
Bounds on surmising remixed keys

Daniel R. L. Brown∗

Rough draft
November 21, 2016

Abstract
A remixed key is derived from a secret source key by applying a pub-

lic but unpredictable random function to the source key. A remixed key
models a key derived from a shared secret and a public unpredictable
salt, using a common, deterministic, pseudorandom function—which
is somewhat like TLS record-layer keys, for example.

This report tries to validate the intuition that remixed keys are
not easy to surmise due to publicity of the remixing function, in other
words, that remixing does not introduce an exploitable spike in the
probability distribution of the remixed key relative to the remix func-
tion.

The report provides pencil-and-paper proofs of strong numerical
bounds on the probability that an adversary can surmise a remixed
key, assuming a uniformly random source key and remix function. The
proofs are derivable from some proofs on probability theory in a text-
book by Shoup.

1 Introduction

Let R and S be finite non-empty sets and let RS be the set of functions from
S to R. Let RRS be the set of functions from RS to R. Let the surmisability
(of remixing S to R) be the number:

µ = max
e∈RRS

Pr
[
(s, f) ∈$ S ×RS : e(f) = f(s)

]
. (1)

The surmisability µ depends only on the size of R and S. As a concrete
example, suppose S has size |S| = 2192 and R has size |R| = 2128. How
easily can a useful upper bound like µ ≤ 2−50 be proved? Theorem 8 and
Theorem 9 are some answers.
∗dbrown@certicom.com (Certicom/BlackBerry research/standards)

1

1.1 Theoretical cryptographic application

The surmisability µ is the maximum possible success rate of an adversary
Eve in the following theoretical cryptographic game.

1. Alice and/or Bob securely establish a secret s ∈$ S and a random
function f ∈$ R

S .

2. Alice and/or Bob compute r = f(s), which can be called a remixed
key.

3. The function f is not kept secret, so is subsequently revealed to the
adversary Eve.

4. Eve makes a surmisal r′ ∈ R based on f .

5. Eve wins if r′ = r, in other words, Eve wins if she correctly surmises
Alice and/or Bob’s remixed key.

Eve’s success rate in this game is defined prior to the choice of f made
by Alice and/or Bob. Of course, in each instance of the game, after f is
revealed to Eve, Eve’s probability of success may vary depending upon f ,
which we can write as µ|f , and call the f -conditional surmisability. Note
that µ = Ef (µ|f), so surmisability is the average f -surmisability.

Suppose that Eve has a maximal success rate but uses a probabilistic
algorithm. If some non-negligible subset of Eve’s random choices would
result in a lower success rate, then Eve could drop these choices and improve
her success rate. Therefore, essentially all of Eve’s random choices must
lead to the same success rate. So, in theory, Eve can use a deterministic
algorithm of the same success rate. Eve effectively selects a deterministic
function e ∈ RRS that maps the function f to her surmisal r′. Eve succeeds
when e(f) = r′ = r = f(s). Hence definition (1).

To consider the maximum possible success rate, we grant Eve unlimited
computational power during the phase in which she can make her surmisal.
Granting Eve this power serves mainly to avoid making computational hard-
ness assumptions about the functions modeled by the random function f .

Note that it is not the intention of the remixed model to let Eve retain
unlimited computational power before and after the remixing step. In many
real-world cases, Alice and/or Bob will use r before Eve needs to surmise
r, which provides Eve additional opportunities to test numerous guesses for
r. The surmisability does not quantify Eve’s multiple-guessing (searching)
attacks after Eve witnesses usage of r, but intuitively there seems less reason

2

to worry that remixing significantly worsens such guessing attacks. (See §B.1
for some definitions and further informal discussion of this setting.)

In short, the question of usefully bounding surmisability seems like such
a basic and simple question, that it is worth answering. The motivation for
the remixed key model and the surmisability is further discussed in §A.

1.2 Other security issues related to remixed keys

A low surmisability is potentially important for security, but it is not nec-
essarily sufficient for remixed key to be secure. Other important security
questions can be asked for remixed keys. Remixed keys are not completely
realistic, and other variants of remixed keys may be important to consider.
Some of these questions and variants are discussed briefly in §B.

1.3 Previous work: Shoup’s results

Most of the upper bounds, and their proofs, in this report are adapted from
a result, and its one-page proof, by Shoup [Sho09, Theorem 8.29] about a
balls-and-bins problem: the expected maximum number of balls in any one
bin after random tossing.

Shoup’s Theorem 8.29 is rigorous but asymptotic. Consequently, it leaves
open for us the question of whether the o(1) term will be small enough to
offer any security for 128-bit keys. This report takes some small steps further
in the proofs to remove the ambiguity arising from asymptoticity.

Shoup’s result corresponds to case |R| = |S| where the remixed and
source key-space have the same size. This report aims to be more general
in handling arbitrary sizes for R and S.

Furthermore, this report also tries to keep its proofs simple, in the sense
of using fewer proof tools where possible. For example, the report separates
out some special choices of key-space sizes, in which the proofs in this report
can avoid basic calculus, or even avoid using logarithms.

This report is much longer than Shoup’s proof, partly because of the
reasons above, but also because many of the proofs have been divided into
many small steps. The larger number of small steps are a tad tedious to
verify, but I needed them for debugging the frequent mistakes I kept making
(such as reversing ≤ and ≥.) Another style quirk in many proofs are the end-
to-end chains of inequalities (instead of separately bounded sub-quantities
being re-assembled into the final inequality). These chains helped me keep
sight of the big picture, but give longer proofs because some formulas repeat
in these chains. In short, I tried to keep the proofs simple, rather than short.

3

Shoup proves another result [Sho09, Theorem 8.27] of a looser bound,
under weaker hypothesis. Theorem 9 in this report is essentially a corollary
of the Shoup’s result.

Other similar previous work is discussed in §C.

2 Basic lower bounds

The basic (and effectively well-known) lower bounds are:

1
|R|

,
1
|S|
≤ µ (2)

To prove the first basic lower bound, choose some r′ ∈$ R, and let Eve always
surmise r′ as her guess, regardless of the function f . In other words, Eve
ignores the remix function, and just tries to guess the remixed key directly.
The probability that r = r′ is 1/|R|. In terms of Eve’s function e: choose
r′ ∈$ R, and let e(f) = r′ for all f , so e is constant with value r′.

Actually, since the remix function is random, Eve can pick any fixed r′

she likes, not necessarily a random r′. Eve’s strategy of using a random r′

is more general in the sense that it also works against non-random remix
functions.

To prove the second basic lower bound, consider the adversary Eve who
chooses a fixed s′ ∈$ S and, given remix function f , guesses r′ = f(s′) for
the remixed key. In other words, Eve just tries to guess the secret source
key. The probability that s′ = s is at least 1/|S|. If s′ = s, then r′ = r. In
terms of Eve’s function e: choose a fixed s′ ∈$ S and let e(f) = f(s′). (So,
e is non-constant: it varies with f).

The lower bound 1/|S| ≤ µ formalizes the idea that a remixed key has
no more secrecy than the source key, since no new secrecy was added. The
lower bound 1/|R| ≤ µ formalizes the idea that a remixed key can be no
better than a key freshly generated in the remix key-space.

Unifying these two lower bounds gives:

max
(
|R|−1, |S|−1

)
≤ µ. (3)

All these lower bounds do not provide any security protection, but they do
show some of the theoretical limits on security on the remixed keys. Any
upper bounds must obviously exceed these lower bounds.

4

3 Discrete upper bounds

All the subsequent results in the report, except Theorem 9, depend on the
following discrete upper bounds, which are given two essentially equivalent
proofs with different notation.

Theorem 1. Let m = |S| and n = |R| and p be a non-negative integer.
Then

µ ≤ u(p) =
pnm +

(m
p+1
)
nm−p

mnm
. (4)

Proof described using games and adversaries. The desired upper bound for
Eve’s success rate is µ ≤ p

m + 1
m

(m
p+1
)
n−p. Suppose Eve encounters function

f , and computes r′ = e(f) as her surmisal for r = f(s). Consider two cases
based on how s relates to Eve’s surmisal.

In the first case, s is among the first p elements of the set f−1(r′) (in
some ordering of S). Since s was chosen independently of f , the probability
that s is among the first p elements of f−1(r′) is at most p/m.

In the second case, s is not among the first p elements of the set f−1(r′).
If Eve is successful, then the following event has occurred: s is not among
the first p elements of f−1(f(s)). We need to bound the probability of this
latter event (which is defined without regard to whether Eve is successful).

Let T be the set of p elements t ∈ f−1(f(s)) such that t < s. For any
given set T of p elements of S \ s, the probability that f(t) = f(s) for all
t ∈ T is n−p. For s and T drawn uniformly at random and independently,
the probability that s is larger than all the element of T is 1

p+1 , because
the index of s in s ∪ T is uniformly distributed. Boole’s inequality, also
known as the union bound, says that the probability of the event is at most
the sum of probabilities of sub-events whose union is the event. In this
case, the sub-events correspond to valid pairs (s, T), each with probability

1
p+1n

−p. Summing all these probabilities gives
(m−1

p

) 1
p+1n

−p = 1
m

(m
p+1
)
n−p

as an upper bound for our second case event.

Proof described using sets and functions. Fix e ∈ RRS as the function max-
imizing the probability in the surmisability. Hence |f−1(e(f))| ≥ |f−1(r)|
for all r ∈ R. Let E be the set (event):

E = {(s, f) ∈ S ×RS : e(f) = f(s)} (5)

that defines the surmisability probability: so µ = |E|/|S ×RS | = |E|
mnm .

Equip S with some arbitrary order, allowing elements of S to be sorted
and indexed. If s ∈ T and T is an ordered set, let i(s, T) be the index of

5

s in T , meaning i(s, T) = 1 if s is the smallest element of T , and so on. If
s 6∈ T , then i(s, T) is undefined. If T ⊆ U , let i+(s, T, U) be the index of
s in U re-ordered so that elements T are considered first. In other words:
i+(s, T, U) = i(s, T) if i ∈ T and i(s, T, U) = |T |+ i(s, U \ T) if s ∈ U \ T .

For convenience, any inequality involving an undefined value of i(s, T)
or i(s, T, U) is considered false. Let:

D = {(s, f) : i(s, f−1(e(f))) ≤ p}, (6)
B = {(s, f) : i(s, f−1(e(f))) > p}, (7)

which are disjoint sets with E = D ∪B. To see this: re-write the condition
for E that f(s) = e(f) as s ∈ f−1(e(f)), which means that the index
i(s, f−1(e(f))) is defined; then partition E according the index.

Next, let

D+ = {(s, f) : i+(s, f−1(e(f)), S) ≤ p}, (8)
B+ = {(s, f) : i(s, f−1(f(s))) > p}, (9)

We claim that D ⊆ D+ and B ⊆ B+. If (s, f) ∈ D, then s ∈ f−1(e(f)), so
i+(s, f−1(e(f)), S) = i(s, f−1(e(f))) ≤ p, and thus (s, f) ∈ D+. If (s, f) ∈
B, then (s, f) ∈ E, so e(f) = f(s), and i(s, f−1(f(s))) = i(s, f−1(e(f))) > p,
and thus (s, f) ∈ B+. Therefore:

|E| = |D|+ |B| ≤ |D+|+ |B+|. (10)

Consider D+. For every s ∈ S, the index i+(s, f−1(e(f)), S) is always
defined, and at most m. Furthermore, for a fixed f , each value of the index
determines a unique s. Therefore, |D+| = pnm if p ≤ m, and |D+| ≤ pnm

in general.
Consider B+. For a given (s, f) ∈ B+, let T = {t : −p ≤ i(t, f−1(f(s)))−

i(s, f−1(f(s)) ≤ 0}. Then:

• T has p+ 1 elements (by the definition of B+ i(s, f−1(f(s))) ≥ p+ 1),

• T has maximum element s, and

• f(t) = f(s) for all t ∈ T .

Let S′ be obtained from S by identifying all the elements of T . Then |S′| =
m− p. Let f ′ be the function from S′ to R corresponding to f (so f ′(s′) =
f(s) if s′ represents s after the identification.) Then (s, f) determines a pair
(T, f ′). Furthermore, (s, f) can be recovered from (T, f ′) by setting s to

6

be the maximum of T and defining f from f ′. Let B++ be the set of such
pairs (T, f). Now |B+| ≤ |B++|, because of the injection of B+ into B++

mapping (s, f) to (T, f ′).
(Side note: generally B++ can be larger, since some pairs (T, f ′) are not

images of an element of B+, such as those (T, f ′) for which there exists u
not in T but between the minumum and maximum of T with f(u) = f(t)
for all t ∈ T .)

Finally, |B++| is at most the number of T times the number of f ′, which
is
(m
p+1
)
nm−p.

The proofs above are mostly paraphrases of each other. They both use a
variable T for sets, but with slightly different meanings. One small technical
differences is that the the game-based proof uses Boole’s inequality near the
end, while the set-based proof uses an injection. Perhaps this small difference
can be viewed as a redundancy, and offer slightly greater assurance than a
single proof.

The upper bounds u(0) = u(m) = 1 are vacuous: as weak as possible
as an upper bound for an adversary’s success rate. For p > m, the bound
u(p) > 1 is even worse. Therefore, the only possible useful bounds u(p) are
such that 1 ≤ p < m.

Many of the remaining results in this report hinge on the upper bounds
u(p), so we fix the notation henceforth in this report, and assume this the-
orem. Only Theorem 9 does not depend on Theorem 1.

Because of the lower bound (3) on µ, the next corollary follows immedi-
ately, but, just to test against the possibility that the previous theorem is
flagrantly wrong, we provide an independent proof of the corollary.

Corollary 1. For all integers p ≥ 0 and m,n ≥ 1:

max
(

1
m ,

1
n

)
≤ u(p). (11)

Proof. If p = 0, or p ≥ m, then u(p) ≥ 1 ≥ max(1
m ,

1
n). Otherwise, 1 ≤ p <

m, which is assumed for the rest of this proof.
Now u(p) = p

m + 1
m

(m
p+1
)
n−p ≥ p

m ≥
1
m . If pn ≥ m, then u(p) ≥ p

m ≥
p
pn = 1

n . Otherwise m = pn+ q for some integer q ≥ 1, which is assumed for

7

the rest of the proof. So:

u(p) =
pnp +

(m
p+1
)

mnp

=
pnp + m

p+1

(∏p
r=1

m−r
p+1−r

)
mnp

≥
pnp +

(∏p
r=1

m−r
p+1−r

)
mnp

=
pnp +

(∏p−1
r=1

m−r
p+1−r

)
(m− p)

mnp

=
pnp +

(∏p−1
r=1

pn+q−r
p+1−r

)
(pn+ q − p)

mnp

=
pnp +

(∏p−1
r=1

(
n+ q−r−n+rn

p+1−r

))
(p(n− 1) + q)

mnp

≥
pnp +

(∏p−1
r=1

(
n+ q−r−n+rn

p+1−r

))
q

mnp

=
pnp + q

∏p−1
r=1

(
n+ (q−1)+(r−1)(n−1)

p+1−r

)
mnp

≥ pnp + q
∏p−1
r=1 n

mnp

= pn(np−1) + qnp−1

mnp

= (pn+ q)np−1

(pn+ q)np

= 1
n
,

(12)

so u(p) ≥ 1
m ,

1
n for all non-negative integers p.

4 Continuous upper bounds

In this section, the parameter p in the discrete upper bounds is specialized in
a manner dependent on the source domain size |S| = m and remixed range
size |R| = n. The goal is to find further upper bounds upon u(p) which are
both usefully low and amenable to easy-to-verify proofs.

At a large scale, we choose p not far past the typical peak preimage size
for a random function f : S → R. On the small scale, p is chosen in order

8

to obtain easily verifiable upper bounds on u(p). If the p happens to nearly
minimize u(p), well, that is just lucky side effect. Similarly, if the resulting
upper bounds are close to the lower bounds, then the tightness is again just
a lucky side effect.

4.1 Significantly expanded keys

Suppose that |R|/|S| = n/m� 1, which means that the remixed key space
is much larger than than the source key space. This covers the case in which
the key remixing procedure is significantly expanding. In this case, setting
p = 1 yields a usefully low upper bound:

µ ≤ u(1) = 1
m

+ 1
mn

(
m

2

)
= 1
m

+ m− 1
2n ≤ 1

m
+ m

2n, (13)

which proves the next theorem.

Theorem 2. If n ≥ m3, then:

1
m
≤ µ ≤ 1

m

(
1 + 1

2m

)
; (14)

and if n ≥ m2, then:
1
m
≤ µ ≤ 3

2
1
m
. (15)

In other words, if remixed key length is expanded at least three-fold over
the source key length, and if m is large, then the upper and lower bounds
are close proportionally. If the remixed key length is at least double the
source key length, and m is larger, the upper bound means that the remixed
key is not substantially easier to surmise than the source key. The purpose
of mentioning these bounds is not their tightness, but rather the simplicity
of their proofs.

4.2 Moderately expanded keys

The previous bound took p = 1 but presumed the significant expansion: n ≥
m2. Taking p = 1 results in somewhat useful for slightly lesser amounts of
expansion, but as n/m goes down to one, the bound u(1) starts to approach
1
2 , which is a useless bound. So, in the case of moderate expansion, m <
n ≤ m2, we try using larger values of p to find better upper bounds.

Our proofs now start using two other tools: the logarithm, whose ba-
sic properties such as order-preservation and log(ab) = log(a) + log(b) and

9

log(ab) = b log(a), we take for granted; and rounding reals up to integers, as
in d1.3e = 2.

Theorem 3. If n > m, then

µ ≤ 1
m

2 + 1
logn
logm − 1

 . (16)

Proof. Let

p =

 1
logn
logm − 1

 , (17)

which is a non-negative integer because n > m. Therefore:

µ ≤ u(p)

= p

m
+ 1
m

(
m

p+ 1

)
n−p

= p

m
+ 1
m

(
m(m− 1) . . . (m− p)

(p+ 1)!

)
n−p

≤ p

m
+ 1
m

mp+1

(p+ 1)!n
−p

= p

m
+ 1
m

1
(p+ 1)!m

p+1−p log n
log m

= p

m
+ 1
m

1
(p+ 1)!m

1−p
(log n

log m
−1
)

= p

m
+ 1
m

1
(p+ 1)!m

1−
⌈

1
log n
log m

−1

⌉(log n
log m

−1
)

≤ p

m
+ 1
m

1
(p+ 1)!m

1− 1
log n
log m

−1

(log n
log m

−1
)

= p

m
+ 1
m

1
(p+ 1)!

≤ p

m
+ 1
m

= 1
m

 1
logn
logm − 1

+ 1

≤ 1
m

2 + 1
logn
logm − 1

(18)

10

where the third inequality above follows from the fact that −dbe ≤ −b for
any real number b and the fact that logn

logm − 1 > 0.

For small values of p in this bound, this choice of p is related to a
generalization of the birthday surprise effect.

As n approaches m in Theorem 3, the upper bound gets very loose,
actually becoming useless. (For n ≈ m + logm, the upper bound is in
the neighborhood of 1, which is not very useful, and for n = m + 1, the
bound usually exceeds 1, which is useless for success rates.) Nevertheless,
the bound can be fairly useful, in cryptography, if the key length expansion
is just one bit, which is formalized as follows.

Theorem 4. If n ≥ 2m, then

µ ≤ 2 + log2(m)
m

. (19)

Proof. Starting from Theorem 3:

µ ≤ 1
m

2 + 1
logn
logm − 1

≤ 1
m

2 + 1
log 2m
logm − 1

= 1
m

2 + 1
log 2+logm

logm − 1

= 1
m

2 + 1
log 2
logm

= 1
m

(
2 + logm

log 2

)
= 1
m

(2 + log2m)

(20)

where the second line inequality follows from n ≥ 2m, with the direction of
the inequality reversed since it appears in a denominator.

4.3 Significantly compressed keys

If |S|/|R| = m/n � 1, then the source key space is much larger than the
remix key space. In other words, the remixing procedure does significant
key compression.

11

The next old and well-known lower bound on factorials uses another
proof tool: some basic calculus1, namely differentiation and integration.

Lemma 1 (Stirling?). If k is a positive integer, then k! ≥ e(k/e)k.

Proof. By direct calculation:

k! = exp log k!

= exp log
k∏
j=2

j

= exp
k∑
j=2

log j

= exp
∫ k

1
logdxedx

≥ exp
∫ k

1
log(x)dx

= exp
∫ k

1

(
d

dx
(x log(x)− x)

)
dx

= exp ((k log(k)− k)− (1 log(1)− 1))
= exp ((k log(k)− k) + 1)
= ekk/ek

(21)

This lower bound on factorials is useful for providing an upper bound on
the inverse of factorials, which in turn provides an upper bound on binomial
coefficients with larger arguments. Now put p = q(m/n) − 1, where q ≥ e.

1We use the standard calculus notation e for Euler’s constant, the base of the natural
logarithm, which should not be confused with Eve’s function e used to define surmisability.
The meaning will be clear from context.

12

Then:

u(p) = p

m
+ 1
m

m(m− 1) . . . (m− p)
(p+ 1)! n−p

≤ q

n
− 1
m

+ 1
m

mp+1

(p+ 1)!n
−p

= q

n
− 1
m

+ n

m

1
(p+ 1)!

(
m

n

)p+1

≤ q

n
− 1
m

+ n

m

1
e((p+ 1)/e)p+1

(
m

n

)p+1

= q

n
− 1
m

+ n

em

((m/n)
q(m/n)/e

)p+1

= q

n
− 1
m

+ n

em

(
e

q

)p+1

≤ q

n
− 1
m

+ n

em
,

(22)

where the last inequality follows from q ≥ e. If m ≥ n2, then we get:

µ ≤ u(p) ≤ (q + 1/e) 1
n

(23)

The smallest we can make q while satisfying q ≥ e is q = d emn e
n
m ≤ e+ n

m ≤
e+ 1/n. This proves the following theorem:

Theorem 5. If n ≤
√
m, then

1
n
≤ µ ≤

e+ 1
e + 1

n

n
. (24)

4.4 Easier and looser bounds for compressed keys

If one wants to avoid basic calculus but one is willing to consider square
roots, then the following (well-known: [GKP94]) weak lower bound on fac-
torials can be used:

Lemma 2. If k is a non-negative integer, then k! ≥ (
√
k)k.

13

Proof. Calculating directly:

k! =
k∏
j=1

j

=
k∏
j=1

√
j
√
j

=

 k∏
j=1

√
j

 k∏
j=1

√
k + 1− j

=

k∏
j=1

√
j(k + 1− j)

=
k∏
j=1

√
k + (j − 1)(k − j)

≥
k∏
j=1

√
k

=
√
k
k

(25)

Using this we get the occasionally useful bound:

Theorem 6. For all m,n ≥ 1:

µ ≤ m

n2 + n

m
. (26)

Proof. Let:

p =
⌈(

m

n

)2
⌉
− 1, (27)

14

which is a non-negative integer. Hence:
µ ≤ u(p)

= p

m
+ 1
m

(
m

p+ 1

)
n−p

≤ p

m
+ 1
m

mp+1

(p+ 1)!n
−p

= p

m
+ n

m

1
(p+ 1)!

(
m

n

)p+1

≤ p

m
+ n

m

1
√
p+ 1p+1

(
m

n

)p+1

= p

m
+ n

m

(
m/n√
p+ 1

)p+1

= p

m
+ n

m

(
m/n√
d(m/n)2e

)p+1

≤ p

m
+ n

m

(
m/n√
(m/n)2

)p+1

= p

m
+ n

m

≤ (m/n)2

m
+ n

m

= m

n2 + n

m
.

(28)

This bound is generally quite loose compared to other bounds, even
where it does provide useful bounds, but its main defect for us is that the
set of pairs (m,n) for which it provides useful is rather limited.

4.5 Moderately compressed keys

In proving many of the previous bounds, a term of the form n/m or m/n
appeared. As n/m approaches one, this term will cause a bound to become
to close to one, which is uselessly large. So, a better choice of p is needed,
and the following lemma will help, which is the last proof tool needed.

Lemma 3 (Historical?). Let x ≥ ee. If

y ≥ log x
log log x− log log log x, (29)

15

then yy ≥ x.

Proof. Calculating:
yy = exp(y log y)

≥ exp
(log x

log log x− log log log x (log log x− log (log log x− log log log x))
)

≥ exp
(log x

log log x− log log log x (log log x− log (log log x))
)

= exp(log x)
= x,

(30)

where the second inequality2 is derived as follows. The given condition
x ≥ ee gives log log log(x) ≥ 0, which gives log log x−log log log x ≤ log log x.
This gives − log(log log x− log log log x) ≥ − log(log log x).

The right hand side of inequality (29) should not be seen as something
fundamentally important, but rather just a bound for something rather mun-
dane described using the familiar logarithm functions. We could instead
use the less familiar, but still notionally mundane, inverse of the function
x 7→ xx. This inverse can be bounded numerically quite easily using a binary
search or Newton’s method. The expression involving repeated logarithms
is just slightly more convenient to write down and to evaluate.

Theorem 7. If ee ≤ n ≤ em, then

µ ≤ 1
n

(
1 + e logn

log logn− log log logn

)
. (31)

Proof. Let c = em/n. Let

p =
⌈

c logn
log logn− log log logn

⌉
− 1. (32)

Let y = (p+ 1)/c, then

y = 1
c

⌈
c logn

log logn− log log logn

⌉
≥ 1
c

(
c logn

log logn− log log logn

)
= logn

log logn− log log logn,

(33)

2The first inequality follows from (29) and the fact that the function y log y is an
increasing function of y for y ≥ 0.

16

which implies that yy ≥ n, by applying the previous lemma. Since p is a
non-negative integer, we get:

µ ≤ u(p)

= p

m
+ n

m

(
m

p+ 1

)
1

np+1

≤ p

m
+ n

m

mp+1

(p+ 1)!
1

np+1

≤ p

m
+ n

m

(m/n)p+1

e((p+ 1)/e)p+1

= p

m
+ n

em

((em/n)
p+ 1

)p+1

= p

m
+ 1
c

(
c

cy

)cy
= p

m
+ 1
c

(1
yy

)c
≤ p

m
+ 1
c

(1
n

)c
= 1
m

(⌈
c logn

log logn− log log logn

⌉
− 1

)
+ 1
c

(1
n

)c
≤ 1
m

(
c logn

log logn− log log logn

)
+ 1
c

(1
n

)c
= 1
n

(
e logn

log logn− log log logn

)
+ 1
c

(1
n

)c
≤ 1
n

(
e logn

log logn− log log logn

)
+ 1
n
,

(34)

where the last inequality above follows from c ≥ 1.

5 Numerical upper bounds

In this section, we use the previous results to deduce some numerical bounds.

5.1 Significant expansion

For a concrete example, suppose that the source key has a length of 128 bits,
and remixed key has length expanded to 256 bits. Upper bound (15) says an
adversary Eve, even with unlimited computational power, has probability
at most 2−127.4 of surmising a remixed key (in one try).

17

To keep all the claims in this report provable purely by pencil-and-paper,
start from (15) of Theorem 2, and work as follows:

µ ≤ 3
2

1
m

= 3
2

1
2128

= (3)2−129

= (35)(1/5)2−129

= (243)(1/5)2−129

≤ (256)(1/5)2−129

= (28)(1/5)2−129

= 28/5−129

= 21.6−129

= 2−127.4

(35)

For an easier but looser numeric bound: µ ≤ 3
2

1
m ≤ 2

(
1
m

)
= 21−128 = 2−127.

Of course, the actual probability could be as low as 2−128, at least according
the lower bounds proven so far in this report.

Obviously, a key chosen uniformly at random from the expanded key
space is much harder to surmise (2−256) than a remixed key in the expanded
key space (2−128). On one hand, strictly speaking, one ought not exaggerate
by saying that remixed expanded key is as strong as any key of that size:
rather, just say that it is strong enough. On the other hand, this report has
not offered any reasons why such an exaggeration may cause harm.

18

5.2 Moderate expansion

For a first numerical example, suppose that |S| = m = 2128 and |R| = n =
2192. Starting from Theorem 3:

µ ≤ 1
2128

2 + 1
log 2192

log 2128 − 1

= 2−128

(
2 + 1

192
128 − 1

)

= 2−128
(

2 + 1
3
2 − 1

)
= 2−128 (2 + 2)
= 2−12822

= 2−126.

(36)

For a second numerical example, put m = 2128 and n ≥ 2129. Then Theo-
rem 4 implies that:

µ ≤ 2−128(2 + log2(2128)) = 2−128(130) ≤ 2−12828 = 2−120. (37)

5.3 Significant compression

Putting m = 2256 and n = 2128 in Theorem 5 gives µ ≤ 2−126.37, if one
permits some routine calculations involving e. But, again, to keep all the
report’s results verifiable by pencil-and-paper, we prove a slightly weaker
numerical bound by hand. We must use calculus again, because the constant
e appearing in the theorem is defined in terms of calculus:

ex =
∑
j≥0

xj/j! (38)

19

and therefore:

e+ 1/e = e1 + e−1

=
∑
j≥0

1j + (−1)j

j!

=
∑
j≥0

2
(2j)!

≤ 2
0! + 2

2! +
∑
j≥2

2
4!4j−1

= 2 + 1 + 2
24

(
1− 1

4

)−1

= 3 + 1/9

(39)

Then e+ 1/e+ 1/n ≤ 3 + 1/8 = 25/8 for large enough n. So,

µ ≤ 25
8

1
n

= 52

23
1

2128

= (52)2−131

= (56)(1/3)2−131

= (15625)(1/3)2−131

≤ (16384)(1/3)2−131

= (214)(1/3)2−131

= 214/3−131

= 24.666···−131

= 2−126.333....

(40)

Such a small probability is, of course, more than adequate for security
against a surmisal attack. A tighter bound is probably possible in this
case, because this report has aimed for simpler proofs rather than tighter
bounds. A tighter bound does not result in a substantial gain for crypto-
graphic applications.

20

5.4 A loose numeric bound

Let (m,n) = (2192, 2128). Theorem 6 gives:

µ ≤ m

n2 + n

m

= 2192

2256 + 2128

2192

= 2−64 + 2−64

= 2−63.

(41)

This is much looser than the next numeric bound, but recall that Theorem 6
was provided because it avoided basic calculus, and thus has an slightly
simpler proof.

5.5 Moderate compression

Suppose that n = 2128, and m = 2128 or m = 2192, both of which have
ee ≤ n ≤ em. Then, using Theorem 7 and the bound log 2 ≥ log log 2, we
get:

µ ≤ 1
2128

(
1 + e log 2128

log log 2128 − log log log 2128

)

= 1
2128

(
1 + e128 log 2

log(128 log 2)− log log(128 log 2)

)
= 1

2128

(
1 + e128 log 2

7 log 2 + log log 2− log(7 log 2 + log log 2)

)
≤ 1

2128

(
1 + e128 log 2

7 log 2 + log log 2− log(8 log 2)

)
= 1

2128

(
1 + e128 log 2

7 log 2 + log log 2− 3 log 2− log log 2

)
= 1

2128

(
1 + e128 log 2

4 log 2

)
= 2−128 (1 + 32e)
≤ 2−128 (1 + 32(3))
= 2−128 (97)
≤ 2−128(27)
= 2−121,

(42)

21

using the bound3 e ≤ 3 near the end.

5.6 A general numerical result

Common cryptographic practice aims for keys of length at least 128 bits.
So, we formulate the relevant numerical result:

Theorem 8. If |R|, |S| ≥ 2128, then

µ ≤ 2−120. (43)

Proof. One of n/m ≥ 2 or n/m ≤ e is true because 2 < e. If n/m ≥ 2, then,
Theorem 4 says:

µ ≤ 2 + log2m

m
. (44)

If n/m ≤ e, then, Theorem 7 says:

µ ≤ 1
n

(
1 + e logn

log logn− log log logn

)
. (45)

These bounds can be seen to be decreasing functions4 of m and n respec-
tively, at least when m,n ≥ 2128, so both are at most their values at
m = n = 2128. We saw earlier in (37) that the first takes value at most
2−120 at m = 2128 and, in (42), that the second is at most 2−121 ≤ 2−120 at
n = 2128. So, µ ≤ 2−120 in all cases.

A much larger upper bound, such as 2−50, would likely suffice for cryp-
tographic security, at least against pure surmisal attacks.56 The fact that
a better bound was achieved is more or less a free by-product of the proof
techniques: not by some extra effort on our part. More precisely, in deriv-
ing this result, this was the first rigorous (and first correct numeric) upper
bound that I attained.

Lowering this upper bound would be a good academic exercise, and
might have applications outside cryptography. Conversely, simplifying the
proofs of this report would be another good academic exercise, and might
have educational applications. Perhaps differentiation and integration can
be avoided altogether.

3The reader can prove e ≤ 3, or instead re-use the previous proof in this report that
e ≤ 3 + 1

8 , and replace the 97 above by 100.
4This step is bigger than any of the steps of the previous proofs.
5I leave analysis of the situation in the multi-user setting to other work.
6I leave the notion of computing the expected losses of surmised keys to other work.

22

Fortunately, probabilities cannot erode over time, unlike the cost of com-
putation. In other words, they are almost absolute. If, for some reason, one
needs to use larger keys, to resist faster computers or better attack algo-
rithms, then one is probably not obliged to update the result above.

5.7 An easier upper bound

Subsequently to deriving the previous upper bounds, an easier proof for a
weaker but useful bound occurred to me.7

Theorem 9. If |R|, |S| ≥ 2128, then

µ ≤ 2−63. (46)

Proof. Start from µ = Ef (µ|f), where µ|f = maxr∈R Pr [s ∈$ S : f(s) = r]
is the f -conditional surmisability, and Ef indicates the expected value taken
over f ∈$ R

S . Then:

µ2 ≤ µ2 + Ef ((µ|f − µ)2)
= Ef ((µ|f)2)

= max
e∈RRS

Pr
[
(s, s′, f) ∈ S × S ×RS : e(f) = f(s), e(f) = f(s′)

]
≤ Pr

[
(s, s′, f) ∈ S × S ×RS : f(s) = f(s′)

]
≤ 1
|R|

+ 1
|S|

≤ 2−128 + 2−128

≤ 2−126.

(47)

Therefore, µ ≤
√

2−126 = 2−63.

This proof is simpler than the proof of Theorem 8, (together with the
proofs of preliminary results used by Theorem 8) in a couple of aspects: it
never involves any factorials, and it has less case analysis. This simplicity
helps make it shorter, but the newer proof uses larger steps than the proofs
of the previous results, which also helps to make it short. I used larger

7Actually, Theorem 9 is likely a corollary of Shoup’s more general result [Sho09, The-
orem 8.27]. Furthermore, the proof here may just be a simplification of Shoup’s proof. I
recall skimming over Shoup’s Theorem 8.27, but did not consciously use the result or its
proof. Shoup’s Theorem 8.27 is more general than Theorem 9 in at least two ways: it uses
a weaker hypothesis of pairwise indpendence, and it allows arbitrary sizes for the domain
and range.

23

steps in the proof, because even if the proof is wrong, I already put the the
effort into finding adequate bounds with small-stepped proofs leading up to
Theorem 8.

The complexities of the proofs of Theorem 9 and Theorem 6 (including
Theorem 1) seem to approximately match. The first principle probability
arguments used in the proofs of Theorem 9 and Theorem 1 are similar. The
argument about factorials and products in the proof of Theorem 6 is similar
in complexity to the expectation (and variance) arguments used in the proof
of Theorem 9. So, if I had discovered Theorem 9 first, I should have written
the proof of Theorem 9 in small-steps, and then a result like Theorem 8
could have been seen as an mere academic exercise, with its proof written
in large steps, and perhaps even leaving in some asymptotic quantities like
o(1), making it heuristic from a numeric perspective.

6 Conclusion

A proof-demanding pessimist need never again worry that key derivation
somehow gives an adversary a decent chance, such as 2−30, even if the pes-
simist is willing to consider a remixed key as accurately modeling a derived
key. Naturally, the pessimist will still doubt whether any derived key, even
with uniformly random salt and random secret source key, is well-modeled
by a remixed key. Hopefully other research has addressed, or will address,
that concern.

A proof-appreciating optimist should find the numeric unsurmisability
pleasantly unsurprising.

References

[NIST 800-90C] E. Barker and J. Kelsey. Recommendation for Random
Bit Generator (RBG) Constructions, Special Publication
800-90C. National Institute of Standards and Technology,
Aug. 2012.

[DDKS14] I. Dinur, O. Dunkelman, N. Keller and A. Shamir.
How can cryptographers with alzheimer locate low prob-
ability peaks. Asiacrypt 2014 rump session, Dec. 2014.
http://asiacrypt.2014.rump.cr.yp.to/.

[DPW13] Y. Dodis, K. Pietrzak and D. Wichs. Key deriva-
tion without entropy waste. ePrint 2013/338, Interna-

24

http://asiacrypt.2014.rump.cr.yp.to/

tional Association for Cryptologic Research, Oct. 2013.
http://eprint.iacr.org/2013/338.

[FS09] P. Flajolet and R. Sedgewick. Analytic Combina-
torics. Cambridge University Press, 2009.

[GKP94] R. L. Graham, D. E. Knuth and O. Patashnik. Con-
crete Mathematics: A Foundation for Computer Science.
Addison–Wesley, 2nd edn., 1994.

[Kra10a] H. Krawczyk. Cryptographic extraction and key deriva-
tion: The HKDF scheme. ePrint 2010/264, International
Association for Cryptologic Research, May 2010. Full ver-
sion of [Kra10b].

[Kra10b] ———. Cryptographic extraction and key derivation: The
HKDF scheme. In T. Rabin (ed.), Advances in Cryptol-
ogy — CRYPTO 2010, Lecture Notes in Computer Science
6223, pp. 631–648. International Association for Crypto-
logic Research, Springer, Aug. 2010. Extended abstract of
[Kra10a].

[KPW13] H. Krawczyk, K. G. Paterson and H. Wee. On
the security of the TLS protocol: A systematic analysis.
ePrint 2013/339, International Association for Cryptologic
Research, 2013.

[KSC78] V. F. Kolchin, B. A. Sevast’yanov and V. P.
Chistyakov. Random Allocations. Scripta Series in Math-
ematics. V. H. Winston & Sons, Halsted Press, 1978. Trans-
lation by A. V. Balakrishnan.

[Sho09] V. Shoup. A Computational Introduction to Number The-
ory and Algebra. Cambridge University Press, 2nd edn.,
2009.

A Motivation

A.1 Salt and hash: specific and relative surmisability

A random function is not a realistic object for large sets R and S, since
describing it requires too much information to specify, to determine and to
communicate. So, in practice, something closer to the following is used.

25

http://eprint.iacr.org/2013/338

Let T be a finite non-empty set. Let d ∈ (RS)T be a fixed function
from T to RS . In d-remixing, Alice and Bob have a shared secret s ∈$ S.
They determine a one-time value t ∈$ T called the salt. The salt must be
unpredictable to an adversary, and if the two parties are establishing r, then
the salt must be established in some authenticated manner: the adversary
must not be able manipulate the salt, as this could allow the adversary to
render it more predictable. They compute the d-remixed key r = d(t)(s), by
applying the function d(t) to s. It is not necessary to represent the actual
function d(t). Rather, it suffices to be able to evaluate of d(t)(s), which we
may written as d(t, s), when clear from context, to emphasize this fact.

If we put T = RS and let d be the identity function, then we recover our
original formalism for remixed keys, because d(t, s) = d(t)(s) = t(s), and we
can just re-name t to f .

The d-specific surmisability is defined to be:

µ(d) = max
e∈RRS

Pr [(s, t) ∈$ S × T : e(d(t)) = d(t)(s)] . (48)

This definition is formulated to align with the original definition, but one
can simplify it as follows:

µ(d) = max
e′∈RT

Pr
[
(s, t) ∈$ S × T : e′(t) = d(t, s)

]
, (49)

by defining e′ = e ◦ d.
We can also formulate the t-conditional d-specific surmisability µ(d)|t

as Eve’s success rate after she sees t. This quantity is closely related to
the previously discussedf -conditional surmisability: µ(d)|t = µ|d(t). Also if
|T | = 1, or if d is a constant function (not varying with its input t), then
d-specific surmisability is d(t)-conditional surmisability: µ(d) = µ|d(t).

The relative surmisability of d is defined to be ρ(d) = µ(d)
µ . If the rel-

ative surmisability is one, then d provides the same resistance as random
function against surmisal attacks on the remixed key. It is possible that
ρ(d) < 1, for example, if d(t) is always a permutation. In practice, the most
efficient permutations d(t) are often efficiently invertible given t, which may
sometimes have negative security effects not related to surmisability. So
generally, one expects that ρ(d) ≤ 1, at least approximately. If ρ(d) > 1,
then the d-remixed keys are easier to surmise then uniformly remixed keys,
and are thus are weaker to some extent.

The relative surmisability is an information-theoretic property of d. It
does not depend on any computational hardness assumptions about d, but

26

rather the shape of d as a function, where shape means the isomorphism
class of the functional digraph of d.

For a concrete example, let T = S be the set of bit strings of length 128.
Let h be a standard hash function, specifically either SHA1 or SHA256. Let
dh,∗(t, s) be the first 128 bits of h(t‖s), where t‖s is the concatenation of t
and s. Consider the following concrete conjecture:

Conjecture 1. The relative surmisability of dh,∗ satisfies ρ(dh,∗) ≤ 270.

To review, this conjecture is saying that dh,∗(t, ·) has an expected maxi-
mum preimage size at 270 times larger than average for a random function.
This seems like a modest conjecture, though I have no idea how to prove it.

This conjecture implies that µ(dh,∗) ≤ 270µ. Combined with Theorem 8,
this says that µ(dh,∗) ≤ 2−50, which may be adequate for security of dh,∗-
remixed keys, at least against surmisal attacks.

If we de-randomize further and set |T | = 1, so T consists of bit strings
of length zero, making dh,−(t, s) the first 128 bits of h(s), then we can make
a similar conjecture:

Conjecture 2. The relative surmisability of dh,− satisfies ρ(dh,−) ≤ 270.

If this conjecture fails, then we can find a collision in the 128-bit prefix
of the hash function h by trying about 251 random values of s. In other
words, this conjecture is plausible under nearly standard conjectures about
hash functions SHA1 and SHA256.

A.2 Why remix keys?

Given that a remixed key seems to be slightly easier to surmise than the
source key or a uniform key in the remix space, at least to the extent that
we can upper bound, a natural question is: why bother remixing at all?

Some protocols, like the TLS protocol, already do something like remix-
ing, so the question is perhaps best asked of the TLS working group. In
other words, the question could be deemed somewhat out of scope of this
report. Nevertheless, I now suggest what I think may be some sensible
reasons protocols have for remixing:

• The source key space S, when encoded into R, including and padding
or truncation, with a non-random function, results in very biased keys
in R. Such bias may be exploitable for some applications of the key r.

• In some systems, a source key may be a precious resource that one

27

would not like to use directly in a bulk cryptographic algorithm (be-
cause of the risk of side channels).

• In some protocols, the remixing procedure may provide some (extra)
protection against replay attacks.

• In some systems, exposure of the source key may incur a security risk,
and remixing (or rehashing) helps in the sense of applying a one-way
function.

So, in many cases, the remixing of keys is a side effect of trying to achieve
some other cryptographic properties. Understanding the impact of the slight
bias in remixed keys may help more formally understand the trade-offs in-
volved. This results of this report should help in justify the the gains of
remixing outweigh the costs.

A.3 Truth in advertising

It may be more than fair to say that the 128-bit AES keys modeled by
remixed keys provide “128 bits of security”, or “2128-security”, despite the
fact that the remixed AES keys are not strictly uniform distribution. This
report helps support this interpretation to an extent: it provides a numerical
upper bound on the unsurmisability of a remixed key, at least when both
the source key and the remixed key are at least 128 bits in length.

In other words, the entropy gap, or entropy erosion, does exist, but is
provably quite tolerable, and indeed, much more secure than just tolerable.
An adversary having probability 2−120 of surmising a 128-bit key is not just
acceptable or adequate, but a very robust kind of surmisability.

A.4 A question of importance

An important question is whether the question of surmisability is an im-
portant question. The importance depends on the answer. Essentially, if
surmisability happens to be a large value like 2−20, then surmisability would
be a somewhat important question, because it would show that one might
need to rely on a extra computational assumption to get adequate security.
Fortunately, the answer to the surmisability is much better than that. So,
by the answering the surmisability question positively, we have rendered the
question unimportant, in the sense that we had no reason to worry about it
having a negative answer.

28

A.5 Implement first, ask questions later

Other than perhaps a false sense of security, implementing imperfect or un-
certain cryptography seems more secure than not implementing cryptogra-
phy. In other words, unresolved questions about a cryptographic algorithm
should be not necessarily be an impediment to implement (unless the alter-
native algorithms are clearly superior). On the other hand, implementation
must not imply an end of investigation. Questions can always be asked later.
This report merely tries to deal with some of these questions for a common
cryptographic practice.

B More variants on surmisability

B.1 Multiple guesses and key searching

In many situations, an adversary Eve gets the opportunity to see Alice or
Bob use r in such a way that Eve can test any value r′ ∈ R for whether
r′ = r. Usually, she can do these tests off-line, but in some unusual protocols
Eve might only be able to make these test using some interaction with Alice
or Bob (especially in contexts where the keys are treated as passwords).

Generally, the way Eve does this is as follows: for each guessed key, Eve
tries to implement the next step in the protocol that uses r. For example,
the protocol may use to verify a message authentication code (MAC) tag.
Or, it may use r to decrypt a ciphertext, in which case Eve inspect the
plaintext decryption to see whether it seems to have the proper formatting
expect of the real plaintext. Or, the next step may be respond to some
challenge, interactively proving knowledge of r.

To formalize these ideas, first let g be a non-negative integer, and con-
sider the g-surmisability (or g-searchability):

µg = max
e∈(RG)RS

Pr
[
(s, f) ∈$ S ×RS : f(s) ∈ e(f)(G)

]
, (50)

where G is any fixed set of size g, and e(f)(G) is the image of G under the
function e(f) . The set e(f)(G) represents Eve’s set of guesses for r. Then,
surmisability is just 1-surmisability (1-searchability) under this definition:
µ1 = µ.

A more computational way to measure Eve’s success is to account for
the effort she needs to confirm each guess, which adds to a lot of effort when
the number of guesses is high. The aegis (of remixing S to R) is

η = max
e∈(R!)RS

E
[
(s, f) ∈$ S ×RS : i(e(f)(f(s)), R)

]
, (51)

29

where R! is the set of permutations of R and i(u, V) is the index of element
u in set V , under some fixed ordering V . Given f , Eve computes e(f) ∈ RR.
The function e(f) re-orders the elements in order of likelihood of being the
remixed key. This number is the average number of guesses r′ at r Eve needs
to check in the theoretical remixing game. The higher the aegis, the more
secure is the remixed key.

The aegis corresponds to exhaustive key search attacks, except that the
adversary being modeled here has unlimited computational power in choos-
ing the best strategy for the search based on seeing the remix function.
Arguably, a large aegis, such as 2127 for a 128-bit key, corresponds more
accurately to what cryptographers think of as 128-bit security. By contrast,
a surmisability as large as 2−50 is hardly a concern, because: firstly, nobody
expected the surmisability to be that low (a view which this report tries to
rigorously support), and secondly, surmisability seems to be unaffected by
the computational resources of an adversary. In fact, if one worries that an
adversary’s computational power will increase drastically, then one should
seek a higher aegis.

I have not checked this, but I think g-surmisability and aegis are related
as follows: η = n− (µ1 + µ2 + · · ·+ µn) where n = |R|.

Though there are many good reasons for focusing on the aegis of remixed
keys, that does not mean one should ignore surmisability. For example, in
d-specific remixing, the aegis can be acceptably high, but the surmisability
can be unacceptably high. For example, the remix function d(t) might
induce a spike of size 2−20 in the probability distribution of the keys, yet
might induce completely a flat distribution beyond this single spike. This
discrepancy may be due to over-weighing the higher index values of rarer
guesses.

Perhaps this deficiency of aegis can be corrected by re-weighting the
indices. For example, if one takes the expected value of the logarithm of
the index, then this loosely models Moore’s law, accounting for exponential
increase in computational power over time. We may call this the longevity
λ. Of course, it is easy to define such things, but it remains to be seen
whether they are useful. I have have not verified it, but my rough estimate
for the longevity would be λ ≈ log(n) − (µ1/1 + µ2/2 + · · · + µn/n), and
maybe the latter would serve as a more natural definition of longevity.

Bounding µg might be more difficult than bounding µ. In fact, if I
recall correctly, Kolchin et al [KSC78] provide some (asymptotic) balls-in-
bins bounds related to the quantities µg. Regardless, I think that there is
much less reason for cryptographers to worry about a high value of µg for
g > 1, for the following heuristic reasons.

30

Although remixing does indeed introduce a spike in the probability dis-
tribution of the remixed key, intuition expects the height of this spike to
reduce as one gets away from the most likely value of remixed key. For
example, we might expect that µg/(g/n) would be smaller than µ1/(1/n).
In this report, we showed that µ is not dangerously higher than 1/n. So,
we have no reason to expect that µg is dangerously higher than the cor-
responding probability for the uniform source keys or uniform remix-range
keys, and we expect µg to actually be relative closer to one those baseline
probabilities g/n. In other words, remixing offers even less advantage on
multiple-guesser (key-searcher) than it does to a single-guesser. Therefore,
bounding µ1 seems like a more urgent problem than bounding µg.

B.2 Non-uniform source secrets

If the source secret s is chosen from the set S random but non-uniformly,
then one can treat s as a random variable. A variant of µ can still be defined,
but will depend on the choice of random variable for s.

This variant can be used to model to things such as: user-chosen pass-
words; secret messages to be encrypted, from which one wants to derive
some encryption keys; physical noise sources from which one would want to
derive keys.

I am not sure how to proceed in bounding such a variable surmisability,
but it may be a good exercise. Perhaps this has already be done, as in Dodis
et al [DPW13]. The proof of Theorem 9 suggests that using Renyi entropy
of order two, which is related to the probability of two keys colliding, may
be a good approach to this problem.

B.3 Computationally strong remixers and the quasimode prob-
lem

It is of course realistic to impose some computational limitations on the ad-
versary Eve. For example, a real-world Eve may have difficulty in determining—
and computing—the optimal function e ∈ RRS .

An alternative approach would be to formulate a computational problem
related to Eve’s task here. An example is the quasimode problem: given f ,
find some output values that are significantly more likely than average. It
seems plausible that, for a random, or a well-designed and pseudorandom,
function f , the quasimode problem is computationally infeasible. Further-
more, in cases were f is actually a random function, then it would seem
that the Eve would need at least a large number of calls to f to solve the

31

quasimode. This would essentially be random oracle setting. This report
does not examine the difficulty of the quasimode problem any further.

Dinur, Dunkelman, Keller and Shamir [DDKS14] discuss how to use
Pollard rho (or, Floyd’s cycle-finding algorithm, it would seem to me) in
various way to find “probability peaks” in a pseudorandom function. Finding
probability peaks is what I called above the “quasimode” problem.

B.4 Distinguishing remixed keys from uniform keys

A rather different challenge for the adversary Eve is to distinguish the
remixed key r from a key chosen uniformly at random from R. This re-
port does not discuss indistinguishability formally. I expect that the issue
of distinguishability has already been well-resolved in existing publications
on cryptography.

Intuitively, if the source key-space S is much smaller than R, then an
Eve with unlimited computational power can easily distinguish r from a
uniformly random key. In other words, remixed keys are not information-
theoretically distinguishable from uniformly random keys (in the remixing
range). Of course, they may well be indistinguishable to computationally-
limited adversary. Basically, this seems to suggest that to expand a key, one
needs a remix function satisfying some kind of computational assumptions,
such as being a one-way function.

Conversely, if |S| = m is much larger than |R| = n, then it seems the
statistical distance between the remixed key and a uniformly random range
key is O(

√
n/m). Basically, this seems to suggest that to compress key, one

may not need a one-way function.
The indistinguishability of the remixed is clearly important if the remixed

key is used as a key stream, which often effectively exposes the remixed key.
In many cases, however, the remixed key is used in algorithms that do not
directly expose the key, such as symmetric encryption, or message authenti-
cation codes. In those applications, the need for indistinguishability is less
dire.

B.5 Iterated remixing

A simple question would be: what happens if a single secret key s is remixed
into multiple keys r1, r2, . . . ? To formalize this, one can either treat each ri
individually, or combine them all into one key (r1, r2, . . .). If the adversary
Eve is given one of the component remixed keys, say r1, then must guess

32

or distinguish another key, say r2, the underlying problem becomes much
different problem.

A more complicated question would be: what happens if a remixed key
is remixed itself, and so on, perhaps through multiple remixing generations?
This becomes similar to the theory of iterated random functions, which is
quite well-studied. Exact, non-asymptotic bounds might be interesting, and
perhaps known.

B.6 Entropy and terminology

By considering logarithms of probabilities in various ways, one enters into
the realm of entropy. Entropy is a very useful way to measure information.
There are many kinds of entropy that can be defined for a single probability
distribution (or even a pair of random variables). I wanted this report to
be self-contained and simple, so I did not describe the results in terms of
entropy.

Loosely speaking, the negative logarithm of surmisability corresponds to
what some people the conditional min-entropy of the adversary surmising
the remixed key, conditioned the random variable of the remix function.
This is a slightly confusing terminology: because it does not align well with
conditional surmisability (which is a conditional probability). The confusion
arises part out of conditional probability being conditioned on an event, and
conditional entropy being conditioned on a random variable.

In a past report of mine, I used the term contingent entropy for this kind
of entropy. The concept of contingent working entropy roughly corresponds
to negative logarithm of g-surmisability. I have also seen the term average
min-entropy (conditioned on another random variable). used for this idea.
But since the averaging is being done at the level of probabilities, not en-
tropies, it would be more accurate to relate this to the notion of a cumulant.
Indeed, viewing the min-entropy corresponding to the f -conditional surmis-
ability as a random variable (over f), then the logarithm of the surmisability
corresponds to sum of all the cumulants of this min-entropy variable.

Even more loosely, the longevity seems somewhat related to the Shannon
entropy, and the logarithm of aegis seems somewhat related to some kind of
Renyi entropy of lower order, all of the above being conditioned on the remix
function. It seems that Renyi entropy of order two might strike an adequate
balance between surmisability and searchability, again with the conditioning
on the remix function. In fact, that line of reasoning motivated Theorem 9.
Results of such a nature may be well-known in the field of randomness
extraction.

33

The probability that I have called surmisability might also be called
guessability or predictability. I avoided these two terms for the following
reasons.

• The term guess does not emphasize the fact Eve is given the remix
function to help make an educated guess at the remixed key. The
term guess does not emphasize the fact Eve has only a single shot
at making her guess. The term surmise seems to resolve these issues,
because it connotes more of a sense of deduction and a final or optimal
answer.

• The term predict when applied to the remixed key is confusing, be-
cause we describe the remix function, or salt value, as being unpre-
dictable. The unpredictability of the remix function, or salt, is defined
from some time before the remix function is made public to the ad-
versary. But when viewed from that point in time, the remixed is
also unpredictable, just as unpredictable as a uniformly random in the
remix range. The conditional surmisability is defined from a point in
time after the remix function is made public. The surmisability can
be viewed the average conditional surmisability, so it is not defined in
terms of any single point in time, but rather over multiple instances
of a game.

C Previous work

In a draft standard, Barker and Kelsey [NIST 800-90C] make some non-
asymptotic claims about deriving new keys from by applying a hash function.
This report was, in part, inspired by those claims, though it diverged towards
addressing a different problem.

Given the similarity of remixing to common cryptographic practices,
one might infer an implicit folklore knowledge that remixed keys are not
substantially easier to guess than one of the source key or random key.

Krawcyzk, Paterson and Wee [KPW13] provide a security analysis of the
TLS protocol, including various ciphersuites. If the surmisability µ were a
non-negligible probability, then the conclusions of some of their theorems
would fail. In other words, their security conclusions imply some form of
the results in this report, namely the surmisibility is bounded in the sense
of being negligible, which probability excludes large probabilities like 2−10.

So, it is interesting to examine their proofs. Each theorem deduces its
security conclusion from a set of assumed, but plausible, hypotheses. For

34

an example relevant to this report’s surmisability, one of these Krawcyzk–
Paterson–Wee hypotheses is that a certain function, called a key derivation
function (KDF) is an ODH-PRF (oracle Diffie–Hellman pseudorandom func-
tion). This assumption is justified as being quite plausible. Just to repeat,
this assumption is not formally proved in any way.

Their PRF-type assumption would almost certainly fail if surmisability
were non-negilible. More precisely, the assumption implies either that the
KDF would be detectably more uniform than a random function, or that
surmisability is non-negligible. Essentially, their assumption, which they do
not attempt to prove, is a large generalization of the results in this report.
Or, in other words, this report proves a small part of their assumption.
While they deem their assumption as at least plausible and perhaps out of
reach of proofs, this report takes a small step towards provably affirming
their assumption.

It should be also be expected that the results of this report are explic-
itly or implicitly proved in cryptographic publications. For example, the
remixing model is quite similar to the random oracle model, except that the
remixing allows an arbitrary amount of adversarial computation. In other
words, it may well be the case that some proofs in the random oracle that
limit adversaries to a cost t and probability ε are such that if t is allowed to
go to infinity, the ε approach a value that implies the upper bounds in this
report (but perhaps not, if the larger value t enables the adversary other
more successful attacks, such as integer factorization).

Work on key derivation may be more directly applicable to the report.
For example, Krawczyk [Kra10a] and Dodis, Pietrzak and Wichs, [DPW13]
discuss entropy and key derivation. Unfortunately, I have only read a small
sample of such work, and I failed to find the results of the nature described
in this report.

Mathematically, it can be seen that µ depends on a very old mathemat-
ical problem, of a type sometimes called a “balls-in-bins” problem. So far, I
have found three treatments of this problem.

• Kolchin, Sevast’yanov and Chistyakov’s book Random Allocations [KSC78]
solves this problem and some interesting variations of this problem
(that might be related to what I called g-surmisability). I read this a
few years ago, but no longer have easy access to the book. I did not
fully understand their math, but I recall their results being asymptotic.
Reading their work likely informed me in generalizing Shoup’s results,
though I did not consciously recall, or refer, their results while writing
this paper. Subsequently, I found my notes on the work, which seem

35

to indicate that their results are indeed asymptotic. Furthermore,
their bounds are described somewhat implicitly, which is potentially
confusing.

• Flajolet and Sedgewick [FS09, Proposition VIII.10] wrote a book on
analytic combinatorics and include something about this result. I re-
call their proof methods to be far more sophisticated than those used
in this report, though perhaps superior because of their wider appli-
cability. I also recall their results to be asymptotic, and some notes I
took confirm this.

• Shoup’s book [Sho09, Theorem 8.29] provides a one-page, self-contained,
elementary proof. I noticed Shoup’s proof in 2015 and realized that it
could be adapted to give numeric bounds, which this report tries to
realize. In fact, the main tools used in the arguments of this report
are just a sharpening of the tools used in Shoup’s proof, which helps
to make the results exact instead of asymptotic.

Similar asymptotic lower bounds were also proven [KSC78, FS09].

D Exact surmisability of small remixed keys

Despite my appreciation of approximations, my preference leans strongly
towards exactness. Part of the challenge of writing this paper was curbing
that preference, and focusing on only the precision relevant to cryptography.
In this section, I describe some exact results about the surmisability of
remixing keys. This exact formulas are only efficient when at least one of |S|
or |R| is small: basically too small for use in any cryptographic application.
So, the only cryptographic application of these exact follows is to sanity
check any bounds.

For |S| = m and |R| = n, with m,n ≥ 1, let µ be the surmisabilility of
remixing S to R as defined in (1), and let:

um,n = µmnm. (52)

Equivalently:

um,n = |{(s, f) ∈ S ×RS : f(s) = e+(f)}|, (53)

where e+(f) ∈ R is such that for all r ∈ R, at least one of r ≤ e+(f) or
|f−1(r)| ≤ |f−1(e+(f))| is true.

36

If mn = 0, we let um,n = 0, by pure convention, or by careful inter-
pretation of (53). If mn = 0, then µ is undefined, since mnm = 0, and
µ = um,n/(mnm) = 0/0.

A table of the smaller values of um,n is provided in Table 1. To measure

m�n 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 6 12 20 30
3 0 3 18 51 108 195
4 0 4 44 192 544 1220
5 0 5 110 675 2540 7145

Table 1: Values of um,n for small m and n

how well-known the numbers um,n are, sub-sequences from Table 1 can be
compared to the On-Line Encyclopedia of Integer Sequences (OEIS), as of
May 7, 2015:

• Rows with m = 0, 1, 2, 3 appear in OEIS, but rows with m = 4, 5 do
not.

• Columns with n = 0, 1, 2 appear in OEIS, but columns with n = 3, 4, 5
do not. (Column 2 appear in 2013.)

• The main diagonal with m = n appeared in OEIS in 2013.

• The anti-diagonals with m+ n = 5, 6, 7, 8, 9 do not appear in OEIS.

The last time I looked for these numbers in OEIS was in 2012, where some
of the sub-sequences had yet to appear, and those that did appear had
other interpretations. In looking at 2015 state OEIS, I learned of two other
references: Gonnet and Mitzenmacher–Richa–Sitaraman; skimming both, I
notice only asymptotic statements.

For an example, consider u4,2. Let S = {1, 2, 3, 4} and R = {1, 2}.
Each function f ∈ RS can be represented as a string (f(1), f(2), f(3), f(4)).
Table 2 lists all 16 functions f together the with the size of the largest
preimage of each function, and running totals the sizes: The bottom right
number 44 is u4,2.

37

f maxr |f−1(r)| Cumulative total
1 1 1 1 4 4
1 1 1 2 3 7
1 1 2 1 3 10
1 1 2 2 2 12
1 2 1 1 3 15
1 2 1 2 2 17
1 2 2 1 2 19
1 2 2 2 3 22
2 1 1 1 3 25
2 1 1 2 2 27
2 1 2 1 2 29
2 1 2 2 3 32
2 2 1 1 2 34
2 2 1 2 3 37
2 2 2 1 3 40
2 2 2 2 4 44

Table 2: Computation of u4,2

A general exact, but inefficient, formula is:

um,n =
∑
|π|=m

π1
m!
π!π̄!n`(π), (54)

where the notation is explained below. A partition π of weight |π| = m is
non-ascending sequences of positive numbers summing to m. Let `(π) be the
length of π. Let π̄ be the partition of weight `(π) derived from π as follows:
for each positive integer j appearing exactly i times in π, there is an entry i
in π̄. For example, if π = (3, 3, 1, 1, 1, 1) then π̄ = (4, 2). For any partition π
let π! be the product of the factorials of its entries. For any two non-negative
integers n and `, let n` be the falling factorial `!

(n
`

)
= n(n−1) . . . (n− `+1).

To prove (54) argue as follows. Let S = {1, . . . ,m} and S = {1, . . . , n}.
Consider f ∈ RS . Let ` be the size of the image of f , which can range from 1
(if f is constant) to m (if f is injective). Let {c(1), . . . , c(`)} be the image set
f(S). Form a partition π of length ` from the preimage sizes |f−1(c(i))| (so,
sorting these values into non-ascending order to form π). Clearly |π| = m.

Factor f as a composition of functions f = c ◦ d ◦ e, where:

• e : S → S is a permutation,

• d is a fixed surjective function d : S → {1, . . . , `}, whose preimage sizes
are also given by π, and

• c : {1, . . . , `} → R is an injective function.

The number of functions c is n`. The number of d is defined to be 1. The
number of e is m!, but there are π! different e giving rise to the same com-
position d◦ e, because d loses the ordering of the elements in each preimage.
The resulting equivalences of pairs (c, e) can further be groups into sets of

38

size π̄!, because preimage sets of equal size can be permuted in parallel. Mul-
tiply by π1, the largest preimage size of f , to count the number of choices
of s.

Table 3 provides a worked of example of the computation of u4,2 using
(54).

π π̄ π1
4!
π!π̄! 2`(π) Product

(4) (1) 4 1 2 8
(3,1) (1,1) 3 4 2 24
(2,2) (2) 2 3 2 12
(2,1,1) (2,1) 2 6 0 0
(1,1,1,1) (4) 1 1 0 0
Total: 44

Table 3: Computing u4,2 using (54)

For small m, the previous results or some other independent method can
used to deduce that:

u1,n = n, (55)
u2,n = n2 + n = n2 + 2n, (56)
u3,n = n3 + 3n2 − n = n3 + 6n2 + 3n, (57)
u4,n = n4 + 12n3 + (6 + 12)n2 + 4n1. (58)

Clearly um,1 = m. The special case of n = 2 is given by:

um,2 = m2m−1 +

m
1
2
(m
m/2

)
if m even,

m
(m−1
(m−1)/2

)
if m odd,

(59)

The formula above can be obtained using binomial summation from the
simple formula um,2 =

∑m
j=0 max(j,m − j)

(m
j

)
. For example, when m is

odd, this summation implies that

um,2 = 2
m∑

j=(m−1)/2
j

(
m

j

)

= 2
m∑

j=(m−1)/2
m

(
m− 1
j

)

= m

(m− 1
(m− 1)/2

)
+
m−1∑
j=0

(
m− 1
j

)
(60)

39

which simplifies to the desired formula. The proof for the m even is similar.
Using (59), we get u4,2 = 4 · 24−1 + 41

2
(4
2
)

= 32 + 12 = 44.
If one were to implement an exact computation of um,n to sanity check

the bounds in this report, then one might want to sanity check one’s ex-
act implementation. The following congruences might help: um,n ≡ 0 mod
lcm(m,n) and um,n ≡ m mod (n − 1), while, of course, proving these con-
gruences by hand.

40

	1 Introduction
	1.1 Theoretical cryptographic application
	1.2 Other security issues related to remixed keys
	1.3 Previous work: Shoup's results

	2 Basic lower bounds
	3 Discrete upper bounds
	4 Continuous upper bounds
	4.1 Significantly expanded keys
	4.2 Moderately expanded keys
	4.3 Significantly compressed keys
	4.4 Easier and looser bounds for compressed keys
	4.5 Moderately compressed keys

	5 Numerical upper bounds
	5.1 Significant expansion
	5.2 Moderate expansion
	5.3 Significant compression
	5.4 A loose numeric bound
	5.5 Moderate compression
	5.6 A general numerical result
	5.7 An easier upper bound

	6 Conclusion
	A Motivation
	A.1 Salt and hash: specific and relative surmisability
	A.2 Why remix keys?
	A.3 Truth in advertising
	A.4 A question of importance
	A.5 Implement first, ask questions later

	B More variants on surmisability
	B.1 Multiple guesses and key searching
	B.2 Non-uniform source secrets
	B.3 Computationally strong remixers and the quasimode problem
	B.4 Distinguishing remixed keys from uniform keys
	B.5 Iterated remixing
	B.6 Entropy and terminology

	C Previous work
	D Exact surmisability of small remixed keys

