
A random zoo: sloth, un∨
i
corn, and trx

Arjen K. Lenstra and Benjamin Wesolowski

EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. Many applications require trustworthy generation of public random numbers. It is
shown how this can be achieved using a hash function that is timed to be as slow as desired
(sloth), while the correctness of the resulting hash can be verified quickly. It is shown how sloth
can be used for uncontestable random number generation (unicorn), and how unicorn can be
used for a new trustworthy random elliptic curves service (trx) and random-sample voting.

1 Introduction

There are many situations where large interests depend on random choices. Obvious examples
are national lotteries and sporting events schedules, but it also plays a role in governance.
Sortition was the cornerstore of Athenian democracy, where both the βουλή (the legislative
council) and the ‘ηλια‘ια (the supreme court) consisted of a random sample of citizens. Even
to the present day sortition-based democracy is advocated by some as a fair and simple
alternative to elected assemblies.

The required random choices must be made in such a way that no one can knowingly bias
the choices to anyone’s advantage or disadvantage, and such that everyone affected, directly
or indirectly, can be assured that foul play is impossible. Such assurance is, to some extent,
meant to be provided by live broadcasts of lotteries and draws for sports events. But multiple
scenarios are conceivable to influence the outcomes, like any skilled prestidigitator can fool
entire crowds while publicly tossing a coin or rolling a die.

In this paper potential solutions to this problem are discussed and a new one is proposed.
After explaining how existing approaches fail to provide a satisfying solution, a new con-
struction is presented, which provides incorruptible public randomness even in the worst case
situation where a user of the number does not trust anyone but him or herself.

Although the literature on trustworthy public randomness is very sparse, a number of
attempts have been made to provide public random numbers, often in the form of an online
service that publishes allegedly unpredictable numbers at regular intervals. Such a service is
often referred to as a beacon, a concept first proposed by M. Rabin in [28] to provide trust
between communicating parties while implementing contract signing, confidential disclosures,
and certified mail in an electronic mail system. See for instance [25], or [29] for online services
that continuously make available fresh random numbers. In these systems, no mechanism
allows a user to verify the freshness of the published numbers, so these services can only be
considered as trusted third-parties. Various ideas have been discussed to provide some level
of verifiability by introducing publicly observable events in the randomness generation. See
for instance [13] for a beacon based on stock market prices. Relying on the assumption that
published financial data is unmalleable does not provide much guarantee to the most skeptical
users of the beacon.

The idea of using the Bitcoin block chain [23] as a source of public randomness has also
been raised. The authors of [8] show that a bit of randomness from such a source is resistant

to manipulation from a party P who would bribe the Bitcoin miners with a stake of less
than 50 bitcoins, or about US$12,000 today. In this attack model, this source of randomness
can resist manipulations, except against rich parties. More generally, the security fails if P
can control some proportion of the bitcoin mining effort — via any form of corruption, or if P
is himself one of the biggest existing miners, or can gather enough computational resources
to overpower them.

The new approach proposed in this paper provides a way to create incorruptible random
numbers, the correct generation of which can be verified by the most mistrustful users. It
relies on a simple observation: a number can be fully determined at point in time t, while
none of its bits can actually be known to anyone before time t+∆, for some delay ∆, when its
computation is completed. A delay of this sort can easily be dealt with in applications where
there is no time pressure: if one wants to turn the randomness selection into an entertaining
public event it must be considered an advantage – also to cater to the expectations of sponsors
and advertisers – if the proceedings are stretched a bit.

Another application of uncontestable generation of random numbers without time pressure
is the seeding of the generation of standardized parameter choices for elliptic curve cryptog-
raphy (ECC). Although there are many elliptic curve parameters that would be suitable for
ECC, there is only a small set of elliptic curve parameters that are recommended or standard-
ized for general use [6]. Using one of these curves implies trusting the way it was generated.
A particular choice of parameters could hide special properties and potential weaknesses only
known by the party publishing the curve: [5] elaborates why this could be problematic even
if care seems to be taken to avoid trust issues. Furthermore, any of these curves may already
have been cryptanalyzed – for reasons unbeknownst to a new user, for instance because a
worthwhile target uses it – and quite extensively so if the curve has been around for a while
already. Unlike the trust issue, possibly long term prior exposure to cryptanalysis does not
seem to be a concern that is often expressed. Nevertheless, there may be users that would
prefer to always use parameters that are as fresh as possible or to use their own person-
alized parameters. This is not an option yet: due to the current state of the art in elliptic
curve point counting, generating good random elliptic curve parameters is a tedious process
whereas parameters that can be quickly generated (using the complex multiplication method)
are frowned upon – albeit for unknown reasons.

Classical methods that provide incorruptible public randomness and their disadvantages
are discussed in Section 2. Using a new slow-timed hash function, sloth, described in Sec-
tion 3 (and pronounced “slow-th”), a new approach to public randomness selection, unicorn,
is proposed in Section 4: unicorn results in a high entropy random seed that can be influ-
enced by anyone participating in the initial stages of its generation without any party being
able to manipulate the outcome to its advantage, and the correct generation of which can
be verified by everyone, once the seed has been made public. A cryptographic application of
the method from Section 4 is generating parameters for ECC. A service resulting from this
application, trx, has been implemented and produces a slow but constant stream of trustwor-
thy random elliptic curve parameters at various security levels. Trx is described in Section 5.
An application of the method from Section 4 to democratic voting procedures is sketched
in Section 6. The possibilities of using the newly proposed methods for other applications
(including cryptographic elections, ECC and other cryptographic standards, and a random
beacon) are briefly mentioned in the final section, Section 7.
Notation. The integer k ∈ {128, 192, 256} denotes a security level. With k clear from the
context, h denotes the 2k-bit version of a secure cryptographic hash algorithm (such as SHA-

2

http://dictionary.cambridge.org/pronunciation/british/sloth

2 [24]). The function h is regarded as a function from A∗ to Hk/2, where A∗ is the set
of strings over some alphabet A and where H ⊂ A is the set {0, 1, . . . , 9, a, b, . . . , f} of
hexadecimal characters. Any secure cryptographic hash function may be used that one sees
fit. It is assumed that the hash function satisfies the usual security requirement that it takes
effort on the order of at least 2k to find a (chosen) pre-image or collision. The constructions
in this paper may fail if either of the security assumptions does not hold. If this happens
in practice, the cryptographic hash function used should be considered to be broken, which
could be an interesting side-result.

The function int : H∗ → Z≥0 maps x ∈ H∗ in the canonical manner to the non-negative
integer with hexadecimal representation x. Even though int is not injective (due to leading
zeros), hex(n) = int−1(n) ∈ H∗ for n ∈ Z>0 is defined as the hexadecimal representation
of n, without leading 0-characters, and hex(0) = 0.

For a prime p the finite field with p elements is denoted by Fp. The multiplicative group
of Fp is denoted by F×p . For x ∈ Fp the notation x̂ refers to the canonical lift to the set
{0, 1, . . . , p− 1} of least non-negative residues modulo p.

For any function f from some domain D to some range R with R ⊆ D and ` ∈ Z≥0, the
customary notation f ` is used for `-fold iteration of f :

f `(x) = f(f(· · · f(︸ ︷︷ ︸
`

x) · · ·)) for any x ∈ D.

2 Incorruptible public randomness

Consider the problem where a set G of people wants to agree on a (pseudo)random number s
in {0, 1}n for some n ∈ Z>0. They do not trust each other and they do not want any individual
to be able to tamper with s in any meaningful way, i.e., being able to force s away from a
uniform distribution. Because there is no way to guarantee that any party is incorruptible, an
independent third party is not an option, certainly not one that (with a clever slight of hands)
flips coins or rolls dice. Complex transparent machines with balls flying around in seemingly
total chaos, as commonly used for national lotteries, are easy to fool [35,9]. The situation gets
even worse when the winning numbers are generated by a computer [33]. See also [15]. In this
section a number of tempting approaches are discussed. They all appear to be flawed both
from a security and a usability perspective, at least when the number of participants becomes
large.

A naive approach would be to let each g ∈ G independently choose an sg ∈ {0, 1}n, and
to set s =

⊕
g sg, where “⊕” denotes exclusive-or. As long as at least a single sg is chosen

uniformly and independently from all others, the resulting s will be uniformly distributed, no
matter how the others collude or otherwise fail to follow the rules. But the independence relies
on the unrealistic assumption that all choices are perfectly synchronized: the party l ∈ G that

last reveals its choice can target any value v for s by selecting sl = v ⊕
(⊕

g 6=l sg

)
.

A common way to get around this problem uses commitments, resulting in a two-round
protocol. First each party secretly chooses its sg and publishes a commitment cg to it; cg could
for instance be h(h(sg)||idg), with h as in Section 1, and idg a unique identifier for party g.
Once all parties have received all commitments, the sg-values are revealed, the commitments
checked, and the value s =

⊕
g sg is calculated as usual. This clearly obviates the possibility

for anyone to target a specific value or to bias the result: as long as one participant is honest

3

(and not hacked by the others), the resulting s will be unbiased, irrespective of any colluding
group of dishonest other parties.

In theory, using commitments works for any finite number of participants, assuming at
least a single one is honest and not hacked. In practice, and in particular if the number
of participants is large, a number of them may be expected to drop out between the two
rounds, either due to technical problems or maliciously, and never reveal a value they have
committed to. This may result in a denial of service attack: the protocol will never finish
because not all committed values are revealed. The attack can be countered by setting a time
limit and to compute s as the exclusive-or of just those sg-values that have been received on
time. However, this may make it possible for a malicious party g to influence the protocol
in a meaningful way, by deciding, right before the time limit, whether or not to reveal its sg
depending on whether it prefers s or s⊕ sg, where s is the exclusive-or of all values received
but not including sg. Such an attempt may fail if another malicious party independently tries
to do the same, but may get worse if m parties collude, allowing them to choose the best
among 2m possible outcomes. A single miscreant controlling m fake participants makes this
scenario even worse.

In the next section a slow-timed hash function is described that could be used to resolve
this problem in applications where there is no need for an immediate result. The resulting
protocol has only one round, and anybody can participate without prior notice. Also, unlike
what was presented in this section, it is easy for anyone to take part in the process without
need for any special software or technical skills; indeed, it can be as easy as tweeting.

3 Sloth : slow-timed hash

In this section sloth is presented, a slow-timed hash function that satisfies the two following
design criteria: given any ω > 0

– it must be possible to choose the parameters in such a way that computing sloth takes wall-
clock time at least ω seconds, irrespective of the amount of computer resources available;

– the wall-clock time required to verify that the resulting hash is correct must be modest
compared to ω, the wall-clock time required for the computation.

3.1 A trivial iterative design

It is not hard to design a function that meets the above requirements, given any ω > 0. Given
a security level k and corresponding cryptographic hash function h as in Section 1, computing
the `-fold iteration h` of h is inherently sequential and does not allow parallelization beyond
a small constant number of cores (i.e., not depending on `). Thus, ` ∈ Z>0 can be determined
such that for any s ∈ A∗ the computation of h`(s) takes wall-clock time at least ω, on this same
number of cores. Although verification of the result requires the same amount of computing,
for any suitably chosen n with 2 ≤ n ≤ ` the wall-clock time for the verification can be
reduced by a factor of n using n-fold parallelization on n times as many resources, assuming
the n checkpoints hbi`/nc(s) for i = 1, 2, . . . , n are kept during the calculation of h`(s). To
be able to guarantee a specified wall-clock time, usage of an ASIC-resistant hash function (if
necessary combined with a regular cryptographic hash function) could be considered. Another
approach is pursued below.

4

3.2 Using modular square roots

More interesting solutions require functions that are, unlike cryptographic hash functions,
easier to verify than to compute. Obvious candidates are the commonly used cryptographic
trapdoor functions. For instance, computing the hash could require the factorization of a
large integer or computation of a discrete logarithm in a suitably chosen group, while a
witness (containing a factor or the discrete logarithm, respectively) would be provided along
with the resulting hash to allow fast verification. But wall-clock times for both these hard
problems decrease mostly linearly with the amount of parallel resources available, making
proper parameter selection cumbersome if not outright impossible.

Another idea is to use polynomial factorization over finite fields, the simplest case of which
is modular square root extraction: given some prime p, this has the advantages for the present
application that calculating a modular square root takes, to the best of current knowledge,
at least log2(p) − 2 unparallelizable modular squarings, whereas a single modular squaring
suffices to verify the result. Given ω > 0, it thus suffices to take the smallest p for which the
sequence of squarings modulo p require at least ω seconds. For a wall-clock time of about ten
minutes on a single core (running at, say, 2.3GHz), p is going to be on the order of hundreds of
thousands of bits long, implying that the amount of available parallelism (or special purpose
architectures) would become more of an issue. The approach sketched below offers more
effective assurance against parallelization by combining a still reasonably small p with the
earlier idea of using ` iterations: the computation is then stuck at ` necessarily sequential
modular square root calculations, each of which is necessarily sequential as well, while the
verification, already at least log2(p) − 2 times faster than the computation, can be sped up
by another factor of n by remembering n checkpoints (as inherent in iterative approaches).
The size of p can then be set to match the relatively modest verification wall-clock time one
settles for (under mild restrictions with respect to the desired security level, cf. below); see
also the discussion on wall-clock time guarantee below.

Let p ≡ 3 mod 4 be a prime number. It follows that for any x ∈ F×p precisely one of x

and −x is a square, and a square root can be calculated by raising the square to the p+1
4 -th

power. If y is a square root of a square x ∈ F×p , then y and −y are the only two square roots

of x. Observing that the canonical lifts ŷ of y and −̂y = p − ŷ of −y have different parities,
define +

√
x as the unique square root of x with even lift and −

√
x as the unique one with odd

lift. This leads to the permutation

ρ(x) =

{
+
√
x if x is a quadratic residue

−
√
−x otherwise

on F×p , with inverse

ρ−1(y) =

{
+y2 if ŷ is even
−y2 if ŷ is odd.

Simply iterating the permutation ρ allows a shortcut in the computation of ρ`, as shown in
Section 3.4. This can be avoided by adding a layer of unstructured confusion in the following
manner.

Let σ be an permutation on F×p such that both σ and σ−1 are easy to compute. Given σ

define τ = ρ◦σ and use τ ` for some appropriately chosen ` as a slow-to-compute function with
easily computable verification function (τ `)−1 = (τ−1)` = (σ−1 ◦ ρ−1)`. Note that, given ω,
the value of ` will mostly depend on the size of p. The slow hash function that results from

5

this construction is described in Section 3.3 below. In Section 3.4 it is shown how σ may
be chosen in such a way that easy verification is maintained, while undesirable shortcuts are
avoided that would allow computation of τ ` faster than by sequential `-fold iteration of τ .

Using modular squarings to build functions of fixed computation time is reminiscent of
Rivest, Shamir and Wagner’s time-lock puzzle [31], used for encrypting data that can only
be decrypted in a predetermined time in the future. This was the first time-sensitive crypto-
graphic primitive taking into account the parallel power of possible attackers. Other timed
primitives appeared in different contexts: Bellare and Goldwasser [3,4] suggested time capsules
for key escrowing in order to counter the problem of early recovery. Boneh and Naor [7] in-
troduced timed commitments: a hiding and binding commitment scheme, which can be forced
open by a procedure of determined running time. The time-lock constructed in [31] takes place
in a group of hidden order, and knowledge of the order allows a shortcut in the computation.
This nice property is however undesirable in the present context. Later, modular square roots
were used in [20] to build non-interactive time-lock puzzles as a line of defense against denial
of service attacks on servers.

3.3 Sloth

Let k be a security level, h a corresponding hash function (Section 1), p ≡ 3 mod 4 a prime
such that p ≥ 22k, and τ as in Section 3.2. Compared to regular hash functions from A∗

to Hk/2 (cf. Section 1), the slow-timed hash function sloth produces two additional outputs.
In the first place a witness is provided that allows fast verification of the resulting hash value.
Furthermore, to enable disclosure of its input value only at a later point in time (it may be
undesirable if others simultaneously run sloth on the same input) while avoiding the possibility
of selecting a particular input from a number of inputs (as any number of copies of sloth could
be run in parallel), a commitment to the input will be output right away, before sloth embarks
on its long, wall-clock time ω consuming iteration. In applications where a commitment is
not relevant, this first component of the output can be discarded. Thus, sloth maps elements
of A∗ to (Hk/2)2 × F×p , where the first component in Hk/2 is the commitment, the second

component in Hk/2 is the resulting hash, and the F×p -part is the witness that allows fast
verification.

Sloth is defined below. In Section 4.2 the precise security model of sloth is defined along
with the assumption underlying the security. Informally, the security is defined as time-
security, i.e., in terms of the wall-clock time that must elapse before sloth can have been
computed, implying that shortcuts during its calculation are impossible. The time-security
relies on the slowness assumption implicitly made in Section 3.2 that extraction of a modular
square root cannot be done faster than using a modular exponentiation – in similarity with
hardness assumptions for cryptographically relevant problems. It would require a new idea
to prove that the slowness assumption is incorrect; if that happens sloth may fall back on
modular roots of more complex polynomials.

Sloth. Let s ∈ A∗ be the input.
1: Let u← h(s) and c← h(u).
2: Return c as the output’s first component and continue.
3: Let w0 ∈ Fp be such that ŵ0 = int(u)

(note that 0 ≤ int(u) < 22k ≤ p).
4: For i = 1, 2, . . . , ` in succession let wi ← τ(wi−1).

6

5: Let g ← h(hex(ŵ`)) and w ← w`.
6: Return g and w as the second and third components

of the output and quit.

The output (c, g, w) ∈ (Hk/2)2×F×p of sloth with input s thus consists of the commitment c,
the hash g, and the witness w. The correctness of a sloth output (c, g, w) given some input s
can be verified as described below, as immediately follows from the description of sloth.

Sloth-verification. Let (s, c, g, w) ∈ A∗ × (Hk/2)2 × F×p
be the input.

1: Let u← h(s).
2: If c 6= h(u) then return “false” and quit.
3: If g 6= h(hex(ŵ)) then return “false” and quit.
4: Replace w by (τ−1)`(w).
5: If ŵ 6= int(u) then return “false” and quit.
6: Return “true” and quit.

Note that sloth is “just” a hash function. In Section 4 it will be shown how sloth can be used
to provably generate a verifiable, incorruptible, public random number that can be trusted
by any party that trusts its own entropy-contribution to the input of sloth, while not being
vulnerable to a denial of service attack as the methods from Section 2. The proof, presented in
full in the Appendix, holds in the random oracle model and relies on a reasonable assumption
about the slowness of computing modular square roots along with the assumption that the
underlying hash function h is collision-free.

3.4 Choices for the permutation σ

In the random oracle model it can be proved that sloth is indeed inherently sequential and
that the information about the outcome that can be guessed in less time than required to
sequentially compute Ω(` log(p)) multiplications in Fp, for p → ∞, gives only a negligible
advantage. The proof (cf. Section 4.2 and Appendix) relies on the assumptions that σ is a
random permutation and that computing a square root of a random square in F×p requires
an exponentiation in Fp (cf. the above slowness assumption); this is made more precise in
Section 4.2. The second assumption does not seem to be unreasonable given the current state
of the art of modular square root extraction. Concerning the former assumption, as argued
in the present section good time-security can still be obtained without it, and it seems that
simple choices for σ suffice.

Omitting σ. It is first shown that, as mentioned above and assuming that p ≡ 3 mod 4, the
computation of ρ` indeed allows a shortcut. Thus, omitting σ is not an option. For s ∈ A∗, let
w ∈ Fp be such that ŵ = int(h(s)), as in the definition of sloth. With σ equal to the identity

function on Fp, the iteration computes τ `(w) = ρ`(w). It follows that (ρ`(w))2
`

= z where z is
the unique square among w and −w. Because, as is easily seen, ±ρ`(w) are the only two roots

of X2`−z in Fp, it suffices to determine one of those two roots and to use the fast verification
to decide if it or its negative equals ρ`(w). With e = p+1

4 , a square root of z ∈ F×p is given

by ze and, iterating this for i, a root of X2i− z is given by ze
i
. Thus, with j = e` mod (p−1),

a root of X2` − z is found by computing zj at the cost of an exponentiation in Z/(p − 1)Z
and an exponentiation in Fp.

7

Swapping neighbors. The problem of omitting σ lies in the fact that ρ`(w) is the root of
a simple, explicitly given polynomial. Consider the permutation σ on F×p with σ = σ−1 that
swaps neighbors:

σ(x) =

{
x+ 1 if x̂ is odd;
x− 1 if x̂ is even.

With w as above, it is not clear how to express (ρ◦σ)i(w) = τ i(w) as the root of a polynomial.
For instance, if w is a square, then ρ(w) = +

√
w is even so that τ(w) = +

√
w − 1, which is a

root of (X + 1)2 −w and which has an odd lift. But the latter does not give any information
about the quadratic residuosity of the root +

√
w − 1. Therefore, without computing that

quadratic residuosity, it is only known that τ2(w) is a root of one of ((X + 1)2 + 1)2 − w
and ((X + 1)2 − 1)2 − w. In general, τ i(w) is a root of precisely one of the 2i polynomials
(. . . ((X ± 1)2 ± 1)2 . . . ± 1)2 − w, but there does not seem to be an efficient way to predict
which of the 2` polynomials has τ `(w) as root. Of course, all 2` polynomials could be tested in
parallel, but even finding the roots of a single one seems to require at least the same amount of
unparallelizable time as the successive square root extractions in sloth, as all polynomials are
dense and of degree 2` over Fp. Therefore, using a permutation σ that simply swaps neighbors
seems to be time-secure enough. Nevertheless, it still preserves some algebraic structure, which
could lead to unforeseen adversarial strategies.
Using binary permutations. As mentioned above and shown in Section 4.2, time-security of
sloth can be proven – in the cryptographic sense of the word – if σ is a random permutation
of F×p . Keyed block ciphers are commonly used to emulate allegedly good pseudo-random
permutations of {0, 1}n for n ∈ Z>0. It is shown how they can be used to define permutations
of F×p .

Given F×p , select an integer n ≥ log2(p). Identifying the set {0, 1}n with the set of integers
{0, 1, . . . , 2n − 1}, a permutation ς : {0, 1}n → {0, 1}n can be regarded as a permutation of
{0, 1, . . . , 2n − 1}. With the map π : Z → Fp that maps a ∈ Z to the y ∈ Fp for which
ŷ ≡ a mod p, and the map ι : Fp → {0, 1, . . . , p − 1} that maps x ∈ Fp to x̂, this induces a
map σ̃ = π ◦ ς ◦ ι : Fp → Fp. Unfortunately, σ̃ is not necessarily a permutation on F×p , because
there may be elements x ∈ F×p for which ς(x̂) /∈ ι(F×p) = {1, 2, . . . , p− 1}.

However, a permutation of F×p can be obtained if, depending on the input x, the permu-
tation ς is performed as often as required until x̂ is mapped to {1, 2, . . . , p− 1}:

σ(x) = π(ςv(x̂)),

with v > 0 minimal such that ςv(x̂) ∈ {1, 2, . . . , p− 1}. For a uniformly random x ∈ F×p , the
probability that ς(x̂) /∈ {1, 2, . . . , p− 1} is at most

#{0, p, p+ 1, p+ 2, . . . , 2n − 1}
#{1, 2, . . . , p− 1}

=
2n − p+ 1

p− 1
,

which can be made negligibly small by selecting p as 2n − ε for a small positive integer ε. As
a result, for such primes a permutation of F×p is obtained that will in practice be as efficient
as the underlying block cipher. The fact that for rare elements of F×p the computation takes
more time cannot be exploited to speed up the calculation of τ – indeed, it only further slows
it down. The additional overhead for the verifier is negligible.

Given that the analysis is generic in ς it can be improved for specific instances, and it
allows flexibility in the design of ς, as long as p is close to 2n: binary operations such as
exclusive-or, shifts, and bit(s) swapping may all be used. Because such choices do not allow a

8

Table 1. Verification times for 10-minute sloth

swapping neighbors AES-128 block cipher
n iterations verification time ε iterations verification time
256 31 000 000 7.7 seconds 189 20 000 000 177 seconds
512 6 750 000 2.7 seconds 569 5 400 000 97 seconds

1024 1 100 000 0.84 seconds 105 1 000 000 37 seconds
2048 155 000 0.33 seconds 1557 150 000 11 seconds
4096 23 600 0.15 seconds 2549 23 000 3.8 seconds

meaningful algebraic interpretation in Fp, shortcuts in the calculation of sloth, as discussed
above, are avoided. If the binary operations are restricted to the least significant bits (in a
similarly fast but more liberal manner than just swapping neighbors) the prime p does not
have to be chosen close to 2n.

Choices for the prime p. To conclude this section, Table 1 lists the verification times
depending on the choice of the size of p, for two practically relevant permutations: swapping
neighbors and block cipher based. In all cases, the number of iterations ` is chosen such that
the computation of sloth takes ten minutes. For swapping neighbors random n-bit primes are
used, for n-values as indicated. For AES-128 block cipher, the primes are of the form 2n−ε and
the largest possible (with ε as listed), ς = AES-128, and σ = π ◦ ςv ◦ ι for an input-dependent
v as explained in the text (which, in the experiments, always turned out to be equal to one).
The columns iterations list the number of iterations of the permutation needed to obtain a
runtime of ten minutes for the computation of sloth. The columns verification time list the
time in seconds to verify the resulting value, to be compared to the 600 seconds required
for the generation (and scales linearly with other computation wall-clock times that may be
used). The computations were performed on a 2.3 GHz Intel Core i7, using the libraries GMP
for multiprecision numbers and OpenSSL for AES. No attempts were made at optimization,
as they equally affect computation and verification times. When σ is a simple binary operation
the number of iterations and the verification times are similar to those for swapping neighbors.
The line in bold indicates the recommended parameter choice.

Wall-clock time guarantee. The wall-clock time required for a calculation consisting of
` necessarily sequential steps (cf. Proposition 1 and Appendix), each consisting of at least
log2(p) necessarily sequential modular multiplications, can easily be measured for a single
core running at a certain speed and using any standard software package. This should give
some information about the shortest possible wall-clock time using the fastest conceivable
software on the optimal number of fastest possible cores that could be employed given the
value log2(p) at hand. The simplest speed-up is overclocking: clock-speeds close to 9GHz have
been reported (cf. [14]). For parameter choices as reported in Table 1 it would lead to a wall-
clock time guarantee of about three minutes. The multi-core approaches and runtime figures
presented in [2,18] suggest that for the lower range of log2(p)-values no further speed-ups have
been obtained. Similarly, a shortest possible wall-clock time using special purpose hardware
can be derived, but published results (cf. [19,21,27]) seem to suggest that the software results
listed in Table 1 are again hard to beat. For all time-security arguments below, a lower bound
estimate of two minutes will be used. This is conservative if just academic adversaries are
taken into account, and may be optimistic if more powerful adversaries are expected. But in
the practical, down-to-earth implementation of sloth the originally aimed for wall-clock time
of ten minutes on a single standard core as above will have to be dealt with. Obviously, the
choice of ten minutes can be changed to whatever one feels comfortable with given a variety

9

of conceivable – or imagined – speedups and given the likelihood that a powerful adversary
may decide to build the dedicated hardware required to actually realize these speedups.

4 Unicorn : uncontestable random numbers

In this section unicorn is described, one of many conceivable scenarios how sloth may be used
to generate uncontestable random numbers: everyone may contribute inputs to unicorn to
influence its result while no one will be able to knowingly bias the result one way or another;
everyone can quickly verify that the resulting random numbers have been generated according
to the unicorn protocol; and all participants can check correct inclusion of their contribution.
However, anyone who wants to use the outcome of a particular execution of unicorn without
taking part in it, will have to trust that at least one participant followed the rules: as is the
case for current lotteries and live-broadcast drawings, outsiders have no choice but to believe
the integrity of the outcome. Unlike lotteries, however, anyone has the opportunity to take
part in unicorn even without being physically present. The only requirement is to be on time.
The formal security notion of the incorruptibility of unicorn is described in Section 4.2, and
proved in the case where the permutation σ used by sloth is a random permutation.

4.1 The unicorn protocol

Given a security level k and corresponding hash function h (cf. Section 1), each execution of
unicorn proceeds on a time line from t−2 to t2 (with ti < tj if i < j) as described below.

Unicorn
time t−2: It is publicly announced that public data gathering will take place during the

time interval [t−1, t0). This announcement will be made on a public website, along with
instructions how data may be contributed. For instance, contributors could be invited to
send a tweet with a specified hashtag. This could be a hashtag specifically generated for
and unique to the current execution of unicorn, or it could, as suggested by Cécile Pierrot,
be a popular existing hashtag which will for the current execution of unicorn be harvested
just during the time interval from t−1 to t0. Both types of hashtags could also be used
simultaneously.

time t−1: Data reception starts: all data received will be concatenated, in the order in which
it arrives, to form the public part s0 ∈ A∗ of the input to sloth.

time t0: Data reception stops, the resulting s0 is published on the website right away, and
sloth is applied to the concatenation s = s0||s1 of the public data s0 and the independently
generated part s1. The first component c = h(h(s)) (the commitment to the input) of the
output of sloth is published on the website as soon as it becomes available (i.e., almost
instantaneously), say at time t0 + γ for a very small positive γ. Although γ in principle
depends on the size of s0, it can be expected to be a fraction of a second because in
practical circumstances h(s) can be computed on-the-fly while contributions to s0 are still
arriving. Even in the worst case γ will be on the order of seconds at most, because it takes
only about a second to hash 100MB of data (which will first have to be downloaded from
the server).

time t1 ≥ t0 + γ + ω: The second component g (the hash, i.e., the uncontestable random
number) and the third component w (the witness) of the output of sloth are published on
the website, along with the independently generated input s1.

10

time t2: At this point in time, everyone interested should have been able to perform the sloth
verification step for (s, c, g, w).

Choosing t−1. The value that needs to be picked with most care is t−1. If all public contri-
butions to s0 are sent and received immediately after t−1, the final s0 may be known shortly
after t−1 as well. If t0 − t−1 > ω, with ω the targeted computation time for sloth, the party
in control of selecting s1 has the opportunity to finish before time t0 parallel computations
of sloth for many distinct possibilities for the value of s1. A particular s1 choice can then be
committed to at time t0, with the biased corresponding output of sloth (already known at
time t0) publicly revealed only at time t1.

It follows that t0− t−1 must be small compared to the fastest conceivable wall-clock time
required for the computation of sloth. Given the considerations at the end of Section 3.4 and a
targeted ten minute wall-clock time for the computation of sloth, the point in time t−1 should
not be more than two minutes before t0. Or, if that is not an option, participants may be
encouraged to submit their contributions close to the deadline t0. Indeed, that is what smart
participants will do anyway, as submitting at time t < t0 implies one has to trust that sloth
must take wall-clock time more than t0 + γ − t to compute. Combined with the observable,
very small γ (as t0 + γ is the point in time that the commitment value is published) the
time-window for surreptitious sloth computations can be made infeasibly short.

Generating s1. The value s1 ∈ A∗ complementing the public input s0 is included in unicorn
for the following reasons:

1. to increase the entropy, if s0 (which may be lacking altogether) has no or little entropy;

2. to replace (or complement) the s0-contribution (e.g., the tweet) for people who are phys-
ically present, in a way that is instantaneous and guaranteed to be included;

3. to add a salt-value that is not shared before time t1, so other parties cannot perform sloth
before t1;

4. to include elements that no one can control (e.g., the weather).

It should be emphasized that a party who contributed to s0, e.g., via a tweet, does not need to
trust that s1 was generated honestly; as shown in Section 4.2 (and proven in the Appendix),
the incorruptness of the outcome can be deduced by any participant from their own (honest)
contribution to s0. The raison d’être of s1 are the four points above, and adding it does not
weaken the trust a participating party can have in the outcome.

The value s1 can be independently generated in the following manner. It is assumed that
the computing device on which unicorn is executed has a digital camera with an unobstructed
view of a public area where the goings-on can be monitored (and participated in) by anyone
who desires to do so. At time t0 the camera will take a picture (or, alternatively, a short video
clip, possibly including a sound bite), resulting in a jpg-file (or other applicable format) s1. For
reasons set forth below, this set-up may be complemented by a full-time webcam connected
to an independent other computer, the live output-stream of which is made available on the
same website as above.

Given the uniqueness of the camera’s point of view, the type of scene captured, and the
alleged properties of the hash function h, the value h(s) and the second component g of
the output of sloth may be assumed to behave as random elements of Hk/2 (and thus as
random integers in {0, 1, . . . , 22k − 1}), by any party including the party C that executes
unicorn, and for any value of t0. So far this assumption has not been contradicted by [22].

11

Extensive experiments, also at night-time and with or without s0-values (or s0-values iden-
tical to previously used ones), show that the h(s)-values resulting from consecutively taken
pictures s1 are uncorrelated (cf. [22]). This lack of correlation between the h(s)-values may
be accredited to the cryptographic hash function h and the necessary difference between the
jpg-encapsulations (among others caused by even the tiniest time difference) even though the
actual jpg-payloads of consecutive pictures are obviously strongly correlated to the human
eye. However, despite this strong perceptual correlation, the bit-level difference between any
pair of distinct jpg-payloads was found to be large compared to any regular cryptographic
security level, both before and after the compression used to generate the payload, and for
any reasonable camera resolution. It is a subject of further investigation to determine how
this difference behaves as a function of the temporal closeness of consecutive pictures. In any
case, given any number of past s1-values it is infeasible – to anyone – to predict a future one.
Supporting that statement, [32] elaborates how today’s cameras are sensitive to light at the
few-photon level, and thereby generate pictures containing random bits of a quantum origin.

Once the picture s1 is published, parties that have monitored the scene at time t0 can
attest to its correctness, for instance by pointing out that the picture indeed shows them
waving at the camera – parties who cannot be present may prefer to contribute a tweet to s0
instead. Independently it can be checked that there are no discrepancies with what appeared
on the webcam’s live-stream around time t0. For additional assurance the scene captured by
the camera could include a screen that is constantly refreshed with the latest information
from popular news websites or live TV-broadcasts, thereby independently fixing s1 in time.

Although the human eye can attest only to the high level correctness of the picture,
because s1 is fixed in time (with the commitment of the picture immediately published) there
is no opportunity for the party C that is in control of the system to select s1 in a meaningful
manner from any number of alternatives that look the “same” to the human eye, because
of the slowness of sloth. Without sloth biased results are conceivable: it suffices for C to
have access to enough computational resources to simultaneously test many alternatives in a
short amount of (wall-clock) time. At the same time, party C has no way to reliably predict
numerous ingredients of the picture that humans easily recognize and that they can later
independently verify if they have witnessed the scene themselves at the time the picture was
taken (weather, presence of people or cars, or possibly even ingredients brought along for the
occasion).

For contributors to s0 who were not physically present and who cannot verify s1’s correct-
ness, the security model in Section 4.2 and proof in the Appendix show that the possibility
to manipulate s1 does not negatively affect the security of the protocol – again due to the
slowness of sloth and the immediate commitment to the picture.

Earlier independent work that collects entropy in a similar fashion can be found in [34,12,32];
see also [26].

Formatting, restricting, and ordering s0. For reference and cosmetic reasons begin and
end markers may be used for the public part s0 of the input: before time t−1 data collection
could be initiated with the unix command

date "+[start %Y%m%d:%H%M%S" > s0,

terminating it at time t0 with

date "+%Y%m%d:%H%M%S stop]" >> s0.

12

An invitation to contribute data may trigger attempts to cause trouble, so the data received
will have to be filtered and may have to be restricted to strings over a subset of A. Although
party C may switch the order in which data are concatenated to s0, due to the slowness of
sloth party C cannot knowingly influence the outcome to anyone’s advantage.
Number of participants. The number of messages from participants that an actual imple-
mentation can handle depends on the physical set-up, the amount of hardware employed, and,
if applicable (cf. potential usage of tweets), on the resources of the social media provider(s)
involved. The current record number of tweets per second suggests at most ten million mes-
sages per minute, which sounds challenging to deal with. But given the very limited public
concern about the issues raised in this paper ([5] may be the most prominent one, and only
concerns a niche market) there is no reason to be concerned that a single desktop computer
would not be able to handle the load. On the other hand, one never knows what sudden
enthusiasm there may be to really play the lottery, to make one’s mark on the FIFA pool
selection process, or for the rise of Athenian democracy 2.0.

4.2 Incorruptibility of unicorn

In this section, the incorruptibility of unicorn is discussed, and a rigorous security model is
described. The security is then precisely quantified in the case where the permutation σ used
in sloth is a random permutation of F×p .
The security model. The incorruptibility of unicorn is measured as a bound on the prob-
ability of winning the unicorn corruption game, a game consisting in compelling unicorn to
produce an output (the presumably random number) with a targeted property. This targeted
property is encoded by a map b : Hk/2 → {0, 1}. If g denotes the outcome of unicorn, the goal
is to have b(g) = 1. In unicorn, the input of sloth is the concatenation of the contributions of
any number of individual participants. The only part of the input that a particular partici-
pant can trust is its own contribution, which can be chosen by the participant to be uniformly
distributed in Hk/2 (which easily fits into the at most 140 characters allowed in a tweet), and
could be extracted from the concatenation via a map f : A∗ → Hk/2. The concatenated data
s is committed to at time t0 when fed into sloth. As long as the commitment is not broken
(which would imply finding a collision in h), the unicorn-generated random number at time
t1 will be the hash value resulting from sloth applied to input s. Then the incorruptibility
of unicorn reduces to the difficulty of finding suitable data s ∈ A∗ to commit to at time t0
when the last honest contribution x is published at time t0 − δ. Therefore the game goes as
follows: at the start of the game a time limit δ is given along with a uniformly random input
x ∈ Hk/2. The game is won if within time δ a value s ∈ A∗ is produced such that f(s) = x,
and b(g) = 1, where g is the hash value resulting from sloth applied to input s. It is worth
emphasizing that this security model not only deals with dishonest contributors, but also with
any attempt of the party centralizing the process (generating the value s1, committing to the
data and running sloth) to bias the outcome.
Incorruptibility in the random oracle model. The security proof relies on the assumption
that square root extraction cannot be done faster than an exponentiation in Fp. Let Sp ⊂ F×p
denote the set of non-zero squares in the field Fp.

Definition 1. Given the length ∆ > 0 of a time interval, a probability ε, and a bound c on
computational resources, the (∆, ε, c)-sqrt(Fp) assumption is the following: any party with
resources bounded by c that gets a uniformly chosen α ∈ Sp at time t, succeeds with probability
at most ε to compute

√
α at or before time t+∆.

13

Remark 1. The bound c deals with the computational speed, parallelism, and the amount of
available precomputed data. From now on, it will be omitted, considering that it corresponds
to any set of state-of-the-art computing devices worth a polynomial amount of money. All
parties are supposed to be bounded by c, and the assumption in Definition 1 will be referred to
as the (∆, ε)-sqrt(Fp) assumption. Based on the best of current knowledge about square root
extraction in finite fields, the assumption seems reasonable for ∆ = Ω(log(p)M(p)), where
M(p) is the time complexity of multiplication in Fp, and ε = Õ(p−1/2) (the latter because

square root extraction can be very fast for α = β2 with β̂ bounded by p1/2 times a factor
polynomial in log(p)). It should be stressed that this is just an assumption: (p−2)-nd-powering
modulo a prime p, for instance, can be done much faster than in time Ω(log(p)M(p)) by using
modular inversion – but this does not seem to lead to faster computation of p+1

4 -th powers.

Remark 2. Under the (∆, ε)-sqrt(Fp) assumption, if there is some λ such that α follows a
distribution µ : Sp → [0, λ/|Sp|] as opposed to the uniform distribution on Sp, the success
probability is at most λε. Indeed,

Pr[success] =
∑
β∈Sp

µ(β) Pr[success|α = β]

≤ λ

|Sp|
∑
β∈Sp

Pr[success|α = β] ≤ λε.

Proposition 1 (Unicorn incorruptibility in the random oracle model). Let ∆ and ε
be such that the (∆, ε)-sqrt(Fp) assumption holds. If σ : F×p → F×p is a random permutation,

h : A∗ → Hk/2 from Section 1 is a random function, and the number of queries to the σ- and
h-oracles is limited to q > 0 (including precomputations), then the probability Prw to win the
unicorn corruption game with time limit δ < `∆ for a target property b : Hk/2 → {0, 1} is at
most

2q + |b−1({1})|
22k

+
q + ε`q(p− 1)

p− 1− q
.

Remark 3. In other words, by contributing to unicorn within the open time interval (t0 −
`∆ + γ, t0), one can make sure the output cannot be corrupted (unless a collision has been
found in h). The term |b−1({1})|/22k in the above bound is the probability of a uniformly
chosen g ∈ Hk/2 to satisfy b(g) = 1. The other terms are all negligible when ε = Õ(p−1/2)
and q is polynomial in the security level k.

Remark 4. The slowness of computing sloth can easily be deduced from this result. In order
to find a valid output for sloth on a random input, there is no faster strategy than computing
` square roots sequentially.

Proof. See Appendix A.

Consequences. The purpose of this paragraph is to analyse the power of the security model
and expound its implications. The proposed model describes the worst case situation where
any particular party, say user U , can only trust him or herself: the other contributors to s0,
the parties gathering the data (e.g., twitter), generating s1 and computing sloth might all
be colluding together to manipulate the outcome, while still trying to convince U that the
outcome was honestly generated. Security in the chosen security model renders any such

14

manipulation infeasible: any attempt to manipulate the outcome will be detected by a fast
run of the sloth verification.

It also allows to transfer trust: if U did not get the chance to take part in the protocol,
security in the proposed model implies that U can still trust the outcome if U trusts at least
one of the contributions included in s0 (either because U has personal trust in the contributor,
or because s0 includes some piece of time-stamped information that U is ready to believe was
not predictable). An interesting side effect is that U can also trust the outcome if U knows
that two of the contributors are unlikely to have colluded, even if U does not trust either of
them.

Note that it would be possible for the party running unicorn to discard U ’s contribu-
tion to s0, e.g., by claiming that it was sent after the deadline, maybe due to clock mis-
synchronization. Despite the fact that a careful contributor would take this claim with high
suspicion, this strategy does not allow manipulation because the attacker would need to dis-
card all the honest contributions, thereby failing to provide trust to anyone suspicious about
any other party not playing fair. Making a change to a contribution to s0 (by the party
running unicorn) would have the same effect.

Also, it is important to notice that the possibility to manipulate s1 (for instance, by
carefully choosing the least significant bits of the picture, in the suggested scenario where s1
is generated with a digital camera) does not negatively affect the security in the proposed
model: the corruption game does not assume that s1 was honestly generated. As explained in
Section 4.1, s1 serves other purposes.

As a final note, it is trivial to observe that the protocol does not provide much guarantee,
in the sense of the security model, in the case where nobody contributes to s0.

5 Trx : trustworthy random elliptic curves service

This section proposes trx, a service that provides a stream of trustworthy random elliptic
curve parameters suitable for cryptographic applications. It uses a mild adaptation of uni-
corn and has recently been implemented. Compared to other methods that have been used
to generate elliptic curve parameters, trx introduces a new way to deal with the trust issue:
everyone can influence and verify the choices made by trx, but no one (including party C
that controls the set-up) can knowingly affect the choices to anyone’s advantage or disadvan-
tage. Because the resulting parameters cannot be predicted or effectively manipulated, the
possibility is prevented of prior cryptanalysis or of targeting malicious choices. Along with
each parameter choice, trx provides information that allows any party to ascertain that the
resulting parameters were calculated in a deterministic manner based on the random number
produced by unicorn. Trx does not enable the user community to fully exploit the wealth of
suitable random curves in a fully personalized manner, the possibly preferred method men-
tioned in Section 1: that would require substantially faster point counting. But trx does away
with the fixed small set of elliptic curve parameters currently used, and it allows usage of
parameters that are frequently refreshed and that cannot have been scrutinized before.

The above summary presents trx from a high level point of view. The remainder of this
section describes two parts in more detail: the physical set-up of the unicorn-variant used,
and the deterministic computation of elliptic curve parameters as a function of a seed value.
Many more or less equivalent methods exist for the latter computation, none of which are
particularly interesting and one of which can be found below – for documentation purposes
only, and with further details provided on the trx website. The two main steps are followed

15

by a brief description of the planned long term operation of trx and a short discussion on
various trust issues.
Trx set-up. The current set-up consists of a computing device D at a physically secure
location. D has a single digital camera with an unobstructed view of a public, outside area
that is sufficiently large and busy: the entropy-rich view comprises a parking lot with working
street lights, a relatively busy road, a glittering lake, and a mountainous part of a foreign
country, all across the street from C’s third floor office and all with snow patterns, cloud
formations, and other occurrences that are beyond anyone’s control.

Two options were under consideration for the communication with D. The first, straight-
forward one (which is currently used) uses a regular TLS connection to a nearby web-
connected server that instantaneously posts data received from D (ti-values, sloth commit-
ments, other sloth results along with their s-values, and of course everything related to the
resulting elliptic curve parameters) and transmits unicorn’s s0-contributions (cf. Section 4)
to D, everything at the shortest possible delay (on the order of a fraction of a second).

The other option under consideration would entirely shield D from any attempts at in-
terference with its operations, by only allowing outgoing communications from D via a data
diode. This implies that unicorn must rely exclusively on the value s1 as generated by D, as
there is no way for contributions made to s0 to reach D. For a rather arcane activity such as
elliptic curve parameter generation which, furthermore, runs continuously, little interest from
the public at large may be expected, so excluding participation from parties who cannot be
physically present is probably not a serious issue. But it puts a heavier burden on party C
running the system to present convincing evidence that the picture taken at time t0 is not
replaced by a possibly manipulated one. Below a few suggestions are made to address this
problem, and that apply to both options for the communication with D.

Pre-announcing the moments in time that the pictures will be taken (the points in time
t0 for each execution of unicorn) along with a webcam running on the webserver capturing
the same scene (from a slightly different angle) allows validation of the scene of the picture
by the time the picture and the resulting set of parameters get published. It also allows any
interested party to visit the public area captured by the camera at the scheduled time to
add – and later check the presence of – a personalized touch to the parameter generation
process (which does not require physical presence if s0 is used, as in the current set-up). As
mentioned in Section 4 an additional confidence-inspiring measure would be to include in the
scene captured by the camera a screen with constantly updated independent live information.
The amount of trouble to be invested to address this concern should be commensurate with
the perceived practical importance of trx.

Remark 5. As a general piece of advice to prospective users of the resulting parameters: if
you don’t like the picture, don’t use the resulting parameters and wait for a next batch.
Anticipating this, the current set-up only uses daylight time t0-values.

Elliptic curve parameter generation. Let k be a security level and h the corresponding
hash function, as in Section 1. As an example of elliptic curve parameter generation consider
random twist secure curves. In this case a triple (δ, α, β) ∈ (Hk/2)3 is called acceptable if

– the number q = int(δ) is a 2k-bit prime;
– the pair (a, b) ∈ (Fq)

2, where the lifts ã, b̃ ∈ {0, 1, . . . , q−1} of a and b are modulo q equal
to int(α) and int(β), respectively, defines an elliptic curve E over Fq such that the order
of the group of points of E over Fq and the order of the group of points of the quadratic
twist of E over Fq are both prime.

16

This definition is just an example of one of many different sets of criteria that can be imposed.
Refer to [6] for a good overview of additional or different requirements (bounding the em-
bedding degree from below, other types of curves such as Edwards curves, etc.). Information
specifying an appropriate base point can trivially be added.

A method is described that given an input value g ∈ Hk/2 (as produced by unicorn)
deterministically determines an acceptable triple in (Hk/2)3, and that can trivially be changed
to cater to any other definition one sees fit for a triple to be acceptable. Let F = {δ, α, β} be
a set of iterated hash functions from Z≥0 to Hk/2 with δ(0) = h(g||p), α(0) = h(g||a), β(0) =
h(g||b) (with “||” denoting concatenation), and f(i) = h(f(i− 1)) for all f ∈ F and i ∈ Z>0.
Let I(−1) = −1 and I(j) = min{i : i > I(j − 1), int(δ(i)) ≥ 22k−1, int(δ(i)) is prime}.

Random twist secure elliptic curve parameter generation
1: For i = 0, 1, 2, . . . in succession do
2: For j = 0, 1, 2, . . . , i in succession do
3: For v = 0, 1, 2, . . . , i− j in succession do
4: If triple (δ(I(j)), α(v), β(i− j − v)) is acceptable

then return it along with i, j, and v and quit.

Checking acceptability of triples can be done using a standard software package (such as
MAGMA or Sage) or using one’s own software. For each triple that was found not to be
acceptable, a small amount of data may be provided that would facilitate a check that the
acceptable triple as produced is indeed the first one (given the chosen enumeration). Exper-
iments are underway to decide on the most efficient approach. On a single core running at
2.3GHz parameter generation times vary from less than two hours for k = 128 to about a
week for k = 256.

If parameter generation (as above, or of simple modifications that cater to other require-
ments) fails due to a cycling hash then there is obviously cause for celebration, but h should
be replaced – not just for the purposes of the present paper – by a hash function for which the
security assumptions have a higher chance to be correct. So far all iterated hashes generated
as above passed the tests from [22].
Operation of trx. The implementation of trx that is currently operational runs on a desktop
computer and sequentially generates twist secure elliptic curve parameters at security levels
k ∈ {128, 192, 256} such that, with q, a, and b as above, the prime q is random or chosen in a
fixed set of 2k-bit primes that allow fast modular arithmetic (pseudo-Mersenne primes), and
for either choice of q the values of a and b are both random or a is fixed (i.e., â = q−3) and b
is random. Depending on feedback that may be received, either of these possibilities can be
replaced by others that are felt to be more useful or desirable; or a wider variety of parameter
choices may be offered (though less efficiently if using the same hardware) by alternating
between different generation processes.

Given some pre-announced future moment in time t−2, the following steps are performed
in immediate succession:

1. The future point in time t−2 along with t−1 (a few minutes later than t−2) and t0 (two
minutes later than t−1) are transmitted to the server and publicly announced along with
an identifier (or hashtag) that uniquely identifies the parameters to be generated.

2. Assign an adequate initial value to s0 and wait until time t−1.
3. During the time interval [t−1, t0) concatenate to s0 all process-relevant data received from

the server and start calculation of h(s0).

17

4. At point in time t0 take a picture resulting in a jpg-file s1, transmit h(s1), s0 as received
(which may be a proper subset of the data sent by the server, and possibly with an
appropriate termination appendage) and h(s0) to the server for immediate publication on
the website, and start the calculation of sloth (calibrated to take ten minutes). The first
component of the output of sloth, the commitment value c, is immediately (i.e., at time
t0 + γ for a very small positive γ) transmitted to and published by the server.

5. At a point in time about ten minutes after t0, the calculation of sloth is completed and
the applicable elliptic curve parameter generation process is started using as input the
second component g of the output of sloth.

6. Define t1 as the point in time that the elliptic curve parameter generation process is
finished. At this point in time, transmit the picture s1, the second and third components
of the output of sloth (the hash g and the witness w), and the output of the elliptic curve
parameter generation process to the server for immediate publication.

7. Replace t−2 by t1 plus at least a few minutes (and such that, preferably, the value t0
corresponding to the new t−2-value is during broad daylight, cf. Remark above) and return
to Step 1.

The scenario where no public data are accepted follows in a straightforward manner.

Trust issues. As argued above, the only advantage that the party C in control of the system
gets is a headstart cryptanalyzing the elliptic curve parameters resulting from the calls to sloth.
When C plays fair and publishes newly generated parameters without delay, this cryptanalytic
advantage is on the order of seconds. From the output of the parameter generation process
and additional data that may be provided along with it (as suggested above) it can easily
be inferred how long the computation should have taken, so the possibilities for cheating are
limited. C could, surreptitiously, have access to more computational resources and perform
parameter generation much faster. On average, this buys C at most a week headstart for the
cryptanalysis for the highest security level k = 256, and less than two hours for k = 128:
either way, the advantage is insignificant compared to the alleged security provided.

Although the correctness of each resulting parameter set can quickly, independently, and
conveniently be checked, it can hardly be expected that all users will consistently do so.
Once trx is established (if ever) as a trustworthy service, the parameters produced by it could
become trusted by default, at which point party C could decide to sneak in a manipulated
curve, take advantage of it and leave with the profits, never to be heard of again. Obviously,
this would tarnish C’s reputation. It may help if C is a party that can reasonably be expected
to be concerned about reputational loss – unfortunately, this is something one never knows in
advance. Nevertheless, any party who trusts its own entropy that it contributed to a particular
curve generation process can trust the resulting curve if it passes the verification.

6 A tool for democracy

Randomness can play a crucial role in various models of governance. The first known democ-
racy in the world, in the Greek city-state of Athens, distributed the power to assemblies of
randomly selected citizens. In today’s world, the benefits of sortition-based democracy are
defended by some as a fairer alternative to elected assemblies. Without going as far as a full
Athenian-like democracy, more familiar modern-day models of governance can make use of
random-sample voting: instead of consulting the full population for elections or referenda,
one can randomly select a small, yet statistically significant, sample of voters. Such a system

18

is advocated as leading to a better quality voting at a far lower cost [10]. In Switzerland,
the population regularly votes for diverse elections, referenda, and popular initiatives. For
reasons of cost, these so-called votations are organized four times per year, each time about
multiple topics. Being solicited so often about so many questions sometimes far from their
everyday life, voters can feel overwhelmed and unable to develop an informed opinion for
each of them. In such a system, replacing the full population by random samples would have
multiple advantages: while remaining statistically representative as long as the sample has
an appropriate size, the costs would be dramatically reduced. At the same time, each voter
would be requested much more rarely and about a single question at a time, allowing for a
more important involvement.

Whether it be for legislative assemblies, small samples of voters, or juries for public policy,
the random sampling must be conducted in a trustworthy, incorruptible and verifiable manner.
Advocating for setting up a Parliament of randomly sampled citizens in Northern Ireland,
John Garry wrote (cf. [17]):

There are three crucial ingredients for a high quality democracy: a very large hat,
a pen and lots of small bits of paper. Write the name of each citizen in the land on
a bit of paper, put all the bits of paper in the hat, close your eyes and pluck out 500
names from the hat. Write to each of the 500 saying: “Congratulations, you have been
picked as one of the 500 people who will run the country for the next five years.”

Of course a giant hat and millions of pieces of paper are metaphorical and do not constitute
a practical setup: a feasible, fair and incorruptible procedure needs to be defined. Designing
such a method is a delicate task which [15] tries to address. As in trx, it boils down to two main
components: a public random number generator, and a deterministic procedure which when
fed a number outputs a sample of citizens (respectively, an elliptic curve), in a completely
unambiguous and verifiable manner. This second component needs to be precisely defined and
published ahead of the random number generation. It should also be unbiased: no particular
set of voters should be advantaged as long as the random seed is uniform. Straightforward
ways to achieve this could use cryptographic hash functions and reductions modulo the size
of the pool of potential voters, and an unambiguous ordering of the list of potential voters.
An example of a precise procedure can be found in [15, Paragraph 4]. See [10] for discussions
on how to design this component in order to render impractical vote buying or other ways to
influence voters.

In the following, the random number generation is addressed. It is critical that the random
number is generated in an incorruptible manner. If the party conducting the generation is
simply asked to provide a number without any justification that it is “random”, it would be
trivial for them to provide a “random-looking” number carefully cooked to result in a biased
sample of voters. Classical methods as described in [15, Paragraph 3] are not that trivial to
fool, yet are still subject to corruption or other forms of manipulation. The author of [15]
suggests to select different sources of randomness in advance (examples include government
run lotteries, the daily balance in the US Treasury, or sporting events), and to combine
the outcomes via a cryptographic hash function. Besides a few technical issues that need
to be addressed (enough entropy has to be gathered, and the format of all the data needs
to be canonicalized) matters of greater concern arise: various strategies are conceivable to
manipulate those sources. Great care needs to be taken to audit each of them, and even if
various presumably independent parties are involved, not every skeptical citizen can be given

19

the chance to personally make sure everything went right and no form of manipulation was
going on.

This trust issue can be addressed by unicorn. A similar setup as used for trx would allow
any citizen who desires to do so to contribute very easily to the random number generation, by
simply publishing a tweet including a specified hashtag during an announced time interval.
Then, by checking if their tweets appear in the input of sloth, and running the fast sloth
verification, they can make sure the outcome has not been manipulated. The very concerned
citizen will make sure to tweet high entropy, unpredictable data, as close as possible to the
time t0. This process transfers the power from the auditing authorities or media, to the hands
of any person willing to get involved.

7 Conclusion

It was shown how high entropy public random values can be generated in a verifiable and
trustworthy manner using public input. Applications were presented to parameter selection
for elliptic curve cryptosystems and to democratic random sampling.

Having public input to build trust is a strong assumption. It should be noted, however,
that this trust only exists for parties that got involved in the process by providing input, by
monitoring the scene, or by actively participating in it. All others, can do nothing but believe
that the process was run properly, or hope that there was at least one honest participant –
as usual and unavoidable for the generation of public randomness. Thus, usage of any of the
results to produce values that have to be trusted by the public at large (such as cryptographic
standards) can be recommended only if the public at large participates in the process (for
instance by widely advertising an upcoming standardization run of trx) – to some extent
reminiscent of the way proposals for new block ciphers and hash functions were solicited. But
again: only those members of the public at large who actively participated can truly trust
the resulting standards. This may not be much, but it may be preferable to currently used
methods because anyone with an Internet connection can be part of it.

In the same vein as trx, unicorn could be used to generate constants for other kinds of
cryptographic parameters. In [30], it is described how to design the constants of the S-boxes
in some block ciphers to hide a trapdoor. Similarly, [1] exposes a way to weaken SHA-1 and
find collisions by simply tweaking its round constants.

Public randomness has also found applications in the context of cryptographic elections.
For auditing via random selection, or the generation of random challenges in cryptographic
election systems, the source of randomness has to be unpredictable and incorruptible. As an
example, in at least two cases, the random generation was based on financial data (in [16]
and [11]). Entrusting unicorn with the random number generation would allow anyone to
verify the outcome irrespective of one’s faith in the unmalleability of published financial data.

Unicorn could also be considered as a building block for a secure random beacon, an online
service such as [25] or [29] that makes available fresh random numbers at regular intervals.
Doing so in an unverifiable and thus inherently untrustworthy manner while suggesting a
number of application scenarios, has a variety of lucrative applications, depending on one’s
line of business, and may not satisfy everyone’s needs. The use of unicorn would provide a
way to verify that the claimed random values are indeed fresh and have not been cooked in
advance, by the service provider or anyone else, while avoiding the need to physically inspect
– or trust – that some source of high quality entropy is properly used.

20

As a final note of warning, it could be tempting to use the live events capturing method
to collect entropy (cf. generation of s1 in Section 4) for usage in private key selection or
nonce generation on, say, smartphones. In principle this is possible, but it would require the
assumption that it is possible to do anything (computing hashes, making recordings, pictures,
or videos, entering or using any type of data) on any piece of commodity hardware that is
guaranteed not to be shared with other parties. One does not have to be overly paranoid to
suspect that such a guarantee cannot be given, in particular if smartphones are involved.

use section* for acknowledgment

Acknowledgment

Acknowledgement. The authors thank Rob Granger for many useful discussions and com-
ments on draft versions of this paper, Ian Goldberg for his insightful feedback, and Cécile
Pierrot for her suggestion to piggyback popular existing hashtags.

References

1. A. Albertini, J.-P. Aumasson, M. Eichlseder, F. Mendel, and M. Schläffer. Malicious hashing: Eve’s variant
of SHA-1. In A. Joux and A. Youssef, editors, Selected Areas in Cryptography – SAC 2014, volume 8781
of Lecture Notes in Computer Science, pages 1–19. Springer International Publishing, 2014.

2. S. Baktir and E. Savas. Highly-parallel Montgomery multiplication for multi-core general-purpose micro-
processors. In E. Gelenbe and R. Lent, editors, Computer and Information Sciences III, pages 467–476.
Springer London, 2013.

3. M. Bellare and S. Goldwasser. Encapsulated key escrow. Technical report, 1996.
4. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In Proceedings of the 4th ACM Conference

on Computer and Communications Security, CCS ’97, pages 78–91, New York, NY, USA, 1997. ACM.
5. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Niederhagen, and C. van Vre-

dendaal. How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014. http://eprint.iacr.org/2014/571.

6. D. J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve cryptography. http:

//safecurves.cr.yp.to, accessed 2 September 2014.
7. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in Cryptology, CRYPTO

2000, volume 1880 of Lecture Notes in Computer Science, pages 236–254. Springer Berlin Heidelberg, 2000.
8. J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source. Cryptology ePrint

Archive, Report 2015/1015, 2015. http://eprint.iacr.org/2015/1015.
9. Businesspundit. Biggest lottery scandals. http://www.businesspundit.com/

5-of-the-biggest-lottery-scandals, 2012.
10. D. Chaum. Random-sample elections: Far lower cost, better quality and more democratic, 2012.
11. D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A. Ryan, E. Shen, and

A. T. Sherman. Scantegrity ii: End-to-end verifiability for optical scan election systems using invisible ink
confirmation codes. In USENIX/ACCURATE Electronic Voting Technology Workshop (EVT), 2008.

12. I.-T. Chen. Random numbers generated from audio and video sources. Mathematical problems in engi-
neering, 2013:7, 2013.

13. J. Clark and U. Hengartner. On the use of financial data as a random beacon. In USENIX EVT/WOTE.
USENIX Association, 2010.

14. CPU-Z OC world records. http://valid.canardpc.com/records.php, 2015.
15. D. Eastlake 3rd. Publicly verifiable nominations committee (NomCom) random selection, 6 2004. RFC

3797.
16. A. Essex, J. Clark, R. T. Carback, and S. Popoveniuc. Punchscan in practice: an e2e election case study.

In IAVoSS Workshop on Trustworthy Elections (WOTE), 2007.
17. J. Garry. Randomocracy in Northern Ireland. http://sluggerotoole.com/2015/03/21/

randomocracy-in-northern-ireland/, 2015.
18. P. Giorgi, L. Imbert, and T. Izard. Parallel modular multiplication on multi-core processors. In Computer

Arithmetic (ARITH), 2013 21st IEEE Symposium on, pages 135–142, April 2013.

21

http://eprint.iacr.org/2014/571
http://safecurves.cr.yp.to
http://safecurves.cr.yp.to
http://eprint.iacr.org/2015/1015
http://www.businesspundit.com/5-of-the-biggest-lottery-scandals
http://www.businesspundit.com/5-of-the-biggest-lottery-scandals
http://valid.canardpc.com/records.php
http://sluggerotoole.com/2015/03/21/randomocracy-in-northern-ireland/
http://sluggerotoole.com/2015/03/21/randomocracy-in-northern-ireland/

19. M. Huang, K. Gaj, and T. El-Ghazawi. New hardware architectures for montgomery modular multiplica-
tion algorithm. Computers, IEEE Transactions on, 60(7):923–936, July 2011.

20. Y. I. Jerschow and M. Mauve. Modular square root puzzles: Design of non-parallelizable and non-
interactive client puzzles. Computers and Security, 35:25 – 36, 2013. Special Issue of the International
Conference on Availability, Reliability and Security (ARES).

21. M. E. Kaihara and N. Takagi. A hardware algorithm for modular multiplication/division. Computers,
IEEE Transactions on, 54(1):12–21, 2005.

22. G. Marsaglia. The Marsaglia random number cdrom including the diehard battery of tests of randomness,
1995. http://www.stat.fsu.edu/pub/diehard/.

23. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,http://bitcoin.org/bitcoin.pdf, 2009.
24. NIST. Secure hash standard. National Institute of Standards and Technology, Washington, 2002. URL:

http://csrc.nist.gov/publications/fips/. Note: Federal Information Processing Standard 180-2.
25. NIST randomness beacon. https://beacon.nist.gov, 2011.
26. L. C. Noll, R. G. Mende, and S. Sisodiya. Method for seeding a pseudo-random number generator with a

cryptographic hash of a digitization of a chaotic system, March 1998. U.S. patent number 5,732,138 A.
27. S. Ors, L. Batina, B. Preneel, and J. Vandewalle. Hardware implementation of a montgomery modu-

lar multiplier in a systolic array. In Parallel and Distributed Processing Symposium, 2003. Proceedings.
International, April 2003.

28. M. O. Rabin. Transaction protection by beacons. Journal of Computer and System Sciences, 27(2):256 –
267, 1983.

29. RANDOM.ORG. https://www.random.org, 1998.
30. V. Rijmen and B. Preneel. A family of trapdoor ciphers. In E. Biham, editor, Fast Software Encryption,

volume 1267 of Lecture Notes in Computer Science, pages 139–148. Springer Berlin Heidelberg, 1997.
31. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. 1996.
32. B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin. Quantum random number generation on a mobile

phone. Phys. Rev. X, 4:031056, Sep 2014.
33. D. Simmons. US lottery security boss charged with fixing draw. http://www.bbc.com/news/

technology-32301117, 2015.
34. J.-M. Tsai, I.-T. Chen, and T. Jengnan. Random numbers generated from white noise of webcam. In

International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pages 214–
217. IEEE, 2009.

35. Wikipedia. Pennsylvania lottery scandal. http://en.wikipedia.org/wiki/1980_Pennsylvania_Lottery_
scandal, 1980.

A Incorruptibility of unicorn in the random oracle model

Proof (of Proposition 1). Let Qt (respectively, Rt) be the set of queries to the σ-oracle (re-
spectively, h-oracle) done before point in time t since the start of the unicorn corruption
game (with Q0 and R0 the precomputed queries), with α ∈ Qt denoting that the value of
σ(α) was queried before time t. Suppose that on input x ∈ Hk/2, a string s ∈ A∗ is output.
Let w ∈ F×p be the corresponding sloth witness, and g = h(hex(ŵ)) be the hash. Winning the
game implies that s is output at or before time δ, that b(g) = 1, and that f(s) = x. Then,

Prw ≤ Pr[b(g) = 1|f(s) = x].

By abuse of notation, all the following probabilities are conditional on f(s) = x. Applying
the law of total probability,

Prw ≤ Pr[b(g) = 1]

≤ Pr[hex(ŵ) ∈ Rδ] + Pr[b(g) = 1|hex(ŵ) 6∈ Rδ].

If hex(ŵ) 6∈ Rδ, then g = h(hex(ŵ)) is uniformly distributed in Hk/2 so the second term is
|b−1({1})|/22k. For the first term, the law of total probability yields

Pr[hex(ŵ) ∈ Rδ]
≤ Pr[w ∈ Qδ] + Pr[hex(ŵ) ∈ Rδ|w 6∈ Qδ].

22

http://www.stat.fsu.edu/pub/diehard/
http://bitcoin.org/bitcoin.pdf
https://beacon.nist.gov
https://www.random.org
http://www.bbc.com/news/technology-32301117
http://www.bbc.com/news/technology-32301117
http://en.wikipedia.org/wiki/1980_Pennsylvania_Lottery_scandal
http://en.wikipedia.org/wiki/1980_Pennsylvania_Lottery_scandal

In the second term, as w 6∈ Qδ, the witness w is uniformly distributed among the elements of
F×p not previously chosen by the σ-oracle, so

Pr[hex(ŵ) ∈ Rδ|w 6∈ Qδ] ≤ q/(p− 1− q).

With wi as in the definition of sloth, the first term is split into

Pr[w ∈ Qδ]
≤ Pr[w`−1 ∈ Qδ−∆] + Pr[w ∈ Qδ|w`−1 6∈ Qδ−∆].

Considering the second term, it follows from w`−1 6∈ Qδ−∆ that there is time at most ∆ to
compute w` = τ(w`−1) = ρ(σ(w`−1)), where σ(w`−1) is uniformly chosen among the elements
of F×p not previously chosen by the σ-oracle. The (∆, ε)-sqrt(Fp) assumption combined with
Remark 2 then implies the bound

Pr[w ∈ Qδ|w`−1 6∈ Qδ−∆] ≤ εq(p− 1)/(p− 1− q).

The term Pr[w`−1 ∈ Qδ−∆] is handled by induction, computing Pr[w`−j ∈ Qδ−j∆] for each j
from 1 to `− 1. The same reasoning as in the previous paragraph leads to

Pr[w`−j ∈ Qδ−j∆] ≤ Pr[w`−(j+1) ∈ Qδ−(j+1)∆]

+ Pr[w`−j ∈ Qδ−j∆|w`−(j+1) 6∈ Qδ−(j+1)∆],

and

Pr[w`−j ∈ Qδ−j∆|w`−(j+1) 6∈ Qδ−(j+1)∆]

≤ εqj
p− 1

p− 1− qj
≤ εq p− 1

p− 1− q
,

where qj is the number of oracle queries done before time δ − j∆. Inductively,

Pr[w ∈ Qδ] ≤ Pr[w0 ∈ Qδ−`∆] + ε`q
p− 1

p− 1− q
.

It remains to bound Pr[w0 ∈ Qδ−`∆]. Since δ < `∆, the queries of Qδ−`∆ were done during
the precomputation phase, before the input x was revealed. Then,

Pr[w0 ∈ Qδ−`∆] ≤ Pr[w0 ∈ Q0]

≤ Pr[s ∈ R0] + Pr[w0 ∈ Q0|s 6∈ R0].

If s 6∈ R0 at the start of the game, h(s) is uniformly distributed over Hk/2 because h is
assumed to be a random function, so w0 is uniformly distributed among the 22k corresponding
elements of the field (recall that 22k < p). Hence Pr[w0 ∈ Q0|s 6∈ R0] ≤ q/22k. It is only for
the remaining quantity Pr[s ∈ R0] that the distribution of the input x comes into play. Recall
that all the probabilities were conditional on f(s) = x (if it is false, the game is lost), and
that x is uniformly distributed over Hk/2. Therefore,

Pr[s ∈ R0] ≤ Pr[f(s) ∈ f(R0)] ≤ q/22k,

which concludes the proof.

23

