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Abstract. We present a new definition of computationally binding commitment
schemes in the quantum setting, which we call “collapse-binding”. The definition
applies to string commitments, composes in parallel, and works well with rewinding-
based proofs. We give simple constructions of collapse-binding commitments in the
random oracle model, giving evidence that they can be realized from hash functions
like SHA-3. We evidence the usefulness of our definition by constructing three-round
statistical zero-knowledge quantum arguments of knowledge for all NP languages.
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1 Introduction

We study the definition and construction of computationally binding string commitment
schemes in the quantum setting. A commitment scheme is a two-party protocol consisting
of two phases, the commit and the open phase. The goal of the commitment is to allow
the sender to transmit information related to a message m during the commit phase in
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such a way that the recipient learns nothing about the message (hiding property). But
at the same time, the sender cannot change his mind later about the message (binding
property). Later, in the open phase, the sender reveals the message m and proves that
this was indeed the message that he had in mind earlier. We will focus on non-interactive
classical commitments, that is, the commit and open phase consists of a single classical
message. However, the adversary who tries to break the binding or hiding property
will be a quantum-polynomial-time algorithm. At the first glance, it seems that the
definition of the binding property in this setting is straightforward; we just take the
classical definition but consider quantum adversaries instead of classical ones:

Definition 1 (Classical-style binding – informal) No quantum-polynomial-time al-
gorithm A can output, except with negligible probability, a commitment c (i.e., the message
sent during the commit phase) as well as two openings u, u′ that open c to two different
messages m,m′.

(Formal definition in Section 2.) Unfortunately, this definition turns out to be inadequate
in the quantum setting. Ambainis, Rosmanis, and Unruh [ARU14] show the existence
of a commitment scheme (relative to a special oracle) such that: The commitment is
classical-style binding. Yet there exists a quantum-polynomial-time adversary A that
outputs a commitment c, then expects a message m as input, and then provides valid
opening information for c and m. That is, the adversary can open the commitment c to
any message of his choosing, even if he learns that message only after committing. This
is in clear contradiction to the intuition of the binding property. How is this possible,
as Definition 1 says that the adversary cannot produce two different openings for the
same commitment? In the construction from [ARU14], the adversary has a quantum
state |Ψ〉 that allows him to compute one opening for a message of his choosing, however,
this computation will destroy the state |Ψ〉. Thus, the adversary cannot compute two
openings simultaneously, hence the commitment is classically-binding. But he can open
the commitment to an arbitrary message once, which shows that the commitment scheme
is basically useless despite being classically-binding.1

1.1 Prior definitions

We now discuss various definitions that appeared in the literature and that circumvent the
above limitation of the classical-binding property. (We do not discuss the hiding property
here, because that one does not have any comparable problems. See Definition 8 below
for the definition of hiding.) In each case, we discuss some limitations of the definitions
to motivate the need for a new definition for computationally binding commitments. The
reader only interested in our results can safely skip this section.

Sum-binding. The most obvious solution is to simply require that the adversary
cannot open successfully to each of two messages: That is:

1Note that for classical adversaries, the classical-binding property gives useful guarantees: If an
adversary can produce an opening for any message m using some classical algorithm, he can also produce
two openings for different messages m,m′ by running that algorithm twice.
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Definition 2 (Sum-binding – informal) Consider a bit commitment scheme. (I.e.,
one can only commit to m = 0 or m = 1.)

Given an adversary A, let pb be the probability that the recipient accepts in the following
execution: A commits, then A is given b, and then A provides opening information for
message b.

A commitment is sum-binding iff for any quantum-polynomial-time adversary A,
p0 + p1 ≤ 1 + negligible.

Note that even with an ideal commitment, p0 +p1 = 1 is possible (the adversary just picks
b := 0 in the commit phase with probability p0, and b := 1 else). So p0 +p1 ≤ 1+negligible
is the best we can expect if we allow for a negligible probability of an attack. The
sum-binding definition has occurred implicitly and explicitly in different variants in
[BCJL93, May97, DMS00, CDMS04, CSST11]. We use the name sum-binding here to
distinguish it from the other definitions of binding discussed here since it does not have
an established name.

Although it avoids the attack described above, the sum-binding definition has a
number of disadvantages:

• It is specific to the bit commitment case. There is no straightforward generalization
to the the string commitment case (i.e., where the message m does not have to be
a single bit). See [CDMS04] for discussion why obvious approaches fail.2

• It is unclear how the definition behaves when we use the commitment several times.
(I.e., it is not clear how it behaves under composition.) For example, given bits
m1, . . . ,mn, what are the security guarantees if we commit to each of the mi? (Be
it in parallel, or sequentially.) Basically, we would expect that all commitments
together form a binding commitment on the string m = m1 . . .mn, but this is
something we cannot even express using the sum-binding definition.

• It is not clear how useful sum-binding commitments are as subprotocols in larger
protocols. That is, is the sum-binding property strong enough to allow to prove the
security of complex protocols using commitments? While there are constructions of
sum-binding in the literature (e.g., [DMS00]), we are not aware of research where
(computational) sum-binding commitments are used as subprotocols.

CDMS-binding. Crépeau, Dumais, Mayers, and Salvail [CDMS04] suggest a general-
ization of the sum-binding property to string commitments. The basic idea is: Instead of
bounding p0 + p1 ≤ 1 + negligible where pm is the probability that the adversary open his
commitment as m ∈ {0, 1}, we could bound

∑
m pm ≤ 1 + negligible where m ranges over

all bitstrings. However, as discussed in [CDMS04], this would be too strong a requirement.
(Basically, this is because the sum

∑
m pm has exponentially many summands, so even

2One obvious attempt would be: Let pm be the probability that A opens the commitment as m when
given m after the commit phase. Then for all m0,m1, we have pm0 + pm1 ≤ 1 + negligible.

However, this leaves the possibility that the adversary A achieves the following: In the commit phase,
A outputs c,m0,m1 where m0,m1 are uniformly distributed. Then A gets a bit b. Then A opens c with
message mb. This should not be possible if c is binding, yet for this A, pm is negligible for any fixed m.
(Since Pr[m ∈ {m0,m1}] is negligible.)
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negligible attack probabilities can add up to large probabilities.) Instead, they proposed
the following definition:

Definition 3 (CDMS-binding – informal) Let F be a family of functions. Fix a

string commitment scheme. For f ∈ F , let p̃fy be the probability that the recipient accepts
in the following execution: A commits. A gets y. A tries to open the commitment to
some m with f(m) = y.

We call the commitment scheme F -CDMS-binding iff for all adversaries A and all
f ∈ F , we have

∑
y p̃

f
y ≤ 1 + negligible.

Now if all f ∈ F have a polynomial-size range, the sum
∑

y p̃
f
y will have polynomially

many summands. The intuition behind this definition is that every function f ∈ F
represents some property of the committed message m (e.g., f(m) is the parity of m).
Then, if a commitment scheme is F -CDMS-binding, this intuitively means that the
although the adversary might be able to change his mind about the message m, he cannot
change his mind about f(m). (E.g., if the parity function is in F , this means that the
adversary will be committed to the parity of the message m.) [CDMS04] successfully used
this definition (for a specific class F ) to show that using quantum communication and a
commitment, we can construct an oblivious transfer protocol. (Note however that their
protocol is different and more complex than the original OT protocol from [BBCS91].)

Although the CDMS-binding definition generalizes the sum-binding definition to the
case of string commitments, it comes with its own challenges:

• The definition is parametrized by a specific family F of functions that specifies
in which way the commitment should be binding. This function family has to
be chosen dependent on the particular use case. This makes the definition less
universal and canonical.

• To the best of our knowledge, no construction of CDMS-binding commitments is
known. Crépeau et al. [CDMS04] conjecture that the protocol from [CLS01] can be
extended to a CDMS-binding one for functions F with small range, but no proof or
construction is given.

• It is not known whether the definition is composable. If we commit to messages
m1, . . . ,mn individually using F -CDMS-binding commitments, does this constitute
an F ′-CDMS-binding commitment on m := m1‖ . . . ‖mn? If so, for which F ′?

• While CDMS-binding commitments have successfully been used in a larger protocol
(namely, the OT protocol from [CDMS04]), we believe that in many contexts, the
definition is still not very easy to use. At least in classical cryptography, one often
uses the fact that it is possible to extract the committed message by rewinding
(basically, one runs the open phase, saves the opened message, and rewinds to before
the opening phase). It is not clear how to do that with CDMS-binding commitments.
For example, it is not clear how one could use CDMS-binding commitments in the
construction of sigma-protocols that are quantum arguments of knowledge (as done
in Section 7 below using our definition of binding commitments).
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Perfectly-binding commitments. One possibility to solve all the problems men-
tioned so far is simply to use perfectly-binding commitments.

Definition 4 (Perfectly-binding – informal) A commitment scheme is perfectly-
binding if there exists no tuple (c,m, u,m′, u′) with m 6= m′ such that u is a valid
opening for c with message m, and u′ is a valid opening for c with message m′.

However, if we restrict ourselves to perfectly-binding commitments, we get the following
disadvantages:

• A perfectly-binding commitment cannot be statistically hiding [May97]. That is, the
hiding property cannot hold against computationally unlimited adversaries. That
means that we give up on information-theoretical security for one party just because
we do not have a suitable definition for the computationally-binding property. For
example, the constructions in [Unr12] are only computational zero-knowledge (not
statistical zero-knowledge) because perfectly-binding commitments are used.

• Perfectly-binding commitments cannot be short. That is, the length of the commit-
ment must be as long as the length of the committed message. So by using only
perfectly-binding commitments, we may lose efficiency.

UC commitments. One further possibility is to use commitments that are UC-
secure [Unr10]. Since the security of a protocol using a UC-secure commitment can be
reduced to the security of the same protocol using an ideal (in particular perfectly-binding)
commitment, UC-secure commitments are easy to use. Yet, this solution again comes
with disadvantages:

• UC-commitments do not exist without the use of additional setup such as, e.g.,
a common reference strings (CRS). It is possible to chose the CRS in a pre-
computation phase using a coin-toss protocol [DL09]. But that increases the round
complexity of the resulting protocol (and, incidentally, loses the UC security and
possibly even the concurrent composability of the resulting protocol).

• In the construction of UC-secure commitment schemes, trapdoors are used that allow
the simulator to extract the committed message. This implies that constructions of
UC-secure commitment are usually more complex, less efficient, and use stronger
computational assumptions.

• At least when using a CRS, UC commitments cannot be short.
Damg̊ard, Fehr, Lunemann, Salvail, and Schaffner [DFL+09] use so-called dual-mode
commitments, these are somewhat weaker than UC commitments. Yet, they also use
extraction using a trapdoor in the CRS. Hence the disadvantages of UC commitments
apply to dual-mode commitments as well.

1.2 Our contribution

We give a new definition for the computational-binding property for commitment schemes,
called “collapse-binding” (Section 2). This definition is composable (several collapse-
binding commitments are also collapse-binding together), works well with quantum
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rewinding (see below), does not conflict with statistical hiding (as perfectly-binding
commitments would), allows for short commitments (i.e., the commitment can be shorter
than the committed message, in contrast to perfectly-binding commitments, and to
extractable commitments in the CRS model). Basically, collapse-binding commitments
seem to be in the quantum setting what computationally-binding commitments are in
the classical setting.

We show that collision-resistant hash functions are not sufficient for getting collapse-
binding or even just sum-binding commitments (Section 3), at least when using standard
constructions, and relative to an oracle. We present a strengthening of collision-resistant
hash functions, “collapsing hash functions” that can serve as a drop-in replacement for
collision-resistant hash functions (Section 4). Using collapsing hash functions, we show
several standard constructions of commitments to be collapse-binding (Section 5).

We conjecture that standard cryptographic hash functions such as SHA-3 [NIS14] are
collapsing (and thus lead to collapse-binding commitments). We give evidence for this
conjecture by proving that the random oracle is a collapsing hash function.

We show that the definition of collapse-binding commitments is usable by extending
the construction of quantum proofs of knowledge from [Unr12] (Section 7). Their
construction uses perfectly-binding commitments (actually, strict-binding, which is slightly
stronger) to get proofs of knowledge. We show that when replacing the perfectly-binding
commitments with collapse-binding ones, we get statistical zero-knowledge quantum
arguments of knowledge. In particular, this shows that collapse-binding commitments
work well together with rewinding.

1.3 Our techniques

Collapse-binding commitments. To explain the definition of collapse-binding com-
mitments, first consider a perfectly-binding commitment. That is, when an adver-
sary A outputs a commitment c, there is only one possible message mc that A
can open c to. Hence, if the adversary A outputs a superposition of messages

A B

A Vc B

A Vc B

A B
Vc

c ok

b/
M

/
S

/
U

A B

A Vc B

A Vc Mok B

A B
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b/
M

/
S

/
U

Figure 1: Games from the definition of
collapse-binding commitments.

that he can open c to, that superposition will nec-
essarily be in the state |mc〉. Hence, we can char-
acterize perfectly-binding commitments by requir-
ing: when an adversary outputs a superposition
of messages that he can open the commitment c
to, that superposition will necessarily be a sin-
gle computational basis vector (i.e., no non-trivial
superposition).

To express this more formally, consider the cir-
cuit in Figure 1 (a). Here the adversary A outputs
a commitment c (classical message). Furthermore,
he outputs three quantum registers S, U , M . S
contains his state. M is supposed to contain a
superposition of messages, U a superposition of
corresponding opening informations. Then we
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apply the measurement Vc. This measurement
measures whether U,M contain matching opening
information/message. More formally, Vc measures whether U,M is a superposition of
states |u,m〉 such that u is valid opening information for message m and commitment
c. Let ok = 1 if the measurement succeeds. Then we feed the registers S,U,M back to
the second part B of the adversary. B outputs a classical bit b. As discussed before, a
commitment is perfectly-binding iff for all adversaries A, the state of M after measuring
ok = 1 is a computational basis vector.

The state of a register is a computational basis vector (or, synonymously: is in a
collapsed state) iff measuring that register in the computational basis does not change
that state. Consider the circuit in Figure 1 (b). Here we added a measurement Mok on
M after Vc. Mok is a complete measurement in the computational basis, but is executed
only if ok = 1. Since Mok disturbs the state of M iff that state is not a computational
basis vector, we can rephrase the definition of perfectly-binding commitments:

A commitment is perfectly-binding iff, for all computationally unlimited adversaries
A,B, Pr[b = 1] is equal in Figures 1 (a) and 1 (b) where b is the output (i.e., guess) of B.3

Now we are ready to weaken this characterization to get a computational binding prop-
erty. Basically, we require that the same holds for quantum-polynomial-time adversaries:

Definition 5 (Collapse-binding – informal) A commitment is collapse-binding iff,
for all quantum-polynomial-time adversaries A,B, Pr[b = 1] in Figure 1 (a) is negligibly
close to Pr[b = 1] in Figure 1 (b).

In other words, with a perfectly-binding commitment, the adversary cannot produce a
superposition of different messages that are contained in the commitment. But with a
collapse-binding commitment, the adversary is forced to produce a state that looks like it
is not a superposition of different messages. For the purpose of computational security,
this will often be as good.

We quickly explain why collapse-binding commitments work well with quantum
rewinding. In the case of quantum rewinding (e.g., in the analysis of proofs of knowl-
edge [Unr12]), one problem is that we might need to run an adversary until he opens a
commitment c, then to measure the opened message, and then to go back to an earlier
state by applying the inverse of the adversary. The problem is that measuring the opened
message will disturb the state of the adversary, and thus make rewinding impossible.
Except: if the opened message cannot be distinguished from being already in a collapsed
state (as guaranteed by collapse-binding), then measuring the opened message does not
disturb the state in a noticeable way and we can rewind. (See the discussion on arguments
of knowledge below.)

Constructing collapse-binding commitments. Collapse-binding commitments are
useful only if they exist. Perfectly-binding commitments are easily seen to be collapse-
binding, but then we cannot have statistically hiding or short commitments. In the

3Our exposition above was not very rigorous, but it is easy to see that this is indeed an “if and only if”.
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classical setting, we get practical computationally-binding commitments from a collision-
resistant hash function H. The most obvious construction is to send c := H(m‖u) for
uniformly random u of suitable length. We call this the “canonical commitment”. The
canonical commitment is easily seen to be classical-style binding if H is collision-resistant,
and it is statistically hiding if H is a random oracle. To get rid of the random-oracle
requirement, we can use a somewhat more complex constructions by Halevi and Micali
[HM96] instead. Unfortunately, both the canonical commitment and the Halevi-Micali
commitments are not collapse-binding if H is merely collision-resistant. In fact, relative
to a specific oracle and using a specific collision-resistant hash function, there is a total
break where the adversary can unveil the commitment to any message of his chosing.
To show this, we tweak the technique from [ARU14] to construct a hash function H
such that the adversary can sample an image c of H together with a quantum state
|Ψ〉 such that: Given the state |Ψ〉, for any m, the adversary can find a random u with
H(m‖u) = c. But this process destroys |Ψ〉, so the adversary cannot find two preimages
of c; the hash function is collision-resistant. But the canonical commitment, based on
this H, is trivially broken. Similar constructions break the Halevi-Micali commitments.

Since collision-resistance seems too weak a property in the quantum setting (at least
for our purposes), we give a strengthening of collision-resistance: collapsing hash functions:

Definition 6 (Collapsing hash function – informal) An adversary is valid if he
outputs a classical value c, and a register M containing a superposition of messages m
with H(m) = c. We call H collapsing iff no quantum-polynomial-time adversary can
distinguish whether we measure M in the computational basis or not, before giving the
register M back to the adversary. (This is formalized with games similar to those in
Figure 1.)

We can show that collapsing hash functions are collision-resistant, and they share a
number of structural properties with collision-resistant functions. E.g., injective functions
are collapsing, and the composition H ◦H ′ of collapsing functions is collapsing.

Due to the similarity between the definition of collapsing hash functions and collapse-
binding commitments, we can show that the canonical commitment and the Halevi-Micali
commitments are collapse-binding if H is collapsing.

However, this leaves the question: do collapsing functions exist in the first place?
We conjecture that common industrial hash function like SHA3 [NIS14] are actually
collapsing (not only collision-resistant). In fact, we argue that the collapsing property
should be a requirement for the design of future hash functions (in the sense that a hash
function where the collapsing property is in doubt should not be selected for industry
standards), since collision-resistance is not sufficient if we wish to achieve post-quantum
secure cryptography. We support our conjecture that sufficiently unstructured functions
are collapsing by proving that the random oracle is collapsing:

Random oracles are collapsing. We now sketch on a high level our proof that
random oracles are collapsing, or, equivalently, that a random function is collapsing
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with high probability. In our analysis, we assume that the adversary can query the
random oracle on the superposition of different inputs; this is necessary for having a
realistic modeling of hash functions [BDF+11]. As a first step, we identify a new property,
“half-collision resistance”:

Definition 7 (Half-collision resistance – informal) A half-collision of H is a
string x such that there exists an x′ 6= x with H(x′) = H(x). A hash function H
is half-collision resistant if not adversary can: Output a half-collision with non-negligible
probability. And never output a non-half-collision. (The adversary may output ⊥ though.)

That is, half-collision resistance says that the adversary cannot find non-injective inputs
to H without sometimes accidentally outputting injective inputs. We show: if H is
half-collision resistant, it is collapsing.

The proof idea is: if H is not collapsing, the adversary can produce a superposition M
of messages m with H(m) = c and notice whether M is being measured. The latter
implies that M must be a superposition of at least two messages m with H(m) = c.
Hence by measuring M , the adversary gets a half-collision. Much additional work is
needed to make sure that the adversary does not accidentally measure the register M
when it is not a nontrivial superposition.

(The half-collision resistance property might be useful independent of the proof that
the random oracle is collapsing. When trying to construct collapsing hash functions
based on other assumptions, half-collision resistance might be easier to verify since its
definition consists of purely classical games.)

Next we construct a random function H∗ : X → Y with |Y | = 2
3 |X|. That is, H∗

is slightly compressing. The domain of H∗ is partitioned into two sets X1,X2 with
|X1| = 2|X2|. H∗ is injective on X2, and 2-to-1 on X1. Besides those constraints, H∗ is
uniformly random. We can then show that H∗ is half-collision resistant. (Basically, this
means that the adversary cannot identify the subset X1.) Furthermore, we can show that
H∗ is indistinguishable from a random function H : X → Y . The latter fact is shown
by step-wise rewriting of the definition of H∗ until we reach H (crucially using the fact
that random functions and random injections are indistinguishable [Zha13]). Since H∗ is
half-collision resistant, it is collapsing. And since H is indistinguishable from H∗, H is
collapsing.

We now know that random functions H : X → Y are collapsing if |Y | = 2
3 |X| (i.e.,

if they are slightly compressing). However, we want that H is collapsing for arbitrary
X and Y , as long as Y has superpolynomial size. For |X| ≤ |Y |, H is indistinguishable
from a random injection, which in turn is collapsing. The interesting case is |X| > |Y |
(namely, when H is compressing). In this case, we show (following an idea from [Zha13])
that H can be written as H = fn ◦ · · · ◦ f1 where all fi are slightly compressing. (Some
technical care is needed when |Y |/|X| is not a power of 2

3 .) Since all fi are collapsing,
so is H. This shows that a random function H is collapsing, in other words, that the
random oracle is collapsing (if its range has superpolynomial size).

Quantum arguments of knowledge. We illustrate the use of collapse-binding com-
mitments by revisiting the construction of proofs of knowledge from Unruh [Unr12].
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Unruh showed that a sigma-protocol (i.e., a particular kind of three round proof system)
is a quantum proof of knowledge if it has two properties: special soundness (from two
interactions with the same first and different second messages one can efficiently compute
a witness) and strict soundness (the first and second message of a valid interaction
determine the third). In the classical setting, only special soundness is needed. In the
quantum setting, strict soundness is additionally required to allow for quantum rewinding:
In the proof from [Unr12], we run the malicious prover to get his response (the third
message). Then we measure the response. Then we rewind the prover (by applying
the inverse of the unitary transformation representing the prover). Then we run the
prover again to get a second answer. Special soundness then implies that from the
two responses, we get a witness. However, we need to make sure that measuring the
prover’s response before rewinding does not disturb the state (too much). In [Unr12], this
follows from strict soundness: strict soundness guarantees that the response is uniquely
determined, and thus measuring the response does not disturb the state. To achieve
strict soundness, [Unr12] lets the prover commit to all possible responses in the first
message using perfectly-binding commitments.4 The drawback of this solution is that the
commitments cannot be statistically hiding, so we cannot get statistical zero-knowledge
proofs using the method from [Unr12].

What happens if we replace the perfectly-binding commitments by collapse-binding
commitments containing the response? In that case, the response will not necessarily
be information-theoretically determined by the first two messages. However, the defi-
nition of collapse-binding commitments guarantees that measuring that response will
be indistinguishable from not measuring it. Thus, if we measure the response, the state
might be disturbed, but it will be computationally indistinguishable from not being
disturbed. This is enough for the proof technique from [Unr12] to go through when using
collapse-binding commitments, assuming the prover is computationally limited. The
resulting protocol will not be a quantum proof of knowledge, but a quantum argument of
knowledge (i.e., secure only against computationally limited provers). But in contrast to
[Unr12], the proof system will be statistical zero-knowledge.

To summarize: from collapse-binding commitments (or from collapsing hash functions),
we get three-round statistical zero-knowledge quantum arguments of knowledge for all
languages in NP (with inverse polynomial knowledge error). To the best of our knowledge,
not even three-round statistical zero-knowledge quantum arguments were known before.

1.4 Related work.

Commitments. Brassard, Crépeau, Jozsa, and Langlois [BCJL93] presented an
information-theoretically hiding and binding commitment scheme using quantum com-
munication. However, the protocol was flawed, Mayers [May97] showed that information-
theoretically hiding and binding commitments are impossible. (This is no contradiction to
our results, because our commitments are not information-theoretically binding.) Dumais,
Mayers, and Salvail [DMS00] and Crépeau, Légaré, and Salvail [CLS01] constructed

4Actually, “strict-binding commitments” but this distinction is not relevant for this exposition.
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statistically hiding commitments from quantum one-way permutations/functions, respec-
tively. Their protocols use quantum communication, and are sum-binding. Crépeau,
Dumais, Mayers, and Salvail [CDMS04] generalized the sum-binding definition to string
commitments and constructed an OT protocol based on that definition. (However, it is
not known whether the protocol composes even sequentially.) Damg̊ard, Fehr, Lunemann,
Salvail, and Schaffner [DFL+09] and Unruh [Unr10] showed a much simpler OT protocol
to be secure, assuming much stronger commitment definitions in the CRS model, but
achieving stronger security notions (sequential composability/UC). Ambainis, Rosmanis,
and Unruh [ARU14] show that classical-style binding commitments are not necessarily
even sum-binding.

Quantum random oracles. Random oracles were first explicitly considered in a
quantum cryptographic context by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and
Zhandry [BDF+11] who stressed that the adversary should have superposition access to
the random oracle. Zhandry [Zha13] showed that the random oracle is collision-resistant.
In contrast, we show (based on his result) that the random oracle is collapsing (a stronger
property).

Quantum rewinding and proof systems. Watrous [Wat09] showed how quantum
rewinding can be used to prove the security of quantum zero-knowledge protocols. Unruh
[Unr12] showed how a different flavor of quantum rewinding can be used for proving the
security of quantum proofs of knowledge; we extend their technique to quantum arguments
of knowledge. Unruh [Unr14a] constructs non-interactive computational zero-knowledge
quantum arguments of knowledge in the random oracle model.

2 Definitions and basic properties

Preliminaries. For the necessary background in quantum computing, see, e.g., [NC10].
By |i〉 with i ∈ I we denote the vectors of the computational basis of the Hilbert space
with dimension |I|. We also use the symbol |·〉 to refer to other (non-basis) vectors (e.g.,
|Ψ〉). And 〈Ψ| is the conjugate transpose of |Ψ〉. ‖x‖ refers to the Euclidean or `2-norm.
We only consider finite dimensional Hilbert spaces. We denote |+〉 := 1√

2
|0〉+ 1√

2
|1〉 and

|−〉 := 1√
2
|0〉 − 1√

2
|1〉. For a linear operator A on a Hilbert space, we denote by A† its

conjugate transpose. We denote by I the identity. We call an operator A on a Hilbert
space a projector iff it is an orthogonal projector, i.e., a linear map with P 2 = P and
P = P †. By TD(ρ, ρ′) we denote the trace distance between ρ and ρ′, and by F (ρ, ρ′)
the fidelity.

Given an algorithm A, let x← A(y) denote the result of running A with inputs y,

and assigning the output to x. Let x
$←M denote assigning a uniformly random element

of M to x. We will use η to denote the security parameter, that is a positive integer that
will be passed to all algorithms and adversaries and that indicates the required security
level. By a‖b we denote the concatenation of bitstrings a and b.
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We call an algorithm quantum-polynomial-time if it is a quantum algorithm and
its runtime is bounded by a polynomial in its input length with probability 1. We
call an algorithm classical-polynomial-time if it performs only classical operations and
its runtime is bounded by a polynomial in its input length with probability 1. We
write 1η for a bitstring (of 1’s) of length η. (The latter is useful for making algorithms
run in polynomial-time in the length of the security parameter, e.g., A(1η) will run
polynomial-time in η.)

Commitments. A commitment scheme (com, verify) consists of a quantum-
polynomial-time algorithm com and a deterministic quantum-polynomial-time algorithm
verify . (c, u) ← com(1η,m) returns a commitment c and the opening information u
for the message m and security parameter η. c alone is supposed not to reveal any-
thing about m (hiding). To open, we send (m,u) to the recipient who checks whether
verify(1η, c,m, u) = 1. Both com and verify have classical input and output. com has a
well-defined message space MSPη that also depends on the security parameter η (e.g.,
{0, 1}η). Furthermore, for technical reasons, we assume that it is possible to find triples
(c,m, u) with verify(1η, c,m, u) = 1 with probability 1 in quantum-polynomial-time in η.5

We first state some standard properties of commitments.

Definition 8 Let (com, verify) be a commitment scheme. We define:
• Perfect completeness: (com, verify) has perfect completeness iff for all m ∈
MSPη, Pr[verify(1η, c,m, u) = 1 : (c, u)← com(1η,m)] = 1.

• Computational hiding: (com, verify) is computationally hiding iff for any
quantum-polynomial-time A and any polynomial `, there is a negligible µ such that
for any η, any m0,m1 ∈ MSPη with |m0|, |m1| ≤ `(η), and any |Ψ〉,

∣∣P0−P1

∣∣ ≤ µ(η)
where Pi := Pr[b = 1 : (c, u)← com(1η,mi), b← A(1η, |Ψ〉, c)].

• Statistical hiding: Like computational hiding, except that we quantify over all A
(not just quantum-polynomial-time A).

Definition 9 (Classical-style binding) A commitment scheme is classical-style bind-
ing iff for any quantum-polynomial-time algorithm A, the following is negligible in η:

Pr[verify(1η, c,m, u) = 1 ∧ verify(1η, c,m′, u′) = 1 ∧m 6= m′ : (c,m, u,m′, u′)← A(1η)]

Definition 10 (Collapse-binding) For algorithms A, B, consider the following games:

Game1 : (S,M,U, c)← A(1η), ok ← Vc(M,U), m←Mok (M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), ok ← Vc(M,U), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Vc is a measurement whether M,U contains a valid
opening, formally Vc is defined through the projector

∑
m,u

verify(1η ,c,m,u)=1
|m〉〈m| ⊗ |u〉〈u|.

5This technical condition is necessary, e.g., for Definition 11 below. Without this condition, it is not
clear that “valid” adversaries exist at all. Note that a commitment scheme with quantum-polynomial-time
com and perfect completeness will always satisfies this technical condition: to find c,m, u, simply set
m := 0 and compute (m,u)← com(1η,m).
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Mok is a measurement of M in the computational basis if ok = 1, and does nothing if
ok = 0 (i.e., it sets m := ⊥ and does not touch the register M).

A commitment scheme is collapse-binding iff for any quantum-polynomial-time algo-
rithms A,B, the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Instead of measuring using Vc whether the adversary outputs a correct opening informa-
tion, we can quantify only over adversaries that always output correct opening information.
This leads to the following equivalent definition of collapse-binding commitments. This
definition is often easier to handle when proving that a given scheme is collapse-binding.

Definition 11 (Collapse-binding – variant) For algorithms A, B, consider the fol-
lowing games:

Game1 : (S,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Mcomp(M) is a measurement of M in the computa-
tional basis.

We call an adversary (A,B) valid if Pr[verify(c,m, u) = 1] = 1 when running
(S,M,U, c)← A(1η) and measuring M,U in the computational basis to obtain m,u.

A commitment scheme is collapse-binding iff for any quantum-polynomial-time valid
adversary (A,B), the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Lemma 12 A commitment scheme (com, verify) is collapse-binding with respect to
Definition 10 iff it is collapse-binding with respect to Definition 11.

Proof. To avoid confusion, we call the games from Definition 10 Game1,Game2, while we
call those from Definition 11 Game′1,Game′2. And the adversary in Definition 11 (that is
used in Game′1,Game′2) we call (A′, B′).

First, assume that there is an adversary (A′, B′) breaking Definition 11, i.e., µ :=
|Pr[b = 1 : Game′1] − Pr[b = 1 : Game′2]| is non-negligible. Let (A,B) := (A′, B′).
By definition of validity, the measurement Vc from Definition 10 will succeed with
probability 1 in Game1 and Game2. Hence that measurement has no effect, and thus
Pr[b = 1 : Game1] = Pr[b = 1 : Game′1] and Pr[b = 1 : Game2] = Pr[b = 1 : Game′2]. Thus
|Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]| = µ is non-negligible. Thus (A,B) also breaks
Definition 10.

Now, consider an adversary (A,B) breaking Definition 10, i.e., ν := |Pr[b = 1 :
Game1]− Pr[b = 1 : Game2]| is non-negligible. Construct (A′, B′) as follows: A′(1η) runs
(S,M,U, c)← A(1η). Then it applies ok ← Vc(M,U). If ok = 1, A′ returns (S,M,U, c).
Otherwise, A′ picks (c,m, u) with verify(1η, c,m, u) = 1,6 initializes M,U with |m〉|u〉,
and S with |⊥〉, and outputs c. (We assume that |⊥〉 is orthogonal to any state that A

6This is efficiently possible with probability 1 by assumption, see page 12.
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would produce.) And B′ does the following: If ok = 0, then B′ outputs 0. If ok = 1, B′

executes B.
A′ is valid by construction: If ok = 1, verify(1η, c,m, u) = 1 with probability 1

when measuring M,U as m,u, because M,U is in the image of Vc. And if ok = 0,
verify(1η, c,m, u) = 1 by choice of c,m, u.

We easily see that

0 = Pr[b = 1 : Game′1|ok = 0] = Pr[b = 1 : Game′2|ok = 0] = 0

α := Pr[b = 1 : Game1|ok = 0] = Pr[b = 1 : Game2|ok = 0]

β := Pr[b = 1 : Game1|ok = 1] = Pr[b = 1 : Game′1|ok = 1]

γ := Pr[b = 1 : Game2|ok = 1] = Pr[b = 1 : Game′2|ok = 1]

δ := Pr[ok = 1 : Game1] = Pr[ok = 1 : Game′1]

= Pr[ok = 1 : Game2] = Pr[ok = 1 : Game′2]

and from this we calculate∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]
∣∣

=
∣∣∣(0(1− δ) + βδ

)
−
(
0(1− δ) + γδ

)∣∣∣ =
∣∣∣(α(1− δ) + βδ

)
−
(
α(1− δ) + γδ

)∣∣∣
=
∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]

∣∣ = ν

which is non-negligible. Thus (A′, B′) breaks Definition 11. �

Definition 10 guarantees that the adversary cannot distinguish whether the register
M is measured or not. However, it is not immediately obvious what happens when
we measure M partially (e.g., we measure just one qubit). Could it be that such a
partial measurement will be noticed? We expect that this is not the case, since a partial
measurement lies half-way between no measurement and a complete measurement. The
following lemma confirms that intuition: If a commitment scheme is collapse-binding,
then Definition 10 also holds for partial measurements. (Assuming that the partial
measurement is performed in the computational basis and can be implemented by a
polynomial-time circuit.)

Lemma 13 (Collapse-binding w.r.t. partial measurements) For a commitment
scheme (com, verify), and for algorithms A, B, consider the following games:

Game1 : (S,M,U, c, f)← A(1η), ok ← Vc(M,U), x←Mf
ok (M), b← B(1η, S,M,U)

Game2 : (S,M,U, c, f)← A(1η), ok ← Vc(M,U), b← B(1η, S,M,U)

Here f is a Boolean circuit (with multiple-bit output). Vc is as in Definition 10. Mf
ok is

a measurement of M that returns f(m) where m is the content of M if ok = 1, and does
nothing if ok = 0 (i.e., it sets m := ⊥ and does not touch the register M). More formally,
if ok = 1, Mf is the measurement defined by the projectors Px :=

∑
m:f(m)=x|m〉〈m| for

all x in the range of f , and if ok = 0, Mf is defined by the single projector P⊥ := I.
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If (com, verify) is collapse-binding, then for any quantum-polynomial-time adversary
(A,B), the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Proof. We start with Game1. It is easy to see that Vc and Mf
ok commute, and that Vc is

idempotent. Thus Pr[b = 1 : Game1] = Pr[b = 1 : Game3] with:

Game3 : (S,M,U, c, f)← A, ok ′ ← Vc, x←Mf
ok ′
, ok ← Vc, b← B

(We omit the inputs of the various algorithms and measurements since they are unchanged

throughout the proof.) If we consider the first three operations (A,Vc,M
f
ok ′

) as a
single adversary, we can apply the collapse-binding property of com. Thus |Pr[b = 1 :
Game3]− Pr[b = 1 : Game4]| = ε1 for some negligible ε1 with:

Game4 : (S,M,U, c, f)← A, ok ′ ← Vc, x←Mf
ok ′
, ok ← Vc, m←Mok , b← B

We can see that Vc,M
f
ok ′
,Mok all commute. Furthermore Vc is idempotent, so we get

Pr[b = 1 : Game4] = Pr[b = 1 : Game5] with:

Game5 : (S,M,U, c, f)← A, ok ← Vc, m←Mok , x←Mf
ok , b← B

(Note that we replace Mf
ok ′

by Mf
ok .) The outcome of Mf

ok is determined by the outcome
of Mok , we have Pr[b = 1 : Game5] = Pr[b = 1 : Game6] with:

Game6 : (S,M,U, c, f)← A, ok ← Vc, m←Mok , b← B

Since (com, verify) is collapse-binding, we get |Pr[b = 1 : Game6]−Pr[b = 1 : Game2]| = ε2

for negligible ε2.
Thus, summarizing, |Pr[b = 1 : Game1]− Pr[b = 1 : Game2]| ≤ ε1 + ε2 is negligible. �

Another question that naturally arises is whether collapse-binding commitments
parallel compose. That is, if we commit to values m1, . . . ,mn with n commitments,
does this give a collapse-binding commitment on m := (m1, . . . ,mn)? Note that such a
property is not obvious. For example, to the best of our knowledge, no prior definition
of a quantum computational binding property in the literature is known to have this
property. For collapse-binding commitments, however, the next lemma shows that the
parallel composition of several commitments is still collapse-binding.

Lemma 14 (Parallel composition) Let (com, verify) be a collapse-binding commit-
ment with message space M . Let n = n(η) be polynomially-bounded and quantum-
polynomial-time computable integer.

Let (comn, verifyn) be the n-fold parallel composition of (com, verify). That is,
its message space is Mp. And comn(m1, . . . ,mn) computes (ci, ui) ← com(mi) for
i = 1, . . . , n, and returns (c, u) with c := (c1, . . . , cn) and u := (u1, . . . , un). And
verifyn((c1, . . . , cn), (m1, . . . ,mn), (u1, . . . , un)) = 1 iff ∀i. verify(ci,mi, ui) = 1.

Then (comn, verifyn) is collapse-binding.
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Proof. By Lemma 12, to show that (comn, verifyn) is collapse-binding, we need to show
that for any valid adversary A against (comn, verifyn),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :
Game2]

∣∣ is negligible, with Game1,Game2 as follows:

Game1 : (S,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), b← B(1η, S,M,U)

Using the definition of (comn, verifyn), this is equivalent to:

Game1 : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

mi ←Mcomp(Mi) for i = 1, . . . , n,

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

Game2 : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

And the validity of A implies for all i that measuring Mi, Ui will always return mi, ui
with verify(ci,mi, ui) = 1.

We define hybrid games for i = 0, . . . , n:

Hybj : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

mi ←Mcomp(Mi) for i = 1, . . . , j,

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

Note that in Hybj , only M1, . . . ,Mj are measured. Mj+1, . . . ,Mn are untouched. We
immediately have

Pr[b = 1 : Game1] = Pr[b = 1 : Hybn], Pr[b = 1 : Game2] = Pr[b = 1 : Hyb0]. (1)

We define a new adversary (A′, B′) for (com, verify) as follows: A′(1η) picks j
$← {1, . . . , n}.

Then he executes (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn) ← A(1η). He measures mi ←
Mcomp(Mi) for i = 1, . . . , j − 1, and then sets

S′ := (j, S,M1, . . . ,Mj−1,Mj+1, . . . ,Mn, U1, . . . , Uj−1, Uj+1, . . . , Un)

and M := Mj and U := Uj and c := cj and returns (S′,M,U, c). And B′(1η, S′,M,U)
splits S′ again into (j, S,M1, . . . ,Mj−1,Mj+1, . . . ,Mn, U1, . . . , Uj−1, Uj+1, . . . , Un) and
lets Mj := M and Uj := U and runs B(1η, S,M1, . . . ,Mn, U1, . . . , Un).

As mentioned above, since A is valid for each i, measuring Mi, Ui returns mi, ui
with verify(1η, ci,mi, ui) = 1. Hence measuring M,U as output by A′ returns m,u with
verify(1η, c,m, u) = 1. Thus A′ is valid for (com, verify).

Thus
∣∣Pr[b = 1 : Game′1]−Pr[b = 1 : Game′2]

∣∣ is negligible where Game′1,Game′2 are as
follows:

Game′1 : (S′,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S′,M,U)

Game′2 : (S′,M,U, c)← A(1η), b← B(1η, S′,M,U)

16



For any fixed choice of j, Game′1 is the same as Hybj , and Game′2 is the same as Hybj−1.
Thus

Pr[b = 1 : Game′1] =
n∑
j=1

1
n Pr[b = 1 : Hybj ],

Pr[b = 1 : Game′1] =
n∑
j=1

1
n Pr[b = 1 : Hybj−1].

(2)

Hence ∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]
∣∣

(2)
= 1

n

∣∣Pr[b = 1 : Hybn]− Pr[b = 1 : Hyb0]
∣∣

(1)
= 1

n

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ (3)

We showed above that the lhs of (3) is negligible. Thus the rhs of (3) is negligible, too.
Since n is polynomially-bounded in η, this implies that

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :
Game2]

∣∣ is negligible as well. As stated in the beginning of this proof, this implies that
(comn, verifyn) is collapse-binding. �

3 Commitments from collision-resistant hash functions

In the following, we will often refer to hash functions. We will always assume that a
hash function depends implicitly on the security parameter (in particular, the size of the
range can depend on the security parameter). We also assume that the hash function is
quantum-polynomial-time computable (in η and the input length).7 Besides that, we do
not assume any further properties such as collision-resistance unless explicitly mentioned.

Definition 15 (Canonical commitment scheme) Given a hash function H and a
parameter `u = `u(η), the canonical commitment scheme for H is:

• Message space MSPη := {0, 1}∗.
• comcan(m): Pick u

$← {0, 1}`u. Compute c := H(m‖u). Return (c, u).
• verifycan(c,m, u): Return 1 iff H(m‖u) = c.

It is immediate to see that this scheme is classical-style binding if H is collision-resistant.
However, in general it will not be hiding; for example, H(m‖u) could leak the first bit of
m. However, it is hiding if H is a random oracle:

Lemma 16 Fix `u ≥ 0 and assume that |Y | ≤ 2`u/8. For a random oracle H : X → Y ,
the canonical commitment is statistically hiding.

7When working in the random oracle model: Quantum-polynomial-time computable given access to
the random oracle.
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Proof. This lemma was proven in [Pas04, Lemma 9]. The statement of the lemma there
additionally assumes that the message space of the canonical commitment is also {0, 1}`u
(i.e., equal to the space of the randomness u). However, this is never used in the proof.
Furthermore, the lemma there assumes that |Y | = 2`u/8, but the adaption to the case
|Y | ≤ 2`u/8 is straightforward. �

When using a hash function in the standard model, we can use the following commitment
scheme instead:

Definition 17 (Bounded-length Halevi-Micali commitment [HM96]) Fix inte-
gers ` = `(η), n = n(η). Let L := 4`+2n+4. Let H : {0, 1}L → {0, 1}` be a hash function.
Let F = F (η) be a family of universal hash functions f : {0, 1}L → {0, 1}n. We define the
bounded-length Halevi-Micali commitment (comHMb , verifyHMb) with MSPη = {0, 1}n
as:

• comHMb(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned on
f(u) = m. Compute h := H(u). Let c := (h, f). Return (c, u).

• verifyHMb(c,m, u) with c = (h, f): Check whether f(u) = m and h = H(u). If so,
return 1.

Definition 18 (Unbounded Halevi-Micali commitment [HM96]) Fix an integer
` = `(η). Let H : {0, 1}∗ → {0, 1}` be a hash function. Let L := 6`+ 4. Let F be a family
of universal hash functions f : {0, 1}L → {0, 1}`. We define the unbounded Halevi-Micali
commitment (comHMu , verifyHMu) as:

• comHMu(m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned on
f(u) = H(m). Compute h := H(u). Let c := (h, f). Return (c, u).

• verifyHMu(c,m, u) with c = (h, f): Check whether f(u) = H(m) and h = H(u). If
so, return 1.

Theorem 19 (Security of Halevi-Micali [HM96]) If ` is superlogarithmic, then the
Halevi-Micali commitment and the bounded-length Halevi-Micali commitment are sta-
tistically hiding. If H is collision-resistant, then the Halevi-Micali commitment and the
bounded-length Halevi-Micali commitment are classical-style binding.

Note that [HM96] did not prove the classical-style binding property against quantum
adversaries. But the (very simple) proof of binding carries over unchanged to the
quantum setting (if H is collision-resistant against quantum adversaries). The statistical
hiding property holds against unlimited adversaries anyway, thus also against quantum
adversaries.

The following theorem shows that collision-resistance does not seem to be enough to
make the above constructions secure in the quantum setting, i.e., classical-style binding
is all we get.
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Theorem 20 There is an oracle O relative to which there exists a collision-resistant8

hash function H such that the canonical commitment scheme and both Halevi-Micali
commitment schemes using H admit the following attack:

There is a quantum-polynomial-time adversary AO that outputs a commitment c, then
expects a bit b, and then outputs with overwhelming probability a pair (m,u) such that
verify(c,m, u) = 1 and the first bit of m is b.

Clearly, a commitment with that property should not be considered secure. This
shows that collision-resistance is too weak a property for constructing commitments in
the quantum setting, at least when using standard constructions.

Proof. [ARU14, Definition 6] defines a specific oracle Oall (more precisely, a probability
distribution on oracles). We repeat only the parts of the construction that are relevant for
our proof: Let X := {0, 1}`1 and Y := {0, 1}`2 for some arbitrary polynomially-bounded
superlogarithmic `1, `2. For each y ∈ Y , let Sy ⊆ X be a uniformly random subset
of a certain size k. Let OV be an oracle that tests membership in Sy, more precisely
OV (y, x) = 1 iff x ∈ Sy. (OV may be queried in superposition.) Finally, Oall is defined
to be an oracle consisting of OV and several other oracles (some of them implementing
unitary transformations).

We use the following important facts about Oall :

Fact 1 (Hardness of two values) Let A be an algorithm making a polynomial number
of oracle queries. Then Pr[x 6= x′ ∧ x, x′ ∈ Sy : (y, x)← AOall (1η)] is negligible.

This fact is a reformulation of [ARU14, Corollary 7 (i)].

Fact 2 (Searching one value) There is a pair (E1, E2) of quantum-polynomial-time
oracle algorithms such that:

• EOall
1 (1η) outputs y ∈ Y and a quantum state |Ψ(y)〉.

• Given a Boolean circuit P with |{x ∈ Sy : P (x) = 1}| ≥ |Sy|/3,

EOall
2 (1η, y, |Ψ(y)〉, P ) outputs x ∈ Sy with P (x) = 1 with overwhelming proba-

bility.

This is a special case of [ARU14, Theorem 5].9

Informally, Fact 2 tells us that if we choose y ∈ Y ourselves, we get a quantum
trapdoor |Ψ(y)〉 that allows us to search one value x ∈ Sy satisfying a predicate of our
choice, as long as this predicate is satisfied 1

3 of the time. (But note: we cannot get two
such x in the same Sy, as this would violate Fact 1.)

Let h2 : {0, 1}∗ → {0, 1}` (for some arbitrary polynomially-bounded superlogarithmic
`) be uniformly random. We can then define the oracle O to be the oracle containing

8H is collision-resistant iff for any quantum-polynomial-time A, Pr[x 6= x′ ∧H(x) = H(x′) : (x, x′)←
A(1η)] is negligible.

9We have fixed δmin := 1/3 and n to be the security parameter, and we have removed the argument
|ΣΨ〉 from E1 because |ΣΨ〉 can be produced by E1 using the oracle OΨ contained in Oall .
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Oall and h2. (I.e., O gives access to Oall and an additional random oracle.) Note that
since h2 and Oall are independent, Fact 1 still applies when A is given access to O.

We now construct a hash function H : {0, 1}∗ → {0, 1}`. For x ∈ X, y ∈ Y with
OV (y, x) = 1, let h1(x‖y) := 0‖y and let h1(z) := 1‖z everywhere else. Let H := h2 ◦ h1.

Claim 1 (Collision-resistance of H) H is collision-resistant (relative to O).

To show this, we show that h1 and h2 are collision-resistant relative to O. This then
shows that H = h2 ◦ h1 is collision-resistant relative to O. Any collision of h1 must be
of the form h1(x‖y) = h1(x′‖y′) with x‖y 6= x′‖y′ and OV (y′, x′) = OV (y, x) = 1 since
h1 is injective everywhere else. By definition of h1, this implies that 0‖y = 0‖y′, thus
y = y′ and x 6= x′. And then OV (y′, x′) = OV (y, x) = 1 implies by definition of OV that
x, x′ ∈ Sy. By Fact 1, a polynomial-time adversary with oracle access to O finds such
x, x′, y only with negligible probability. This shows that h1 is collision-resistant relative
to O.

By [Zha13, Theorem 3.1], h2 is collision-resistant (given oracle access to h2).10

Since Oall is chosen independently of h2, it can be simulated with no extra queries
to h2. I.e., an adversary breaking collision resistance of h2 using O = (Oall , h2) can
be transformed into one breaking collision resistance of h2 using h2. Hence h2 is also
collision-resistant given oracle access to O.

Thus h1, h2 are collision-resistant relative to O, and thus H = h2 ◦ h1 is collision-
resistant relative to O.

Attack on the canonical commitment scheme. Let `m be some arbitrary message
length, and `u the length of the opening information (see Definition 15). For this attack,
we assume that the length parameters `1, `2 in the construction of Oall have been chosen
such that `m + `u = `1 + `2. (This is always possible, since `1, `2 are only required to be
superlogarithmic.) The adversary A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)〉)← EOall

1 (1η). Let c := h2(0‖y) and send c as the commitment.
• Upon input b, choose P such that P (x) := 1 iff the first bit of x is b. Run
x← EOall

2 (1η, y, |Ψ(y)〉, P ). Split x‖y as m‖u := x‖y with |m| = `m, |u| = `u and
send (m,u). (Note: the lengths of m,u do not necessarily match the lengths of x, y,
but their combined length does since `1 + `2 = `m + `u.)

Since Sy ⊆ Y is a random set of (superpolynomial) cardinality k, we have that the
fraction of Sy having leading bit b (i.e., satisfying P ) is at least 1

3 with overwhelming
probability. Thus x as returned by E2 satisfies, by Fact 2, with overwhelming probability
x ∈ Sy and P (x) = 1. From P (x) = 1 it follows that the first bit of m is b as

10Strictly speaking, [Zha13, Theorem 3.1] only applies to random oracles with finite but arbitrary
large domain, not to h2 which has domain {0, 1}∗. However, if an adversary finds a collision in h2 with
non-negligible probability µ, then there must be a length `∗ such that the adversary finds a collision of
length at most `∗ with probability at least µ/2. Thus an adversary breaking collision-resistance of h2

can be transformed into an adversary breaking collision-resistance of a random oracle with finite domain.
[Zha13, Theorem 3.1] then applies.
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required. And x ∈ Sy implies OV (y, x) = 1 which implies h1(x‖y) = 0‖y. Hence
H(m‖u) = h2(h1(x‖y)) = h2(0‖y) = c. Thus verifycan(c,m, u) = 1. This shows that the
attack on the canonical commitment is successful with overwhelming probability.

Attack on the bounded-length Halevi-Micali commitment. Let n be the mes-
sage length, and `, L as in Definition 17. For this attack, we assume that the length
parameters `1, `2 have been chosen such that `1 + `2 = L. (This is always possible, since
`1, `2 are only required to be superlogarithmic.) The adversary A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)〉)← EOall

1 (1η). Pick f ∈ F (the family of universal hash functions). Let
h := h2(0‖y) and let c := (h, f) and send c as the commitment.

• Upon input b, choose P such that P (x) := 1 iff the first bit of f(x) is b. Run
x← EOall

2 (1η, y, |Ψ(y)〉, P ). Let u := x and m := f(u) and send (m,u).
Similarly as for the attack on the canonical commitment, we get that A gets with over-
whelming probability an x ∈ Sy with P (x) = 1 which then implies verifyHMb(c,m, u) = 1.

Attack on the unbounded Halevi-Micali commitment. We describe the attack
on the unbounded Halevi-Micali commitment. Let `m be a superpolynomial message
length, and L the length of the opening information (see Definition 18). For this attack,
we assume that the length parameters `1, `2 have been chosen such that `1 + `2 = `m.
(This is always possible, since `1, `2 are only required to be superlogarithmic.) The
adversary A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)〉) ← EOall

1 (1η). Pick f ∈ F and u ∈ {0, 1}L such that f(u) = h2(0‖y).
Compute h := H(u). Let c := (h, f) and send c as the commitment.

• Upon input b, let P (x) := 1 iff the first bit of x is b. Run x← EOall
2 (1η, y, |Ψ(y)〉, P ).

Let m := x‖y. Send (m,u).
Similarly as for the attack on the canonical commitment, we get that A gets with over-
whelming probability an x ∈ Sy with P (x) = 1 which then implies verifyHMu(c,m, u) = 1.
�

4 Collapsing hash functions

As seen in the previous section, for many protocols collision-resistance is not a sufficiently
strong property in the quantum setting. In the following, we propose a strengthening of
the collision-resistance property that seems more useful in the quantum setting, namely
“collapsing” hash functions. We believe that collapsing hash functions are a natural
assumption for real-life hash functions such as SHA-3 etc. This belief is supported by
the fact that the random oracle is collapsing (see Section 6).

The definition of collapsing hash functions is similar to that of collapsing commitments
(Definition 11).
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Definition 21 (Collapsing) For a function H and algorithms A, B, consider the
following games:

Game1 : (S,M, c)← A(1η), m←Mcomp(M), b← B(1η, S,M)

Game2 : (S,M, c)← A(1η), b← B(1η, S,M)

Here S,M are quantum registers. Mcomp(M) is a measurement of M in the computational
basis.

We call an adversary (A,B) valid if Pr[H(m) = c] = 1 when we run (S,M, c)← A(1η)
and measure M in the computational basis as m.

A hash function H is collapsing iff for any quantum-polynomial-time valid adversary
(A,B), the difference adv :=

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible. (We

call adv the advantage.)

Notice that the definition of collapsing hash functions is inherently quantum, even
though the object we consider (the hash function H) is classical. We know of no classical
analogue to collapsing hash functions. However, a collapsing hash function will necessarily
be collision-resistant, see Lemma 23 below.

We proceed to give a number of useful properties of collapsing hash functions.

Lemma 22 An injective function H is collapsing with advantage 0.

Proof. Consider an adversary (A,B) against Definition 21. Since (A,B) is valid, by
definition we have that m←Mcomp(M) in Game1 returns m with H(m) = c. Since H is
injective, this means there is only one such m. Thus M is in state |m〉 before applying
m←Mcomp(M), and the measurement Mcomp(M) does not change the state of M . Thus
Pr[b = 1 : Game1] = Pr[b = 1 : Game2]. �

Lemma 23 A collapsing hash function is collision resistant.

Proof. Assume the hash function H is not collision resistant. Then there is a quantum
adversary C that outputs a collision (m,m′) with H(x) = H(x′) with non-negligible
probability µ.

We construct a quantum-polynomial-time adversary (A,B) for Definition 21.
Let A be the following quantum algorithm: It runs C to get a collision (m,m′). If

(m,m′) is a collision, it stores m,m′ in the register S, and initializes M with |Ψm,m′〉 :=
1√
2
|m〉+ 1√

2
|m′〉. It sets c := H(m) = H(m′) and returns (S,M, c). If (m,m′) is not a

collision, A stores ⊥ in the register S, initializes M with |0〉, sets c := H(0), and returns
(S,M, c).

The algorithm B retrieves m,m′ from S. If S contains ⊥ instead, B returns b := 0.
Otherwise B measures whether M contains |Ψm,m′〉, i.e., B measures M with the projector
|Ψm,m′〉〈Ψm,m′ |. If this measurement succeeds, B returns b := 1, else B returns b := 0.

By construction, (A,B) is valid.
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In Game2, with probability 1 − µ, B finds S to contain ⊥ and returns b = 0. If S
contains a collision m,m′, then by construction of A, M contains |Ψm,m′〉, so B outputs
b = 1 with probability 1 in this case. Hence Pr[b = 1 : Game2] = µ.

In Game1, with probability 1 − µ, B finds S to contain ⊥ and returns b = 0. If
S contains a collision m,m′, then by construction the state of M before Mcomp(M) is
|Ψm,m′〉, hence after that measurement it is |m〉 or |m′〉 (each with probability 1

2). In
each case, the measurement performed by B (projector |Ψm,m′〉〈Ψm,m′ |) succeeds with
probability 1

2 . Thus, if S contains a collision, B returns b = 1 with probability 1
2 . Hence

Pr[b = 1 : Game1] = µ/2.
Hence

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ = µ

2 is non-negligible, in contradiction
to the assumption that H is collapsing. �

Definition 21 guarantees that the adversary cannot distinguish whether the register M
is measured or not. Like in the case of commitments (cf. the discussion before Lemma 13)
we can ask what happens when a partial measurement is performed. Analogous to
Lemma 13 we get that a partial measurement cannot be noticed, either:

Lemma 24 (Collapsing w.r.t. partial measurements) For a function H and algo-
rithms A, B, consider the following games:

Game′1 : (S,M, c, f)← A(1η), x←Mf (M), b← B(1η, S,M)

Game2 : (S,M, c, f)← A(1η), b← B(1η, S,M)

Here f is a Boolean circuit (with multiple-bit output).11 And S,M are quantum registers.
Mf (M) measures f(m) where m is the content of M in the computational basis. Formally,
Mf (M) is the measurement defined by the projectors Px :=

∑
m:f(m)=x|m〉〈m| for all x

in the range of f .

If H is collapsing, then for any quantum-polynomial-time valid adversary (A,B), the
difference

∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Proof. The proof is analogous to that of Lemma 13. (The proof actually becomes a bit
simpler, because all occurrences of and arguments relating to Vc may be omitted.) �

Lemma 25 If a valid adversary (A,B) breaks the collapsing property of g ◦ f with
advantage ε, then there are valid adversaries (A′, B′) and (A′′, B′′) with advantages ε′, ε′′

against g, f , respectively, such that ε ≤ ε′ + ε′′.
(A′, B′) and (A′′, B′′) each perform only two additional evaluations of f in comparison

to (A,B). (And one additional measurement in the computational basis. But no additional
evaluations of g.)

11In the random oracle model, we also allow f to contain gates for evaluating the random oracle.
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Proof. Consider the following circuits:

A B

A B
A B

c

b/
M

/
S

A B

A M B
A B

c

b/
M

/
S

/
(4)

Here M represents a measurement in the computational basis. (Discarding the outcome.)
By definition of ε, we have

ε =
∣∣∣Pr[b = 1 : lhs of (4)]− Pr[b = 1 : rhs of (4)]

∣∣∣.
Let Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. Since Uf is self-inverse, introducing two consecutive
applications of Uf into the lhs of (4) does not change the outcome probability. That is,
with

A B

A Uf Uf B

Uf Uf

A B

Uf Uf

c

b/
M

/
S

//

/
M′

|0〉 / /

A′ B′

(5)

we have
Pr[b = 1 : lhs of (4)] = Pr[b = 1 : (5)].

The dashed boxes in (5) define a new adversary (A′, B′) against g. The top two wires
leaving A′ contain the state of A′, while the bottom wire M ′ contains the superposition
of hashed values. Since A is valid for g ◦ f , M contains a superposition of values m with
g ◦ f(m) = c. (By this we mean formally that the projector

∑
m,u:g◦f(m)=c|m〉〈m| applied

to M passes with probability 1.) Hence M ′ contains a superposition of values m′ = f(m)
with g(m′) = c. Thus A′ is valid for g. Let ε′ be the advantage of A′ against g. That is,
we have

ε′ =
∣∣Pr[b = 1 : (5)]− Pr[b = 1 : (6)]

∣∣
with the following circuit (6):

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

b/
M

/
S

//

/
M′

/|0〉 / /

A′ B′

(6)

24



We now change the circuit slightly: Instead of discarding the outcome of the measurement
M, we assign it to the classical variable c′′.

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

//
M

/
M′

/|0〉 / /

A′′ B′′

(7)

Obviously, not discarding c′′ does not change the distribution of b, hence

Pr[b = 1 : (6)] = Pr[b = 1 : (7)].

The dotted lines in (7) define an adversary (A′′, B′′) against f . The wires S and M ′

together form the state of (A′′, B′′), and the middle wire M is supposed to contain the
hashed values. If M contains the value m, then M ′ contains f(m) and c′′ will be f(m).
Thus, if we measure a particular value c′′, then M contains a superposition of values
m with f(m) = c′′. Thus, (A′′, B′′) is valid for f . Let ε′′ be the advantage of (A′′, B′′)
against f . Then we have

ε′′ =
∣∣Pr[b = 1 : (7)]− Pr[b = 1 : (8)]

∣∣
with the following circuit (8):

A B

A Uf M Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

//
M

/
M′

/|0〉 / /

A′′ B′′

(8)

The subcircuit consisting of the two Uf and the two measurements M is easily seen to
be equivalent to a measurement M on the M wire (since we do not use the outcome c′′).
Thus

Pr[b = 1 : (8)] = Pr[b = 1 : rhs of (4)].

Collecting all inequalities, we get:

ε =
∣∣Pr[b = 1 : lhs of (4)]− Pr[b = 1 : rhs of (4)]

∣∣ ≤ ε′ + ε′′. �

Corollary 26 If f and g are collapsing, so is g ◦ f .

Proof. Immediate from Lemma 25. �
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5 Commitments from collapsing hash functions

In Section 3 we saw that collision-resistant hash functions are not sufficient for several
standard constructions of commitment schemes. We will now show that those same
constructions are secure in the quantum setting when using collapsing hash functions
instead.

The following lemma (and its Corollary 28 below) allow us to extend the message
space of a collapsing commitment by hashing the message with a collapsing hash function.
Besides being useful in its own right, we need it in the analysis of the unbounded
Halevi-Micali commitment. The proof of the lemma is similar to that of Corollary 26.

Lemma 27 Let f be a hash function. Let (com, verify) be a commitment scheme. Let
comf (1η,m) := com(f(m)) and verifyf (1η, c,m, u) = verify(1η, c, f(m), u). If a valid
adversary (A,B) breaks the collapse binding property of (comf , verifyf ) with advantage ε
(with respect to Definition 11), then there are valid adversaries (A′, B′) and (A′′, B′′) with
advantages ε′, ε′′ against the collapse binding property of (com, verify) and the collapsing
property of f , respectively, such that ε ≤ ε′ + ε′′.

(A′, B′) and (A′′, B′′) each perform only two additional evaluations of f in comparison
to (A,B). (And one additional measurement in the computational basis. But no additional
evaluations of com or verify.)

Proof. Consider the following circuits:

A B

A B

A B

A B

c

b/
M

/
S

/
U

A B

A B

A M B

A B

c

b/
M

/
S

/
U

/ (9)

Here M represents a measurement in the computational basis. (Discarding the outcome.)
By definition of ε, we have

ε =
∣∣∣Pr[b = 1 : lhs of (9)]− Pr[b = 1 : rhs of (9)]

∣∣∣.
Let Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. Since Uf is self-inverse, introducing two consecutive
applications of Uf into the lhs of (9) does not change the outcome probability. That is,
with

A B

A B

A Uf Uf B

Uf Uf

A B

Uf Uf

c

b/
M

/
S

/
U

//

/
M′

|0〉 / /

A′ B′

(10)
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we have
Pr[b = 1 : lhs of (9)] = Pr[b = 1 : (10)].

The dashed boxes in (10) define a new adversary (A′, B′) against (comf , verifyf ). The
wires S,M leaving A′ contain the state of A′, the wire M ′ contains the committed message,
and the wire U contains the opening information. Since A is valid for (comf , verifyf ),
M,U contains a superposition of values m,u with verify(1η, c, f(m), u) = 1. (By this we
mean formally that the projector

∑
m,u:verify(1η ,c,f(m),u)=1|m〉〈m|⊗ |u〉〈u| applied to M,U

passes with probability 1.) Hence M ′, U contains a superposition of values m′ = f(m)
with verify(1η, c,m′, u) = 1. Thus A′ is valid for (com, verify). Let ε′ be the advantage
of A′ against g. That is, we have

ε′ =
∣∣Pr[b = 1 : (10)]− Pr[b = 1 : (11)]

∣∣
with the following circuit (11):

A B

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

b/
M

/
S

/
U

//

/
M′

/|0〉 / /

A′ B′

(11)

We now change the circuit slightly: Instead of discarding the outcome of the measurement
M, we assign it to the classical variable c′′.

A B

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

/
U

//
M

/
M′

/|0〉 / /

A′′ B′′

(12)

Obviously, not discarding c′′ does not change the distribution of b, hence

Pr[b = 1 : (11)] = Pr[b = 1 : (12)].

The dotted lines in (12) define an adversary (A′′, B′′) against f . The wires S, U , and M ′

together form the state of (A′′, B′′), and the middle wire M is supposed to contain the
hashed values. If M contains the value m, then M ′ contains f(m) and c′′ will be f(m).
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Thus, if we measure a particular value c′′, then M contains a superposition of values
m with f(m) = c′′. Thus, (A′′, B′′) is valid for f . Let ε′′ be the advantage of (A′′, B′′)
against f . Then we have

ε′′ =
∣∣Pr[b = 1 : (12)]− Pr[b = 1 : (13)]

∣∣
with the following circuit (13):

A B

A B

A Uf M Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

/
U

//
M

/
M′

/|0〉 / /

A′′ B′′

(13)

The subcircuit consisting of the two Uf and the two measurements M is easily seen to
be equivalent to a measurement M on the M wire (since we do not use the outcome c′′).
Thus

Pr[b = 1 : (13)] = Pr[b = 1 : rhs of (9)].

Collecting all inequalities, we get:

ε =
∣∣Pr[b = 1 : lhs of (9)]− Pr[b = 1 : rhs of (9)]

∣∣ ≤ ε′ + ε′′. �

Corollary 28 Let f be a collapsing function. Let (com, verify) be a collapse binding
commitment scheme. Let comf (1η,m) := com(1η, f(m)) and verifyf (1η, c,m, u) =
verify(1η, c, f(m), u). Then (comf , verifyf ) is a collapse-binding commitment scheme.

Proof. Immediate from Lemma 27. �

Lemma 29 If H is collapsing, then the canonical commitment scheme
(comcan , verifycan), and the bounded-length Halevi-Micali commitment
(comHMb , verifyHMb), and the unbounded Halevi-Micali commitment (comHMu , verifyHMu)
are collapse-binding. (For any choice of the parameters `u, `, n.)

We give the proof ideafirst. To show that the canonical commitment comcan is collapse-
binding, we use the characterization of collapse-binding from Definition 11. We need
to show that the adversary cannot distinguish between a measurement on register M
and no measurement on register M , assuming the adversary outputs M,U containing
a superposition of m,u with verifycan(c,m, u) = 1. The condition verifycan(c,m, u) = 1
is equivalent to H(m‖u) = c. Hence the adversary outputs in M,U a superposition of
preimages of c under H. Since H is collapsing, this implies that the adversary cannot
distinguish between a measurement on M,U and no measurement on M,U . This also
implies (using some additional work) that the adversary cannot distinguish between a
measurement on M and no measurement on M . Hence comcan is collapse-binding. The
Halevi-Micali commitments are handled similarly.
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Proof. We investigate the three commitment schemes one by one:

Canonical commitment. We show that (comcan , verifycan) is collapse-binding. Fix
a valid quantum-polynomial-time adversary (A,B) against the canonical commitment
scheme (with respect to Definition 11). By concatenating the registers M,U into a single
register M ′, we get an adversary (A′, B′) against the hash function H. Written in terms
of A′, B′ (and unfolding the definition of verifycan), the games from Definition 11 become:

Game1 : (S,M ′, c)← A′(1η), m←Mf (M ′), b← B′(1η, S,M ′)

Game2 : (S,M ′, c)← A′(1η), b← B′(1η, S,M ′)

where f(m‖u) := m and Mf is defined as in Lemma 24.
Since (A,B) is valid, we have verifycan(1η, c,m, u) = 1 when m,u is the result of

measuring M,U . When we define m′ := m‖u, we have verify(1η, c,m, u) = 1 iff H(m′) = c
by definition of verify . Thus in an execution with (A′, B′), we have H(m′) = c. Thus
(A′, B′) is valid.

Since (A′, B′) is valid and quantum-polynomial-time, by Lemma 24, |Pr[b = 1 :
Game1]− Pr[b = 1 : Game2]| is negligible. (In Lemma 24, f is chosen by the adversary,
but we can transform A′ to output f himself.) Since Game1 and Game2 are equivalent to
the games from Definition 11, it follows that (comcan , verifycan) is collapsing.

Bounded-length Halevi-Micali commitment. We show that (comHMb , verifyHMb)
is collapse-binding. Fix a valid quantum-polynomial-time adversary (A,B) against the
commitment scheme (with respect to Definition 11). By unfolding the definition of
(comHMb , verifyHMb), see Definition 17, the games from Definition 11 become:

Game1 : (S,M,U, h, f)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, h, f)← A(1η), b← B(1η, S,M,U)

and validity of A implies that M,U are such that when measuring them, we get m,u with
f(u) = m and h = H(u). We need to show that

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣

is negligible.
Since f(u) = m, measuring M in the computational basis is equivalent to applying

the measurement Mf on U . Here Mf is as in Lemma 24. Thus we have Pr[b = 1 :
Game1] = Pr[b = 1 : Game′1] with

Game′1 : (S,M,U, h, f)← A(1η), m←Mf (U), b← B(1η, S,M,U).

By Lemma 24, we get that
∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game2]

∣∣ is negligible. (Here
we instantiate S,M, c, f in Lemma 24 with S := (S,M), M := U , c := h.)

Thus
∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]

∣∣ is also negligible, hence
(comHMb , verifyHMb) is collapse-binding.
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Unbounded Halevi-Micali commitment. We show that (comHMu , verifyHMu) is
collapse-binding. Let (com, verify) := (comHMb , verifyHMb) and f := H. Then
(comf , verifyf ) as defined in Corollary 28 is the same as (comHMu , verifyHMu). We
showed above that (comHMb , verifyHMb) is collapse-binding. And f = H is collaps-
ing by assumption. Thus by Corollary 28, (comf , verifyf ) is collapse binding. Hence
(comHMu , verifyHMu) is collapse-binding. �

6 Random oracles are collapsing

In Section 5 we saw that collapsing hash functions imply collapse-binding commitments.
In this section, we explore the existence of collapsing hash functions. Specifically, we show
that the random oracle is collapsing. This implies that there are simple collapse-binding
commitments in the random oracle model. Furthermore, it supports the assumption that
real-life hash functions such as SHA-3 etc. are collapse-binding. Under this assumption,
the constructions from Section 5 are collapse-binding using those hash functions (that is,
under this assumption, we do not need the random oracle).

For the remainder of this section, X and Y are sets, and H : X → Y is a random
oracle. And Y is finite. And X ⊆ {0, 1}∗ (finite or infinite). And q ≥ 1 always refers to
an upper bound on the number of oracle queries performed by the adversary.

We start by defining a seemingly unrelated property (half-collision resistance) that
will turn out to imply the collapsing property. We will need half-collision resistance in
our proof that the random oracle is collapsing. However, the concept of half-collision
resistance might be of use for constructions in the standard model, too: since half-collision
resistance is defined by a classical game, it might be easier to construct hash functions
that are half-collision resistant.

Definition 30 A half-collision of a hash function f : X → Y is a value x such that
∃x′ 6= x.f(x) = f(x′).

An adversary A has advantage ε against half-collision resistance iff
• with probability 1, the output of A is a half-collision or ⊥, and
• with probability at ε, A outputs a half-collision.

Lemma 31 If (A,B) is valid and has advantage µ against the collapsing property of
a hash function f , then there is an adversary D with advantage ≥ µ2/4 against the
half-collision resistance of f . The time-complexity of D is linear in that of (A,B). (If f
is given as an oracle, D makes 4q + 4 queries to f when (A,B) makes q queries.)

Proof sketch: By definition, a valid adversary A will always output in register M a
superposition of messages m with H(m) = c (all with the same c). So we have two cases:
M contains a superposition of a single message m, or M contains a superposition of
several messages that have the same image c, i.e., a superposition of half-collisions. Thus,
in the second case, we can find a half-collisions by measuring M . But, an adversary
against half-collision resistance must never output a non-half-collision (no false positives).
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Thus, we need a possibility to test whether M contains only a single message. (In this
case, we abort.)

Note that when M contains only a single message, then the adversary B cannot
distinguish between a measurement on M and no measurement on M . To exploit this,
we run an execution where M is measured and an execution where M is not measured in
superposition (roughly speaking), and we make it depend on a control qubit in state |+〉
which execution is used. Then, in the case where M contains only a single message, the
control qubit stays unentangled with the rest of the circuit. By measuring whether the
qubit is still in state |+〉, the half-collision resistance adversary can detect whether M
contains one or several messages. (It may err and incorrectly assume that M contains
only one message, but an error in that direction is permitted.) Thus we have constructed
an adversary against half-collision resistance.

Proof. We first construct a slight modification Bc of the adversary algorithm B. Bc is
parametrized over an image c of f , and Bc(S,M) first measures its input register M with
the projector Pc :=

∑
m:f(m)=c|m〉〈m|. That is, Bc measures whether f applied to the

content of M would return c. If so, Bc executes B and returns the output b of B. If not,
Bc returns b = 0. Bc needs one more query to f than B.

Furthermore, we assume that Bc is implemented as a unitary circuit. That is, we
assume that the input register S (which contains the state of the adversary in the games
from Definition 21), contains sufficiently many ancillae for implementing Bc unitarily,
and that Bc has an output register S′ in addition to the register containing b.

In the games from Definition 21, the register M is in the image of Pc anyway, so in
those games, Bc behaves the same as B. Thus, Pr[b = 1] differs by µ in the following
circuits:

A Bc

A Bc M

A

A
Bc

c

/
S′

b/
M

/
S

A Bc

A M Bc M

A

A
Bc

c

/
S′

b/
M

/
S

/ (14)

M denotes a (single- or multi-bit) measurement in the computational basis. (The first
occurrence of M has only an outgoing quantum wire, so it discards the outcome. The
second occurrence has only an outgoing classical wire b so it discards the post-measurement
state.)

Let PBc be the projector onto the space of all input states where Bc will output b = 1
with probability 1. In particular, since Bc returns b = 0 for |s〉|m〉 with f(m) 6= c, we
have that imPc ⊆ im(1− PBc ), so Pc and PBc commute. (Strictly speaking, we should
refer to IS ⊗ Pc here, since PC operates on M only. But here and in the remainder of the
proof, we implicitly omit tensor products with the identity since for every operator, it is
clear on which registers it operates.) Let Flipc := (1− 2PBc ). It is easy to verify that

31



Flipc is implemented by the following quantum circuit:

Bc B†c

Bc B†c

|−〉

Bc B†c
/
S

/
M

/
S′

/
S

/
M

We are now ready to define the adversary D against half-collision resistance:
• Execute the following quantum circuit:

|+〉 H M coll

A Flipc Flipc

A Flipc U⊕ Flipc U⊕ M m

|0〉 U⊕ U⊕

A Flipc Flipc

U⊕ U⊕

/ S / /

/M / / / /

/
X

/ /

c

(15)

Here M is a measurement in the computational basis, and U⊕|x〉|y〉 := |x〉|x⊕ y〉 is
a unitary operating on registers M,X (where X has the same dimension as M).

• If coll = 0, return ⊥.
• If coll = 1, return m.

Claim 2 With probability 1, D outputs ⊥ or a half-collision of f .

To show this claim, first recall that Pc and PBc commute. Thus also Pc and Flipc =
1 − 2PBc commute. Furthermore, since A is a valid adversary, the output of A is in
imPc. And furthermore U⊕ and Pc are easily seen to commute. Thus we can perform the
following transformations on the circuit (15) without changing the output probabilities:
Add a projector Pc after A (on the M wire) and commute it until before after the second
U⊕. Add a projector Pc after A and commute it until before the second U⊕. And add
a projector Pc after A and commute it until before the first U⊕. We get the following
result:

|+〉 H M coll

A Flipc Flipc

A Flipc Pc U⊕ Flipc Pc U⊕ Pc M m

|0〉 U⊕ U⊕

A Flipc Flipc

U⊕ U⊕

S

M

X

c

(16)
(Note that this circuit contains projectors, which may in general mean that the final
quantum state does not have norm 1 and that thus the output probabilities for coll ,m
do not add up to 1. In the present case, however, this is not the case because we argued
that the output probabilities are the same as in (15).)

For a fixed value of c (as output by A in the above circuit), we distinguish three cases:
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• Case 1 “c /∈ im f”: This never happens because A is valid (and thus the register M
contains a superposition of values m with f(m) = c).

• Case 2 “c has exactly one preimage under f”: Let m0 := f−1(c). Then Pc projects
onto |m0〉. Thus after an application of Pc on the M register, U⊕ has the same
effect as the unitary Um0 : |y〉 → |y ⊕m0〉 on X. So we can replace both controlled
U⊕ by controlled Um0 in circuit (16). But the controlled Um0 operated only on
wires 1 and 4, while Flipc and Pc operate on wires 2 and 3. Thus the first Um0 can
be commuted past Flipc and Pc and then cancels out with the second controlled
Um0 . These transformations have not changed the probability distribution of coll .
The first wire of the circuit has become the following:

|+〉 H M coll

Thus coll = 0 with probability 1. Thus D outputs ⊥ with probability 1.

• Case 3 “c has at least two preimages under f”: m is the result of measuring
the third wire in the computational basis. Just before that measurement, Pc =∑

m:f(m)=c|m〉〈m| was applied to that wire. Thus f(m) = c with probability 1.
Since c has at least two preimages, this implies that m is a half-collision. Thus D
outputs a half-collision or ⊥ in this case (depending on the value of coll).

This proves Claim 2.

Claim 3 With probability at least µ2/4, D outputs some m 6= ⊥.

To prove this claim, we first define some variables. For fixed c, let |Ψ′c〉 be the output
state (in registers S,M) of A when A outputs c. Let |Ψc〉 := |Ψ′c〉|0〉 (living in registers
S,M,X). Recall that PBc operates on registers S and M , and that U⊕ : |x〉|y〉 → |x〉|x⊕y〉
operates on M and X.

Let
αc :=

∥∥PBc |Ψc〉
∥∥ and βc :=

∥∥PBc U⊕|Ψc〉
∥∥.

Note that by construction, α2
c is the probability that the left circuit in (14) returns

b = 1, conditioned on the output c, and β2
c is the probability that the right circuit in (14)

outputs b = 1, conditioned on c. (For β2
c , notice that applying U⊕ has the same effect as

measuring M .) Thus

µ =
∣∣∣Pr[b = 1 : left circuit]−Pr[b = 1 : right circuit]

∣∣∣ =
∣∣∣∑
c

Pr[c]α2
c −
∑
c

Pr[c]β2
c

∣∣∣ (17)

where Pr[c] denotes the probability that A yields the classical output c.
Let |Φc〉 denote the final state in the execution of the circuit (15) just before measuring

coll and m. We have

|Φc〉 = (H ⊗ ISMX)
(

1√
2
|0〉 ⊗ FlipcFlipc︸ ︷︷ ︸

=I

|Ψc〉+ 1√
2
|1〉 ⊗ U⊕FlipcU⊕Flipc|Ψc〉

)
= 1

2 |0〉|Ψc〉+ 1
2 |1〉|Ψc〉+ 1

2 |0〉 ⊗ U⊕FlipcU⊕Flipc|Ψc〉 − 1
2 |1〉 ⊗ U⊕FlipcU⊕Flipc|Ψc〉.
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Let Rex denote the real part of x. Since coll is the result of measuring the first wire in
circuit (15), the probability Pr[coll = 1 : c] of having coll = 1 conditioned on a particular
value of c is:

Pr[coll = 1 : c]

=
∥∥∥1

2 |Ψc〉 − 1
2U⊕FlipcU⊕Flipc|Ψc〉

∥∥∥2

=
∥∥∥1

2 |Ψc〉 − 1
2U⊕U⊕|Ψc〉+ U⊕U⊕P

B
c |Ψc〉 (since Flipc = I − 2PBc )

+ U⊕P
B
c U⊕|Ψc〉 − 2U⊕P

B
c U⊕P

B
c |Ψc〉

∥∥∥2

=
∥∥∥PBc |Ψc〉+ U⊕P

B
c U⊕|Ψc〉 − 2U⊕P

B
c U⊕P

B
c |Ψc〉

∥∥∥2
(since U⊕U⊕ = I)

= 〈Ψc|PBc · PBc |Ψc〉︸ ︷︷ ︸
=α2

c

+ 2 Re〈Ψc|PBc · U⊕PBc U⊕|Ψc〉︸ ︷︷ ︸
=2 Re〈Ψc|U⊕PBc U⊕PBc |Ψc〉

−4 Re〈Ψc|PBc · U⊕PBc U⊕PBc |Ψc〉

+ 〈Ψc|U⊕PBc U⊕ · U⊕PBc U⊕|Ψc〉︸ ︷︷ ︸
=β2

c

− 4 Re〈Ψc|U⊕PBc U⊕ · U⊕PBc U⊕PBc |Ψc〉︸ ︷︷ ︸
=4 Re〈Ψc|U⊕PBc U⊕PBc |Ψc〉

+ 4〈Ψc|PBc U⊕PBc U⊕ · U⊕PBc U⊕PBc |Ψc〉︸ ︷︷ ︸
=4 Re〈Ψc|PBc U⊕PBc U⊕PBc |Ψc〉

= α2
c + β2

c − 2 Re〈Ψc|U⊕PBc U⊕PBc |Ψc〉
≥ α2

c + β2
c − 2

∣∣〈Ψc|U⊕PBc︸ ︷︷ ︸
norm is βc

· U⊕ · PBc |Ψc〉︸ ︷︷ ︸
norm is α2

c

∣∣
≥ α2

c + β2
c − 2βcαc = (αc − βc)2. (18)

We can now bound the probability Pr[coll = 1] that in circuit (15), we measure coll = 1:

Pr[coll = 1] =
∑
c

Pr[c] Pr[coll = 1 : c]
(18)

≥
∑
c

Pr[c](αc − βc)2
(∗)
≥ 1

4

∑
c

Pr[c](α2
c − β2

c )2

(∗∗)
≥ 1

4

(∑
c

Pr[c](α2
c − β2

c )
)2 (17)

= 1
4µ

2.

Here (∗) uses the fact that for α, β ∈ [0, 1], |α−β| ≥ 1
2 |α

2−β2|.12 And (∗∗) uses Jensen’s
inequality. Since D outputs ⊥ only if coll = 0, it follows that D outputs m 6= ⊥ with
probability at least 1

4µ
2. Claim 3 follows.

From Claims 2 and 3, it follows that D has advantage ≥ µ2/4 against the half-collision
resistance of f . By inspection of the circuit of D, we see that D invokes one instance of
A and four instances of Bc. And Bc invokes B and performs at most one more evaluation
of f . Thus D performs at most 4q + 4 queries to f , when f is given as an oracle and
(A,B) performs q queries. �

12Proof: |α2 − β2| ≤ maxx∈[0,1]
∂x2

∂x
· |α− β| = maxx∈[0,1] 2x · |α− β| = 2|α− β|.
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Corollary 32 (Distinguishing random functions and injections [Zha13])
Assume that |X| ≤ |Y |. Let H : X → Y be a uniformly random function. Let Ĥ : X → Y
be a uniformly random injection. Then for any q-query adversary A,∣∣Pr[AH = 1]− Pr[AĤ = 1]

∣∣ ∈ O(q3/|Y |).

Proof. [Zha13, Section 3.1] shows this lemma for the case |X| = |Y |. For the general case,
let H ′ : Y → Y be a random function and Ĥ ′ : Y → Y be a random permutation. Then
H ′ ◦ Ĥ has the same distribution as H, and Ĥ ′ ◦ Ĥ has the same distribution as Ĥ. Since
the corollary holds for |X| = |Y |, we have that H ′ and Ĥ ′ can be distinguished with
probability at most O(q3/|Y |) by a q-query adversary, and thus H ′ ◦ Ĥ and Ĥ ′ ◦ Ĥ can be
distinguished with probability at most O(q3/|Y |). Thus H and Ĥ can be distinguished
with probability at most O(q3/|Y |). �

Lemma 33 Assume |X| ≤ |Y |. Then H is collapsing with advantage O(q3/|Y |).

Proof. Let Ĥ : X → Y be a random injective function. Let Game1,Game2 refer to

the games from Definition 21, and Ĝame1, Ĝame2 refer to those games with Ĥ instead
of H. Since Ĥ is injective, by Lemma 22, Ĥ is collapsing with advantage 0, i.e.,

Pr[b = 1 : Ĝame1] = Pr[b = 1 : Ĝame2].
By Corollary 32, an adversary making q queries can distinguish H and Ĥ only with

probability O(q3/|Y |). Thus
∣∣Pr[b = 1 : Gamei] − Pr[b = 1 : Ĝamei]

∣∣ ∈ O(q3/|Y |) for
i = 1, 2. Altogether

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ ∈ O(q3/|Y |). �

For the next lemma, we fix some notation first: [N ] := {1, . . . , N}. For functions
f : [M ] → [N ] and g : [M ′] → [N ], let f + g : [M + M ′] → [N ] be defined via
(f+g)(x) := f(x) for x = 1, . . . ,M and (f+g)(x) = g(x−M) for x = M+1, . . . ,M+M ′.
For functions f : [M ] → [N ] and g : [M ′] → [N ′], let f |g : [M + M ′] → [N + N ′]
be defined via (f |g)(x) := f(x) for x = 1, . . . ,M and (f |g)(x) := g(x −M) + N for
x = M + 1, . . . ,M +M ′.

Lemma 34 Assume that M ≥ N . Let f̂ , ĝ : [N ] → [N ] and ĥ : [M ] → [M ] and
ϕ̂ : [N +M ]→ [N +M ] be uniformly distributed permutations (all independent), and let
H : [2N +M ]→ [N +M ] be a uniformly distributed function.

Then for any q-query adversary A,∣∣Pr[AH = 1]− Pr[Aϕ̂◦((f̂+ĝ)|ĥ) = 1]
∣∣ ∈ O(q3/N).

Proof. Let the following functions be uniformly distributed:
• f, g : [N ]→ [N ].
• h : [M ]→ [M ].
• ϕ : [N +M ]→ [N +M ].
• v : [N ]→ [N +M ] and w : [M ]→ [N +M ].
• a : [N ]→ [2N ] and b : [2N ]→ [2N ] and c : [2N ]→ [N +M ].
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• H : [2N +M ]→ [N +M ].
Let f̂ , ĝ, ĥ, ϕ̂, v̂, ŵ, â, b̂, ĉ be uniformly distributed injective functions (with the same
domains and ranges as the functions above). All functions are chosen independently.

For two functions f, g, let f ≈ g mean that that
∣∣Pr[Af = 1]−Pr[Ag = 1]

∣∣ ∈ O(q3/N)
for any q-query adversary. And let f ≡ g mean that f and g have the same distribution.
We will show the following facts:

ϕ ≈ ϕ̂ v ≈ v̂ c ≈ ĉ (19)

w ◦ ĥ ≡ w ĉ ◦ â ≡ v̂ ĉ ◦ b̂ ≡ ĉ (20)

∀α with range [N ], ∀β with range [M ] : ϕ ◦ (α|β) ≡ (v ◦ α) + (w ◦ β) (21)

â ◦ (f̂ + ĝ) ≈ b̂ (22)

c+ w ≡ H (23)

From Corollary 32 we get (19). (Corollary 32 gives the bound O(q3/(N +M)) for the
distinguishing probability. Since M ≥ N this also implies the desired bound O(q3/N).)

The equations in (20) are immediate by definition of w, ĥ, w, ĉ, â, v̂, b̂.
In (21), first notice that ϕ ≡ v + w and thus ϕ ◦ (α|β) ≡ (v + w) ◦ (α|β). Let the

range of α be [N ′] and that of β be [M ′]. By case distinction over x ∈ {1, . . . , N ′} and
x ∈ {N ′ + 1, . . . , N ′ +M ′} we check (v + w) ◦ (α|β)(x) = (v ◦ α) + (w ◦ β)(x). Then (21)
follows.

To show (22), let f1, g1 : [N ]→ [2N ] be two uniformly random functions conditioned
on having identical range. Let f2, g2 : [N ]→ [2N ] be two uniformly random functions
conditioned on having disjoint range. [Zha13, Theorem 4.1] states that a q-query adversary
distinguishes f1, g1 from f2, g2 with probability at most O(q3/N). (This is the “Set
Equality Problem”.) As a consequence, a q-query adversary distinguishes f1 + g1 and
f2 + g2 with probability at most O(q3/N). One can verify that f1 + g1 ≡ â ◦ (f̂ + ĝ) and
f2 + g2 ≡ b̂. Thus an adversary distinguishing â ◦ (f̂ + ĝ) and b̂ also distinguishes f1 + g1

and f2 + g2 with the same probability. (22) follows.
And (23) is immediate.

We then have:

ϕ̂ ◦ ((f̂ + ĝ)|ĥ)
(19)

≈ ϕ ◦ ((f̂ + ĝ)|ĥ)
(21)

≡ (v ◦ (f̂ + ĝ)) + (w ◦ ĥ)
(20)

≡ (v ◦ (f̂ + ĝ)) + w
(19)

≈ (v̂ ◦ (f̂ + ĝ)) + w
(20)

≡ (ĉ ◦ â ◦ (f̂ + ĝ)) + w
(22)

≈ (ĉ ◦ b̂) + w

(20)

≡ ĉ+ w
(19)

≈ c+ w
(23)

≡ H.

(In some of these steps, we implicitly perform a reduction to (19) or (22). E.g., in
ĉ+w ≈ c+w, we use queries to ĉ to simulate queries to ĉ+w. In some of these reductions,
it is not obvious that this simulation does not double the number of queries from q to
2q. However, O(q3/N) = O((2q)3/N), so (19) or (22) apply with the same asymptotic
bound to adversaries making 2q queries.)

Note that ≈ is transitive (the distinguishing advantage of the adversary may double,
but will still be in O(q3/N)). Thus ϕ̂ ◦ ((f̂ + ĝ)|ĥ) ≈ H which proves the lemma. �
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Lemma 35 Assume that |Y | =
⌈

2
3 |X|

⌉
. Then H is collapsing with advantage

O(
√
q3/|X|).

Proof sketch: For simplicity, we consider the case |Y | = 2N , |X| = 3N . Then, by
Lemma 34 with M := N , H is indistinguishable from H∗ := ϕ̂◦

(
(f̂ + ĝ)|ĥ

)
. Furthermore,

for a random permutation π, H and H ◦ π are identically distributed, and H ◦ π is
indistinguishable from H∗ ◦ π. Thus it is sufficient to show that H∗ ◦ π is collapsing.
In turn, by Lemma 31, it is sufficient to show that H∗ ◦ π is half-collision resistant.
To show that, observe that the half-collisions of H∗ are the inputs 1, . . . , 2N , but not
2N + 1, . . . , 3N . Thus the half-collisions of H∗ ◦ π are P := π−1({1, . . . , 2N}). So, the
half-collision resistance adversary has to find elements of P , without false positives, while
given oracle access to H∗ ◦π. But H∗ ◦π is indistinguishable from H ◦π, so the adversary
would also be able to find elements in P given H ◦ π. Since H ◦ π is a random function,
independent of P , the adversary cannot do that without getting false positives. Hence
H∗ ◦ π is half-collision resistant and thus collapsing. Hence H is collapsing.

Proof. Let N := |X| − |Y | and M := 2|Y | − |X|. Then M − N = 3|Y | − 2|X| ≥
3 · 2

3 |X|+ 2|X| = 0, hence M ≥ N .
Since |X| = 2N + M and |Y | = N + M , we can assume that X = [2N + M ] and

Y = [N +M ]. Thus, by Lemma 34, H is indistinguishable from H∗ := ϕ̂ ◦ ((f̂ + ĝ)|ĥ)
where ϕ̂, f̂ , ĝ, ĥ are random permutations as in Lemma 34. More precisely, a (4q + 4)-
query adversary distinguishes H and H∗ with probability at most δ ∈ O((4q + 4)3/N) =
O(q3/N).

Let π : X → X be a uniformly random permutation. Then also H ◦ π and H∗ ◦ π
are distinguished with probability at most δ. And since H ◦ π and H have the same
distribution, H and H∗ ◦ π are distinguished with probability at most δ.

Assume a q-query adversary (A,B) against the collapsing property of H with some
advantage ε. We will prove that ε ∈ O(

√
q3/N) = O(

√
q3/|X|).

Since H and H∗ ◦π cannot be distinguished with probability greater than δ, it follows
that (A,B) has advantage ≥ ε− 2δ against the collapsing property of H∗ ◦ π. (Because
each of the probabilities in Definition 21 can change by at most δ.)

Thus, by Lemma 31, there is an adversary D with advantage ≥ (ε− 2δ)2/4 against
the half-collision resistance of H∗ ◦ π. D makes at most 4q + 4 queries. That is:

Pr[DH∗◦π outputs half-collision] ≥ (ε−2δ)2

4 , Pr[DH∗◦π outputs non-half-collision] = 0

By definition of + and | from Lemma 34, and since ϕ̂, f̂ , ĝ, ĥ are all permutations, the
half-collisions of H∗ = ϕ̂ ◦ ((f̂ + ĝ)|ĥ) are 1, . . . , 2N , while 2N + 1, . . . , 2N +M are the
non-half-collisions. Thus the half-collisions of H∗ ◦ π are P := π−1({1, . . . , 2N}). Thus
we have

Pr[DH∗◦π ∈ P ] ≥ (ε−2δ)2

4 , Pr[DH∗◦π ∈ X \ P ] = 0.

Since H∗ is δ-indistinguishable from H by (4q + 4)-query adversaries (in particular by
D), it follows that

phit := Pr[DH◦π ∈ P ] ≥ (ε−2δ)2

4 − δ, pmiss := Pr[DH◦π ∈ X \ P ] ≤ δ. (24)
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Since π is a permutation and H is a random function, (H ◦π, π) and (H, π) are identically
distributed. Thus

phit = Pr[DH ∈ P ], pmiss = Pr[DH ∈ X \ P ].

(Recall that P = π−1({1, . . . , 2N}).) Since P is a uniformly random subset of X of size
2N , and independent of H, we have:

phit =
|P |
|X|

Pr[DH ∈ X], pmiss =
|X \ P |
|X|

Pr[DH ∈ X]. (25)

Then
(ε−2δ)2

4 − δ
(24)

≤ phit
(25)
=
|P |
|X|

|X|
|X \ P |

pmiss =
2N

M
pmiss

(24)

≤ 2N

M
δ
M≥N
≤ 2δ.

Solving this inequality for ε, we get ε ≤
√

12δ + 2δ ∈ O(
√
q3/N) = O(

√
q3/|X|).

Since ε was the advantage of an arbitrary q-query adversary (A,B) against the
collapsing property of H, the lemma follows. �

Theorem 36 Let Y be finite, and X ⊆ {0, 1}∗ (finite or infinite). Then H : X → Y is
collapsing with advantage O(

√
q3/|Y |).

Proof sketch: H is indistinguishable from a composition fn ◦ · · · ◦ f1 of random functions
fn : Xn → Yn with |Xn+1| = |Yn| = 2

3 |Xn|. By Lemma 35, each fn is collapsing. Thus,
by Corollary 26, fn ◦ · · · ◦ f1 is collapsing and hence H is collapsing.

Proof. We first consider the case that X = [M ] for some M .
Since we are interested only in the asymptotic complexity, we can further assume

|Y | ≥ 11. And since the case |X| ≤ |Y | is covered by Lemma 33, we can assume |X| > |Y |.
Let t(x) := d2

3xe. Let n ≥ 0 be the smallest integer such that tn(M) ≤ |Y |. (Such
integer always exists: if ti(M) > |Y | ≥ 11, then ti+1(M) < ti(M), hence ti(M) decreases
until it becomes smaller-equal |Y |.)

Further, since ti−1(M) > |Y | ≥ 11 for i = 1, . . . , n we have that

ti(M) = d2
3 t
i−1(M)e ≤ 2

3 t
i−1(M) + 1 ≤ 2

3 t
i−1(M) + 1

12 t
i−1(M) = 3

4 t
i−1(M)

for i = 1, . . . , n. Thus

tn−i(M) ≥ (4
3)itn(M) ≥ (4

3)i 2
3 t
n−1(M) ≥ (4

3)i 2
3 |Y | for i = 0, . . . , n. (26)

For i = 1, . . . , n, let fi : [ti−1(M)]→ [ti(M)] be a uniformly random function.
Let h : [tn(M)]→ Y be a uniformly random function. (h and all fi are independent.)
We define H∗ : X → Y as H∗ := h ◦ fn ◦ · · · ◦ f1.
We will first show that H∗ is collapsing. By Lemma 35, there is a constant C > 0

such that each fi is collapsing with advantage C
√
q3/ti−1(M).
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And by Lemma 33, h is collapsing with advantage C ′q3/|Y | for some constant C ′ > 0.
(Note that the domain of h is smaller than its range by definition of n.)

Let εi denote a tight upper bound such that fn ◦ · · · ◦ fn−i+1 is collapsing with
advantage εi for (q + 2)-query adversaries. Then ε0 = 0 since the identity is collapsing
with advantage 0 by Lemma 22.

By Lemma 25 (with f := fn−i+1 and g := fn ◦ · · · ◦ fn−i+2), we then get for i ≥ 1:

εi︸︷︷︸
advantage against
g◦f=fn◦···◦fn−i+1

in q+2 queries

≤ εi−1︸︷︷︸
advantage against
g=fn◦···◦fn−i+2
in q+2 queries

+ C
√

(q + 4)3/tn−i(M)︸ ︷︷ ︸
advantage against f=fn−i+1

in q+4 queries

. (27)

Note that when applying Lemma 25, both the adversary for the left and the right
summand in (27) makes two more queries to f = fn−i+1 than the (q+ 2)-query adversary
having the advantage εi against g ◦ f . However, since all fi are chosen independently, the
adversary in the left summand (who attacks g = fn ◦ · · · ◦ fn−i+2) can chose f = fn−i+1

himself. Thus the advantage in the left summand is with respect to adversaries that
make only q + 2 queries to g.

From (27) we get (using ε0 = 0):

εn ≤
n∑
i=1

C
√

(q + 4)3/tn−i(M)
(26)

≤
n∑
i=1

C
√

(q + 4)3/(4
3)i 2

3 |Y |

≤ C
√

3
2(q + 4)3/|Y | ·

∞∑
i=1

(3
4)i/2 ∈ O(

√
q3/|Y |).

By definition, εn upper bounds the advantage of a (q + 2)-query adversary against
fn ◦ · · · ◦ f1. And the advantage of a q-query adversary against h is ≤ C ′q3/|Y | (see
above). Thus by Lemma 25 (with g := h and f := fn ◦ · · · ◦f1) the advantage of a q-query
adversary against H∗ = h ◦ fn ◦ · · · ◦ f1 is at most

δ := C ′q3/|Y |+ εn ∈ O(
√
q3/|Y |).

We have shown that H∗ is collapsing with advantage O(
√
q3/|Y |). To show that H

is collapsing, we will first show that H and H∗ are indistinguishable.
Let Hi : [ti(M)] → Y denote a uniformly random function. [Zha12, Corollary

VII.5 (Small range distributions)] shows that for independent uniformly random functions
a : A→ B, b : B → C, and c : A→ C, a q-query adversary can distinguish b ◦ a from
c with probability at most 27q3/|B|. Hence for i = 1, . . . , n, Hi ◦ fi and Hi−1 can be
distinguished with probability at most 27q3/ti(M). Hence H∗i := Hi ◦ fi ◦ · · · ◦ f1 and
H∗i−1 = Hi−1 ◦ fi−1 ◦ · · · ◦ f1 can be distinguished with probability at most 27q3/ti(M).
Thus H∗0 and H∗n can be distinguished with probability at most

γ :=

n∑
i=1

27q3/ti(M)
(26)

≤
n∑
i=1

27q3 3
2(3

4)n−i/|Y | ≤ 81
2 q

3/|Y | ·
∞∑
i=0

(3
4)i ∈ O(q3/|Y |).
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Note that Hn is identically distributed to h, hence H∗n is identically distributed to H∗.
And H∗0 = H0 : [M ] → Y is identically distributed to H. Hence H∗ and H can be
distinguished with probability at most γ.

Now we can prove that H is collapsing. Since H∗ is collapsing with advantage ≤ δ,
we have that for any q-query adversary,∣∣Pr[b = 1 : Game1 using H∗]− Pr[b = 1 : Game2 using H∗]

∣∣ ≤ δ. (28)

Here Game1,Game2 are the games from Definition 21. Since H and H∗ are indistinguish-
able (with advantage ≤ γ), replacing H∗ by H changes the two probabilities in (28) by
at most γ. Hence we get∣∣Pr[b = 1 : Game1 using H]− Pr[b = 1 : Game2 using H]

∣∣ ≤ δ + 2γ

Thus H is collapsing with advantage ≤ δ + 2γ ∈ O(
√
q3/|Y |). The theorem follows for

the case of |X| = [M ].
The case for finite X follows immediately by setting M := |X|. (This is just a

relabeling of the elements of X.)
Finally, we prove the theorem for infinite X ⊆ {0, 1}∗: Fix a q-query adversary (A,B).

Let µ denote the advantage of (A,B) against the collapsing property of H : X → Y . Let
Xi := {x ∈ X : |x| ≤ i}. Let Hi : Xi → Y be a uniformly random function. Let µi denote
the advantage of (A,B) against the collapsing property of Hi. Then µi → µ for i→∞.
Furthermore, we have already shown that against a finite Hi : Xi → Y , the advantage is
at most δ + 2γ. Hence µi ≤ δ + 2γ. Note that δ + 2γ does not depend on the size of Xi,
only on the size of Y . Thus µi ≤ δ + 2γ implies µ ≤ δ + 2γ. Thus H is collapsing with
advantage ≤ δ + 2γ ∈ O(

√
q3/|Y |) for infinite X. �

7 Zero-knowledge arguments of knowledge

In this section, we study the security of sigma-protocols. A sigma-protocol is a specific
kind three-round proof system in which the verifier’s message consists only of random bits.
Sigma-protocols play an important role in classical constructions of zero-knowledge proof
systems for two reasons: For a number of simple but important languages, sigma-protocols
exist. And given sigma-protocols for simple languages, there are efficient constructions
for more complex languages. (There are constructions for conjunctions and disjunctions
of sigma-protocols, as well as more complex threshold constructions [CDS94].)

In the classical setting, it is relatively simple to give conditions under which sigma-
protocols are zero-knowledge proofs of knowledge. In the quantum setting, however,
analyzing the security of sigma-protocols turns out to be much harder. Watrous [Wat09]
presented a rewinding technique for proving the zero-knowledge property of sigma-
protocols (see also Theorem 39 below). Unruh [Unr12] showed that sigma-protocols
are quantum proofs of knowledge under a specific additional condition called “strict
soundness”. This condition requires that the third message (“response”) in a valid
interaction is uniquely determined by the first two. However, strict soundness is a strong
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additional assumption. [Unr12] showed how to achieve strict soundness by committing to
the response already in the first message. However, the commitment scheme used for this
needed to be perfectly-binding (actually, it needed to satisfy a somewhat stronger property,
called “strict binding”). In particular, this implies that the commitment scheme cannot be
information-theoretically hiding (hence the resulting protocol cannot be statistical zero-
knowledge), and we cannot have short commitments (a perfectly-binding commitment
will always be at least as long as the message inside).

Furthermore, Ambainis, Rosmanis, and Unruh [ARU14] showed that the condition
of strict soundness is necessary, at least relative to an oracle. They also showed that
even if we assume that strict soundness holds, but only against computationally limited
adversaries,13 the resulting sigma-protocol will, in general, not be a quantum argument
of knowledge.14 Even more, it might not even be a quantum argument. That is, a
computationally limited adversary can successfully prove a wrong statement.

In this section we show how we can use collapse-binding commitments as a drop-in
replacement for the perfectly-binding commitments in the construction from [Unr12].
One particular consequence is that given collapse-binding hash functions we can construct
three-round statistical zero-knowledge quantum arguments of knowledge from sigma-
protocols (without using a common-reference string). This assumes the sigma-protocol
is statistical honest-verifier zero-knowledge and has special soundness. And that the
challenge space (the set from which the verifier picks his random message) is polynomially-
bounded. These properties, however, are also needed in the classical setting.

7.1 Interactive proof systems

An interactive proof system (P,V) for some relation R consists of two interactive quantum
machines P and V that get classical inputs (x,w) ∈ R and x, respectively. Afterwards,
V outputs a bit. For formal definitions see [Unr12]. (In general, P and V can exchange
quantum messages, but our concrete constructions below will be classical.)

We consider two important properties of interactive proof systems: First, we want
them to be arguments of knowledge. Informally, they should convince the verifier that
the prover knows a witness w for the statement x (i.e., (x,w) ∈ R). Second, we want
them to be zero-knowledge. Informally, the proof should not leaks anything about the
witness besides its existence.

Quantum arguments of knowledge. The following definition of quantum arguments
of knowledge follows the definition from [Unr15], with one difference: we have formulated
security against uniform malicious provers. That is, while in [Unr15] the statement
x and the auxiliary input |Ψ〉 are all-quantified, in our setting they are chosen by an
quantum-polynomial-time algorithm Z. The reason we consider only uniform malicious
provers here is: A non-uniform adversary can break any non-interactive commitment

13I.e., it is hard to find two different valid interactions where the first two messages are equal but the
response is different.

14Argument and argument of knowledge are the variants of proof and proof of knowledge that consider
a computationally limited malicious prover.
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(with classical messages) that is not already perfectly-binding. (Namely, the auxiliary
input can simply contain one commitment and two different openings.) Thus, since we
consider only non-interactive commitments in this paper, we need a uniform definition of
quantum arguments of knowledge. For a motivation of the remaining definitional choices,
see [Unr15].

Definition 37 (Quantum Arguments of Knowledge) We call an interactive proof
system (P,V) for a relation R (uniformly) quantum-computationally extractable with
knowledge error κ if there exists a constant d > 0, a polynomially-bounded function
p > 0, and a quantum-polynomial-time oracle algorithm K such that for any unitary
quantum-polynomial-time algorithm P∗, for any polynomial `, and for any quantum-
polynomial-time algorithm Z (input generator), there exists a negligible µ such that for
any security parameter η ∈ N, we have that

Pr[〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)] ≥ κ(η) =⇒
Pr[(x,w) ∈ R : (x, Z)← Z(1η), w ← KP∗(1η ,x,Z)(1η, x)]

≥ 1
p(η)

(
Pr
[
〈P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)

]
− κ(η)

)d
− µ(η).

Here 〈P∗(1η, x, Z),V(1η, x)〉 is the output of V after an interaction between P∗ and V on
the respective inputs x and Z. Z is a quantum register, x is classical, both initialized
using the algorithm Z. And KP∗(1η ,x,Z) refers to an execution of K with black-box access to
P∗(1η, x, Z). That is, K can apply the unitary Ux describing the prover P∗ and its inverse

U †x. (See [Unr12] for a more detailed description of that black-box execution model.)

Quantum zero-knowledge. Roughly speaking, (P,V) is quantum-computationally
zero-knowledge iff for any quantum-polynomial-time malicious verifier V∗, there exists a
quantum-polynomial-time simulator S such that for any (x,w) ∈ R, the output state of S
is quantum computationally indistinguishable from the from the output state of V∗ in an
interaction with P(1η, x, w).

Similarly, quantum statistical zero-knowledge is defined in the same way, except
that V∗ is not required to be quantum-polynomial-time.

We will not use the definition of quantum zero-knowledge directly, only the imported
Theorem 39 from [Unr15] will refer to it. We therefore omit the formal definition and
refer to [Unr15].

7.2 Sigma-protocols

We now introduce sigma-protocols (following [Unr14a] with modifications as mentioned in
the footnotes). The notions are like the standard classical definitions, all that was done to
adopt them to the quantum setting was to make the adversary quantum-polynomial-time.

A sigma-protocol for a relation R is a three-message proof system. It is described by
its challenge space Nz (where |Nz| ≥ 2), a classical-polynomial-time prover (P1, P2) and
a deterministic classical-polynomial-time verifier V . The first message from the prover is
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a ← P1(1η, x, w) and is called the commitment , the uniformly random reply from the

verifier is z
$← Nz (called challenge), and the prover answers with r ← P2(1η, x, w, z ) (the

response). We assume P1, P2 to share state. Finally V (1η, x, a, z , r) outputs whether the
verifier accepts.

Definition 38 (Properties of sigma-protocols) Let Σ = (Nz, P1, P2, V ) be a sigma-
protocol. We define:

• Completeness: For any quantum-polynomial-time algorithm A,

Pr[(x,w) ∈ R ∧ ok = 0 : (x,w)← A(1η),

a ← P1(1η, x, w), z
$← Nz, r ← P2(1η, x, w, z ), ok ← V (1η, x, a, z , r)]

is negligible.
• Computational special soundness: There is a quantum-polynomial-time algo-

rithm EΣ (the extractor)15 such that for any quantum-polynomial-time A, we have
that

Pr[(x,w) /∈ R ∧ z 6= z ′ ∧ ok = ok ′ = 1 : (x, a, z , r , z ′, r ′)← A(1η),

ok ← V (1η, x, a, z , r), ok ′ ← V (1η, x, a, z ′, r ′), w ← EΣ(1η, x, a, z , r , z ′, r ′)]

is negligible.
• Honest-verifier zero-knowledge (HVZK): There is a quantum-polynomial-

time algorithm SΣ (the simulator)16 such that for any quantum-polynomial-time
algorithm A and any polynomial `, the following is negligible for all (x,w) ∈ R with
|x|, |w| ≤ `(η) and all states |Ψ〉:∣∣Pr[b = 1 : a ← P1(1η, x, w), z

$← Nz, r ← P2(1η, x, w, z ), b← A(1η, |Ψ〉, a, z , r)]

−Pr[b = 1 : (a, z , r)← SΣ(1η, x), b← A(1η, |Ψ〉, a, z , r)]
∣∣

• Statistical honest-verifier zero-knowledge (SHVZK): Like HVZK, except
that we quantify over computationally unlimited A (not only quantum-polynomial-
time A).

Note that the above are the standard conditions expected from sigma-protocols in the
classical setting. In contrast, for a sigma-protocol to be a quantum proof of knowledge, a
much more restrictive condition is required, strict soundness [Unr12, ARU14]. We show
below how to circumvent this necessity by adding collapse-binding commitments to the
sigma-protocol (at least when we only need a quantum argument of knowledge).

Remark 1. Any sigma-protocol (Nz, P1, P2, V ) can be seen as an interactive proof (P,V)

in a natural way: P sends the output a of P1 to V. V picks z
$← Nz and sends it to P. P

sends the resulting output r of P2 to V. V checks the triple (a, z , r) using V .

The following theorem is shown in [Unr15]:

15[Unr14a] requires a classical EΣ here. By allowing EΣ to be quantum here, we weaken the notion of
computational special soundness slightly, and thus strengthen our results below.

16[Unr14a] requires a classical SΣ here. By allowing EΣ to be quantum here, we weaken the notion of
HVZK/SHVZK slightly, and thus strengthen our results below.
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Theorem 39 (HVZK implies zero-knowledge [Unr15]) Let Σ = (Nz, P1, P2, V )
be a sigma-protocol. We consider Σ as an interactive proof (P,V), see Remark 1.

If |Nz| is polynomially-bounded and is SHVZK, then Σ is quantum statistical zero-
knowledge.

If |Nz| is polynomially-bounded and Σ is HVZK, then Σ is quantum computational
zero-knowledge.

Due to this theorem, it will be sufficient to verify that the sigma-protocols we
construct are HVZK/SHVZK. We will hence not need to use the definition of quantum
zero-knowledge explicitly in the following.

7.3 Constructing zero-knowledge arguments of knowledge

In [Unr12], the following idea was used to construct quantum proofs of knowledge: We
assume a sigma-protocol with special soundness and with polynomial-size |Nz|. We
convert it into a sigma-protocol with strict soundness as follows: When the prover sends
his commitment a ← P1(x,w), he additionally sends com(rz ) for all z ∈ Nz where rz
is the response to the challenge z. When the prover receives the challenge z , he opens
com(rz ) instead of sending rz . If the commitment has the “strict binding” property, the
resulting sigma-protocol has strict soundness (without losing the special soundness or
HVZK property).17 Strict binding is a strengthening of perfect binding, it means that
not only the message in the commitment is information-theoretically determined, but
also the opening information.

Given a sigma-protocol with strict and special soundness, we can show that it is a
proof of knowledge. Basically, [Unr12] runs the protocol twice (using the inverse of the
unitary malicious prover to rewind) to get two responses r , r ′ for different challenges
z 6= z ′. The difficulty here is that measuring r can disturb the state of the malicious
prover, leading to a corrupt value r ′. The trick here is that due to the strict soundness,
the value r is essentially uniquely determined, and therefore the measurement does not
introduce too much disturbance.18

Unfortunately, that technique needs commitments with the strict binding property.
First, it is easy to see that strict binding commitments must be longer than the messages
they contain. Short strict binding commitments are not possible. Furthermore, the only
known construction of strict binding commitments [Unr12] uses quantum 1-1 one-way
functions. No candidates for those are known.

We show below that the same technique of committing to the responses works with
collapse-binding commitments. The crucial point in the analysis from [Unr12] was that
measuring the committed response does not change the state. The collapse-binding
property guarantees something slightly weaker: when measuring the committed response,
the state may change, but this cannot be noticed by a computationally limited adversary.

17This part was done only implicitly in [Unr12], in the analysis of the Hamiltonian cycle proof system.
18There is some disturbance due to the fact that it is not determined whether r is a valid response or

an invalid one.
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So with collapse-binding commitments, an analog reasoning as in [Unr12] can be used,
except that we get security only against quantum-polynomial-time adversaries. I.e., we
get a quantum argument of knowledge.

We will now describe this in more detail.
First, we formalize the sigma-protocol in which we commit to the responses:

Definition 40 (Sigma-protocol with committed responses) Let (Nz, P1, P2, V )
be a sigma-protocol with polynomially-bounded |Nz|. Let (com, verify) be a commitment
scheme (with the responses of (Nz, P1, P2, V ) as message space). We construct a
sigma-protocol (Nz, P

′
1, P

′
2, V

′) as follows:
• P ′1(1η, x, w) runs: a ← P1(1η, x, w). For each z ∈ Nz: rz ← P2(1η, x, w, z ) 19 and

(cz , uz )← com(1η, rz ). Let a ′ := (a, (cz )z∈Nz) and return a ′.
• P ′2(1η, x, w, z ) returns r ′ := (rz , uz ).
• V ′(1η, x, a ′, z , r ′) with a ′ = (a, (cz )z∈Nz) and r ′ = (r , u): Check whether

verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1. Iff so, return 1.

We show that the above construction is a quantum argument of knowledge:

Theorem 41 (Quantum argument of knowledge) If (Nz, P1, P2, V ) is a sigma-
protocol with computational special soundness for a relation R, and (com, verify) is
collapse-binding, then (Nz, P

′
1, P

′
2, V

′) from Definition 40 is computationally quantum
extractable for R with knowledge error 1/

√
|Nz|.

The proof of this theorem will rely on the following lemma from [Unr12]. (That
lemma is the core lemma of the rewinding technique from [Unr12].)

Lemma 42 (Extraction via quantum rewinding [Unr12]) Let C be a set with
|C| = c. Let (Pi)i∈C be projectors. Let |Φ〉 be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖

2

and E :=
∑

i,j∈C,i6=j
1
c2
‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c ).

Proof of Theorem 41. Recall that any sigma-protocol can be seen as an interactive proof
system by Remark 1. Let (P,V) denote the interactive proof system resulting from the
sigma-protocol (Nz, P

′
1, P

′
2, V

′). (In particular, the verifier V sends a random z ∈ Nz, and
in the end checks whether verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1.)

Let P∗ denote a malicious prover, i.e., a unitary quantum-polynomial-time algorithm.
Since P∗ attacks a sigma-protocol, it sends two messages. We can thus assume that P∗ is
of the following form:

• It operates on quantum registers Z,C,R,U . Here Z contains the internal state of
P∗ (initialized by algorithm Z). C is the register that will contain the first message
a ′ = (a, (cz )z ) sent by P∗. R,U contains the second message r ′ = (r , u) sent by P∗.
And C,R,U are initialized with |0〉.

• The unitary Ux describes the unitary operation of P∗ on Z,C during the first
invocation of P∗. Ux is parametrized by the classical input x of P∗. The message
a ′ = (a, (cz )z ) is obtained by measuring C in the computational basis.

19We can run P2 several times using the final state of P1 because P1 is classical.
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• The unitary Uz describes the unitary operation of P∗ on Z,R,U during the second
invocation of P∗. Uz is parametrized by the challenge z that P∗ receives. The
message r′ = (r, u) is obtained by measuring R and U in the computational basis.

We fix some additional notation for this proof:
• Vz : The projector on R,U onto the span of all |r , u〉 with verify(1η, cz , r , u) = 1.

(That is, Vz measures whether measuring R,U would yield a valid opening of cz .)
• Wz : The projector on R onto the span of all |r〉 with V (1η, a, z , r) = 1. (That is,
Wz measures whether measuring R yields a valid response r for challenge z .)

• Pz := U †zWzVzUz . Since Vz and Wz are projectors and diagonal in the computational
basis, they commute and their product is a projector. And since Uz is a unitary,
Pz is a projector (acting on registers Z,R,U).

• x←M(X) denotes that x is assigned the result of measuring the register X in the
computational basis.

• ok ← P (X) means that ok is assigned 1 iff measuring the register X with projector
P succeeds. (With P being, e.g., one of Vz ,Wz , Pz .)

• We write U(X) or U(X) to mean that the unitary U is applied to the register X.
(With U being, e.g., one of Ux, Uz).

With that notation, we can rewrite the success probability of the malicious prover as
follows:

PrV := Pr[P∗(1η, x, Z),V(1η, x)〉 = 1 : (x, Z)← Z(1η)]

= Pr[ok c = okv = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z
$← Nz,

Uz (ZRU), r ←M(R), u←M(U), ok c = verify(1η, cz , r , u), okv = V (1η, a, z , r)]

= Pr[ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z
$← Nz, ok ← Pz (ZRU)].

We now construct the extractor KP∗(1η ,x,Z)(1η, x) required by Definition 37. It operates
on quantum registers S,C,R,U as follows:

(x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU),

r ←M(R), U †z (ZRU), Uz ′(ZRU), r′ ←M(R), w ← EΣ(1η, x, a, z , r , z ′, r ′), return w.

Here EΣ is the extractor of the sigma-protocol (Nz, P1, P2, V ). This extractor exists
because the sigma-protocol has computational special soundness (see Definition 38). Note
that K only uses black-box access to P (via the unitaries Ux, Uz , Uz ′ and their inverses).

We will now bound the success probability of the extractor

PrE := Pr[(x,w) ∈ R : w ← KP∗(1η ,x,Z)(1η, x)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), U †z (ZRU), Uz ′(ZRU),

r ′ ←M(R), w ← EΣ(1η, x, a, z , r , z ′, r ′)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,
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Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ← V (1η, x, a, z , r), U †z (ZRU),

Uz ′(ZRU), r ′ ←M(R), ok ′v ← V (1η, x, a, z ′, r ′), w ← EΣ(1η, x, a, z , r , z ′, r ′)].

Due to the computational special soundness of (Nz, P1, P2, V ), in the previous game, with
overwhelming probability, z 6= z ′ and okv = 1 and okv′ = 1 implies (x,w) ∈ R. Thus
there exists a negligible µ1 such that

PrE ≥ Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ← V (1η, x, a, z , r), U †z (ZRU),

Uz ′(ZRU), r ′ ←M(R), ok ′v ← V (1η, x, a, z ′, r ′)]− µ1 =: Pr′E −µ1.

Instead of computing okv ← V (1η, x, a, z , r) using the just measured r , we can instead
measure whether the register R contains a value r that would make V (1η, x, a, z , r) = 1
true. I.e., we can replace okv ← V (1η, x, a, z , r) by a measurement using the projector Wz .
Since at that point, R was just measured in the computational basis, the measurement
using Wz does not disturb the state of the system. Similarly, we can replace ok ′v ←
V (1η, x, a, z ′, r ′) by a measurement using Wz ′ . We get:

Pr′E = Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ←Wz (R), U †z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]

= Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←Mokc(R), okv ←Wz (R), U †z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)].

In the last probability, r ←Mokc(R) refers to a measurement on R that is only executed
if ok c = 1. (And r := ⊥ otherwise.) The last two probabilities are equal because M(R)
and Mokc(R) only differ if ok c = 0, in which case “z 6= z ′ ∧ okv = ok ′v = 1” is false
anyway.

Since Vz measures whether R,U contains |r , u〉 with verify(1η, cz , r , u) = 1, and since
(com, verify) is collapse-binding, and since the outcome r is never used, we have that no
quantum-polynomial-time adversary can distinguish between“ok c ← Vz (RU), r ←M(R)”
and “ok c ← Vz (RU)”, except with negligible probability. (Cf. Definition 10.) Thus there
is a negligible µ2 such that

Pr′E ≥ Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U †z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]− µ2 =: Pr′′E −µ2.

Since M(R) and Wz ′(R) and Vz ′(RU) commute, and since adding additional/removing
operations after all values z , z ′, okv, ok ′v are fixed does not change the distribution of
those values, we have that “r ′ ← M(R), ok ′v ← Wz ′(R)” and “ok ′c ← Vz ′(RU), ok ′v ←
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Wz (R), U †z ′(ZRU)” lead to the same distribution of z, z′, okv, ok ′v. This justifies (∗) in
the following calculation:

Pr′′E
(∗)
= Pr[z 6= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U †z (ZRU),

Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U †z ′(ZRU)]

≥ Pr[z 6= z ′ ∧ ok c = okv = 1 ∧ ok ′c = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC),

(a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R),

U †z (ZRU), Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U †z ′(ZRU)]

= Pr[z 6= z ′ ∧ ok = 1 ∧ ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, ok ← Pz (ZRU), ok ← Pz ′(ZRU)].

Let αa ′ := Pr[a′ = (a, (cz )z )] in the previous game, and let |ψa′〉 denote the post-
measurement-state of registers Z,R,U after the measurement (a, (cz )z )←M(C). Then

Pr′′E =
∑
a ′

αa ′
∑

z ,z ′

z 6=z ′

1

|Nz|2
∥∥∥Pz ′Pz |ψa′〉

∥∥∥2

︸ ︷︷ ︸
=:Ea′

.

Furthermore, note that

PrV =
∑
a ′

αa ′
∑

z

1

|Nz|

∥∥∥Pz |ψa′〉
∥∥∥2

︸ ︷︷ ︸
=:Va′

.

Lemma 42 implies that if Va ′ ≥ 1/
√
|Nz|, then Ea ′ ≥ Va ′(V

2
a ′ − 1/|Nz|). Or stated

differently: Ea ′ ≥ ϕ(Va ′) where ϕ(x) := 0 for x < 1/
√
|Nz| and ϕ(x) := x(x2 − 1/|Nz|)

for x ≥ 1/
√
|Nz|. Since ϕ is convex on [0, 1], by Jensen’s inequality we get Pr′′E ≥ ϕ(PrV ).

In other words Pr′′E ≥ PrV (Pr2
V −1/|Nz|) whenever PrV ≥ 1/

√
|Nz|. Furthermore, the

inequalities derived above give PrE ≥ Pr′′E −µ for µ := µ1 + µ2. And µ is negligible. It
follows that:

PrV ≥
1√
Nz

=⇒ PrE ≥ PrV

(
Pr2

V −
1

|Nz|

)
− µ ≥

(
PrV −

1√
|Nz|

)3
− µ.

Thus (P,V) is quantum-computationally extractable for R with knowledge error κ :=
1/
√
|Nz|. �

Finally, we show that our protocol is still HVZK/SHVZK. From this we conclude
below (Corollary 44) that our protocol is quantum zero-knowledge.

Lemma 43 If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is HVZK and
(com, verify) is computationally hiding, and com is a polynomial-time algorithm, then
(Nz, P

′
1, P

′
2, V

′) is HVZK.

48



If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is SHVZK and (com, verify) is
statistically hiding, and com is a polynomial-time algorithm, then (Nz, P

′
1, P

′
2, V

′) is
SHVZK.

Proof. We first prove the computational case of the lemma. Assume that |Nz| is
polynomially-bounded, and (Nz, P1, P2, V ) is HVZK and (com, verify) is computationally
hiding.

We need to show that (Nz, P
′
1, P

′
2, V

′) is HVZK. By definition of HVZK, and by
construction of (Nz, P

′
1, P

′
2, V

′), that means that for any quantum-polynomial-time A,

Pr1 := Pr[b = 1 : a ← P1(1η, x, w), for each z : rz ← P2(1η, x, w, z ),

for each z : (cz , uz )← com(1η, rz ), z
$← Nz,

b′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )]

≈ Pr[b = 1 : (a, (cz )z , z, rz , uz )← S′Σ(1η, x),

b′ ← A(1η, |Ψ〉, a, (cz )z , z, rz , uz )] =: Prsim (29)

Here S′Σ is a quantum-polynomial-time simulator that we will construct below. And ≈
means that the difference between the probabilities is negligible.

We then calculate:

Pr1 = Pr[b = 1 : a ← P1(1η, x, w), z
$← Nz, rz ← P2(1η, x, w, z ), (rz , uz )← com(1η, rz ),

for each z ′ 6= z : rz ′ ← P2(1η, x, w, z ),

for each z ′ 6= z : (cz ′ , uz ′)← com(1η, rz ′), b
′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )]

(∗)
≈ Pr[b = 1 : a ← P1(1η, x, w), z

$← Nz, rz ← P2(1η, x, w, z ), (rz , uz )← com(1η, rz ),

for each z ′ 6= z : rz ′ ← P2(1η, x, w, z ),

for each z ′ 6= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )]

= Pr[b = 1 : a ← P1(1η, x, w), z
$← Nz, rz ← P2(1η, x, w, z ), (rz , uz )← com(1η, rz ),

for each z ′ 6= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )]
(∗∗)
≈ Pr[b = 1 : (a, z , rz )← SΣ(1η, x), (rz , uz )← com(1η, rz ),

for each z ′ 6= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )] =: Pr2

Here (∗) uses that (com, verify) is computationally hiding and A is quantum-polynomial-
time. com(1η, 0) refers to a commitment to some fixed message 0 in the message space of
com. And (∗∗) follows from the HVZK property of (Nz, P1, P2, V ) for suitable quantum-
polynomial-time SΣ.

Let S′Σ(1η, x) perform the following steps:

(a, z , rz )← SΣ(1η, x), (rz , uz )← com(1η, rz ),

for each z ′ 6= z : (cz ′ , uz ′)← com(1η, 0), return (a, (cz ), z , rz , uz ).

Then S′Σ is quantum-polynomial-time, and

Pr2 = Pr[b = 1 : (a, (cz )z , z , rz , uz )← S′Σ(1η, x), b′ ← A(1η, |Ψ〉, a, (cz )z , z , rz , uz )] = Prsim .
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Hence Pr1 ≈ Prsim , so (29) holds, and it follows that (Nz, P
′
1, P

′
2, V

′) is HVZK. This
shows the lemma in the computational case.

The statistical case of the lemma is shown fully analogously, except that we do not
assume A to be quantum-polynomial-time (and thus have to use the statistical hiding
property of (com, verify) and the SHVZK property of (Nz, P1, P2, V )). �

Corollary 44 (Zero-knowledge) If |Nz| is polynomially-bounded, and (Nz, P1, P2, V )
is HVZK and (com, verify) is computationally hiding, and com is a polynomial-time
algorithm, then (Nz, P

′
1, P

′
2, V

′) is computational zero-knowledge.
If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is SHVZK and (com, verify) is

statistically hiding, and com is a polynomial-time algorithm, then (Nz, P
′
1, P

′
2, V

′) is
statistical zero-knowledge.

Proof. Immediate from Lemma 43 and Theorem 39. �

8 Interactive quantum commitments

The definition of the collapse-binding property (Definition 10) was formulated specifically
for non-interactive commitments where only classical messages are exchanged and where
the verification in the opening phase is deterministic.

For completeness, we show here how the definition can be generalized to interactive
commitments that may send quantum states and have a quantum verification algorithm.
Note that we still consider the case where the message that we commit to is classical.
Also, for technical reasons, we consider only commitments where the opening phase
consists of a single quantum message.

We stress that, in contrast to Definition 10, we have not investigated this definition
further. For example, we do not know whether commitments according to Definition 45
below are useful for constructing zero-knowledge arguments. We mainly state this
definition for reference and leave it to future research to see how well the definition
behaves.

We model an interactive commitment using two interactive algorithms SND (sender)
and RCP (recipient) for the commit phase, and a quantum algorithm VER for the opening
phase. (S,U,R) ← 〈SND(1η,m),RCP(1η)〉 denotes an execution of the interaction
between SND and RCP where SND is committing to the message m (and with security
parameter η). Here the quantum registers S,U,R contain the state of SND, the opening
information (which consists of a single message), and the state of RCP, respectively. The
algorithm VER takes the security parameter and quantum registers M,U,R as input and
outputs a single bit, indicating whether the opening phase succeeded.

Definition 45 (Collapse-binding – generalized) Let Z be an auxiliary quantum reg-
ister. Let P ηVER be a projector on quantum registers M,U,R,Z (parametric in the
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security parameter η), such that for any η and any quantum state |Ψ〉 on M,U,R,

Pr[VER(1η,M,U,R) = 1 : MUR← |Ψ〉] =
∣∣P ηVER(|Ψ〉 ⊗ |0〉)

∣∣2.20

For an interactive algorithm A and a non-interactive algorithm B, consider the
following games:

Game1 : (S,M,U,R)← 〈A(1η),RCP(1η)〉, Z ← |0〉, ok ← P ηVER(M,U,R,Z),

m←Mok (M), b← B(1η, S,M,U)

Game2 : (S,M,U,R)← 〈A(1η),RCP(1η)〉, Z ← |0〉, ok ← P ηVER(M,U,R,Z),

b← B(1η, S,M,U)

Here (S,M,U,R)← 〈A(1η),RCP(1η)〉 denotes an interaction between A and the honest
recipient RCP. The quantum registers S,M,U are output by A, the register R contains
the final state of RCP. Z ← |0〉 means the quantum register Z is initialized with |0〉.
ok ← PVER(M,U,R,Z) means that ok is the output of measuring the joint register
M,U,R,Z with projector PVER. Mok is as in Definition 10.

We say (SND,RCP,VER) is collapse-binding relative to PVER iff for any quantum-
polynomial-time interactive algorithm A and any quantum-polynomial-time algorithm B,
the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible in η.

We stress that the choice of the purification P ηVER of VER is not irrelevant. In general,
different purifications P ηVER may have different post-measurement state even if they realize
the same algorithm VER [Unr14b]. Thus Definition 45 could be satisfied with one P ηVER
and not satisfied with another. We conjecture that in most cases where the definition is
used, one will simply need the existence of some quantum-polynomial-time P ηVER.

Notice that for a non-interactive commitment scheme with classical messages, Defini-
tion 45 coincides with Definition 10: In the non-interactive case, RCP simply stores the clas-
sical message c it receives, hence (S,M,U,R)← 〈A,RCP〉 becomes (S,M,U, c)← A(1η).
And the projector PVER from Definition 45 can be chosen as

∑
c Vc ⊗ |c〉〈c| where Vc is

the projector from Definition 10.

9 Open problems

We list some questions for future research:
• We have constructed quantum arguments of knowledge from sigma-protocols by

using collapse-binding commitments. However, our construction requires the chal-
lenge space Nz of the sigma-protocol to be of polynomially-bounded size. As a
consequence, the resulting argument of knowledge will have a noticeable knowl-
edge error; for a negligible knowledge error we need to use sequential repetition,
resulting in a proof system with non-constant round complexity. Are there general

20In other words, PVER performs the same measurement as VER does using an ancilla system Z.
Given a quantum-polynomial-time VER, we can always construct a polynomial-size quantum circuit
implementing P : Let U be the purification of VER using ancillae Z. Let P1 be the projector that measures
whether VER outputs 1. Then PVER := U†P1U is one possible choice for PVER.
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constructions of arguments of knowledge from sigma-protocols that do not require
the challenge space to be polynomially-bounded?

• Can we use collapse-binding commitments to construct a quantum OT protocol?
For example, using the construction from [BBCS91] or a variation thereof?

• How are the various definitions of computationally binding commitments related?
That is, which implications and separations exist between sum-binding, CDMS-
binding, collapse-binding, and UC-secure commitments?
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Skubiszewska. Practical quantum oblivious transfer. In Crypto ’91, volume
576 of LNCS, pages 351–366. Springer, 1991.
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