 1

ε ) + 1
2e
−ε(v+1)

=
−(eεv − 1)2 − e−ε + 1

−e−1−ε + e−ε
≤ −e−ε + 1

−e−1−ε + e−ε
=

eε+1 − e

e− 1
.
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Case 3: If sy(k − 1) < sy−1(k − 1) < 1
2 ≤ sy−1(k), then

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1− 1
2 · e

−ε[
k+1

2
ε −(y−1)] − 1

2 · e
ε[

k− 1
2

ε −(y−1)]
.

For simplicity, denote v
def
=

k− 1
2

ε − y. By the assumption, we have that −1− 1
ε ≤

v < −1. Correspondingly,

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε(v+1) − 1
2 · e

εv

1− 1
2 · e

−ε(v+ 1
ε+1) − 1

2 · eε(v+1)

=
eε − 1

2 · e−εv − e−2εv−ε−1 − eε

=
eε − 1

−(e−εv− 1+ε
2 − e

1+ε
2 )2 + e1+ε − eε

<
eε − 1

−(e ε−1
2 − e

1+ε
2 )2 + e1+ε − eε

=
1− e−ε

1− e−1
.

Case 4: If sy(k − 1) < sy−1(k − 1) < sy−1(k) <
1
2 , then

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1
2 · e

ε[
k+1

2
ε −(y−1)] − 1

2 · e
ε[

k− 1
2

ε −(y−1)]
=

1− e−ε

e− 1
.

For ε ∈ (0, 1), we have

1− e−ε

e− 1
<

1− e−ε

1− e−1
=

e− e1−ε

e− 1
<

eε · (e− e1−ε)

e− 1
=

eε+1 − e

e− 1
< e · ε.

The last inequality holds according to the following three facts: (1) g1(x)
def
=

ex+1−e
e−1 is a convex function; (2) g2(x)

def
= e · x is a linear function; (3) g1(0) =

g2(0) and g1(1) = g2(1).
2

Compared with the above lemma, ours is much better. In fact, our upper
bound is tight.

Theorem 2. Mechanism M
CBCLCS
ε is a compact ((2b + 1) · e · ε, log( e·(2

b+1)
1−e−1 ))-

BCL-consistent sampling mechanism for (δ, b)-BCL sources. Therefore, M
CBCLCS
ε

is (U , 2e · ε)-differentially private and (BCL(δ, b), ξ)-differentially private for ξ =

( 1+δ
1−δ )

log(
e·(2b+1)

1−e−1 ) · ( 1+δ
2 )−b · (2b + 1) · e · ε.
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Proof Sketch. Denote I ′y(k)
def
= Iy(k)\Iy−1(k) = [sy(k−1), sy−1(k−1)). Assume

that Y is a distribution BCL(δ, b, n) and S0
def
= {r ∈ {0, 1}n | Pr[Y = r] ̸= 0}.

Let STR (I, n)
def
= {r ∈ {0, 1}n | REAL(r) ∈ I} as the the set of all n-bit strings

whose real representation lies in I. Let T1 = STR (Īy(k), n) ∩ S0 and T2 =

STR (Īy−1(k), n)∩S0. Then T1 \T2 = STR (Ī ′y(k), n)∩S0. Let τ(y− 1, k/ε)
def
=

log 1
|Iy−1(k)|+log(2b+1). Then we prove that for all y, k ∈ Z, |STR (Ī ′y(k), τ(y−

1, k/ε))∩S0|/|STR (Īy−1(k), τ(y− 1, k/ε))∩S0| ≤ (2b+1) · e · ε (see Corollary 1
below) and |SUFFIX(u, τ(y−1, k/ε))∩S0| ≤ e · (2b+1)/(1−e−1) (see Corollary
2 below), where u be the longest common prefix of all strings in Ī

def
= Īy(k) ∪

Īy−1(k). Therefore, by Definition 10 and Theorem 1, we obtain Theorem 2.

Proof.
Let I ′′y (k)

def
= Iy−1(k) \ Iy(k) = [sy(k), sy−1(k)). Similarly, we can get that

that there exists a constant C such that |I
′′
y (k)|
|Iy(k)| < C ·ε for y, k ∈ Z and ε ∈ (0, 1).

Lemma 3. For all y, k ∈ Z, we have

(1) |Ī ′y(k)| ≤ |I ′y(k)|,
(2) |Iy−1(k)|+ 2−τ(y−1,k/ε) ≥ |Īy−1(k)| ≥ |Iy−1(k)| − 2−τ(y−1,k/ε),
(3) |Iy(k)|+ 2−τ(y−1,k/ε) ≥ |Īy(k)| ≥ |Iy(k)| − 2−τ(y−1,k/ε).

Proof.
(1) Since sy−1(k − 1) ≥ s̄y−1(k − 1), and s̄y(k − 1) ≥ sy(k − 1)− 2−τ(y−1,k/ε) +
2−τ(y−1,k/ε), we get |Ī ′y(k)| ≤ |I ′y(k)|.
(2) One one hand, since s̄y−1(k) ≥ sy−1(k) − 2−τ(y−1,k/ε) and s̄y−1(k − 1) ≤
sy−1(k − 1), we have |Īy−1(k)| ≥ |Iy−1(k)| − 2−τ(y−1,k/ε). One the other hand,
since sy−1(k) ≥ s̄y−1(k) and sy−1(k − 1) ≤ s̄y−1(k − 1) + 2−τ(y−1,k/ε), we have
|Iy−1(k)|+ 2−τ(y−1,k/ε) ≥ |Īy−1(k)|. Hence, Lemma 3 (2) holds.
(3) One one hand, since s̄y(k) ≥ sy(k)−2−τ(y−1,k/ε)+2−τ(y−1,k/ε) and s̄y(k−1) ≤
sy(k − 1) + 2−τ(y−1,k/ε), we have |Īy(k)| ≥ |Iy(k)| − 2−τ(y−1,k/ε). One the other
hand, since s̄y(k) ≤ sy(k) + 2−τ(y−1,k/ε) and s̄y(k − 1) ≥ sy(k − 1), we have
|Īy(k)| ≤ |Iy(k)|+ 2−τ(y−1,k/ε). Hence, Lemma 3 (3) holds.

2

Assume that Y is a distribution BCL(δ, b, n) and S0
def
= {r ∈ {0, 1}n | Pr[Y =

r] ̸= 0}. Denote STR (I, n)
def
= {r ∈ {0, 1}n | REAL(r) ∈ I} as the the set of all

n-bit strings whose real representation lies in I. Let T1 = STR (Īy(k), n)∩S0 and
T2 = STR (Īy−1(k), n) ∩ S0. Then T1 \ T2 = STR (Ī ′y(k), n) ∩ S0. By induction,
it can be easily seen that 2n−b ≤ |S0| ≤ 2n.

Lemma 4. Let τ(y− 1, k/ε)
def
= log 1

|Iy−1(k)| +log(2b+1). Then for all y, k ∈ Z,

(1) |STR (Ī ′y(k), τ(y − 1, k/ε)) ∩ S0| ≤ (2−b + 1) · e · ε,
(2) |STR (Īy−1(k), τ(y − 1, k/ε)) ∩ S0| ≥ 1.
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Proof.
(1) Let n

def
= τ(y − 1, k/ε) for shorthand. Consider |Ī ′y(k)| as the probability of

sampling a sequence r from US0 such that r ∈ STR (Ī ′y(k), n)∩S0, where 2n−b ≤
|S0| ≤ 2n. Hence, |Ī ′y(k)| =

∑
r∈STR(Ī′

y(k),n)∩S0

1
|S0| ≥

∑
r∈STR(Ī′

y(k),n)∩S0

1
2n =

|STR(Ī ′y(k), n)∩S0|· 1
2n . Therefore, by Lemma 3, we get |STR (Ī ′y(k), n)∩S0| ≤

2n · |Ī ′y(k)| ≤ 2n · |I ′y(k)| = (2b + 1) · |I
′
y(k)|

|Iy−1(k)| ≤ (2b + 1) · e · ε.
(2) Since |Īy−1(k)| =

∑
r∈STR (Īy−1(k),n)∩S0

1
|S0| ≤

∑
r∈STR (Īy−1(k),n)∩S0

( 12 )
n−b =

|STR (Īy−1(k), n) ∩ S0| · ( 12 )
n−b, by Lemma 3, we get

|STR (Īy−1(k), n) ∩ S0| ≥ 2n−b · |Īy−1(k)| ≥ 2n−b · (|Iy−1(k)| − 2−n) = 1.

2

Remark 6. We can guarantee that n is legal, in the sense that the modification
of the endpoints in Iy−1(k) and Iy(k) with respect to n does not cause intervals
to “disappear” or for consecutive intervals to “overlap”.

From Lemma 4, we get that

Corollary 1. Denote τ(y−1, k/ε)
def
= log 1

|Iy−1(k)|+log(2b+1). For all y, k ∈ Z,
we have

|STR (Ī ′y(k), τ(y − 1, k/ε)) ∩ S0|
|STR (Īy−1(k), τ(y − 1, k/ε)) ∩ S0|

≤ (2b + 1) · e · ε.

Corollary 2. Denote τ(y − 1, k/ε)
def
= log 1

|Iy−1(k)| + log(2b + 1). Let u be the

longest common prefix of all strings in Ī
def
= Īy(k) ∪ Īy−1(k). Then

|SUFFIX(u, τ(y − 1, k/ε)) ∩ S0| ≤
e · (2b + 1)

1− e−1
.

Proof. For simplicity, let n
def
= τ(y − 1, k/ε). Let u′ be the longest common

prefix of all strings in I
def
= Iy(k) ∪ Iy−1(k). Then we have |SUFFIX(u, n)| ≤

|SUFFIX(u′, n)|. We bound |SUFFIX(u, n)| by bounding the number of n-bit
strings to the left or right of Ī (depending on which endpoint of the interval [0,
1] is closer to I).

Now we calculate the size of the interval [sy(k − 1), 1] (resp. [0, sy−1(k)]),
which is an approximation of the size of [s̄y(k − 1), 1] (resp. [0, s̄y−1(k)]). Then
we can upper bound how many n-bit strings there are in the interval [s̄y(k−1), 1]
(resp. [0, s̄y−1(k)]). Let S

def
= [sy(k − 1), 1].
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Recall that sy(k)
def
= CDFLap

y, 1ε
(
k+ 1

2

ε ) for all k ∈ Z and

CDFLap
y, 1ε

(x) =


1

2
· eε(x−y), if x < y;

1− 1

2
· e−ε(x−y), if x ≥ y.

Note that if x < y, CDFLap
y, 1ε

(x) < 1
2 ; otherwise, CDFLap

y, 1ε
(x) ≥ 1

2 .
I ′y(k) = [sy(k − 1), sy−1(k − 1)) and I ′y+1(k) = [sy+1(k − 1), sy(k − 1)).

For simplicity, denote v
def
=

k− 1
2

ε − y. We consider four cases.
Case 1: Assume that 1

2 ≤ sy+1(k− 1) < sy(k− 1) < sy−1(k− 1). Then v ≥ 1.

|I ′y(k)|
|I ′y+1(k)|

=
1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)] − 1 + 1
2 · e

−ε(
k− 1

2
ε −y)

1− 1
2 · e

−ε(
k− 1

2
ε −y) − 1 + 1

2 · e
−ε[

k− 1
2

ε −(y+1)]

=
1

eε
.

Case 2: Assume that sy+1(k − 1) < 1
2 ≤ sy(k − 1) < sy−1(k − 1). Then

0 ≤ v < 1.

|I ′y(k)|
|I ′y+1(k)|

=
e−εv − e−ε(v+1)

2− e−εv − eε(v−1)
=

1− e−ε

−e−ε(eεv − eε)2 + eε − 1
.

Hence,
1

eε
<
|I ′y(k)|
|I ′y+1(k)|

≤ 1.

Case 3: Assume that sy+1(k − 1) < sy(k − 1) < 1
2 ≤ sy−1(k − 1). Then

−1 ≤ v < 0.

|I ′y(k)|
|I ′y+1(k)|

=
1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)] − 1
2 · e

ε(
k− 1

2
ε −y)

1
2 · e

ε(
k− 1

2
ε −y) − 1

2 · e
ε[

k− 1
2

ε −(y+1)]

=
1− 1

2 · e
−ε(v+1) − 1

2 · e
εv

1
2 · eεv −

1
2 · eε(v−1)

=
−(e−εv− ε

2 − e
ε
2 )2 + eε − 1

1− e−ε
.

Therefore,

1 <
|I ′y(k)|
|I ′y+1(k)|

≤ eε.

Case 4: Assume that sy+1(k−1) < sy(k−1) < sy−1(k−1) < 1
2 . Then v < −1.
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|I ′y(k)|
|I ′y+1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1
2 · e

ε(
k− 1

2
ε −y) − 1

2 · e
ε[

k− 1
2

ε −(y+1)]

=
1
2 · e

ε(v+1) − 1
2 · e

εv

1
2 · eεv −

1
2 · eε(v−1)

= eε.

We only analyze Case 1, the other cases are analogous.
Since I ′y(k) and I ′y+1(k) are consecutive intervals for all y ∈ Z, we have

|S| =
y∑

j=−∞
|I ′j(k)| ≤

y∑
j=−∞

|I ′y(k)|(e−ε)y−j =
|I ′y(k)|
1− e−ε

≤
|I ′y(k)|

(1− 1
e ) · ε

.

The last inequality holds from the facts: (1) g1(x)
def
= 1 − e−x is a concave

function; (2) g2(x)
def
= (1 − 1

e ) · x is a linear function; (3) g1(0) = g2(0) and
g1(1) = g2(1).

Let S̄
def
= [s̄y(k − 1), 1]. Then |S̄| ≤ |S| ≤ |I′

y(k)|
(1− 1

e )·ε
.

On the other hand, |S̄| can be considered as the probability of sampling a
sequence r from the uniform distribution US0 such that r ∈ STR (S̄, n)∩S0 and
2n−b ≤ |S0| ≤ 2n. Therefore,

|S̄| =
∑

r∈STR (S̄,n)∩S0

1

|S0|
≥

∑
r∈STR (S̄,n)∩S0

(
1

2
)n = |STR (S̄, n) ∩ S0| · (

1

2
)n.

Correspondingly,

|STR (S̄, n)∩S0| ≤ 2n·|S̄| ≤ 2n·
|I ′y(k)|

(1− 1
e ) · ε

=
|I ′y(k)|
|Iy−1(k)|

· (2
b + 1)

(1− 1
e ) · ε

≤ e · (2b + 1)

1− e−1
.

Hence,

|SUFFIX(u, n) ∩ S0| ≤ |STR (S̄, n) ∩ S0| ≤
e · (2b + 1)

1− e−1
.

2

Combining Theorem 1, Corollary 1, and Corollary 2, we get Theorem 2.
2

Theorem 3. M
CBCLCS
ε has (BCL(δ, b), O( 1ε ·

1
1−δ ))-utility and (U , O( 1ε ))-utility.

Proof. We only need to prove that for all neighboring databases D1, D2 ∈ D, all
f ∈ F , and all BCL(δ, b) ∈ BCL(δ, b), Er←BCL(δ,b)[|M

CBCLCS
ε (D1, f ; r)−f(D1)|]

and Er←BCL(δ,b)[|M
CBCLCS
ε (D2, f ; r)−f(D2)|] are both upper bounded by O( 1ε ·

1
1−δ ). Without loss of generality, assume that f(D1) = y and f(D2) = y−1. Then

Er←BCL(δ,b)[|M
CBCLCS
ε (D1, f ; r) − y|] =

∞∑
k=−∞

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k
ε ] · |

k
ε − y|.
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Let a be the longest common prefix of all strings in STR (Īy(k), τ(y −
1, k/ε)). Denote I0

def
= SUFFIX(a0, τ(y − 1, k/ε)) ∩ STR(Īy(k), τ(y − 1, k/ε))

and I1
def
= SUFFIX(a1, τ(y−1, k/ε))∩STR(Īy(k), τ(y−1, k/ε)). Thus, I0∪I1 =

STR(Īy(k), τ(y − 1, k/ε)). Correspondingly, we have

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k

ε
] ≤ (

1 + δ

2
)|a0|+(

1 + δ

2
)|a1| ≤ 2·(1 + δ

2
)
log( 1

|Īy(k)| ).

Similarly, we can conclude that

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D2, f ; r) =

k

ε
] ≤ 2 · (1 + δ

2
)
log( 1

|Īy−1(k)| ).

Claim. For all y, k ∈ Z, we have |Iy(k)| ≤ 1
2 · e

− 1
2 · (e− 1) · e−|k−εy|.

Proof. We consider three cases.

Case 1: Assume that k− 1
2

ε − y ≥ 0 and k+ 1
2

ε − y ≥ 0. Then

|Iy(k)| = 1− 1

2
· e−ε(

k+1
2

ε −y) − [1− 1

2
· e−ε(

k− 1
2

ε −y)] =
1

2
· e− 1

2 · (e− 1) · e−|k−εy|.

Case 2: Assume that k− 1
2

ε − y < 0 and k+ 1
2

ε − y ≥ 0. From the fact that
1− 1

2x ≤
1
2 ·

1
x for all x > 0, we obtain

|Iy(k)| = 1− 1

2
· e−ε(

k+1
2

ε −y) − 1

2
· eε(

k− 1
2

ε −y) ≤ 1

2
· e− 1

2 · (e− 1) · e−|k−εy|.

Case 3: Assume that k− 1
2

ε − y < 0 and k+ 1
2

ε − y < 0. Then |Iy(k)| = 1
2 · e

− 1
2 ·

(e− 1) · e−|k−εy|.
2

By Lemma 3, |Īy(k)| ≤ |Iy(k)|+2−τ(k−1,y) = |Iy(k)|+ 1
2b+1
|Iy−1(k)|. Hence,

log(
1

|Īy(k)|
) ≥ log

1
1
2e
− 1

2 (e− 1)(1 + 1
2b+1

)
+ log(emin{|k−εy|,|k−εy+ε|})

≥ min{|k − εy|, |k − εy + ε|} ≥ |k − εy| − 1.

Similarly, log( 1
|Īy−1(k)|

) ≥ |k − εy| − 1. Therefore,
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∞∑
k=−∞

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k

ε
] · |k

ε
− y|

≤
0∑

k=−∞

2 · (1 + δ

2
)|εy−k|−1 · |y − k

ε
|+

∞∑
k=1

2 · (1 + δ

2
)|k−εy|−1 · |k

ε
− y|

≤ 2

ε
· (1 + δ

2
)−1 · [

∞∑
k=1

(
1 + δ

2
)k−1 · k +

0∑
k=−∞

(
1 + δ

2
)−k · (−k + 1)]

= (
1 + δ

2
)−1 · 4

ε
· 1

1− ( 1+δ
2 )2

= O(
1

ε
· 1

1− δ
).

Similarly, we get that

∞∑
k=−∞

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D2, f ; r) =

k

ε
] · |k

ε
− (y − 1)| ≤ O(

1

ε
· 1

1− δ
).

When δ = 0 and b = 0, the BCL source degenerates into the uniform source.
Therefore, the mechanism M

CBCLCS
ε has (BCL(δ, b), O( 1ε ·

1
1−δ ))-utility and

(U , O( 1ε ))-utility.
2

From Theorems 2 and 3, we get that

Theorem 4. There exists an explict (BCL(δ, b), ξ)−differentially private and
(U , ρ)-accurate mechanism M for the Hammimg weight queries where

ρ =
2b·log(1+δ)−9

ξ
·( 2

1 + δ
)b+1· 2

b + 1

(1 + δ)b
·(1 + δ

1− δ
)
log

(2b+1)e

1−e−1 · 211

1− ( 1+δ
2 )2
·e > 2b·log(1+δ)−9

ξ
.

One the other hand, recall that Dodis and Yao [DY14] obtained that

Theorem 5. If b ≥ log(ξρ)+9
log(1+δ) = Ω( log(ξρ)+1

δ ), then no (BCL(δ, b), ξ)−differentially
private and (U , ρ)-accurate mechanism for the Hammimg weight queries exists.

Therefore, we conclude that

Corollary 3. Assume that the mechanism M is (BCL(δ, b), ξ)−differentially pri-
vate and (U , ρ)-accurate for the Hammimg weight queries, then ρ > 2b·log(1+δ)−9

ξ .

Corollary 3 implies that it’s possible to construct a (BCL(δ, b), ξ)−differentially
private and (U , ρ)-accurate mechanism for Hammimg weight queries, where ρ >
2b·log(1+δ)−9

ξ . In this paper, we show an explicit construction of such mechanisms.
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Remark 7. If we replace the truncation method in [DLMV12] with the one in
Step 2 of this paper, we can prove that the modified mechanism in [DLMV12]
satisfies the compact (ζ ′, O(1))-SV-consistent sampling. Therefore, the resulting
mechanism is differentially private. We can also prove that it’s accurate. The
proofs are similar to Theorems 2 and 3.
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