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Abstract. We consider the generic design of a tweakable blockcipher
from one or more evaluations of a classical blockcipher, in such a way
that all input and output wires are of size n bits. As a first contribution,
we show that any tweakable blockcipher with one primitive call and
arbitrary linear pre- and postprocessing functions can be distinguished
from an ideal one with an attack complexity of about 2n/2. Next, we
introduce the tweakable blockcipher F̃ [1]. It consists of one multiplication
and one blockcipher call with tweak-dependent key, and achieves 22n/3

security. Finally, we introduce F̃ [2], which makes two blockcipher calls,
one of which with tweak-dependent key, and achieves optimal 2n security.
Both schemes are more efficient than all existing beyond birthday bound
tweakable blockciphers known to date, as long as one blockcipher key
renewal is cheaper than one blockcipher evaluation plus one universal
hash evaluation.

Keywords. Tweakable blockcipher, Liskov-Rivest-Wagner, optimal se-
curity, beyond birthday bound.

1 Introduction

A blockcipher is a family of permutations indexed via a secret key. Tweakable
blockciphers generalize over classical blockciphers by introducing the tweak as an
additional parameter. More formally, a tweakable blockcipher Ẽ : K×T ×M→
M is a family of permutations on M indexed by a key k ∈ K and tweak t ∈ T .
Here, the key input is a secret parameter to guarantee security, while the tweak
value is a public parameter with the main purpose to bring flexibility to the
cipher. Tweakable blockciphers were formalized by Liskov, Rivest, and Wag-
ner [29] and find a wide spectrum of applications, such as tweakable enciphering
schemes [8, 13, 20–22, 34, 45, 49], authenticated encryption schemes and message
authentication codes [2, 27,41,42], and online ciphers [2, 44].

Example tweakable blockciphers that admit tweaks by design are Schroep-
pel’s Hasty Pudding Cipher [46], Crowley’s Mercy [10], and the Threefish cipher
used in SHA-3 finalist Skein [14]. Furthermore, Goldenberg et al. [18] demon-
strated how to transform a Feistel scheme into a tweakable Feistel scheme that
achieves birthday bound security, and Mitsuda and Iwata [35] derived similar
results for generalized Feistel schemes. Jean et al. [23] considered the problem of
tweaking key alternating ciphers by presenting TWEAKEY, a construction that
elegantly blends the tweak with the key in the key scheduling algorithm.



A more generic approach is to design a tweakable blockcipher from an ordi-
nary blockcipher (and possibly other cryptographic primitives) in a black-box
way. Two such constructions were introduced in Liskov et al.’s original paper.
The first construction LRW1 makes two evaluations of an underlying blockci-
pher E, while the other construction LRW2 is based on a blockcipher E and a
universal hash function family H:

LRW1(k, t,m) = E(k,E(k,m)⊕ t) , (1)

LRW2([k, h], t,m) = E(k,m⊕ h(t))⊕ h(t) , (2)

where h ∈ H. These constructions achieve security up to the birthday bound.
Related to LRW2 is the XEX construction by Rogaway [41], and extensions of
it by Chakraborty and Sarkar [7] and Minematsu [32], which effectively reduces
the keyspace to n bits.

Landecker, Shrimpton, and Terashima [27] considered the cascade of two
LRW2’s:

LRW2[2]([k1, k2, h1, h2], t,m) = LRW2([k2, h2], t, LRW2([k1, h1], t,m)) , (3)

and proved it secure up to about 22n/3 queries.1 Lampe and Seurin [26] gener-
alized this approach and considered a cascade of ρ ≥ 1 evaluations:

LRW2[ρ]([k,h], t,m) = LRW2([kρ, hρ], t, · · · LRW2([k1, h1], t,m) · · · ) , (4)

where k = (k1, . . . , kρ) are blockcipher keys and h = (h1, . . . , hρ) instantiations
of H. Lampe and Seurin proved that for even ρ, this construction is secure up
to approximately 2ρn/(ρ+2) queries. Note that this bound only improves over
the one of Landecker et al. for ρ ≥ 4. Lampe and Seurin conjectured that their
bound could be improved to 2ρn/(ρ+1). This term approaches the optimal 2n for
increasing ρ, but also the number of primitive calls and the key size increases
linearly in ρ.

Tweak-Dependent Keys

Liskov et al. [29] suggested that a change in the tweak should be cheaper than a
change in the key. As pointed out by Jean et al. [23], this may seem somewhat
counter-intuitive because the adversary has full control over the tweak while it
has only limited to no control over the key. They suggest that, in practice, the
two inputs should be treated comparably. Additionally, the theoretical quest to
derive an (almost) optimally secure tweakable blockcipher complying with this
condition lead to an unrestrained increase of primitive calls and of the number
of keys.

For example, the tweakable blockcipher Ẽ(k, t,m) = E(k ⊕ t,m) is secure
up to about 2n/2 evaluations (in the single-key setting,2 and if the underlying

1 Procter [39] pointed out a flaw in the original proof and suggested a fix. See also the
ePrint version of [27].

2 In the related-key model we have Ẽ(k, t,m) = Ẽ(k⊕ δ, t⊕ δ,m) for any (k, t,m) and
any δ [23].



cipher is sufficiently secure), and thus achieves the same level of security as,
for instance, LRW1. If we assume that the underlying cipher E consists of a key
scheduling part and a message encryption part (such separation is easily made for

key alternating ciphers), each evaluation of Ẽ requires one key scheduling and
one message encryption, while each evaluation of LRW1 requires two message
encryptions (the key scheduling can be pre-computed). This means that Ẽ is
more efficient than LRW1 if the key scheduling part of E is cheaper than its
message encryption part.

Minematsu [33] presented a construction of a tweakable blockcipher with
tweak-dependent key that achieves beyond birthday bound security. In more
detail, he proved that

Min(k, t,m) = E(E(k, t‖0n−|t|),m) (5)

is secure up to max{2n/2, 2n−|t|} where |t| denotes the fixed tweak length. Un-
fortunately, this construction only achieves beyond birthday bound security as
long as the tweak is shorter than n/2 bits and it can impossibly achieve optimal
2n security (unless |t| = 0). Beyond Minematsu’s scheme, no other tweakable
blockciphers in this direction are known.3

Our Contributions

We investigate the following elementary question. Can we design an optimally
secure tweakable blockcipher Ẽ with n-bit in- and outputs using only a blockcipher
E with n-bit in- and outputs?

We approach this question generically, focusing on the way Ẽ is designed from
E, which means that the preprocessing functions that prepare the inputs to the
underlying blockcipher may be technically any function as long as the tweakable
blockcipher itself is invertible. This also means that the preprocessing functions
may utilize another cryptographic primitive (for LRW2 the tweak and message
are preprocessed as (t,m) 7→ m⊕ h(t) for some universal hash function h ∈ H).
We will not rely on the potential cryptographic strength of the preprocessing
functions: we only make a security assumption on E and assume the mixing
functions are efficiently computable.

Formally, security is defined as the information-theoretic indistinguishability
of (Ẽ, E) from (π̃, E), with π̃ an ideal tweakable cipher, E an ideal cipher,
and where the distinguisher has forward and inverse query access to both of its
oracles. We remark that the same security model is, for instance, oft-employed
in the area of key-length extenders [1, 4, 12,16,17,28].

Generic Design. We start with presenting a generic description of a tweakable
blockcipher design Ẽ[ρ] for ρ ≥ 1. It consists of ρ calls to a classical blockcipher
E interlaced with arbitrary mixing functions to generate the inputs to primitive

3 We exclude schemes that use a blockcipher E with a larger key space, such as the
tweakable blockcipher Ẽ(k, t,m) = E(k‖t,m) for a blockcipher E with 2n-bit key.
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Fig. 2: Tweakable blockcipher F̃ [2]

calls and to generate the final output of the tweakable cipher. To assure invert-
ibility of Ẽ[ρ], we pose a validity condition on the mixing functions, and only
consider mixing functions that comply with this condition. Next, we consider
various instances of Ẽ[ρ].

One Blockcipher Call with Linear Mixing. We first focus on the case ρ = 1,
with the mixing functions being linear mappings over the finite field GF(2n), and
formally prove that any tweakable blockcipher of this form can be broken in a
total complexity of about 2n/2. The attack covers for instance the tweakable
cipher E(k ⊕ t,m) discussed before.

One Blockcipher Call with Polynomial Mixing. Next, we allow for mixing
functions that involve multiplications, and introduce the tweakable blockcipher
F̃ [1] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n (see also Fig. 1):

F̃ [1](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = k ⊗ t .

We prove that F̃ [1] is indistinguishable from an ideal tweakable cipher as long as
the distinguisher’s complexity is at most 22n/3. The proof is based on Patarin’s
H-coefficient technique [38] which has found recent adoption in, among others,
generic blockcipher design [9, 12] and MAC security [36]. It additionally uses
the finite field equivalent of Szemerédi-Trotter theorem [47], a result that was
also used by Jetchev et al. [24] in the context of blockcipher based hashing.
Informally, this theorem states that if L is a set of lines in a finite field and
P a set of two-dimensional points, the number of point-line incidences is at
most min{|L|1/2|P | + |L|, |L||P |1/2 + |P |}. This theorem is applied by viewing
construction queries as lines and primitive queries as points.

Two Blockcipher Calls with Linear Mixing. Thirdly, we consider the case
ρ = 2 and linear mixing functions, and introduce F̃ [2] : {0, 1}n × {0, 1}n ×
{0, 1}n → {0, 1}n (see also Fig. 2):

F̃ [2](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = E(k, t) .



Table 1: Comparison of F̃ [1] and F̃ [2] with existing tweakable blockciphers. Uni-
versal hashes in LRW2[ρ] are instantiated as multiplications in the finite field of
2n elements (see also Sect. 2). Cost is divided into plain E-calls, multiplications
or universal hashes ⊗/h, and the number of E-calls with tweak-dependent key
“tdk”. For Min, |t| denotes the fixed size of the tweak. The security bounds on

F̃ [1] and F̃ [2] are derived in the information-theoretic model.

scheme
security

(log2)

key

length

cost
reference

E ⊗/h tdk

LRW1 n/2 n 2 0 0 [29]

LRW2 n/2 2n 1 1 0 [29]

XEX n/2 n 2 0 0 [41]

LRW2[2] 2n/3 4n 2 2 0 [27]

LRW2[ρ] ρn/(ρ+2) 2ρn ρ ρ 0 [26]

Min max{n/2, n−|t|} n 2 0 1 [33]

F̃ [1] 2n/3 n 1 1 1 Sect. 4.2

F̃ [2] n n 2 0 1 Sect. 5

It differs from F̃ [1] in that the tweak processing z = k⊗ t is replaced by E(k, t).
We remark that PCLMULQDQ and AES are comparably efficient on the latest
Intel Haswell processors [19]. Using slightly more involved techniques than for

F̃ [1], we prove that F̃ [2] is an optimally secure tweakable cipher up to about 2n

queries.

Comparison

A comparison of F̃ [1] and F̃ [2] with the state of the art is given in Table 1.

It shows that F̃ [1] and F̃ [2] compare favorably. For instance, both F̃ [1] and
LRW2[2] achieve 2n/3-bit security, but the latter uses 2 blockcipher calls and

2 universal hash function calls. This means that F̃ [1] is more efficient if one
key renewal is cheaper than one blockcipher evaluation plus one universal hash
evaluation. It additionally uses a key that is four times as small. Similarly, F̃ [2]
achieves optimal security using 2 cipher calls and 1 key renewal. The same bound
is asymptotically achieved by LRW2[ρ] for ρ→∞, but this one requires ρ cipher
calls and ρ universal hash calls, and has a key of size 2ρn.

On the other hand, F̃ [1] and F̃ [2] are proven in the information-theoretic
model while the other schemes are analyzed in the complexity-theoretic model.
Both schemes require a blockcipher that offers resistance against distinguishers
that may freely choose the tweak that transforms the key input k under XOR.
Fortunately, no related-key attacks of this form on the widely used blockciphers
such as AES are known: Biryukov et al. [5, 6] derived a related-key attack on
full AES-192 and AES-256, but using a more complicated and contrived key
relation (see also Daemen and Rijmen [11]). We note that the proofs for F̃ [1]

and F̃ [2] can straightforwardly be transformed to the complexity-theoretic model



as long as the underlying blockcipher is related-key secure under XOR in the
formalization of Bellare and Kohno [3]. This requires a hybrid proof, where the
first step consists of replacing the underlying blockcipher E by an ideal primitive
(at the cost of the related-key security of E). This step is, however, relatively
loose, which can be seen from the fact that the ideal cipher achieves tight 2n/2

related-key security under XOR while it yields 22n/3 and 2n security for F̃ [1]

and F̃ [2] in the information-theoretic model.

Outline

We present the security model in Sect. 2. Our generic tweakable blockcipher
design Ẽ[ρ] is given in Sect. 3. In Sect. 4, we consider ρ = 1: the impossibility

result for linear mixing is given in Sect. 4.1 and our construction F̃ [1] using
polynomial mixing is introduced in Sect. 4.2. Then, in Sect. 5, we consider ρ = 2
and present F̃ [2] based on linear mixing functions. The work is concluded in
Sect. 6.

2 Model

By {0, 1}n we denote the set of bit strings of length n. Let GF(2n) be the field
of order 2n. We identify bit strings from {0, 1}n and finite field elements in
GF(2n). This is done by representing a string a = an−1an−2 · · · a1a0 ∈ {0, 1}n
as polynomial a(x) = an−1x

n−1 + an−2x
n−2 + · · ·+ a1x + a0 ∈ GF(2n) and vice

versa. There is additionally a one-to-one correspondence between [0, 2n− 1] and
{0, 1}n, by considering a(2) ∈ [0, 2n − 1]. For a, b ∈ {0, 1}n, we define addition
a⊕b as addition of the polynomials a(x)+b(x) ∈ GF(2n). Multiplication a⊗b is
defined with respect to the irreducible polynomial f(x) used to represent GF(2n):
a(x) · b(x) mod f(x).

If A is some set, a
$←− A denotes the uniformly random drawing of a from A.

The size of A is denoted by |A|.

Distinguishers and Advantages

Throughout this work, a distinguisher D is a computationally unbounded prob-
abilistic algorithm. It is given query access to one or more oracles O, which
means that it can make a certain amount of queries to O adaptively. After this
communication with O, the distinguisher outputs a 0 or a 1. For two different
oracles O and P, we define the advantage of D in distinguishing both worlds by

Adv(D) =
∣∣Pr

[
DO = 1

]
−Pr

[
DP = 1

]∣∣ . (6)

We use the H-coefficient technique by Patarin [38] and Chen and Steinberger [9].
Consider a fixed deterministic distinguisher trying to distinguish two oracles
O and P, where its advantage function is denoted Adv(D) as in (6). Denote
by X (resp. Y ) the probability distribution of views when interacting with O



(resp. P). Let v be a view, i.e., a list of query-response tuples D may observe
while interacting with O or P. This view is called “attainable” if an interaction
with P could render this view, or formally if Pr [Y = v] > 0. We denote by V
the set of attainable views.

Lemma 1 (Patarin’s Technique). Let D be a deterministic distinguisher.
Consider a partition V = Vgood∪Vbad of the set of attainable views. Let 0 ≤ ε ≤ 1
be such that for all v ∈ Vgood,

Pr [X = v]

Pr [Y = v]
≥ 1− ε . (7)

Then, the distinguishing advantage satisfies Adv(D) ≤ ε+ Pr [Y ∈ Vbad].

A proof of this lemma is given in [9]. The idea of the technique is that only few
views are significantly more likely to appear in P than in O. In other words, the
ratio (7) is close to 1 for all but a few views: the “bad” views. The definition
of “bad” views is sometimes a delicate process, rendering a tradeoff between ε
and Pr [Y ∈ Vbad]. Indeed, a too loose definition of bad views results in a larger
second term, while a too tight one renders a larger ε.

Blockciphers and Tweakable Blockciphers

A blockcipher E : K ×M → M is a mapping such that for every key k ∈ K,
Ek(·) = E(k, ·) is a permutation on M. We denote its inverse for fixed k by
E−1k (·). We denote by BC(K,M) the set of all such blockciphers.

A tweakable blockcipher Ẽ : K × T × M → M is a mapping such that
for every k ∈ K and every tweak t ∈ T , the function Ẽk(t, ·) = Ẽ(k, t, ·) is a

permutation onM. Like before, its inverse is denoted by Ẽ−1k (·, ·). Let P̃(T ,M)
be the set of all functions π̃ : T ×M → M such that for all t ∈ T , π̃(t, ·) is a
permutation on M.

Security of tweakable blockciphers considers a distinguisher D that has query

access to a tweakable blockcipher Ẽk for k
$←− K or an ideal tweakable permuta-

tion π̃
$←− P̃(T ,M), and tries to distinguish both worlds. It is typically bounded

to have limited resources, such as q queries and τ time. In this work, we focus
on modular designs for tweakable blockciphers, where Ẽ uses a blockcipher E
as underlying primitive. If we denote by τE the time needed for one evaluation
of E, the distinguisher can evaluate this underlying cipher at most r := τ/τE
times. We consider E to be perfectly secure and give D query access to E. More
formally, we define the strong tweakable-PRP security of Ẽ based on E as

Advs̃prp

Ẽ
(D) =

∣∣∣Pr
[
DẼ

±
k ,E

±
= 1
]
−Pr

[
Dπ̃
±,E± = 1

]∣∣∣ ,
where the probabilities are taken over the random choices of k

$←− K, E
$←−

BC(K,M), and π̃
$←− P̃(T ,M), and the random coins of D. Distinguisher D is

bounded to make q queries to its first (construction) oracle and r queries to its
second (primitive) oracle.
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Fig. 3: Tweakable blockcipher Ẽ[3] making three blockcipher evaluations

Universal Hash Functions

A hash function family H : K×X → Y is called ε-almost 2-XOR-universal if for

all distinct x, x′ ∈ X and y ∈ Y, Pr
[
h

$←− K : Hh(x)⊕Hh(x′) = y
]
≤ ε [25,40].

A well-known universal hash function H : {0, 1}n × {0, 1}n → {0, 1}n with
ε = 2−n is defined by multiplication in GF(2n): Hh(x) = h⊗ x.

3 Generic Design

Here and throughout we consider K = T = M = {0, 1}n for some n ≥ 1. Let
E : {0, 1}n×{0, 1}n → {0, 1}n be a blockcipher. A generic tweakable blockcipher

Ẽ[ρ] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n based on ρ ≥ 1 calls to E can be
represented by mappings Ai : {0, 1}(i+2)n → {0, 1}n for i = 1, . . . , ρ + 1 and
Bi : {0, 1}(i+1)n → {0, 1}n for i = 1, . . . , ρ as follows:

procedure Ẽ[ρ](k, t,m)

for i = 1, . . . , ρ do

xi = Ai(k, t, y1, . . . , yi−1,m)

li = Bi(k, t, y1, . . . , yi−1)

yi = E(li, xi)

return c = Aρ+1(k, t, y1, . . . , yρ,m)

The tweakable blockcipher Ẽ[3] making ρ = 3 blockcipher calls is depicted in
Fig. 3. The design resembles ideas of the permutation based hash function con-
struction described by Rogaway and Steinberger [43] and the blockcipher based

hash function construction described by Mennink [31]. However, Ẽ[ρ] is required

to be invertible. In other words, on input of k, t, c, Ẽ[ρ]−1(k, t, c) = m should be
computable, and we will pose a validity condition on Ai, Bi to guarantee this.

Definition 1 (informal). The mixing functions Ai for i = 1, . . . , ρ+ 1 and Bi
for i = 1, . . . , ρ are valid if there is exactly one function Ai∗ that processes m,
such that the first i∗ − 1 rounds of Ẽ[ρ] can be computed in forward direction
without knowledge of m, the last ρ− (i∗− 1) rounds in inverse direction without
knowledge of m, and Ai∗ can be inverted to obtain m.



Note that we already require that B1, . . . , Bρ do not get m as input. A formal
definition of valid mixing functions is given in App. A; this definition is more
technical and not strictly needed for a better understanding of the attacks and
proofs in this work.

Apart from the validity condition, the mixing functions could be anything,
and may technically even be of the form A1(k, t,m) = AES(k ⊕ t,m). However,
it is reasonable to assume the mixing functions to be sufficiently efficient, and
we focus on constructions with polynomial mixing functions.

4 One Blockcipher Call

In Sect. 4.1 we consider Ẽ[1] for any triplet of valid functions A1, B1, A2 that
are linear mappings over GF(2n), hence only consist of addition and scalar mul-
tiplication. We show that any such tweakable cipher can be attacked by an
information-theoretic distinguisher in at most 2n/2 queries, and thus that prov-
able security beyond this bound cannot be achieved. In Sect. 4.2 we allow for
mixing functions that consist of a finite field multiplication, and introduce F̃ [1].

4.1 Linear Mixing

We present an attack on Ẽ[1] for any A1, B1, A2 that comply with the invert-
ibility condition and that are linear.

Proposition 1. Let n ≥ 1. Let Ẽ[1] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n
be a tweakable blockcipher based on valid linear A1, B1, A2. Then, there is a
distinguisher D making at most 2n/2+1 construction queries and 2n/2+1 primitive
queries, such that

Advs̃prp

Ẽ[1]
(D) ≥ 1− 1

2n
.

Proof. The mixing functions are linear, and can be represented by matrices(
A1

B1

)
=

(
a11 a12 a13
b11 b12 0

)
and A2 =

(
a21 a22 a23 a24

)
,

where A1, B1 are evaluated on (k, t,m) and A2 on (k, t, y1,m). Additional con-
ditions apply regarding the validity. Note that we have to distinguish two cases:
i∗ = 1 and i∗ = 2, and we start with the latter.

Case i∗ = 2. Validity requires that A1 is independent of m (hence a13 = 0) and
A2 is an invertible mapping m 7→ c for any k, t, y1 (hence a24 6= 0). Distinguisher
D selects an arbitrary t and two arbitrary distinct m,m′. Then, it queries c ←
O(t,m) and c′ ← O(t,m′), where O is either Ẽ[1] or π̃. If c⊕ c′ = a24(m⊕m′),
the distinguisher outputs 1, otherwise it outputs 0. Note that the distinguisher
always outputs 1 if it is in the real world: because a13 = 0, both queries have
identical E-calls, and thus y1 = y′1. Therefore, c ⊕ c′ = A2 (0, 0, 0,m⊕m′) =



a24(m ⊕ m′). On the other hand, this condition is set in the ideal world with
probability 1/2n. This gives a distinguisher in 2 construction queries with a
success probability of 1− 1/2n.

Case i∗ = 1. This case is more technical. Validity requires that A1 is an
invertible mapping m 7→ x1 for any k, t (hence a13 6= 0). A2 is required to be
independent of m (hence a24 = 0) and an invertible mapping y1 7→ c for any
k, t (hence a23 6= 0). At a high level, we consider a distinguisher D that queries

its construction oracle O (either Ẽ[1] or π̃) and/or its primitive oracle E, with
the goal to find a colliding pair: a construction query (ti,mi, ci) and a primitive
evaluation (lj , xj , yj) such that(

A1

B1

) k
ti
mi

 =

(
xj
lj

)
. (8)

In this case, the attacker can verify if A2(k, ti, yj ,mi)
?
= ci, and output 0/1

accordingly. Technicalities arise as the key k is unknown and it is not straight-
forward to find a pair of queries satisfying (8). Additionally, for some A1, B1 a
different technique has to be employed. We make a further distinction among
four cases. The case distinction is made based on the values b12, b11, and a11.
Subcase b12 = 0. In this case the key input to the blockcipher is b11k. The
distinguisher selects arbitrary distinct t, t′ and an arbitrary m, and sets m′ =
m⊕ a−113 a12(t⊕ t′). Then, it queries c← O(t,m) and c′ ← O(t′,m′). If c⊕ c′ =
a22(t ⊕ t′), the distinguisher outputs 1, otherwise it outputs 0. The remaining
analysis is similar to previous case i∗ = 2, using that a24 = 0 and y1 = y′1 in the
real world. This gives a distinguisher in 2 construction queries with a success
probability of 1− 1/2n.
Subcase b12 6= 0, b11 = a11 = 0. In this case k is not used as input to A1

and B1. The distinguisher selects an arbitrary t and arbitrary distinct m,m′.
Then, it queries c ← O(t,m) and c′ ← O(t,m′). Additionally, it queries y ←
E(B1(k, t,m), A1(k, t,m)) and y′ ← E(B1(k, t,m′), A1(k, t,m′)) (which can be
queried without knowledge of k as a11 = b11 = 0). If c ⊕ c′ = a23(y ⊕ y′), the
distinguisher outputs 1, otherwise it outputs 0. The remaining analysis is similar
to before. This gives a distinguisher in 2 construction queries and 2 primitive
queries with a success probability of 1− 1/2n.
Subcase b12 6= 0, b11 6= 0. This is the most general subcase. (8) is equivalent
to finding a construction query (ti,mi, ci) and a primitive evaluation (lj , xj , yj)
such that (

0 a′12 a13
b11 b12 0

) k
ti
mi

 =

(
xj ⊕ b−111 a11lj

lj

)
, (9)

where a′12 = a12⊕b−111 a11b12 and where b11, b12, a13 6= 0. The distinguisher defines

for i = 1, . . . , 2n/2 : ti = b−112

(
〈i− 1〉n/2‖0n/2

)
and mi = a−113 a

′
12ti ,

for j = 1, . . . , 2n/2 : lj = 0n/2‖〈j − 1〉n/2 and xj = b−111 a11lj .



Note that these values are selected such that the first equation of (9) holds for
any (i, j): it reads a′12ti ⊕ a′12ti = 0. Regarding the second equation, we have
b12{t1, . . . , t2n/2} ⊕ {l1, . . . , l2n/2} = {0, 1}n, hence this equation will hold for
exactly one (i?, j?).

For i = 1, . . . , 2n/2, it queries ci ← O(ti,mi). For j = 1, . . . , 2n/2, it queries
yj ← E(lj , xj). For every i, j, the distinguisher writes kij = b−111 (lj ⊕ b12ti) and

verifies if A2(kij , ti, yj ,mi)
?
= ci. For any i, j such that this equation holds, the

adversary chooses an arbitrary new tweak t′i and arbitrary message m′i, sets x′j =
A1(kij , t

′
i,m

′
i) and l′j = B1(kij , t

′
i,m

′
i), makes construction query c′i ← O(t′i,m

′
i)

and primitive query y′j ← E(l′j , x
′
j), and verifies if A2(kij , t

′
i, y
′
j ,m

′
i)

?
= c′i.

If there is an i, j such that both verifications succeed, the distinguisher out-
puts 1, otherwise it outputs 0. Recall that in the real world there is exactly one
solution k = ki?j? and both verifications succeed for this key. In the ideal world,
the distinguisher outputs 1 if there is a combination of i, j such that both verifica-
tions succeed. This happens with probability at most 2n/2 ·2n/2 ·(1/2n)2 = 1/2n.
This gives a distinguisher that makes at most 2n/2+1 construction queries and
2n/2+1 primitive queries and succeeds with probability 1− 1/2n.
Subcase b12 6= 0, b11 = 0, a11 6= 0. This case is in fact the orthogonal of the
previous one. Now, (8) translates to finding a construction query (ti,mi, ci) and
a primitive evaluation (lj , xj , yj) such that

(
a11 a12 a13
0 b12 0

) k
ti
mi

 =

(
xj
lj

)
, (10)

where a11, b12, a13 6= 0. The distinguisher defines

for i = 1, . . . , 2n/2 : ti = 0n and mi = a−113

(
〈i− 1〉n/2‖0n/2

)
,

for j = 1, . . . , 2n/2 : lj = 0n and xj = 0n/2‖〈j − 1〉n/2 .

Note that the second equation of (10) holds for any (i, j), but there is exactly
one combination for which the first equation holds. The remainder of the attack
literally follows previous case. ut

The authenticated encryption scheme McOE-X by Fleischmann et al. [15] uses

the tweakable blockcipher ẼMcOE-X(k, t,m) = E(k ⊕ t,m), and Prop. 1 gives
a distinguishing attack in about 2n/2 queries. In fact, the attack of Mendel et
al. [30] on McOE-X uses a generalization of the attack of Prop. 1.

4.2 Polynomial Mixing

We consider the design of a tweakable blockcipher based on one blockcipher
call where the mixing functions may consist of a finite field multiplication. Re-
call the LRW2 tweakable blockcipher of (2) that is based on a 2-XOR-universal
hash function h. We make two simplifications: firstly, we instantiate it with the
optimally secure 2-XOR-universal hash function h(x) = h ⊗ x (see Sect. 2),



and secondly, we put h = k. This results in the following function LRW2′ :
{0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n:

LRW2′(k, t,m) = E(k,m⊕ z)⊕ z, where z = k ⊗ t .

This function achieves security up to at most 2n/2 queries [29]. However, it turns
out that a significant security gain can be made by making the key input tweak-
dependent.

In more detail, we propose the following tweakable cipher F̃ [1] : {0, 1}n ×
{0, 1}n × {0, 1}n → {0, 1}n:

F̃ [1](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = k ⊗ t .

The function is depicted in Fig. 1. In the following theorem, we prove that it
achieves 2n/3-bit security.

Theorem 1. Let n ≥ 1. Let D be a distinguisher making at most q construction
queries and r primitive queries. Then,

Advs̃prp

F̃ [1]
(D) ≤ 2 min{q1/2r + q, qr1/2 + r}

2n
.

Equilibrium is achieved for q = r, for which F̃ [1] achieves approximately 22n/3

security. Note that the result implies something even stronger: if the online
complexity q is at most 2n/2, the offline complexity r can be up to almost 2n−3.
The proof relies on the finite field equivalent of Szemerédi-Trotter theorem [47],
which – to our knowledge – was first introduced to cryptography by Jetchev et
al. [24].

Lemma 2 (Szemerédi-Trotter Theorem Over Finite Fields). Let F be a
finite field. Let P (resp. L) be a set of points (resp. lines) in F2. Define I(P,L) =
{(p, `) ∈ P × L | p ∈ `}. Then,

|I(P,L)| ≤ min{|L|1/2|P |+ |L|, |L||P |1/2 + |P |} .

A proof of this lemma can be found in Tao [48] and Özen [37, Thm. 5.1.5].
(Tao [48] shows that the bound is more or less sharp: put P the set of all points
in F2 and L the set of all lines in F2. Then, both |P | and |L| are approximately
|F|2 and the number of point-line incidences I(P,L) is about |F|3.) Using Lem. 2,
we are ready to prove Thm. 1.

Proof (Proof of Theorem 1). Let k
$←− {0, 1}n, E

$←− BC({0, 1}n, {0, 1}n), and

π̃
$←− P̃({0, 1}n, {0, 1}n). We consider a computationally unbounded distinguisher

D that has bidirectional access to two oracles: (F̃ [1]k, E) in the real world and
(π̃, E) in the ideal world. As D is computationally unbounded, we can without
loss of generality assume that it is deterministic and we apply Lem. 1. The
distinguisher makes q queries to O1 ∈ {F̃ [1]k, π̃}, and these are summarized in a



view v1 = {(t1,m1, c1), . . . , (tq,mq, cq)}. Similarly, it makes r queries to O2 = E,
which are summarized in a view v2 = {(l1, x1, y1), . . . , (lr, xr, yr)}. Without loss
of generality, we assume that both v1 and v2 do not contain duplicate elements.
Additionally, we assume that both views are attainable. For v1, this is the case if
and only if for any distinct i, i′ such that ti = ti′ , we have mi 6= mi′ and ci 6= ci′ .
The case of v2 is equivalent.

After D’s interaction with (O1,O2), but before it outputs its decision 0/1,
we disclose the key k to the distinguisher. In real world, this is the key used
for the game, in the ideal world k will be a fake and freshly drawn key. This is
truly without loss of generality, as it only leads to an increase in the distinguish-
ing advantage (the distinguisher can ignore this information, if it wants). The
complete view is denoted v = (v1, v2, k).

Bad Views. We next present our definition of bad views, followed by an informal
explanation. We define by Vbad the set of all views v such that at least one of
the following two conditions holds:

∃ (t,m, c) ∈ v1, (l, x, y) ∈ v2 : (k ⊕ t,m⊕ k ⊗ t) = (l, x) , (11a)

∃ (t,m, c) ∈ v1, (l, x, y) ∈ v2 : (k ⊕ t, c⊕ k ⊗ t) = (l, y) . (11b)

Recall the partition V = Vgood ∪ Vbad, implying that any attainable view such
that (11) does not hold, is good.

We give a high-level explanation of the definition of bad views. Note that
we can implicitly “map” all tuples in v1 to their corresponding E-evaluation:
a tuple (t,m, c) ∈ v1 corresponds to E-evaluation (k ⊕ t,m ⊕ k ⊗ t, c ⊕ k ⊗ t),
where k is given in v. Intuitively, we want that there are no two tuples in v1 ∪ v2
whose E-evaluations “collide”, in the sense that they render the same input to or
output of E. Two different tuples from v2 never collide, by attainability of v. Two
different tuples from v1 also never collide. Indeed, let (t,m, c), (t′,m′, c′) ∈ v1 be
two different tuples. These collide if

(k ⊕ t,m⊕ k ⊗ t) = (k ⊕ t′,m′ ⊕ k ⊗ t′) or

(k ⊕ t, c⊕ k ⊗ t) = (k ⊕ t′, c′ ⊕ k ⊗ t′) ,

which is the case if and only if (t,m) = (t′,m′) or (t, c) = (t′, c′), impossible due
to attainability of v. Finally, collisions between v1 and v2 imply (11).

Pr [Y ∈ Vbad]. Consider the ideal world (π̃, E). The key k
$←− {0, 1}n is a

dummy key drawn independently of v1, v2. Starting with the first bad condi-
tion (11a), it is equivalent to

∃ (t,m, c) ∈ v1, (l, x, y) ∈ v2 : (k ⊕ t,m⊕ (l ⊕ t)⊗ t) = (l, x) .

Note that the second equation is independent of k, it solely depends on the tuples
(t,m, c) ∈ v1 and (l, x, y) ∈ v2, and we apply Lem. 2. For every (t,m, c) ∈ v1 we
ignore c and represent (t,m) as a line ` : y = t ⊗ x ⊕ (m ⊕ t ⊗ t) in GF(2n)2.



For every (l, x, y) ∈ v2, we ignore y and consider (l, x) as a point (x, y) in
GF(2n)2. The number of combinations (t,m, c) ∈ v1 and (l, x, y) ∈ v2 such that
m⊕ (l⊕ t)⊗ t = x is in fact the number of point-line incidences I(v2, v1), which
by Lem. 2 is at most min{q1/2r + q, qr1/2 + r} =: f(q, r). Any of these tuples
fixes one possible value l ⊕ t. Therefore, there are at most f(q, r) possible keys

that could set (11a). A symmetric reasoning applies to (11b). As k
$←− {0, 1}n,

we find,

Pr [Y ∈ Vbad] ≤ 2 min{q1/2r + q, qr1/2 + r}
2n

.

Pr [X = v] /Pr [Y = v]. Let v ∈ Vgood. For the computation of Pr [X = v]
and Pr [Y = v], it suffices to compute the fraction of oracles that could result in
view v, for both the real and ideal world. Formally, if we denote by allX the set
of all oracles in the real world, and by compX(v) the fraction of them compatible
with v, we find Pr [X = v] = |compX(v)|/|allX |. Similarly for the ideal world.

Note that |allX | = 2n·(2n!)2
n

, the number of possible keys k times the number
of possible ciphers E. Similarly, |allY | = 2n ·(2n!)2

n ·(2n!)2
n

, where the first term
now corresponds to the disclosed dummy key. The computation of the number
of oracles compatible with v is slightly more involved. We group the tuples in
v1 according to the tweak value and the tuples in v2 according to the key value.
More formally, for t ∈ [0, 2n − 1] define αt = |{(t′,m′, c′) ∈ v1 | t′ = t}|, and
for l ∈ [0, 2n − 1] define βl = |{(l′, x′, y′) ∈ v2 | l′ = l}|. Additionally, denote for
l ∈ [0, 2n − 1]:

γl = αk⊕l + βl .

This definition of γl is inspired by the fact that a tuple (t,m, c) ∈ v1 corresponds
to an E-evaluation with key input l = k ⊕ t.

Using these definitions, we are ready to compute the number of compatible
oracles. First consider compX(v). As v is a good view and does not satisfy
(11), every query tuple in v1 ∪ v2 defines a unique E-evaluation. This leaves∏2n−1
l=0 (2n − γl)! blockciphers E ∈ BC({0, 1}n, {0, 1}n) compliant with (v1, v2).

Additionally, the key k is uniquely fixed as it is included in v. We find:

|compX(v)| =
2n−1∏
l=0

(2n − γl)! .

Next, for the ideal world, a similar reasoning shows that there are
∏2n−1
t=0 (2n−αt)!

tweakable ciphers π̃ ∈ P̃({0, 1}n, {0, 1}n) compliant with v1 and
∏2n−1
l=0 (2n−βl)!

blockciphers E ∈ BC({0, 1}n, {0, 1}n) compliant with v2. We find:

|compY (v)| =
2n−1∏
t=0

(2n − αt)! ·
2n−1∏
l=0

(2n − βl)!

=

2n−1∏
l=0

(2n − αk⊕l)! · (2n − βl)! ≤ (2n)!2
n

·
2n−1∏
l=0

(2n − γl)! ,



using that (2n − α)! · (2n − β)! ≤ (2n − α − β)! · 2n! for any 0 ≤ α, β ≤ 2n.
Assembling all bounds yields

Pr [X = v]

Pr [Y = v]
=
|allY | · |compX(v)|
|allX | · |compY (v)|

≥
2n · (2n!)2

n · (2n!)2
n ·
∏2n−1
l=0 (2n − γl)!

2n · (2n!)2n · (2n)!2n ·
∏2n−1
l=0 (2n − γl)!

= 1.

Lemma 1 thus carries over for ε = 0. ut

5 Two Blockcipher Calls

We suggest an alternative to F̃ [1] based on two blockcipher calls and linear
mixing functions A1, B1, A2, B2, A3. In more detail, we propose the following
tweakable cipher F̃ [2] : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n:

F̃ [2](k, t,m) = E(k ⊕ t,m⊕ z)⊕ z, where z = E(k, t) .

The function is depicted in Fig. 2. F̃ [2] differs from F̃ [1] in that the tweak
processing z = k ⊗ t is replaced by E(k, t). We remark that it is fair to make
such transition, as multiplication and AES are comparably expensive on the
latest Intel processors. In the following theorem, we prove that F̃ [2] achieves
optimal security.

Theorem 2. Let n ≥ 1. Let D be a distinguisher making at most q construction
queries and r primitive queries. Then,

Advs̃prp

F̃ [2]
(D) ≤ r

2n
+

2qr

(2n − q)(2n − r)
.

The bound guarantees security of F̃ [2] up to almost 2n queries to both the
construction and the primitive. In more detail, the bound is at most 1/2 as long
as q, r ≤ 2n−2.

Proof. The proof is in the lines of the one of Thm. 1, but differences arise due
to the evaluations of E involved in the transformation of z = E(k, t).

Let k
$←− {0, 1}n, E

$←− BC({0, 1}n, {0, 1}n), and π̃
$←− P̃({0, 1}n, {0, 1}n). As

before, we consider a computationally unbounded, deterministic, distinguisher
D that has bidirectional access to (F̃ [2]k, E) in the real world and (π̃, E) in the

ideal world. The distinguisher makes q queries to O1 ∈ {F̃ [2]k, π̃}, and these are
summarized in a view v1 = {(t1,m1, c1), . . . , (tq,mq, cq)}. Similarly, it makes r
queries to O2 = E, which are summarized in v2 = {(l1, x1, y1), . . . , (lr, xr, yr)}.
Again, we assume that both v1 and v2 are attainable when interacting with the
ideal world and do not contain duplicate elements.

After the D’s interaction with (O1,O2), but before it outputs its decision
0/1, we will again disclose the key k (fake k in the ideal world). We additionally
disclose to the distinguisher all values zi = E(k, ti) for i = 1, . . . , q. These will be
disclosed in the form of a view vz = {(k, t1, z1), . . . , (k, tq′ , zq′)}, where q′ denotes



the number of distinct tweak values in v1 (note that, indeed, the same tweak
may appear in different tuples of v1). Again, these disclosures are without loss
of generality, as they only lead to an increase in the distinguishing advantage.
The complete view is now denoted v = (v1, v2, vz, k).

Bad Views. We define by Vbad the set of all views v such that at least one of
the following three conditions holds:

∃ (l, x, y) ∈ v2 : k = l , (12a)

∃ (t,m, c) ∈ v1, (l, x, y) ∈ v2, (k, t, z) ∈ vz : (k ⊕ t,m⊕ z) = (l, x) , (12b)

∃ (t,m, c) ∈ v1, (l, x, y) ∈ v2, (k, t, z) ∈ vz : (k ⊕ t, c⊕ z) = (l, y) . (12c)

Recall the partition V = Vgood ∪ Vbad, implying that any attainable view such
that (12) does not hold, is good. The bad conditions (12b-12c) match (11a-11b),
with the difference that z = E(k, t) is involved. The bad condition (12a) is
new and is used to rule out the event that any of the evaluations in vz already
“appears” in v2 (the condition is slightly stronger, assuring that v2 does not
contain any query for key k).

Pr [Y ∈ Vbad]. Consider the ideal world (π̃, E). The key k
$←− {0, 1}n is a

dummy key drawn independently of v1, v2. Basic probability theory:

Pr [(12)] ≤ Pr [(12a)] + Pr [(12b) ∨ (12c) | ¬(12a)] .

Condition (12a) holds with probability at most r/2n, as there are at most r
possible values l, and the key is randomly drawn from {0, 1}n. Assume (12a)
is not set, hence v2 does not contain any tuple (k, ·, ·). This particularly means
that all values z1, . . . , zq′ are drawn independently of v1, v2. Regarding condition
(12b), we have q tuples in v1 and r tuples v2. Any combination fixes one possible
(l⊕t, x⊕m) and also fixes exactly one tuple in vz. Therefore, there are at most qr
possible drawings of (k, z) that could set (12b). A symmetric reasoning applies
to (12c). As k is uniformly drawn from a set of size at least 2n − r (condition
¬(12a) rules out at most r values), and the corresponding z is drawn from a
set of size at least 2n − q (there are at most q values z, all different as E is a
blockcipher), we find

Pr [(12b) ∨ (12c) | ¬(12a)] ≤ 2qr

(2n − q)(2n − r)
.

Combining the bounds results in Pr [Y ∈ Vbad] ≤ r

2n
+

2qr

(2n − q)(2n − r)
.

Pr [X = v] /Pr [Y = v]. The analysis of Thm. 1 carries over verbatim with
the difference that we merge v2 ∪ vz. Note that, by our definition of good views,
these two sets do not overlap or conflict. ut
The scheme F̃ [2] is equally expensive as the tweakable blockcipher by Minematsu
[33], which also makes two blockcipher calls, one with a tweak-dependent key.
On the other hand, it achieves a significantly higher level of security: 2n versus
2max{n/2,n−|t|}, where |t| denotes the size of the tweak.



6 Conclusions

We considered the generic design of n-bit tweakable blockciphers only based
on calls to a classical blockcipher. F̃ [1] and F̃ [2] show that good beyond birth-
day bound security can be achieved quite elegantly. More detailed, the latter
construction makes only two blockcipher calls and achieves optimal security.

As suggested in the original formalization of tweakable blockciphers by Liskov
et al. [29], tweak renewal should be cheaper than key renewal. To a certain degree,
this is a reasonable condition, but once generic constructions such as LRW2[ρ]
require more and more primitive calls, it is of theoretical and practical interest to
search for alternatives that release this side condition (see also Jean et al. [23]).

In fact, F̃ [1] and F̃ [2] improve over the state of the art beyond birthday bound
solutions, in the key size and in the efficiency as long as key renewal is reasonably
cheap.

A direction for future research would be to investigate if improved bounds
can be derived for F̃ [1] or any other one-call scheme. Additionally, we note that
our schemes are analyzed in the single-key model, and it may be of interest to
investigate them under the related-key model where the adversary may influence
the key input to the tweakable blockcipher. Finally, it is of interest to derive
two-call schemes where the tweak transforms the key input to the underlying
blockcipher in a more randomized way (in a similar fashion as Min of (5)).
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Fig. 4: Inverse of tweakable blockcipher Ẽ[3], where i∗ = 2

A Valid Mixing Functions

We propose a formal definition of valid mixing functions, following upon Def. 1.

Definition 2. Write xρ+1 := c. The mixing functions Ai for i = 1, . . . , ρ + 1
and Bi for i = 1, . . . , ρ are valid if there exists an index i∗ ∈ {1, . . . , ρ+ 1} such
that

(a) ∀i=1,...,i∗−1 there exists a function Âi such that for all k, t, y1, . . . , yi−1,m:

Ai(k, t, y1, . . . , yi−1,m) = Âi(k, t, y1, . . . , yi−1) ;

(b) Ai∗ is invertible in m 7→ xi∗ for all k, t, y1, . . . , yi∗−1;

(c) ∀i=i∗+1,...,ρ+1 there exists a function Âi such that for all k, t, y1, . . . , yi−1,m:

Ai(k, t, y1, . . . , yi−1,m) = Âi(k, t, y1, . . . , yi∗−1, yi−1) ,

where Âi is furthermore invertible in yi−1 7→ xi for all k, t, y1, . . . , yi∗−1;
(d) ∀i=i∗+1,...,ρ there exists a function B̂i such that for all k, t, y1, . . . , yi−1:

Bi(k, t, y1, . . . , yi−1) = B̂i(k, t, y1, . . . , yi∗−1) .

It is straightforward to verify that Ẽ[ρ] is invertible if Ai, Bi are valid mixing

functions. Formally, the inverse Ẽ[ρ]−1 can be described as follows (for ρ = 3

and i∗ = 2, the inverse Ẽ[3]−1 is depicted in Fig. 4):

procedure Ẽ[ρ]−1(k, t, c)

for i = 1, . . . , i∗ − 1 do

xi = Âi(k, t, y1, . . . , yi−1)

li = Bi(k, t, y1, . . . , yi−1)

yi = E(li, xi)

for i = ρ, . . . , i∗ do

yi = Â−1i+1(k, t, y1, . . . , yi∗−1, xi+1)

li = B̂i(k, t, y1, . . . , yi∗−1)

xi = E−1(li, yi)

return m = A−1i∗ (k, t, y1, . . . , yi∗−1, xi∗)


