
Cluster Computing in Zero Knowledge
(extended version)

Alessandro Chiesa
ETH Zurich

Eran Tromer
Tel Aviv University

Madars Virza
MIT

April 26, 2015

Abstract

Large computations, when amenable to distributed parallel execution, are often executed on computer clusters,
for scalability and cost reasons. Such computations are used in many applications, including, to name but a few,
machine learning, webgraph mining, and statistical machine translation. Oftentimes, though, the input data is private
and only the result of the computation can be published. Zero-knowledge proofs would allow, in such settings, to
verify correctness of the output without leaking (additional) information about the input.

In this work, we investigate theoretical and practical aspects of zero-knowledge proofs for cluster computations.
We design, build, and evaluate zero-knowledge proof systems for which: (i) a proof attests to the correct execution of
a cluster computation; and (ii) generating the proof is itself a cluster computation that is similar in structure and com-
plexity to the original one. Concretely, we focus on MapReduce, an elegant and popular form of cluster computing.

Previous zero-knowledge proof systems can in principle prove a MapReduce computation’s correctness, via a
monolithic NP statement that reasons about all mappers, all reducers, and shuffling. However, it is not clear how to
generate the proof for such monolithic statements via parallel execution by a distributed system. Our work demon-
strates, by theory and implementation, that proof generation can be similar in structure and complexity to the original
cluster computation.

Our main technique is a bootstrapping theorem for succinct non-interactive arguments of knowledge (SNARKs)
that shows how, via recursive proof composition and Proof-Carrying Data, it is possible to transform any SNARK
into a distributed SNARK for MapReduce which proves, piecewise and in a distributed way, the correctness of every
step in the original MapReduce computation as well as their global consistency.
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1 Introduction
We study theoretical and concrete aspects of zero-knowledge proofs for cluster computations, seeking proofs for which:
(i) the output of the cluster computation carries a zero-knowledge proof of its correctness; and (ii) generating a proof
is itself a cluster computation that is similar in structure and complexity to the original one.

1.1 Motivation
Consider the following motivating example. A server owns a private database x, and a client wishes to learn y := F (x)
for a public function F , selected either by himself or someone else. A (hiding) commitment cm to x is known publicly.
For example, x may be a database containing genetic data, and F may be a machine-learning algorithm that uses the
genetic data to compute a classifier y. On the one hand, the client seeks integrity of computation: he wants to ensure
that the server reports the correct output y (because the classifier y may be used for critical medical decisions). On the
other hand, the server seeks confidentiality of his own input: he is willing to disclose y to the client, but no additional
information about x beyond y (because the genetic data x may contain sensitive personal information).
Zero-knowledge proofs. Achieving the combination of the aforementioned security requirements seems paradoxical;
after all, the client does not have the input x, and the server is not willing to share it. Nevertheless, cryptography offers
a powerful tool that is able to do just that: zero-knowledge proofs [GMR89]. More precisely, the server, acting as the
prover, attempts to convince the client, acting as the verifier, that the following NP statement is true: “there exists x̃
such that y = F (x̃) and x̃ is a decommitment of cm”. Indeed: (a) the proof system’s soundness property addresses the
client’s integrity concern, because it guarantees that, if the NP statement is false, the prover cannot convince the verifier
(with high probability);1 and (b) the proof system’s zero-knowledge property addresses the server’s confidentiality
concern, because it guarantees that, if the NP statement is true, the prover can convince the verifier without leaking
any information about x (beyond was is leaked by the output y).
Cluster computations. When F is amenable to parallel execution by a distributed system, it is often desirable, for
scalability and cost reasons, to compute y := F (x) on a computer cluster. A computer cluster consists of nodes
(e.g., commodity machines) connected via a network, and each node performs local computations as coordinated
via messages with other nodes. Thus, to compute F (x), a cluster may break x down into chunks and use these
to assign sub-tasks to different nodes; the results of these sub-tasks may require further computation, so that nodes
further coordinate, deduce more sub-tasks, and so on, until the final result y can be collected. Parallel execution
by a distributed system is possible in many settings, including the aforementioned one of running machine-learning
algorithms on private genetic data. Indeed, “cloud” service providers do offer users distributed programming interfaces
(e.g., Amazon’s “EMR” and Rackspace’s “Big Data”, both of which use the Hadoop framework).
The problem: how to do cluster computing in zero knowledge? In principle, any zero-knowledge proof system
for NP can be used to express an NP statement that captures F ’s correct execution.

However, while F may have been efficient to execute on a computer cluster, the process of generating a proof
attesting to its correctness may not be. Suppose, for example, that the NP statement to be proved must be expressed
as an instance of circuit satisfiability. Then, one would have to construct a single circuit that expresses the correctness
of the computation of every node in the cluster, as well as the correctness of communication among them. Proving the
satisfiability of the resulting monolithic circuit via off-the-shelf zero-knowledge proof systems is a computation that
looks nothing like the original one and, moreover, may not be suitable for efficient execution on a cluster.

Ideally, the proving process should be a distributed computation that is similar to the original one, in that the
complexity of producing the proof is not much larger than that of the original computation and, likewise, has a cluster-
friendly communication structure (compare Figure 1 and Figure 2).

We thus ask the following question:

To what extent can one efficiently perform cluster computing in zero knowledge?

1Sometimes a property stronger than soundness is required: proof of knowledge [GMR89, BG93], which guarantees that, whenever the client is
convinced, not only can he deduce that a witness exists, but also that the prover knows one such witness.
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Figure 1: In the classical setting of zero-knowledge proofs, (i) the
computation being proved is executed on a single machine, and
(ii) the proving process is itself a computation that is executed on
a single machine.
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Figure 2: We study zero-knowledge proofs for cluster computations. In
this setting, (i) the computation being proved is a cluster computation, and
(ii) the proving process is itself a cluster computation (that is similar in
structure and complexity to the original one).

1.2 Our focus: MapReduce
Cluster computing is a hypernym that encompasses numerous forms of distributed computing, as determined by the
cluster’s architecture (i.e., its programming model and its execution framework). Indeed, a cluster’s architecture often
depends on the class of envisioned applications (e.g., indexing the World Wide Web, performing astrophysicalN -body
simulations, executing machine-learning algorithms on genetic data, and so on).

In this work, we focus on a concrete, yet elegant and powerful, distributed architecture: MapReduce [DG04].
We review MapReduce later (in Section 2), and now only say that MapReduce can express many useful computa-
tions, including ones used for machine learning [CKLY+06, WHK08, PHBB09], graph mining and processing [LS10,
KCF12], statistical machine translation [BPXOD07, DCML08, LD10, PWB12], document similarity [Lin09], and
bioinformatics [LSLPS09, Sch09]. For concreteness, we specialize to MapReduce the question raised in Section 1.1:

Can one obtain zero-knowledge proofs attesting to the correctness of MapReduce computations, in which
the proving process is itself distributed and can be efficiently expressed via MapReduce computations?

1.3 Our contributions
In this paper we present two main results, both contributing to the feasibility of cluster computing in zero knowledge.

1. MapReduce in zero knowledge. Under knowledge-of-exponent assumptions [Dam92, HT98, BP04], we construct
a zero-knowledge proof system in which: (i) a proof attests to the correct execution of a MapReduce computa-
tion; and (ii) generating a proof consists of MapReduce computations with similar complexity as the original one.
Moreover, the proof system is succinct and non-interactive, i.e., is a zk-SNARK [GW11, BCCT12, BCIOP13].

2. A working prototype. We design, build, and evaluate a working prototype for the aforementioned construction.
The code implementing the prototype is integrated with libsnark [SCI], a C++ library for zk-SNARKs.

At the heart of our construction (and implementation) lies a new bootstrapping theorem for zk-SNARKs. Informally:

Assuming collision-resistant hashing, there is an efficient transformation that takes as input a zk-SNARK
(even one with expensive preprocessing) and outputs a distributed zk-SNARK for MapReduce, i.e., a
zk-SNARK for MapReduce where the prover can be efficiently implemented via MapReduce.

The transformation consists of the following two steps.

• Step I: use a given (non-distributed) zk-SNARK to obtain a proof-carrying data (PCD) system [CT10, CT12], a
cryptographic primitive that enforces local invariants, the compliance predicates, in distributed computations.

• Step II: use the PCD system on a specially-crafted predicate to obtain a distributed zk-SNARK for MapReduce.
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The theory for the first step is due to [BCCT13]; a special case was implemented in [BCTV14a], and our imple-
mentation generalizes it to support the MapReduce application. The second step is novel and is an example of using
“compliance engineering” to conduct and prove correctness of non-trivial distributed computations. From an imple-
mentation standpoint, both steps require significant and careful engineering, as we explain later.

1.4 Prior work

zk-SNARKs. We study zero-knowledge proofs [GMR89] that are non-interactive [BFM88, NY90, BDSMP91].
Specifically, we study non-interactive zero-knowledge proofs that are succinct, i.e., short and easy to verify [Mic00];
these are known as zk-SNARKs [GW11, BCCT12, BCIOP13].

There are many zk-SNARK constructions in the literature, with different properties in efficiency and supported lan-
guages. In preprocessing zk-SNARKs, the complexity of the setup of public parameters grows with the size of the com-
putation being proved [Gro10, Lip12, BCIOP13, GGPR13, PGHR13, BCGTV13, Lip13, FLZ13, BCTV14b, Lip14,
KPPS+14, ZPK14, DFGK14, WSRBW15, BBFR15, CFHK+15]; in fully-succinct zk-SNARKs, that complexity is in-
dependent of computation size [Mic00, Val08, Mie08, DL08, BCCT12, DFH12, GLR11, BC12, BCCT13, BCTV14a,
BCCG+14]. Working prototypes have been achieved both for preprocessing zk-SNARKs [PGHR13, BCGTV13,
BCTV14b, KPPS+14, ZPK14, CFHK+15] and for fully-succinct ones [BCTV14a]. Several works have also explored
more in depth various applications of zk-SNARKs [CKLM13, BFRS+13, DFKP13, BCGG+14, FL14].

Prior work has not sought (or achieved) distributed zk-SNARKs for MapReduce. Of course, non-distributed
zk-SNARKs for MapReduce (i.e., where the prover is not amenable to parallel distributed execution) can be achieved,
trivially, via any zk-SNARK for NP: (a) express (the correctness of) the MapReduce computation via a suitable NP
statement; then (b) prove satisfiability of that NP statement by using the zk-SNARK.

Finally, known zk-SNARK constructions (including the one in this work) rely on fairly strong assumptions. This
may be partially justified in light of the work of Gentry and Wichs [GW11], which shows that no non-interactive
succinct argument can be proven sound via a black-box reduction to a falsifiable assumption [Nao03].
Proof-carrying data. Proof-Carrying Data (PCD) [CT10, CT12] is a framework for enforcing local invariants in
distributed computations; it is captured via a cryptographic primitive called PCD system. Proof-Carrying Data covers,
as special examples, incrementally-verifiable computation [Val08] and targeted malleability [BSW12]. Its role in
bootstrapping zk-SNARKs was shown in [BCCT13], and an implementation of it was achieved in [BCTV14a].
Outsourcing MapReduce computations. Braun et al. [BFRS+13] construct (and implement) an interactive protocol
for verifiably outsourcing MapReduce computations to untrusted servers. When interacting with the prover, the client
has to perform himself the MapReduce shuffling phase; hence, their protocol is neither succinct nor zero knowledge.

Schuster et al. [SCFG+15] construct (and implement) a protocol for verifiably outsourcing MapReduce computa-
tions to a cluster in which each node is equipped with a trusted processor. Their protocol additionally provides certain
confidentiality guarantees (the client may hide from the cluster all information about the outsourced computation
except for some “structural” details such as key-repetition patterns in the shuffle phase).

Both of the above works do not obtain a zk-SNARK and, a fortiori, neither a distributed zk-SNARK.
Other works on outsourcing computations. Numerous works [GKR08, KR09, AIK10, CKV10, GGP10, BGV11,
CRR12, CTY11, SBW11, FG12, SMBW12, SVPB+12, SBVB+13, CMT12, TRMP12, VSBW13, Tha13, BFRS+13,
BTVW14, PR14] seek to verifiably outsource various classes of computation to untrusted powerful servers, e.g., in
order to leverage cheaper cycles or storage. Some of these works have achieved working prototypes of their protocols.

Verifiable outsourcing of computations is not our goal. Rather, we study theoretical and practical aspects of zero-
knowledge proofs for cluster computations. Zero-knowledge proofs are useful even when applied to relatively-small
computations, and even with high overheads (e.g., see [MGGR13] for a recent example).2

1.5 Summary of challenges and techniques
Our construction (and implementation) rely on a new bootstrapping theorem for zk-SNARKs: any zk-SNARK can be
transformed into a distributed zk-SNARK for MapReduce. The transformation is done in two steps, as follows.

2In this paper’s setting, the client does not have the server’s input, and so cannot conduct the computation on his own. It is thus not meaningful to
compare “efficiency of outsourced computation at the server” and “efficiency of native execution at the client”, since the latter was never an option.
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1.5.1 From the zk-SNARK to a multi-predicate PCD system

The transformation’s first step uses the given zk-SNARK to construct a PCD system [CT10, CT12], a cryptographic
primitive that enforces a given local invariant, known as the compliance predicate, in distributed computations. Such a
transformation was described by [BCCT13], following [Val08] and [CT10]. It was implemented by [BCTV14a], and
used for obtaining scalable zero-knowledge proofs for random-access machine executions.

These prior works are constrained to enforcing a single compliance predicate at all nodes in the distributed compu-
tation. However, in MapReduce computations (as in many others), different nodes are subject to different requirements.
In principle one can create a single compliance predicate expressing the disjunction of all these requirements; but the
resulting predicate is large (its cost is the sum of each requirement’s cost) and entails a large cost in proving time.

We thus extend [BCTV14a] to define, construct, and implement a multi-predicate PCD system, where different
nodes may be subject to different compliance predicates, and yet the cost of producing the proof, at each node, depends
merely on the compliance predicate to which this particular node is subject. The presence of multiple compliance
predicates complicates the construction of the arithmetic circuits for performing recursive proof composition, as these
must now verify a zk-SNARK proof relative to one out of a (potentially large) number of compliance predicates, each
with its own verification key, at a cost that is essentially independent of the predicates that are not locally relevant.

Additional restrictions in the prior works, which we also relax, are that node arity (the number of input messages
to a node) was fixed, and that a node’s input lengths had to equal its output length. While not fundamental, these
limitations cause sizable overheads in heterogenous distributed computations (of which MapReduce is an example).

1.5.2 From a multi-predicate PCD system to a distributed zk-SNARK for MapReduce

The transformation’s second step uses the aforementioned multi-predicate PCD system to construct a distributed
zk-SNARK for MapReduce.

For each individual mapper node or reducer node, correctness of the local computation is independent of other
computations; so it is fairly straightforward to distill local “map” and “reduce” compliance predicates. However, the
shuffle phase of the MapReduce computation is a global computation that involves all of the mappers’ outputs. We
wish to ensure globally correct shuffling, while only enforcing (via the PCD system) the preservation of a compliance
predicate, locally at each node. (Of course, one could always consider a big shuffler node that takes all the shuffled
messages as inputs, but doing so would prevent the proof generation from being distributed.)

We thus show how to decompose correct shuffling into a collection of simple local predicates, while preserving
zero knowledge (which introduces subtleties). Roughly, we show that there is a parallel distributed algorithm to
simultaneously compute, for each unique key k, a proof attesting that the list of values associated to k in the output of
the shuffling process contains all the those values, and only those, that were paired with k by some mapper.

Subsequently, we use the map and reduce compliance predicates, along with those used to prove correct shuffling,
and obtain a collection of compliance predicates with the property that any distributed computation that is complaint
with these corresponds to a correct MapReduce computation.

Note how the extensions to basic PCD, mentioned in Section 1.5.1, come into play. First, we specify multiple
compliance predicate, for the different stages of the computation, and only pay for the applicable one at every point.
Second, because MapReduce computation has a communication pattern that is input-dependent and not very homoge-
nous, we require PCD to support (directly and thus more efficiently) flexible communication patterns, with variable
node arity and varying input and output message lengths.

1.6 Roadmap
The rest of this paper is organized as follows. After introducing basic definitions in Section 2, we define distributed
zk-SNARKs for MapReduce in Section 3, and multi-predicate PCD systems in Section 4. We describe Step II of our
transformation (compliance engineering using PCD) in Section 5, and Step I in (constructing PCD) in Section 6. In
Section 7 we describe the implementation, and in Section 8 we provide an evaluation of it. In Section 9 we conclude
with open problems. The appendices contain additional details, and are referenced from within the paper.
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2 Preliminaries
We give notations and definitions needed for this paper’s technical discussions.

2.1 Basic notations
We denote by λ the security parameter. We write f = Oλ(g) to mean that there is c > 0 such that f = O(λcg).
We write |a| to denote the number of bits needed to store a (whether a be a vector, a circuit, and so on); if a is a
vector, len(a) denotes the number of components in a. We write cost(A) to denote the cost of computing A: if A is a
machine, this is its running time; if A is a circuit, this is its number of gates.

To simplify notation, we do not make explicit adversaries’ auxiliary inputs. We also do not make explicit the
public parameters of some cryptographic primitives (e.g., commitment schemes, collision-resistant functions); such
primitives require a parameter setup that involves sampling from a certain distribution and then publishing the result.

2.2 Commitments
A commitment scheme is a pair COMM = (COMM.Gen,COMM.Ver) with the following syntax:
• COMM.Gen(z) → (cm, cr). On input data z, the commitment generator COMM.Gen probabilistically samples a

commitment cm of z and corresponding commitment randomness cr.
• COMM.Ver(z, cm, cr) → b. On input data z, commitment cm, and commitment randomness cr, the commitment

verifier COMM.Ver outputs b = 1 if cm is a valid commitment of z with respect to the randomness cr.
The scheme COMM satisfies the natural completeness, (computational) binding, and (statistical) hiding properties.
We assume that cm does not even leak |z|, and thus |cm| is a fixed polynomial in the security parameter.

2.3 Merkle trees
We use Merkle trees [Mer89] (based on some collision-resistant function) as non-hiding succinct commitments to lists
of values, in the familiar way. A Merkle-tree scheme is a tuple MERKLE = (MERKLE.GetRoot,MERKLE.GetPath,
MERKLE.CheckPath) with the following syntax:
• MERKLE.GetRoot(~z)→ rt. Given input list ~z = (zi)

n
i=1, the root generator MERKLE.GetRoot deterministically

computes a root rt of the Merkle tree with the list ~z at its leaves.
• MERKLE.GetPath(~z, i)→ ap. Given input list ~z and index i, the authentication path generator MERKLE.GetPath

deterministically computes the authentication path ap for zi.
• MERKLE.CheckPath(rt, i, zi, ap) → b. Given root rt, input data zi, index i, and authentication path ap, the path

checker MERKLE.CheckPath outputs b = 1 if ap is a valid path for zi as the i-th leaf in a Merkle tree with root rt.
The scheme MERKLE satisfies the natural completeness and (computational) binding properties.

2.4 MapReduce
We recall MapReduce, introduce useful notation for MapReduce, and then mention some extensions of MapReduce
to which our results continue to apply.

2.4.1 Overview of MapReduce

MapReduce is a programming model for describing data-parallel computations to be run on computer clusters [DG04].
A MapReduce job consists of two functions, Map and Reduce, and an input, x, which is a list of key-value pairs;
executing the job results into an output, y, which also is a list of key-value pairs. Computing y requires three phases:
(i) Map phase: the function Map is separately invoked on each key-value pair in the list x; each such invocation
produces an intermediate sub-list of key-value pairs. (ii) Shuffle phase: all the intermediate sub-lists of key-value
pairs are jointly shuffled so that pairs that share the same key are gathered together into groups. (iii) Reduce phase:
the function Reduce is separately invoked on each group of key-value pairs; each such invocation produces an output
key-value pair; all these pairs are concatenated (in some order) to form y.
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Naturally, efficiently computing the three phases on a computer cluster requires a suitable framework to assign
computers to Map tasks, implement the distributed shuffle of intermediate key-value pairs, assign computers to Reduce
tasks, and collect the various outputs; this is typically orchestrated by a master node. For now, we focus on the
definition of the programming model and not the details of a framework that implements it.

2.4.2 Notation for MapReduce

We introduce notation that enables us to discuss MapReduce in more detail.
Keys, values, and records. First, we discuss the data associated to a MapReduce job. The main “unit of data” is a
record, which is a pair (k, v) where k is its key and v is its value. We distinguish between different kinds of records,
depending on which phase they belong to: input records are of phase 1 and lie in K1×V1; intermediate records are of
phase 2 and lie in K2 × V2; and output records are of phase 3 lie in K3 × V3.
MapReduce pairs. Next, we discuss the functions associated to a MapReduce job. A MapReduce pair is a pair
(Map,Reduce) where Map : K1×V1 → (K2×V2)∗ is its Map function and Reduce : K2× (V2)∗ → (K3×V3) is its
Reduce function; both must run in polynomial time. In other words, on input a phase-1 record (k1, v1) ∈ (K1 × V1),
Map outputs a list of phase-2 records

(
(k2
i , v

2
i )
)
i
∈ (K2 ×V2)∗. Instead, on input a phase-2 key k2 ∈ K2 and a list of

phase-2 values (v2
i )i ∈ (V2)∗, Reduce outputs a phase-3 record (k3, v3) ∈ (K3 × V3).

MapReduce executions. Finally, we discuss how functions operate on data so to execute a MapReduce job. Given
a MapReduce pair (Map,Reduce) and an input x ∈ (K1 × V1)∗, the output of the execution of (Map,Reduce) on x,
denoted [Map,Reduce](x), is the result y ∈ (K3 × V3)∗ of the following (abstract) computation (see Figure 3).
1. Map step. For each i ∈ {1, . . . , len(x)}, letting (k1

i , v
1
i ) be the i-th phase-1 record in x, compute the list of phase-2

records
(
(k2
i,j , v

2
i,j)
)
j

:= Map(k1
i , v

1
i ). This step produces a list of intermediate records z =

(
(k2
i,j , v

2
i,j)
)
i,j

.
2. Shuffle step. Shuffle the list z so that records with the same key are grouped together. This step induces, for each

unique key k2 appearing in z, a corresponding list ~v2 of values paired with k2.
3. Reduce step. For each unique phase-2 key k2 in z and its corresponding list of phase-2 values ~v2, compute the

phase-3 record (k3, v3) = Reduce(k2, ~v2). The output y equals the concatenation of all of these phase-3 records.
We note that MapReduce jobs enjoy certain “symmetries” (which simplify the task of execution on clusters): the order
of records in x or in y is irrelevant.3 In terms of complexity measures, we say that the execution of (Map,Reduce) on
x is (m, r, p)-bounded if each individual execution of Map takes at most m time, each individual execution of Reduce
takes at most r time, and len(x) ·m+ len(y) · r ≤ p (where y := [Map,Reduce](x)).4

The MapReduce language. We express, via a suitable language, the notion of “correct” MapReduce executions:

Definition 2.1. For a MapReduce pair (Map,Reduce), the language L(Map,Reduce) consists of the tuples (x, y) for
which y = [Map,Reduce](x).5

In this work, we consider the setting where an input x is not known to the user, but only its commitment cm is (as x is
private). Thus, we work with a related relation, RCOMM

(Map,Reduce), derived from L(Map,Reduce) and a commitment scheme
COMM = (COMM.Gen,COMM.Ver) (using the syntax introduced in Section 2.2). In contrast to L(Map,Reduce),
instances in RCOMM

(Map,Reduce) contain cm instead of x, and witnesses are extended to contain decommitment information
(i.e., the input and commitment randomness). More precisely, we define the relation RCOMM

(Map,Reduce) as follows.

Definition 2.2. For a MapReduce pair (Map,Reduce) and commitment scheme COMM, the relation RCOMM
(Map,Reduce)

consists of instance-witness pairs
(
(cm, y), (x, cr)

)
such that COMM.Ver(x, cm, cr) = 1 and (x, y) ∈ L(Map,Reduce).6

3One only considers Map and Reduce functions that do not introduce asymmetries (by, e.g., leveraging the order of elements in a list).
4For simplicity, we ignore the cost of shuffling because it is typically on the order of the input and output sizes [GM12].
5Due to symmetry, (x, y) ∈ L(Map,Reduce) if and only if

(
π(x), π′(y)

)
∈ L(Map,Reduce) for any two permutations π and π′ (of records).

6One may wonder why we define (and work with) the relation RCOMM
(Map,Reduce)

instead of using the corresponding language L COMM
(Map,Reduce)

. This is
because the commitment scheme COMM is only computationally binding (as cm is much shorter than x), and thus the language is not meaningful:
it contains instances (cm, y) for which y is the output of the MapReduce computation on some false opening of the commitment cm (which cannot
be found efficiently, but still exists). We thus always speak of proving knowledge of a witness fulfilling the above relation (for a given instance).
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Figure 3: A single MapReduce execution.
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Figure 4: An execution of a MapReduce sequence of depth 6. Here, I1 = {0},
I2 = {1}, I3 = {0}, I4 = {2, 3}, I5 = {2, 3}, I6 = {4, 5}.

MapReduce sequences. A single MapReduce execution may be insufficient to run an algorithm. In such cases,
instead of a single MapReduce pair, we consider a MapReduce sequence S: a list

(
(Ii,Mapi,Reducei)

)d
i=1

such that,
for each i, Ii ⊆ {0, . . . , i − 1} and (Mapi,Reducei) is a MapReduce pair. We call d the depth of S. The output
of the execution of S on an input x, denoted S(x), is the result y obtained as follows: (1) set y(0) := x; (2) for
i = 1, . . . , d, compute y(i) := [Mapi,Reducei](x

(i)) where x(i) is the concatenation of all y(j) with j ∈ Ii; (3) output
y := y

(d);7 see Figure 4. In terms of complexity measures, similarly to above, we say that the execution of S on x

is (m, r, p)-bounded if each individual execution of any Mapi takes at most m time, each individual execution of any
Reducei takes at most r time, and

∑d
i=1(len(x(i−1)) ·m+ len(x(i)) · r) ≤ p.

Family of MapReduce sequences. A family of MapReduce sequences is a family (SN )N∈N where each SN is a
MapReduce sequence

(
(IN,i,MapN,i,ReduceN,i)

)dN
i=1

.

2.4.3 Some extensions of MapReduce

Sometimes one considers a more general definition of MapReduce in which the Reduce function outputs a list of
phase-3 records; instead, the above discussions focus on the case where the Reduce function outputs a single record.

In addition, the cryptographic setting that we consider motivates other extensions that are not typically considered.
Specifically, it is natural to let a Map or Reduce function take two additional inputs: (i) MapReduce parameters,
which allow a user to specify different settings even after a MapReduce pair has been fixed (e.g., zk-SNARK keys for
a particular pair have already been generated); and (ii) an auxiliary input, which provides a further non-deterministic
input that, unlike the “primary” input x, is not fixed by the commitment cm.

This paper’s results extend to cover the extensions above (and, in fact, our working prototype supports them).

7Of course, for such a computation to be well-defined, the domains and ranges of individual MapReduce executions must match up.
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3 Definition of distributed zk-SNARKs for MapReduce
We (informally) define non-distributed zk-SNARKs for MapReduce, and then distributed zk-SNARKs for MapReduce.
Throughout, we assume familiarity with the notations and definitions for MapReduce introduced in Section 2.4.

3.1 Non-distributed zk-SNARKs for MapReduce
A (non-distributed) zk-SNARK for MapReduce is a zk-SNARK for proving knowledge of witnesses in RCOMM

(Map,Reduce),
for a user-specified MapReduce pair (Map,Reduce) and a fixed choice of commitment scheme COMM. That is, it is a
cryptographic primitive that provides short and easy-to-verify non-interactive zero-knowledge proofs of knowledge for
the relation RCOMM

(Map,Reduce). Concretely, the primitive consists of a tuple (COMM,MR.KeyGen,MR.Prove,MR.Verify)
with the following syntax.

• MR.KeyGen(1λ,Map,Reduce)→ (pk, vk). On input a security parameter λ (presented in unary) and a MapReduce
pair (Map,Reduce), the key generator MR.KeyGen probabilistically samples a proving key pk and a verification key
vk. We assume, without loss of generality, that pk contains (a description of) the MapReduce pair (Map,Reduce).

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify knowl-
edge of witnesses in the relation RCOMM

(Map,Reduce), as follows.

• MR.Prove(pk, cm, y, x, cr) → πMR. On input a proving key pk, instance (cm, y), and witness (x, cr), the prover
MR.Prove outputs a proof πMR for the statement “there is (x, cr) such that

(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce)”.

• MR.Verify(vk, cm, y, πMR) → b. On input a verification key vk, commitment cm, output y, and proof πMR, the
verifier MR.Verify outputs b = 1 if he is convinced that there is (x, cr) such that

(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce).

As in other zk-SNARKs, the above tuple satisfies (variants of) the properties of completeness, succinctness, (com-
putational) proof of knowledge, and (statistical) zero knowledge; we describe these in Appendix A. Here we recall
succinctness: an honestly-generated proof πMR has Oλ(1) bits, and MR.Verify(vk, cm, y, πMR) runs in time Oλ(|y|).
Costs of key generation. The above implies that (pk, vk) is generated in timeOλ(1)·poly(cost(Map)+cost(Reduce)),
|pk| = Oλ(1) · poly(cost(Map) + cost(Reduce)), and |vk| = Oλ(1) (since MR.Verify runs in time Oλ(|y|) for any
y). These key-generation costs are between those of a preprocessing zk-SNARK (where key generation costs as much
as the entire computation being proved) and a fully-succinct zk-SNARK (where key generation costs only a fixed
polynomial in λ), because they do not depend on the number of mappers and reducers in the MapReduce computation.

One could strengthen the definition above to require “full succinctness”, i.e., to further require that key generation
depends polynomially on the security parameter only (and, in particular, that the MapReduce pair is not hard-coded
into the keys). The results presented in this paper extend to achieve this stronger definition.

3.2 Distributed zk-SNARKs for MapReduce
A distributed zk-SNARK for MapReduce is a zk-SNARK for MapReduce where the prover consists of few MapReduce
computations whose overall complexity is similar to the MapReduce computation being proved. More precisely, for
every MapReduce pair (Map,Reduce) and (pk, vk) output by MR.KeyGen(1λ,Map,Reduce), MR.Prove(pk, ·, ·, ·, ·)
is a family of MapReduce sequences that is (Map,Reduce)-complexity-preserving, a property defined below.

Definition 3.1. Given a MapReduce pair (Map,Reduce), a family of MapReduce sequences (SN )N∈N is (Map,Reduce)-
complexity-preserving if, for all N ∈ N and

(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce) with len(x) + len(y) ≤ N :
• the depth of SN is logarithmic in N , i.e., dN = O(logN); and
• SN has a linear overhead compared to (Map,Reduce), i.e., for all m, r, p ∈ N, if x is (m, r, p)-bounded then the

execution of SN on (cm, y, x, cr) is (Oλ(m), Oλ(r), Oλ(p))-bounded.
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4 Definition of multi-predicate PCD
Proof-carrying data (PCD) [CT10, CT12] is a cryptographic primitive that encapsulates the security guarantees achiev-
able via recursive composition of proofs. Since recursive proof composition naturally involves multiple (physical or
virtual) parties, PCD is phrased in the language of a distributed computation among computing nodes, who perform
local computations, based on local data and input messages, and then produce output messages. Given a compli-
ance predicate Π to express local checks, the goal of PCD is to ensure that any given message msg in the distributed
computation is Π-compliant, i.e., is consistent with a history in which each node’s local computation satisfies Π. This
formulation covers, as special cases, incrementally-verifiable computation [Val08] and targeted malleability [BSW12].
Extending PCD to multiple predicates. The definition of PCD naturally generalizes to compliance with respect to
a vector ~Π of compliance predicates (rather than a single predicate). Namely, a msg is ~Π-compliant if it is consistent
with a history in which each node’s local computation satisfies some predicate Π in the vector ~Π. Moreover, a message
msg comprises two parts: the type, which records what kind of node output msg, and the payload, which is the rest.

The above multi-predicate PCD can be “simulated” via a single-predicate PCD, by folding all the predicates in the
vector ~Π into a single predicate Π? that (a) reasons about which predicate in ~Π to use at a give node, and (b) enforces
a message’s type and payload separation. However, this simulation incurs a significant overhead: the cost of Π? is
the sum of the costs of all the predicates in ~Π, and this cost is incurred at every node regardless of which predicate is
actually used to check compliance at a node. In contrast, in our construction of multi-predicate PCD (see Section 6),
we incur, at each node, only the cost of the predicate that is actually used to check compliance.
Implications for MapReduce. As we discuss in Section 5, reducing the correctness of MapReduce computations
to compliance of distributed computations involves multiple predicates that perform checks with different semantics:
a predicate for mapper nodes, a predicate for reducer nodes, and various other predicates for other nodes that reason
about shuffling. These predicates have different costs and, thus, it is crucial to leverage the flexibility offered by
multi-predicate PCD (so to then obtain a distributed zk-SNARK for MapReduce).

Next, we define distributed-computation transcripts (our formal notion of distributed computations), compliance of a
transcript T with respect to a given vector ~Π of compliance predicates, multi-predicate PCD, and transcript generators.

Transcripts. A (distributed-computation) transcript is a tuple T = (G,TYPE,LOC,PAYLOAD), where:
• G = (V,E) is a directed acyclic graph with node set V and edge set E ⊆ V × V ;
• TYPE: V → N are node labels;
• LOC: V → {0, 1}∗ are (another kind of) node labels; and
• PAYLOAD: E → {0, 1}∗ are edge labels.
The message of an edge (v, w) ∈ E is the pair MSG(v, w) := (TYPE(v),PAYLOAD(v, w)). The outputs of the
transcript T, denoted OUTS(T), is the set of messages MSG(ṽ, w̃) where (ṽ, w̃) ∈ E and w̃ is a sink. Typically, we
denote a message by msg, and its type and payload by msg.type and msg.payload.
Compliant transcripts and messages. A compliance predicate Π is a function with a type, denoted Π.type. Given
a vector ~Π of compliance predicates, we say that:
• a transcript T = (G,LOC,TYPE,PAYLOAD) is ~Π-compliant, denoted ~Π(T) = OK, if:

(i) for each v ∈ V , TYPE(v) = 0 if and only if v is a source; and
(ii) for each non-source v ∈ V and each w ∈ children(v), there is Π ∈ ~Π with TYPE(v) = Π.type such that

Π
(

MSG(v, w),LOC(v),
(
MSG(u, v)

)
u∈parents(v)

)
accepts.

• a message msg is ~Π-compliant if there is a transcript T such that ~Π(T) = OK and msg ∈ OUTS(T).

A transcript T thus represents a distributed computation, in the following sense. For each node v ∈ V , the function
LOC specifies the local data used at v; and, for each edge (u, v) ∈ E, the function MSG specifies the message sent
from node u to node v. A node v with parent nodes parents(v) and children nodes children(v) uses the local data
LOC(v) and the input messages

(
MSG(u, v)

)
u∈parents(v)

to compute the output message MSG(v, w) for each child
w ∈ children(v). As for the function TYPE, it assigns to each node v ∈ V a quantity that determines the type of every
message output by v; this quantity also determines which compliance predicates can be used to verify compliance of
those messages (specifically, the type of the predicate and message must equal).
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Multi-predicate PCD systems. A multi-predicate PCD system is a triple of polynomial-time algorithms (G,P,V),
called key generator, prover, and verifier. The key generator G is given as input a vector of predicates ~Π, and outputs
a proving key pk and verification key vk; these allow anyone to prove/verify that a message msg is ~Π-compliant. This
is achieved by attaching a short and easy-to-verify proof to each message: given pk, input messages ~msgin with proofs
~πin, local data loc, and an output message msg (allegedly, ~Π-compliant), the prover P computes a new proof π to attach
to msg; the verifier V(vk,msg, π) checks that msg is ~Π-compliant. The triple (G,P,V) must satisfy completeness,
succinctness, (computational) proof of knowledge, and (statistical) zero knowledge; we describe these in Appendix B.
Here we recall succinctness: an honestly-generated proof π hasOλ(1) bits, and V(vk,msg, π) runs in timeOλ(|msg|).
Transcript generators. We sometimes think of a transcript as dynamically generated rather than as a static object, in
the following sense. A transcript generator is an interactive algorithm TGen that works as follows: given the empty
string, TGen answers with a first transcript extension te1; then, given a second empty string, TGen answers with a
second transcript extension te2; and so on, until TGen halts and outputs a set of messages fin. A transcript extension
is an instruction specifying how to extend the growing transcript T; TGen’s output, obtained after all the extensions,
equals OUTS(T). More precisely, the transcript generated by TGen is defined via the following iterative procedure.

• Initialize T = (G,TYPE,LOC,PAYLOAD) to be an empty transcript and Inactives to be an empty map.
• Start running TGen and, for i = 1, 2, . . . , do the following until TGen halts and outputs fin.

1. Keep running TGen until it outputs the next transcript extension tei.
2. If tei looks like (v, w,msg), do as follows.

(a) Check that (v, w) 6∈ E and @u ∈ V s.t.(u, v) ∈ E.
(b) If any of v or w is not in V , add it to V ; then add (v, w) to E.
(c) Check that msg.type = 0; then set TYPE(v) := msg.type and MSG(v, w) := msg.

3. If tei looks like
(
(v, w,msg), loc, (~u, ~msgin,

~b)
)
, do as follows.

(a) Check that: (i) v ∈ V ; (ii) (v, w) 6∈ E; (iii) Inactives(v,msg) = 0; (iv) ~u = parents(v); (v) ~u, ~msgin,
~b are

vectors of a same length d; (vi) for j = 1, . . . , d, ~u[j] ∈ V , (~u[j], v) ∈ E, and MSG(~u[j], v) = ~msgin[j].
(b) If ∃w′ ∈ V s.t. (v, w′) ∈ E, check that TYPE(v) = msg.type and LOC(v) = loc; otherwise, set TYPE(v) :=

msg.type and LOC(v) := loc.
(c) If w 6∈ V then add w to V ; then add (v, w) to E.
(d) Set MSG(v, w) := msg.
(e) For j = 1, . . . , d, if ~b[j] = 1 then set Inactives(~u[j], ~msgin[j]) := 1.

• Check that fin = OUTS(T) and that no message in fin has a set bit in Inactives.
• If any check above fails, output an empty transcript; else output T.

The vector ~b in a transcript extension denotes which non-output messages are used for the last time as an input to a
node; ~b is exposed for efficiency reasons (as explained later down below). We use the language of transcript generators
to formalize the completeness property for PCD systems (in Appendix B), as well as to state a theorem (in Section 5.1).

To each transcript generator TGen, we associate a matching PCD meta-prover TPrv that, given a proving key pk,
generates proofs of compliance on the fly, ultimately producing proofs for the outputs of the distributed computation.

• Initialize ActiveProofs to be an empty map.
• Start running TGen and, for i = 1, 2, . . . , do the following until TGen halts and outputs fin.

1. Keep running TGen until it outputs the next transcript extension tei.
2. If tei looks like (v, w,msg), set ActiveProofs(v,msg) := ⊥.
3. If tei looks like

(
(v, w,msg), loc, (~u, ~msgin,

~b)
)
, do as follows.

(a) For j = 1, . . . , d, set ~πin[j] := ActiveProofs(~u[j], ~msgin[j]).
(b) Compute the PCD proof π := P(pk,msg, loc, ~msgin, ~πin), and set ActiveProofs(v,msg) := π.
(c) For j = 1, . . . , d, if ~b[j] = 1 then delete from ActiveProofs the entry for (~u[j], ~msgin[j]).

4. Output the proofs in ActiveProofs for the messages in fin.

Note that TPrv does not employ the naive strategy that materializes the entire transcript generated by TGen and then
recursively computes proofs over it; instead, using the “hints” provided in the vector of bits ~b, TPrv only stores
information about messages and proofs that will be used later or are outputs of the distributed computation. This
ensures that the complexity properties of TPrv are typically tightly related to those of TGen.
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5 Step II: from multi-predicate PCD to distributed zk-SNARKs for MapReduce
We discuss Step II of our bootstrapping theorem: constructing a distributed zk-SNARK for MapReduce from a multi-
predicate PCD system. This step itself consists of two main parts.
• Compliance engineering (Section 5.1): a reduction from the correctness of MapReduce computations to a question

about the compliance of distributed computations with respect to a certain vector ~ΠMR of predicates.
• Construction of the proof system (Section 5.2): suitably invoke the multi-predicate PCD system on the vector
~ΠMR in order to construct a distributed zk-SNARK for MapReduce.

The combination of compliance engineering and PCD systems, exemplified via the above two steps, is a powerful tool
for constructing zero-knowledge proofs for distributed computations: compliance engineering allows us to express the
desired properties as the compliance of distributed computations, while PCD systems allow us to prove, in a distributed
way (and in zero knowledge), the compliance of such distributed computations.

5.1 Compliance engineering for MapReduce

Given any MapReduce pair (Map,Reduce), we show how to construct a vector ~ΠMR of compliance predicates for
which suitable ~ΠMR-compliant transcripts correspond to instance-witness pairs in the relation RCOMM

(Map,Reduce). Let us
first clarify what “suitable” means, via the following definition.

Definition 5.1. For an instance (cm, y), a transcript T is (cm, y)-compatible if OUTS(T) contains a message with
type 1 and payload (cm, len(y)) and, for each i ∈ {1, . . . , len(y)}, a message with type 2 and payload (cm, yi).8

Next, via the theorem below, we show how one can translate a question of the form

“Given an instance (cm, y), is there a witness (x, cr) such that
(
(cm, y), (x, cr)

)
is in RCOMM

(Map,Reduce)?”
to a question of the form

“Given an instance (cm, y), is there a ~ΠMR-compliant (cm, y)-compatible transcript T?”

Theorem 5.2. There exists a commitment scheme COMM such that, for every MapReduce pair (Map,Reduce), there
exist a vector ~ΠMR of compliance predicates and two algorithms TGen,TExt satisfying the following properties.
• EFFICIENCY.

– The vector ~ΠMR consists of 7 predicates, with the following sizes and (per-input) costs:

|~ΠMR[1]| = Oλ(|Map|) cost(~ΠMR[1]) = Oλ(cost(Map))

|~ΠMR[2]| = Oλ(|Reduce|) cost(~ΠMR[2]) = Oλ(cost(Reduce))

|~ΠMR[3]| = Oλ(1) cost(~ΠMR[3]) = Oλ(1)
...

...
|~ΠMR[7]| = Oλ(1) cost(~ΠMR[7]) = Oλ(1)

.

– The algorithm TGen is (Map,Reduce)-complexity-preserving.
– The algorithm TExt is linear time.

• COMPLETENESS. For any instance (cm, y), if there is (x, cr) such that
(
(cm, y), (x, cr)

)
is in RCOMM

(Map,Reduce), then

there is a ~ΠMR-compliant (cm, y)-compatible transcript T; also, T is the transcript generated by TGen(cm, y, x, cr).
• PROOF OF KNOWLEDGE. For any instance (cm, y), if there is a ~ΠMR-compliant (cm, y)-compatible transcript T,

then TExt(T) outputs (x, cr) such that
(
(cm, y), (x, cr)

)
is in RCOMM

(Map,Reduce).

We now sketch a proof of the theorem. Recall proof of knowledge: we must construct a vector ~ΠMR of predicates
with the property that, given (cm, y), if there is a distributed-computation transcript T that is both ~ΠMR-compliant
and (cm, y)-compatible, then we can find (x, cr) for which COMM.Ver(x, cm, cr) = 1 and y = [Map,Reduce](x).
Intuitively, we achieve proof of knowledge by engineering the predicates in ~ΠMR so that the transcript T is forced

8Any two distinct types suffice for this definition; we fixed the types 1 and 2 for concreteness.
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to encode within it a “history” of a correct MapReduce execution. Technically, the main challenge is that we are
restricted to local checks: each predicate only sees input and output messages of a single node; in contrast, correct
execution of a MapReduce computation (also) involves global properties, such as correct shuffling.

We introduce our approach in steps, by first describing two “failed attempts”. For simplicity, we focus on the
(artificial) case where each mapper outputs a single phase-2 record; later, we explain how this restriction can be lifted.

5.1.1 Failed attempt #1

It is natural to begin by designing two predicates that simply capture the correct execution of a mapper node and a re-
ducer node, respectively; call these ΠMap

exe and ΠReduce
exe , and see Figure 6 for pseudocode. Set ~ΠMR := (ΠMap

exe ,Π
Reduce
exe ).

Now suppose that msg is a ~ΠMR-compliant message. What can we deduce about the history of computations that
led to msg? If msg.type = ΠMap

exe .type, then msg was output by a node at which the predicate ΠMap
exe was checked;

similarly, if msg.type = ΠReduce
exe .type, then msg was output by a node at which the predicate ΠReduce

exe was checked.
Suppose, for example, that msg.type = ΠReduce

exe .type. By construction of ΠReduce
exe , we deduce that: (i) msg.payload

is a phase-3 record (k3, v3), and (ii) there is a list of input messages ~msgin whose payloads contain phase-2 records(
(k2
j , v

2
j )
)
j

that all share the same key and, moreover, result in (k3, v3) when given as input to Reduce.
However, as soon as we try to “dig further into the past”, and deduce what properties each phase-2 record (k2

j , v
2
j )

satisfies, we run into issues not addressed by the present construction of ΠMap
exe and ΠReduce

exe . Namely,
• Issue I: How can we ascertain that each phase-2 record (k2

i , v
2
i ) was the correct output of some mapper node?

• Issue II: Even if so, where did that mapper node obtain its input phase-1 record?

5.1.2 Failed attempt #2

We augment ΠMap
exe and ΠReduce

exe to address these issues. We address Issue I by inspecting message types: ΠMap
exe ensures

that its input messages have type 0 (i.e., are not output by previous nodes); while ΠReduce
exe ensures that they have type

ΠMap
exe .type (i.e., are output by mapper nodes). We address Issue II by augmenting messages with a commitment cm to

the (overall) input x and extending ΠMap
exe to authenticate the received phase-1 record. We now explain these ideas.

First, we describe the commitment scheme COMM that we use to create cm. Essentially, COMM consists of (i) a
Merkle-tree followed by a commitment to the resulting root, and also (ii) a commitment to the size of the committed
data. See Figure 5 for more details; we denote the underlying commitment scheme by COMM∗ and the Merkle-tree
scheme by MERKLE (and use notation introduced in Section 2.2 and Section 2.3).

Next, see Figure 7 for pseudocode of the two (updated) predicates ΠMap
exe and ΠReduce

exe . Set ~ΠMR := (ΠMap
exe ,Π

Reduce
exe ).

Now suppose that msg is a ~ΠMR-compliant message with msg.type = ΠReduce
exe .type. By (the new) construction

of ΠReduce
exe , we know that msg.payload = (cm, k3, v3), where cm is a commitment and (k3, v3) is a phase-3 record;

moreover, we also know that there is a list of messages ~msgin such that: (i) for each j, ~msgin[j].type = ΠMap
exe .type

and ~msgin[j].payload = (cm, k2, v2
j ), where (k2, v2

j ) is a phase-2 record; (ii) (k3, v3) = Reduce(k2, (v2
j )j). In turn,

each message ~msgin[j] is ~ΠMR-compliant and, by (the new) construction of ΠMap
exe , we know that (k2, v2

j ) is the result
of running Map on some phase-1 record authenticated with respect to cm.

Overall, each ~ΠMR-compliant message msg with msg.type = ΠReduce
exe .type and msg.payload = (cm, k3, v3) is the

result of applying Reduce to some phase-2 records sharing the same key, each of which is in turn the result of applying

COMM.Gen(~z) COMM.Ver(~z, cm, cr)

1. Compute rt := MERKLE.GetRoot(~z).
2. Compute n, the number of items in the list ~z.
3. Compute (cmrt, crrt)← COMM∗.Gen(rt).
4. Compute (cmn, crn)← COMM∗.Gen(n).
5. Set cm := (cmrt, cmn).
6. Set cr := (crrt, crn).
7. Output (cm, cr).

1. Compute rt := MERKLE.GetRoot(~z).
2. Compute n, the number of items in the list ~z.
3. Parse cm as a pair (cmrt, cmn).
4. Parse cr as a pair (crrt, crn).
5. Check that COMM∗.Ver(rt, cmrt, crrt) = 1.
6. Check that COMM∗.Ver(n, cmn, crn) = 1.
7. Output 1 if the above checks succeeded (else, 0).

Figure 5: Choice of commitment scheme COMM (obtained from MERKLE and COMM∗).
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Map to some phase-1 record authenticated relative to cm. However, these guarantees are not enough to imply a correct
MapReduce computation, as we still need to tackle the following issue.

• Issue III: How do we ascertain the correctness of the shuffling phase? Namely, how do we ascertain that each list
of phase-2 records (received by a particular reducer node) contains all the records having that same key?

Indeed, in principle, some phase-2 records may have been duplicated, dropped, or sent to the wrong reducer node (e.g.,
to different reducer nodes even if sharing the same key).

5.1.3 Our approach

Unlike previous ones, Issue III is conceptually more complex: tackling it requires ensuring correct shuffling, which
is a global computation involving all phase-2 records (all the mappers’ outputs); in contrast, we are restricted to only
perform local checks encoded in compliance predicates. Nevertheless, we show how we can further extend ΠMap

exe and
ΠReduce

exe , and also introduce additional compliance predicates, to ensure correct shuffling in a distributed manner.
Further extending ΠMap

exe and ΠReduce
exe . First, we extend ΠMap

exe to store, in the output message, the index i relative
to which the input message’s phase-1 record was authenticated; subsequently, when receiving several input messages,
ΠReduce

exe checks that all the indices contained in them are distinct.
The additional check in ΠReduce

exe prevents duplicate messages from being sent to the same reducer node. However, it
does not prevent the same message from being sent to multiple reducer nodes, messages with the same key from being
sent to multiple reducer nodes, or a message from being dropped. Additional “distributed bookkeeping” is required.

We thus further extend ΠReduce
exe to store in its output message two additional pieces of information: the phase-2 key

k2 shared among its input messages and the number din of these input messages. More precisely, only commitments
to these are stored, and we denote them cmk2 and cmdin . The commitments preserve zero knowledge, by not exposing
internals of the MapReduce computation in output messages of reducer nodes.

See Figure 8 for pseudocode of the new construction of ΠMap
exe and ΠReduce

exe ; the changes from the previous con-
struction (see Figure 7) are highlighted in blue.

We now explain how we leverage, and verify, the messages’ new information maintained by ΠMap
exe and ΠReduce

exe . At
high level, we introduce new compliance predicates for checking two main distributed sub-computations: a tree-like
distributed sub-computation that aggregates information stored by output messages of mapper nodes, and another
tree-like distributed sub-computation that aggregates information stored by output messages of reducer nodes. By
comparing the final outputs of these two tree-like sub-computations, we can check if correct shuffling occurred.
Aggregating mappers’ outputs. We first describe the tree-like distributed sub-computation that aggregates the
output messages of mapper nodes. Recall that each output message of a mapper node has a payload that looks like
(cm, i, k2, v2), where cm is a commitment, i is an index, and (k2, v2) is a phase-2 record.

For each output message, we introduce a node to reformat the message into a new one with payload (cm, a⊥, a>, b, c)

where a⊥ = a> = i, b = 1, and c = 1; we design a compliance predicate, ΠMap
fmt , to check this reformatting and add it

to ~ΠMR. Intuitively, a⊥ and a> denote the smallest and largest index seen so far; b counts the number of mappers; and
c counts the number of phase-2 records output by mappers.9

Then, we introduce a tree of nodes to aggregate the reformatted messages into a final message, by pairwise trans-
forming two input messages (cm, a⊥1 , a

>
1 , b1, c2) and (cm, a⊥2 , a

>
2 , b2, c2) to the message (cm, a⊥1 , a

>
2 , b1 +b2, c1 +c2),

provided that a>1 < a⊥2 ; we design a compliance predicate, ΠMap
sum, to check this aggregation and add it to ~ΠMR.

The final message, output by the “root node” has payload (cm, 1,M,M, S), where M is the total number of
mapper nodes and S is the total number of phase-2 records output by all mappers. Crucially, one can see that if any
output message of a mapper node is either duplicated or dropped, then it is not possible to obtain a ~ΠMR-compliant
message with type ΠMap

sum.type and payload (cm, 1,M,M, S).
See Figure 11 and Figure 12 for pseudocode of ΠMap

fmt and ΠMap
sum, respectively; in terms of efficiency, both predicates

are “small” in that they have size and cost Oλ(1).
Aggregating reducers’ outputs. We now turn to the tree-like distributed sub-computation that aggregates output
messages of reducer nodes. Recall that each output message of a reducer node has a payload that looks like (cm, k3,

9Recall that for now we are in the artificial special case where each mapper outputs a single phase-2 record, so that c is initially 1.
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ΠMap
exe (msg, loc, ~msgin)

1. Parse ~msgin[1].payload as a phase-1 record (k1, v1).
2. Parse msg.payload as a phase-2 record (k2, v2).
3. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc, ~msgin)

1. Parse each ~msgin[j].payload as a phase-2 record (k2
j , v

2
j).

2. Parse msg.payload as a phase-3 record (k3, v3).
3. Check that all the k2

j ’s are equal, and set ~v2 := (v2
j)j

4. Check that (k3, v3) = Reduce(k2
1,
~v2).

Figure 6: Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #1” (see Section 5.1.1).

ΠMap
exe (msg, loc, ~msgin)

1. Check that ~msgin[1].type = 0.
2. Parse ~msgin[1].payload as a tuple (cm, i, k1, v1) where:
• cm is a commitment (for the scheme COMM);
• i is an index;
• (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, k2, v2) where:
• cm′ is a commitment (for the scheme COMM);
• (k2, v2) is a phase-2 record.

4. Parse loc as a tuple (rt,M, crrt, crM , ap) where:
• rt is a commitment (for the scheme MERKLE);
• M is a positive integer;
• crrt, crM are randomness (for the scheme COMM∗);
• ap is an authentication path (for the scheme MERKLE).

5. Parse cm as a pair (cmrt, cmM ) where both components are
commitments for the scheme COMM∗.

6. Check that COMM∗.Ver(rt, cmrt, crrt) = 1.
7. Check that COMM∗.Ver(M, cmM , crM ) = 1.
8. Check that 0 ≤ i < M .
9. Check that MERKLE.CheckPath

(
rt, i, (k1, v1), ap

)
= 1.

10. Check that cm′ = cm.
11. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc, ~msgin)

1. Check that ~msgin[j].type = ΠMap
exe .type for each j.

2. Parse each ~msgin[j].payload as a tuple (cm′j , k
2
j , v

2
j) where:

• cm′j is a commitment (for the scheme COMM);
• (k2

j , v
2
j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3) where:
• cm′′ is a commitment (for the scheme COMM);
• (k3, v3) is a phase-3 record.

4. Check that cm′′ = cm′j for each j.

5. Check that all the k2
j ’s are equal, and set ~v2 := (v2

j)j .

6. Check that (k3, v3) = Reduce(k2
1,
~v2).

Figure 7: Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #2” (see Section 5.1.2).

ΠMap
exe (msg, loc, ~msgin)

1. Check that ~msgin[1].type = 0.
2. Parse ~msgin[1].payload as a tuple (cm, i, k1, v1) where:
• cm is a commitment (for the scheme COMM);
• i is an index;
• (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, i′,k2, v2) where:
• cm′ is a commitment (for the scheme COMM);
• i′ is an index;
• (k2, v2) is a phase-2 record.

4. Parse loc as a tuple (rt,M, crrt, crM , ap) where:
• rt is a commitment (for the scheme MERKLE);
• M is a positive integer;
• crrt, crM are randomness (for the scheme COMM∗);
• ap is an authentication path (for the scheme MERKLE).

5. Parse cm as a pair (cmrt, cmM ) where both components are
commitments for the scheme COMM∗.

6. Check that COMM∗.Ver(rt, cmrt, crrt) = 1.
7. Check that COMM∗.Ver(M, cmM , crM ) = 1.
8. Check that 0 ≤ i < M .
9. Check that MERKLE.CheckPath

(
rt, i, (k1, v1), ap

)
= 1.

10. Check that cm′ = cm and i′ = i.
11. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc, ~msgin)

1. Check that ~msgin[j].type = ΠMap
exe .type for each j.

2. Parse each ~msgin[j].payload as a tuple (cm′j , i
′
j ,k

2
j , v

2
j) where:

• cm′j is a commitment (for the scheme COMM);
• i′j is an index;
• (k2

j , v
2
j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3, cmk2 , cmdin
) where:

• cm′′ is a commitment (for the scheme COMM);
• (k3, v3) is a phase-3 record;
• cmk2 , cmdin

are commitments (for the scheme COMM∗).
4. Parse loc as a tuple (crk2 , crdin

) where:
• crk2 , crdin

are randomness (for the scheme COMM∗).
5. Check that cm′′ = cm′j for each j.
6. Check that the i′j are distinct, and let din be their number.

7. Check that all the k2
j ’s are equal, and set ~v2 := (v2

j)j .
8. Check that COMM∗.Ver(k2

1, cmk2 , crk2 ) = 1.
9. Check that COMM∗.Ver(din, cmdin

, crdin
) = 1.

10. Check that (k3, v3) = Reduce(k2
1,
~v2).

Figure 8: Summary of the construction of ΠMap
exe and ΠReduce

exe for “Our approach” (see Section 5.1.3). The text that is highlighted in blue denotes
the differences from the construction in Figure 7.
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v3, cmk2 , cmdin), where cm is a commitment (for the scheme COMM), (k3, v3) is a phase-3 record, and cmk2 , cmdin

are commitments (for the scheme COMM∗).
Similarly (but not equal) to above, for each output message, we introduce a node to reformat the message into

a new one with payload (cm, a⊥, a>, b, c) where a⊥ = a> = k2, b = 1, and c = din;10 we design a compliance
predicate, ΠReduce

fmt , to check this reformatting and add it to ~ΠMR. Intuitively, a⊥ and a> denote the smallest and largest
phase-2 keys so far; b counts the number of reducers; and c counts the number of phase-2 records received by reducers.

Then, again similarly to above, we introduce a tree of nodes to aggregate the reformatted messages into a final
message, by pairwise transforming two input messages (cm, a⊥1 , a

>
1 , b1, c2) and (cm, a⊥2 , a

>
2 , b2, c2) to the message

(cm, a⊥1 , a
>
2 , b1 + b2, c1 + c2), provided that a>1 < a⊥2 ; we design a compliance predicate, ΠReduce

sum , to check this
aggregation and add it to ~ΠMR.

The final message, output by the “root node”, has payload (cm, k2
min, k

2
max, R, S), where k2

min and k2
max are

respectively the least and largest phase-2 keys encountered, R is the total number of reducer nodes, and S is the total
number of phase-2 records received by all reducers. Crucially, one can see that if any output message of a reducer
node is either duplicated or dropped, then it is not possible to obtain a ~ΠMR-compliant message with type ΠReduce

sum .type
and payload (cm, k2

min, k
2
max, R, S).

See Figure 11 and Figure 12 for pseudocode of ΠReduce
fmt and ΠReduce

sum , respectively; in terms of efficiency, both
predicates are “small” in that they have size and cost Oλ(1).
Consistency between aggregations. In sum, the above two tree-like distributed sub-computations result into two
messages, respectively with payloads (cm, 1,M,M, S) and (cm, k2

min, k
2
max, R, S).

We introduce a final node that compares the two messages and outputs a final message with payload (cm, R).11

Specifically, we design, and add to ~ΠMR, a new compliance predicate, Πfin, which checks that: (i) cm is the same in
both messages; (ii) S is the same in both messages; and (iii) M is the size of the data committed in cm (this can be
done by receiving decommitment information as part of the node’s local data loc). These checks ensure, in particular,
that the outputs of all mappers were correctly shuffled and then given as input to the reducers. See Figure 13.
Summing up. The vector ~ΠMR of compliance predicates is (ΠMap

exe ,Π
Reduce
exe ,ΠMap

fmt ,Π
Map
sum,Π

Reduce
fmt ,ΠReduce

sum ,Πfin).
We fix the types of these predicates to arbitrary but distinct values. Each predicate constrains the types of its input
messages as follows: (1) ΠMap

exe accepts only input messages with type 0; (2) ΠReduce
exe with type ΠMap

exe .type; (3) ΠMap
fmt

with type ΠMap
exe .type; (4) ΠMap

sum with type ΠMap
exe .type or ΠMap

fmt .type; (5) ΠReduce
fmt with type ΠReduce

exe .type; (6) ΠReduce
sum

with type ΠReduce
exe .type or ΠReduce

fmt .type; (7) Πfin with type ΠMap
exe .type or ΠMap

fmt .type for the first input message, and
ΠReduce

exe .type or ΠReduce
fmt .type for the second input message. These constraints on message types induce a “data flow”

in the distributed computation that we summarized in Figure 9.
If the underlying MapReduce computation results into the output y =

(
(k3

1, v
3
1), . . . , (k3

R, v
3
R)
)
, the distributed

computation results into R + 1 outputs: (i) a message with type Πfin.type and payload (cm, R); and (ii) for
i = 1, . . . , R, a message with type ΠReduce

exe .type and payload (cm, k3
i , v

3
i , ∗, ∗) where ∗ denotes arbitrary data.

These outputs make the distributed computation (cm, y)-compatible (see Definition 5.1). Moreover, one can see
that the outputs of the distributed computation can be computed by a transcript generator TGen that is (Map,Reduce)-
complexity-preserving; see Figure 10 for a diagram of the various parts of the distributed computation conducted by
TGen. This provides the completeness property claimed in Theorem 5.2.

Conversely, if a message with payload (cm, R) (and suitable type) is ~ΠMR-compliant, then we can deduce the
correct execution of a MapReduce computation relative to the data x committed in cm and resulting in some output y
with R output records. Moreover, if a message with payload (cm, k3

i , v
3
i , ∗, ∗) (and suitable type) is ~ΠMR-compliant,

then we can deduce that (k3
i , v

3
i ) is the i-th record of y. In fact, one can see that any transcript T that yields such

outputs contains a witness for the instance (cm, y), which can be obtained in linear time by an extractor TExt. This
provides the proof-of-knowledge property claimed in Theorem 5.2.

5.1.4 From sketch to the full construction

The above discussion omits several details. First, we have considered only the (artificial) case where each mapper
outputs a single phase-2 record; the case of multiple outputs necessitates further extending the predicates in ~ΠMR. For

10The values k2 and din can be obtained by receiving decommitment information as part of the node’s local data loc.
11To preserve zero knowledge, both M and S (which give information about internals of the computation), are excluded from the final message.
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⊥ ΠMap
exe ΠReduce

exe

ΠMap
fmt

ΠReduce
fmt

ΠMap
sum ΠReduce

sum

Πfin

Figure 9: The compliance predicates constrain the
types of input messages. This induces a “data flow”
in the distributed computation, which can be sum-
marized via the above diagram.

5 5 

Π  

Π  

Π  

Π  

Π  

Π  

Π  

(cm,3) 

(cm,𝑘𝟑, 𝑣𝟑,∗,∗) 

(cm,𝑘𝟑, 𝑣𝟑,∗,∗) 

(cm,𝑘𝟑, 𝑣𝟑,∗,∗) 

(cm, 1, 𝑘𝟏, 𝑣𝟏) 

(cm, 2, 𝑘𝟏, 𝑣𝟏) 

(cm, 3, 𝑘𝟏, 𝑣𝟏) 

(cm, 4, 𝑘𝟏, 𝑣𝟏) 

(cm, 5, 𝑘𝟏, 𝑣𝟏) 

Figure 10: Diagram of the distributed computation for a MapReduce computation with
5 input records and 3 output records. The dashed regions show which output messages
are checked by which compliance predicate. The two tree-like sub-computations in the
bottom part correspond to the aggregation of mappers’ outputs (left) and the aggregation
of reducers’ outputs (right).

completeness, in Appendix D we provide details on how to support the case of multiple mapper outputs, as well as on
how to support the extensions mentioned in Section 2.4.3 (including multiple reducer outputs).

Moreover, we did not describe the many technicalities that arise when implementing each compliance predicate
as an arithmetic circuit, as required by the underlying PCD machinery (see Section 6.4). We invested much effort in
obtaining efficient implementations of the 7 compliance predicates as arithmetic circuits, and this involved additional
modifications to the predicates in ~ΠMR.
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ΠMap
fmt(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 1.
3. Check that ~msgin[1].type = ΠMap

exe .type.
4. Parse ~msgin[1].payload as a tuple (cm, i, k2, v2) where:
• cm is a commitment (for the scheme COMM);
• i is an index;
• (k2, v2) is a phase-2 record.

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (cm′, a⊥, a>, b, c) where:
• cm′ is a commitment (for the scheme COMM);
• a⊥, a>, b, c are positive integers.

7. Check that cm′ = cm.
8. Check that a⊥ = a> = i.
9. Check that b = 1.

10. Check that c = 1.

ΠReduce
fmt (msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 1.
3. Check that ~msgin[1].type = ΠReduce

exe .type.
4. Parse ~msgin[1].payload as a tuple (cm, k3, v3, cmk2 , cmdin

) where:
• cm is a commitment (for the scheme COMM);
• (k3, v3) is a phase-3 record;
• cmk2 , cmdin

are commitments (for the scheme COMM∗).
5. Parse loc as a tuple (k2, din, crk2 , crdin

), where:
• k2 is a phase-2 key;
• din is a positive integer;
• crk2 , crdin

are randomness (for the scheme COMM∗).
6. Parse msg.payload as a tuple (cm′, a⊥, a>, b, c) where:
• cm′ is a commitment (for the scheme COMM);
• a⊥, a>, b, c are positive integers.

7. Check that cm′ = cm.
8. Check that COMM∗.Ver(k2, cmk2 , crk2 ) = 1.
9. Check that COMM∗.Ver(din, cmdin

, crdin
) = 1.

10. Check that a⊥ = a> = k2 (after converting k2 to a positive integer).
11. Check that b = 1.
12. Check that c = din.

Figure 11: Summary of the construction of ΠMap
fmt and ΠReduce

fmt (see Section 5.1.3).

ΠMap
sum(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that each ~msgin[j].type lies in {ΠMap

fmt.type,ΠMap
sum.type}.

4. Parse each ~msgin[j].payload as a tuple (cmj , a
⊥
j , a

>
j , bj , cj) where:

• cmj is a commitment (for the scheme COMM);
• a⊥j , a

>
j , bj , cj are positive integers.

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (cm′, a⊥, a>, b, c) where:
• cm′ is a commitment (for the scheme COMM);
• a⊥, a>, b, c are positive integers.

7. Check that cm′ = cm1 = cm2.
8. Check that a>1 < a⊥2 , a⊥ = a⊥1 , a> = a>2 .
9. Check that b = b1 + b2.

10. Check that c = c1 + c2.

ΠReduce
sum (msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that each ~msgin[j].type lies in {ΠReduce

fmt .type,ΠReduce
sum .type}.

4. Parse each ~msgin[j].payload as a tuple (cmj , a
⊥
j , a

>
j , bj , cj) where:

• cmj is a commitment (for the scheme COMM);
• a⊥j , a

>
j , bj , cj are positive integers.

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (cm′, a⊥, a>, b, c) where:
• cm′ is a commitment (for the scheme COMM);
• a⊥, a>, b, c are positive integers.

7. Check that cm′ = cm1 = cm2.
8. Check that a>1 < a⊥2 , a⊥ = a⊥1 , a> = a>2 .
9. Check that b = b1 + b2.

10. Check that c = c1 + c2.

Figure 12: Summary of the construction of ΠMap
sum and ΠMap

sum (see Section 5.1.3).

Πfin(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that ~msgin[1].type ∈ {ΠMap

fmt.type,ΠMap
sum.type}.

4. Check that ~msgin[2].type ∈ {ΠReduce
fmt .type,ΠReduce

sum .type}.
5. Parse each ~msgin[j].payload as a tuple (cmj , a

⊥
j , a

>
j , bj , cj) where:

• cmj is a commitment (for the scheme COMM);
• a⊥j , a

>
j , bj , cj are positive integers.

6. Parse the local data loc as a tuple (M, crM ) where:
• M is a positive integer;
• crM is randomness (for the scheme COMM∗).

7. Parse msg.payload as a tuple (cm′, R) where:
• cm′ is a commitment (for the scheme COMM);
• R is a positive integer.

8. Check that cm′ = cm1 = cm2.
9. Parse cm′ as a pair (cmrt, cmM ) where both components are commitments

for the scheme COMM∗.
10. Check that COMM∗.Ver(M, cmM , crM ) = 1.
11. Check thatM = b1.
12. Check thatR = b2.
13. Check that c1 = c2.

Figure 13: Summary of the construction of Πfin (see Section 5.1.3).
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5.2 Construction of distributed zk-SNARKs for MapReduce
We give the construction of our distributed zk-SNARK for MapReduce, by describing its key generator MR.KeyGen,
prover MR.Prove, and verifier MR.Verify. As for the commitment scheme COMM, it is described in Figure 5.
The key generator MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a security parameter λ (presented in
unary) and a MapReduce pair (Map,Reduce), the key generator MR.KeyGen computes a key pair (pk, vk) as follows.
1. Use Theorem 5.2 to deduce, from (Map,Reduce), the vector ~ΠMR of compliance predicates.
2. Use the PCD key generator G to compute a PCD key pair for ~ΠMR: (pkpcd, vkpcd) := G(1λ, ~ΠMR).
3. Set pk := (Map,Reduce, pkpcd) and vk := (vkpcd); output (pk, vk).
The prover MR.Prove(pk, cm,y,x, cr) → πMR. On input a proving key pk, an instance (cm, y), and a wit-
ness (x, cr), the prover MR.Prove computes a non-interactive proof πMR for the statement “I know (x, cr) such that(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce)” as follows.
1. Deduce from the MapReduce pair (Map,Reduce) the corresponding transcript generator TGen (see Theorem 5.2).
2. Deduce from TGen(cm, y, x, cr) the corresponding PCD meta prover TPrv (see Section 4).
3. Compute ~π := TPrv(pkpcd).
4. Set πMR := ~π and output πMR.
The verifier MR.Verify(vk, cm,y, πMR) → b. On input a verification key vk, commitment cm, output y, and
proof πMR, the verifier MR.Verify computes a decision bit b as follows.
1. Parse vk as a PCD verification key vkpcd.
2. Use the instance (cm, y) to construct the following output messages (recall Definition 5.1):

msg0

{
.type := 1

.payload := (cm, len(y))
and, for each i ∈ {1, . . . , len(y)}, msgi

{
.type := 2

.payload := (cm, yi)
.

3. Parse πMR a vector of PCD proofs (π0, π1, . . . , πlen(y)).
4. For each i ∈ {0, 1, . . . , len(y)}, check that the i-th output message is ~ΠMR-compliant: V(vkpcd,msgi, πi) = 1.
5. If all the above steps succeeded, output b := 1; otherwise output b := 0.
Indeed, if MR.Verify outputs 1, then we know that the prover that produced πMR knows a ~ΠMR-compliant (cm, y)-
compatible transcript T (by the proof-of-knowledge property of the PCD system), and thus also knows a witness
(x, cr) for the instance (cm, y) (by Theorem 5.2).

In Appendix E, for additional intuition, we break the abstraction, and describe MR.Prove directly in terms of the
compliance predicates constructed in the proof of Theorem 5.2.

Remark 5.3. In the construction above, the output y can also be checked one record at a time, rather than all at once as
done by MR.Verify. Namely, to check yi (the i-th record of y), one only needs to ensure that V(vkpcd,msg0, π0) = 1
and V(vkpcd,msgi, πi) = 1. This enables, e.g., to distribute y’s verification.

Remark 5.4. The running time of MR.Verify isOλ(|y|), and is dominated by len(y)+1 invocations of the underlying
PCD verifier V. Since MR.Verify takes as input y, its asymptotic running time cannot be significantly improved.
However, the construction above can be modified so that verification requires only one invocation of V (on a Oλ(1)-
size input) plus O(|y|) “light” cryptographic operations — this improves concrete efficiency of verification.

The high-level idea is to extend the proving process with an additional tree-like distributed computation that ag-
gregates the message-proof pairs (msgi, πi)

len(y)
i=0 into a single message-proof pair (msg∗, π∗) such that msg∗ has

payload (cm, len(y), cmy) where cmy is a Merkle-tree commitment of cmy. Verification then involves checking that
V(vkpcd,msg∗, π∗) = 1 and that y is a valid opening of cmy. (Moreover, by additionally augmenting π∗ with authen-
tication paths, one can recover the “local verification” property discussed in Remark 5.3.)
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6 Step I: construction of multi-predicate PCD
We discuss Step I of our bootstrapping theorem: constructing multi-predicate PCD from (preprocessing) zk-SNARKs.
• In Section 6.1, we introduce notation for arithmetic circuits and preprocessing zk-SNARKs.
• In Section 6.2, we review the single-predicate PCD construction of [BCTV14a].
• In Section 6.3, we sketch the ideas of our multi-predicate PCD construction, which extends the one in [BCTV14a].
• In Section 6.4, we provide details of our multi-predicate PCD construction.
• In Section 6.5, we describe some optimizations and extensions.
As in [BCTV14a], we consider compliance predicates Π expressed as F-arithmetic circuits, where F is a certain field
of cryptographically-large prime size (determined by the underlying zk-SNARK). Throughout this section, Fn denotes
the field of size n, and we assume familiarity with finite fields (and, for background on these, see [LN97]).

6.1 Arithmetic circuits and preprocessing zk-SNARKs

Arithmetic circuits. As mentioned, we work with circuits that are arithmetic, rather than boolean. Given a finite
field F, an F-arithmetic circuit takes inputs that are elements in F, and its gates output elements in F; the circuits we
consider only have bilinear gates. The circuit satisfaction problem of an F-arithmetic circuit C : Fn × Fh → Fl is
defined by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}.
Preprocessing zk-SNARKs. As in [BCTV14b], a preprocessing zk-SNARK [BCIOP13, BCCT13] for F-arithmetic
circuit satisfiability is a triple of polynomial-time algorithms (G,P, V ), called key generator, prover, and verifier. The
key generator G, given a security parameter λ and an F-arithmetic circuit C : Fn×Fh → Fl, samples a proving key pk
and a verification key vk; these are the proof system’s public parameters, and are generated only once per circuit. After
that, anyone can use pk to generate non-interactive proofs of knowledge for witnesses in the relation RC , and anyone
can use the vk to check these proofs. Namely, given pk and any (x, a) ∈ RC , the honest prover P (pk, x, a) produces
a proof π for the statement “there is a such that (x, a) ∈ RC”; the verifier V (vk, x, π) checks that π is a convincing
proof for this statement. A proof π is a (computational) proof of knowledge, and a (statistical) zero-knowledge proof.
The succinctness property requires that π has length Oλ(1) and V runs in time Oλ(|x|). See Appendix C for details.

6.2 Review of the [BCTV14a] construction
For efficiency reasons, Ben-Sasson et al. [BCTV14a] construct a PCD system via two (preprocessing) zk-SNARKs,
(Gα, Pα, Vα) and (Gβ , Pβ , Vβ), that satisfy the following. For two primes rα and rβ : (a) (Gα, Pα, Vα) proves/verifies
satisfiability of Frα -arithmetic circuits, while Vα is an Frβ -arithmetic circuit; instead, (b) (Gβ , Pβ , Vβ) proves/verifies
satisfiability of Frβ -arithmetic circuits, while Vβ is an Frα -arithmetic circuit. This property is achieved by instantiating
the two zk-SNARKs via a PCD-friendly 2-cycle of elliptic curves (see [BCTV14a] for details on how to obtain these),
and facilitates recursive proof composition.

Specifically, the core of the PCD system construction is the design of two PCD circuits: Cpcd,α over the field Frα
and Cpcd,β over the field Frβ . For a given compliance predicate Π, the two circuits work roughly as follows.
• Cpcd,α: given input xα = msg and witness aα = (loc, ~msgin, ~πin), use Vβ to verify that each input message ~msgin[j]

has a valid proof ~πin[j], and check that Π accepts the output message msg, local data loc, and input messages ~msgin.
• Cpcd,β : given input xβ = msg and witness aβ = (πα), uses Vα to verify that the message msg has a valid proof πα.
The aforementioned property ensures that fields “match up”: Cpcd,α is defined over the same field as Vβ , and similarly
for Cpcd,β and Vα. (Such field matching is not possible when using a single elliptic curve.) The two PCD circuits are
used as follows: Pα proves satisfiability of Cpcd,α, and the resulting proof πα attests to the compliance of msg; and Pβ
proves the satisfiability of Cpcd,β , and the resulting proof πβ provides a “translation” of πα so that πβ can in turn be
used as part of a witness to Cpcd,α. We refer to Cpcd,α as the compliance circuit, and Cpcd,β as the translation circuit.

The above description omits several details (relevant to later discussions): to reduce the size of the PCD circuits
Cpcd,α and Cpcd,β , [BCTV14a] additionally use hashing, pre-computation, and hardcoding. First, the input xα to
Cpcd,α actually equals to H(bits(vkβ)‖bits(msg)), where H is a collision-resistant function mapping {0, 1}-vectors
to Frα -vectors, vkβ is the verification key for Cpcd,β , and msg is the output message to be checked by Π. This
ensures that xα’s length equals H’s output length, which only depends on λ. However, H’s output is an Frα -vector,
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and thus cannot be passed as input to Cpcd,β , which is an Frβ -arithmetic circuit. This issue is addressed via two
“repacking circuits” that map information content from elements in Frα to ones in Frβ and back, respectively. Second,
a zk-SNARK verifier V can be viewed as two functions, i.e., an “offline” function V offline (given the verification key
vk, compute a processed verification key pvk) and an “online” function V online (given pvk, an input x, and proof π,
compute the decision bit); the tradeoff between V and V online can be exploited. Finally, vkα, the verification key for
Cpcd,α, is hardcoded in Cpcd,β . See [BCTV14a] for more details.

From the point of view of this paper, the construction of [BCTV14a] in insufficient, because: (i) it supports a
single compliance predicate at a time, while our setting calls for multiple ones; and (ii) it requires the compliance
predicate to be “rigid” (i.e., accept a fixed number of messages and have input lengths equal output length), while our
setting calls for “flexible” predicates.

6.3 Overview of our construction
We overview the construction of our PCD system, which extends [BCTV14a]’s so to achieve native (and thus more
efficient) support for multiple compliance predicates, variable message arity, and varying message lengths.

At high level, our construction consists of the following two parts.
• Part 1: given a vector of compliance predicates ~Π, construct a vector ~Cpcd of PCD circuits. Roughly, for each ~Π[i]

in ~Π, we construct two circuits, Cpcd,α,i and Cpcd,β,i, tasked with recursive proof composition relative to ~Π[i].
• Part 2: construct the PCD generator, prover, and verifier. Roughly, the PCD generator G produces a zk-SNARK key

pair for each circuit in ~Cpcd; the PCD prover P, to prove compliance relative to ~Π[i], produces a zk-SNARK proof
of satisfiability for Cpcd,α,i and then uses it to produce one for Cpcd,β,i; the PCD verifier V verifies a zk-SNARK
proof by using the appropriate verification key.

Below, we elaborate on these two parts. We also note that the above separation is only conceptual, because the two
parts are procedurally entangled (due to hardcoding of certain values).
Part 1: the PCD circuits. For each compliance predicate ~Π[i] in ~Π, we construct two PCD circuits: a compliance
circuit Cpcd,α,i, tasked with checking compliance with ~Π[i]; and a translation circuit Cpcd,β,i, tasked with checking
proofs attesting to the satisfiability of Cpcd,α,i.

The design of Cpcd,β,i is similar to [BCTV14a]’s translation circuit. Namely, Cpcd,β,i provides a way to translate
a zk-SNARK proof relative to the verification key ~vkα[i] (generated for Cpcd,α,i and hardcoded in Cpcd,β,i) to one
relative to the verification key ~vkβ [i] (generated for Cpcd,β,i); the translation only has the goal of matching fields up.

The design ofCpcd,α,i extends [BCTV14a]’s compliance circuit, so to take into account the fact that input messages
may carry proofs relative to different verification keys (depending on which compliance predicate was used to reason
about their compliance). So, while the input xα to [BCTV14a]’s compliance circuit was H(bits(vkβ)‖bits(msg)),
we now take the input to Cpcd,α,i to be H(bits(rt)‖bits(msg)) where rt is the root of the Merkle tree whose leaves
consist of the vector ~vkβ .12 The circuit Cpcd,α,i then receives, as part of the witness, an authentication path for the
verification key required of each input message, and checks this authentication path against rt. Additional details of
the construction (e.g., checking that the type of the output message equals ~Π[i].type) are discussed later.
Part 2: the PCD generator, prover, and verifier. Next, we outline below the PCD generator, prover, and verifier.

• The PCD generator G, given a vector ~Π of compliance predicates, works as follows.

1. For each i, construct:
(a) the compliance circuit Cpcd,α,i and generate a zk-SNARK key pair ( ~pkα[i], ~vkα[i]) for it, and then
(b) the translation circuit Cpcd,β,i (hardcoding ~vkα[i]) and generate a zk-SNARK key pair ( ~pkβ [i], ~vkβ [i]) for it.

2. Compute rt, the root of the Merkle tree whose leaves consist of the vector ~vkβ .
3. Output the key pair (pk, vk), where pk := ( ~pkα,

~vkα, ~pkβ ,
~vkβ , rt) and vk = (~vkβ , rt).

• The PCD prover P, given a proving key pk, output message msg, local data loc, and input messages ~msgin with
proofs ~πin, works as follows.

1. Parse pk as a tuple ( ~pkα,
~vkα, ~pkβ ,

~vkβ , rt).

12Merely taking xα to beH(bits( ~vkβ)‖bits(msg)) causesCpcd,α,i’s number of gates to be linear (not logarithmic) in the number of predicates.
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2. Let i? be the index of the compliance predicate Π[i?] in ~Π that is satisfied by (msg, loc, ~msgin).
3. Construct a vector ~ap of authentication paths, where each ~ap[j] is the authentication path, relative to the root rt,

for the leaf ~vkβ [~πin[j].idx].
4. Use rt, (msg, loc, ~msgin), and ~ap to construct an input xα and a witness aα for Cpcd,α,i.
5. Use ~pkα[i?] to generate a zk-SNARK proof πα attesting that the compliance circuit Cpcd,α,i accepts (xα, aα).
6. Use rt and msg to construct an input xβ and a witness aβ for Cpcd,β,i.
7. Use ~pkβ [i?] to generate a zk-SNARK proof πβ attesting that the translation circuit Cpcd,β,i accepts (xβ , aβ).
8. Output the proof π, where π.idx := i? and π.proof := πβ .

• The PCD verifier V, given a verification key vk, a message msg, and a proof π, works as follows.

1. Parse vk as a tuple (~vkβ , rt).
2. Set i? := π.idx and πβ := π.proof.
3. Use rt and msg to construct the input xβ for Cpcd,β,i? .
4. Use ~vkβ [i?] to check that πβ is a valid zk-SNARK proof for xβ .

Remark 6.1. As in other PCD constructions, proof of knowledge is achieved by recursively extracting “past proofs”
from known ones. This process is technically delicate, and a formal treatment of it is in [BCCT13]. Here we only note
that the distributed computations for MapReduce considered in this paper are shallow (of logarithmic depth) and are
thus quite amenable to recursive proof extraction.

6.4 Details of our construction
We provide more details about the construction of our PCD system.
Representation of a compliance predicate. The choice of representation of a compliance predicate (e.g., whether
the predicate is expressed via a machine or a circuit) does not impact the main ideas behind the construction of multi-
predicate PCD (see Section 6.3). Yet, some efficiency optimizations depend on this choice, and so henceforth we make
it explicit: a compliance predicate Π is represented as an arithmetic circuit (and, in particular, this implies that cost(Π)
equals Π’s number of gates). As in [BCTV14a], this choice is not arbitrary but, rather, is inherited from the “native”
model of computation supported by the underlying zk-SNARK.
Notation for predicates as circuits. Arithmetic circuits are a “rigid” computation model, so we introduce additional
notation to support a detailed description of our construction. To each F-arithmetic compliance predicate Π, we
associate several quantities: (i) outlen(Π), the payload length of an output message; (ii) loclen(Π), the length of local
data; (iii) max-arity(Π), the maximum number of input messages; and (iv) ~inlen(Π), the vector for which ~inlen(Π)[j]
is the payload length for the j-th input message. As for the type of a message (which is merely an integer), it will
suffice to use a single element of F to represent it. Moreover, in order for Π (which is a circuit) to “know” the number
d ∈ {0, . . . ,max-arity(Π)} of input messages, we let Π receive d explicitly (encoded as a single field element).

In sum, if we view Π as a function, we can write that, for some l ∈ N,

Π: F(1+outlen(Π)) × Floclen(Π) × F
∑max-arity(Π)
j=1 (1+ ~inlen(Π)[j]) × F→ Fl.

Indeed, Π receives an output message msg of length (1+outlen(Π)); local data loc of length loclen(Π); max-arity(Π)

input messages, where the j-th input message has length (1+ ~inlen(Π)[j]); and the arity d. For notational convenience,
we write Π(msg, loc, ~msgin, d) even when ~msgin contains less than max-arity(Π) messages (and assume that ~msgin is
extended with arbitrary padding to the correct length).
Ingredients. In addition to the two (preprocessing) zk-SNARKs (Gα, Pα, Vα) and (Gβ , Pβ , Vβ) (see Section 6.2), in
the construction we make use of certain arithmetic circuits that we now describe. All all of these circuits are discussed
in [BCTV14a] in more detail, so here we review them only at high level.

We use nα and nβ to denote the number of field elements of an input to the PCD circuits Cpcd,α,i and Cpcd,β,i (for
any i), respectively; we set nα := `H and nβ := dnα·dlog rαe

blog rβc e, where `H is the number of elements output by the
collision-resistant function H; note that nβ is the number of Frβ -elements needed to encode nα Frα -elements. We
use bits to denote a function that, given an input γ in F`rα (for some fixed `), outputs γ’s binary representation; the
corresponding Frα -arithmetic circuit is denoted Cbits and has ` · dlog rαe gates.
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We use the following circuits. An Frα -arithmetic circuit CSα→β implementing Sα→β : Fnαrα → Fnβ ·dlog rβe
rα , the

repacking function from Frα to Frβ (which encodes nα elements in Frα into nβ elements in Frβ and outputs their
binary representation over Frα ); and an Frβ -arithmetic circuit CSα←β implementing Sα←β : Fnβrβ → Fnα·dlog rαe

rβ ,
the “inverse” of Sα→β (which decodes nβ elements in Frβ back into nα elements in Frα and outputs their binary
representation over Frβ ). An Frβ -arithmetic circuit CV online

α
implementing V online

α for inputs of nα elements in Frα
(an input xα ∈ Fnαrα is given to CV online

α
as a string of nα · dlog rαe elements in Frβ , each carrying a bit of xα). An

Frα -arithmetic circuit CVβ implementing Vβ for inputs of nβ elements in Frβ (an input xβ ∈ Fnβrβ is given to CVβ as
a string of nβ · dlog rβe elements in Frα , each carrying a bit of xβ).

Moreover, for a given compliance predicate Π, we use various Frα -arithmetic circuits that implement the collision-
resistant functionH : {0, 1}∗ → F`Hrα . Namely, settingmH,Π,out := (`H +1+outlen(Π)) ·dlog rαe and ~mH,Π,in[j] :=

(`H + 1 + ~inlen(Π)[j]) · dlog rαe, the circuit CH,Π,out implements H for mH,Π,out-bit inputs, and ~CH,Π,in is a vector
such that each circuit ~CH,Π,in[j] implements H for ~mH,Π,in[j]-bit inputs.

Finally, we use an Frα -arithmetic circuit for verification of Merkle-tree authentication paths, for a Merkle tree
constructed using H . Namely, CMERKLE,p implements the function MERKLE.CheckPath (see Section 2.3) for Merkle
trees with p leaves (and thus with authentication paths of length dlog pe).
Construction of the PCD circuits. In Figure 14 we provide pseudocode for MakePCDCircuitA and MakePCDCircuitB,
the two functions that we use to construct the compliance and translation PCD circuits (i.e., Cpcd,α,i and Cpcd,β,i).
Construction of the PCD generator, prover, and verifier. In Figure 15 we provide pseudocode for the PCD
generator G, prover P, and verifier V. The construction works for a vector ~Π of Frα -arithmetic compliance predicates
~Π.13 For convenience, we export i?, the index of the predicate for which compliance is proved, to P’s interface.

6.5 Optimizations and extensions
The multi-predicate PCD construction described in the previous sections can be optimized and extended in several
ways. Here we give two such examples.
A common special case. For any predicate ~Π[i] in ~Π, the size of the compliance circuit Cpcd,α,i can be reduced if
there is a set of types T satisfying the following: (a) each t ∈ T is unique (i.e., ~Π has only one predicate of type t); and
(b) ~Π[i] accepts input messages of only one type from T or of type 0 (i.e., if ~Π[i] accepts input messages ~msgin, then
{msg.type}msg∈ ~msgin

⊆ {0, t} for some t ∈ T ). Indeed, the same verification key can be used to verify all the input
proofs ~πin, so that Cpcd,α,i needs only one copy, rather than max-arity(~Π[i]) copies, of CMERKLE,p.14 For instance, 6

out of 7 predicates in the MapReduce predicate vector ~ΠMR (from Section 5.1) benefit from this optimization.
Extending ~Π ex post. The multi-predicate PCD construction that we described fixes the given ~Π for the entire
lifetime of the system. However, the construction can be modified to allow extending ~Π ex post. Namely, we can
modify the compliance circuits so to authenticate a (translation-step) verification key via a digital signature, relative to
a “master” public key, rather than via a Merkle-tree authentication path. The modification enables a trusted party (e.g.,
the same system administrator that runs the key generator) to dynamically append to ~Π a new compliance predicate,
by simply generating a key pair for it and signing the corresponding translation-step verification key.

13For comparison, [BCTV14a] consider the following special case: ~Π = (Π), ~inlen(Π)[j] = outlen(Π) for all j, and d = max-arity(Π).
Also note that, in this case, there are only two message types (namely, 0 and Π.type), which is why [BCTV14a] do not discuss message types, and
instead only distinguish between messages that are “base case” (of type 0) or not.

14And if ~Π[i] accepts only input messages of type 0, Cpcd,α,i does not need to include any circuits for proof or authentication path verification.
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MakePCDCircuitA( ~CH,Π,in, CH,Π,out, CSα→β , CVβ , CMERKLE,p,Π)

Set:
• nα := `H ; and
• hα := (1 + outlen(Π)) + loclen(Π) + 1 + `H +

∑max-arity(Π)
j=1

(
(1 + ~inlen(Π)[j]) + `vk,β + `π,β + `ap + 2

)
where

– `vk,β is the number of Frα -elements in a verification key vkβ (for inputs of nβ elements in Frβ ) relative to (Gβ , Pβ , Vβ),
– `π,β is the number of Frα -elements in a zk-SNARK proof πβ relative to (Gβ , Pβ , Vβ), and
– `ap is the number of Frα -elements in an authentication path for a Merkle tree with p leaves.

Output the Frα -arithmetic circuit Cpcd,α that, given input xα ∈ Fnαrα and witness aα ∈ Fhαrα , works as follows:
1. Parse the witness aα as (msg, loc, ~msgin, d,

~vkβ , rt, ~ap, ~πin, ~bres).
2. Check that msg.type = Π.type.
3. Check that 0 ≤ d ≤ max-arity(Π).
4. For j = 1, . . . , d:

(a) Check that CMERKLE,p(rt, ~πin[j].idx, Cbits( ~vkβ [j]), ~ap[j]) = ~bres[j].
(b) Compute xα,in,j := ~CH,Π,in[j](Cbits(rt‖ ~msgin[j].type‖ ~msgin[j].payload)) ∈ Fnαrα .

(c) Compute xβ,in,j := CSα→β (xα,in,j) ∈ Fnβ ·dlog rβe
rα .

(d) Check that CVβ
(
~vkβ [j], xβ,in,j , ~πin[j].proof

)
= ~bres[j].

(e) Check that ~bres[j] ∈ {0, 1} and ~msgin[j].type · (1− ~bres[j]) = 0 (i.e., either ~msgin[j] is a base-case message or its proof verified).
5. Check that xα = CH,Π,out(Cbits(rt‖msg.type‖msg.payload)).
6. Check that Π(msg, loc, ~msgin, d) accepts.

MakePCDCircuitB(pvkα, CSα←β , CV online
α

)

Set:
• nβ :=

⌈
nα·dlog rαe
blog rβc

⌉
; and

• hβ := `π,α where `π,α is the number of Frβ -elements in a zk-SNARK proof πα relative to (Gα, Pα, Vα).

Output the Frβ -arithmetic circuit Cpcd,β that, given input xβ ∈ Fnβrβ and witness aβ ∈ Fhβrβ , works as follows:
1. Parse the witness aβ as a zk-SNARK proof πα.

2. Compute xα := CSα←β (xβ) ∈ Fnα·dlog rαe
rβ .

3. Check that CV online
α

(
pvkα, xα, πα

)
= 1.

Figure 14: Construction of PCD circuits for our multi-predicate PCD system.
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PCD generator G
• INPUTS: a vector of p compliance predicates ~Π = (~Π[1], . . . , ~Π[p]), where each compliance predicate ~Π[i] is a Frα -arithmetic circuit
• OUTPUTS: a proving key pk and a verification key vk

1. Set nα := `H and nβ :=
⌈
nα·dlog rαe
blog rβc

⌉
.

2. Construct CSα→β , the Frα -arithmetic circuit implementing Sα→β : Fnαrα → F
nβ ·dlog rβe
rα .

3. Construct CSα←β , the Frβ -arithmetic circuit implementing Sα←β : F
nβ
rβ
→ Fnα·dlog rαe

rβ
.

4. Construct CVβ , the Frα -arithmetic circuit implementing Vβ for inputs of nβ elements in Frβ .

5. Construct C
V online
α

, the Frβ -arithmetic circuit implementing V online
α for inputs of nα elements in Frα .

6. Construct CMERKLE,p, the Frα -arithmetic circuit implementing MERKLE.CheckPath for depth dlog pe.
7. Allocate the proving key pk, consisting of:

(a) a Merkle tree root pk.rt; and
(b) four vectors of length p: pk. ~pkα, pk. ~pkβ , pk.~vkα, pk.~vkβ .

8. Allocate the verification key vk, consisting of:
(a) a Merkle tree root vk.rt; and
(b) one vector of length p: vk.~vkβ .

9. For i = 1, . . . , p, compute proving and verification keys for ~Π[i] as follows:
(a) Construct CH,~Π[i],out, the Frα -arithmetic circuit implementingH : {0, 1}∗ → F`Hrα formH,~Π[i],out-bit inputs.

(b) Construct ~CH,~Π[i],in, the vector of Frα -arithmetic circuits such that ~CH,~Π[i],in[j] implementsH : {0, 1}∗ → F`Hrα for ~mH,~Π[i],in[j]-bit inputs.

(c) Compute Cpcd,α,i := MakePCDCircuitA(~CH,~Π[i],in, CH,~Π[i],out, CSα→β , CVβ , CMERKLE,p, ~Π[i]).
(d) Compute (pkα,i, vkα,i) := Gα(Cpcd,α,i).
(e) Compute pvkα,i := V offline

α (pkα,i).
(f) Compute Cpcd,β,i := MakePCDCircuitB(pvkα,i, CSα←β , CV online

α
).

(g) Compute (pkβ,i, vkβ,i) := Gβ(Cpcd,β,i).

(h) Set pk. ~pkα[i] := pkα,i, pk. ~pkβ [i] := pkβ,i, pk.~vkα[i] := vkα,i, pk.~vkβ [i] := vkβ,i, vk.~vkβ [i] := vkβ,i.

10. Compute rt := MERKLE.GetRoot(~vkβ) and set pk.rt := rt, vk.rt := rt.
11. Output (pk, vk).

PCD prover P
• INPUTS:

– proving key pk

– index i? of the compliance predicate ~Π[i?] in ~Π, with respect to which compliance is proved

– output message msg ∈ F1+outlen(~Π[i?])
rα

– local data loc ∈ Floclen(~Π[i?])
rα

– arity d ∈ {0, . . . ,max-arity(~Π[i?])}
– d input messages ~msgin, each ~msgin[j] ∈ F1+ ~inlen(~Π[i?])[j]

rα
– d corresponding proofs ~πin (some entries may equal⊥, denoting that there is no prior proof)

• OUTPUTS: a PCD proof π for the output message msg as attested by ~Π[i?]

1. Compute xα := Hα(bits(pk.rt‖msg.type‖msg.payload)) ∈ Fnαrα and xβ := Sα→β(xα) ∈ F
nβ ·dlog rβe
rα , and parse xβ as lying in F

nβ
rβ

.

2. Let ~vkβ , ~ap and ~bres be three vectors with length d. For j = 1, . . . , d, do the following:
(a) If ~msgin[j].type 6= 0, set ~bres[j] := 1, set ~vkβ [j] := pk.~vkβ [~πin[j].idx], and compute ~ap[j] := MERKLE.GetPath(pk.~vkβ , ~πin[j].idx).
(b) If ~msgin[j].type = 0, set ~bres[j] := 0, and let ~vkβ [j] and ~ap[j] have arbitrary contents of the correct length.

3. Extend ~msgin from a vector of length d to a vector with length max-arity(~Π[i?]) using arbitrary padding. Do the same for ~πin, ~vkβ , ~ap, and ~bres. For
simplicity we denote the padded vectors also by ~msgin, ~πin, ~vkβ , ~ap, and ~bres.

4. Set aα := (msg, loc, ~msgin, d,
~vkβ , rt, ~ap, ~πin, ~bres) and compute πα := Pα(pk. ~pkα[i?], xα, aα).

5. Set aβ := (πα) and compute πβ := Pβ(pk. ~pkβ [i?], xβ , aβ).
6. Output a PCD proof π with π.idx := i?, π.proof := πβ .

PCD verifier V
• INPUTS:

– verification key vk
– message msg ∈ F∗rα
– proof π

• OUTPUTS: decision bit

1. Interpret π as a PCD proof with i := π.idx and πβ := π.proof.

2. Compute xα := Hα(bits(vk.rt‖msg.type‖msg.payload)) ∈ Fnαrα and xβ := Sα→β(xα) ∈ F
nβ ·dlog rβe
rα , and parse xβ as lying in F

nβ
rβ

.

3. Compute b := Vβ(vk.~vkβ [i], xβ , πβ) and output b.

Figure 15: Construction of a multi-predicate PCD system.
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7 Implementation

Our system. We built a system that implements our constructions. First, we implemented multi-predicate PCD,
providing interfaces for the PCD generator G, prover P, and verifier V; this realizes Step I (see Section 6). Next,
we used multi-predicate PCD to implement a distributed zk-SNARK for MapReduce, providing interfaces for the
zk-SNARK generator MR.KeyGen, prover MR.Prove, and verifier MR.Verify; this realizes Step II (see Section 5).

The prover in our implementation is itself a MapReduce computation, currently running on an ad-hoc MapReduce
implementation; integration with Hadoop [Had], an open-source MapReduce framework, is ongoing.
Integration with libsnark. We have integrated our code with libsnark [SCI], a C++ library for zk-SNARKs.

Our multi-predicate PCD provides an alternative to the single-predicate PCD that was already part of libsnark.
In fact, we have harmonized the two PCD interfaces: the object classes for a compliance predicate, messages, and
local data are shared across the two. In terms of concrete parameter choices, our multi-predicate PCD uses the two
zk-SNARKs (based on PCD-friendly 2-cycles of elliptic curves) that are also used in the single-predicate PCD.

Our distributed zk-SNARK for MapReduce provides an additional choice of proof system in libsnark. A
MapReduce pair (Map,Reduce) can be specified via the same “constraint formalism” used throughout libsnark
(i.e., rank-1 constraint systems), thereby facilitating the re-using and sharing of useful constraint systems.
Prototypical MapReduce example: word counting. For evaluation purposes (see Section 8), we wrote a MapReduce
pair (Map,Reduce) that implements the prototypical MapReduce application of word counting [DG04], whose goal
is to count the number of occurrences of each word in a text (or a collection of texts). Word counting can be cast
in the MapReduce framework, e.g., as follows. Each input record (k1, v1) represents a slice of, say, 100 words
of the document: the key k1 is the position of the slice in the document, and the value v1 is the list of words in
the slice. The mapper Mapwordcount, when invoked on an input record (k1, v1), emits a list of intermediate records(
(k2

1, v
2
1), . . . , (k2

` , v
2
` )
)
, with ` ≤ 100, denoting that the word k2

i appears v2
i times among the words in the slice v1.

The reducer Reducewordcount, when invoked on a particular word k2 and the vector of counts ~v2 for k2, emits the output
record (k3, v3) = (k2,

∑
i
~v2[i]), which reports the total number of occurrences of k2 in the collection of input records.
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8 Evaluation
We evaluated our system by using it to execute the MapReduce application of word counting (see Section 7).
Cost model for word counting. We ran our system on the word counting example, on our benchmarking system.
Each of the reported times represents a security level of 80 bits (libsnark’s default for PCD), and is relative to a
commodity compute node with a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of RAM available and utilizing all 4
cores. We chose the immortal introduction of Diffie and Hellman’s pioneering paper “New directions in cryptography”
[DH76], divided into slices of 100 words each, as the input to the MapReduce computation.

By analyzing our system’s components, we deduced a cost model of the prover’s runtime as a function of M , the
number of slices the document was divided into (corresponding to the number of mapper nodes), and R, the number
of distinct words in the document (corresponding to the number of reducer nodes):

M ·
(
ptime(ΠMap

exe ) + ptime(ΠMap
fmt ) + 2 · ptime(ΠMap

sum)
)

+R ·
(
ptime(ΠReduce

exe ) + ptime(ΠReduce
fmt ) + 2 · ptime(ΠReduce

sum )
)

+ptime(Πfin) .

The above costs have the following meaning, and the following measured values on our reference node:
• ptime(ΠMap

exe ) ≈ 9.3 s is the cost of proving execution of a mapper node;
• ptime(ΠReduce

exe ) ≈ 45.2 s is the cost of proving execution of a reducer node;
• ptime(ΠMap

fmt ) ≈ 13.6 s and ptime(ΠMap
sum) ≈ 14.2 s are the costs of proving aggregation of mapper nodes’ outputs;

• ptime(ΠReduce
fmt ) ≈ 13.8 s and ptime(ΠReduce

sum ) ≈ 14.3 s are the costs of proving aggregation of reducer nodes’
outputs; and

• ptime(Πfin) ≈ 14.3 s is the cost of proving successful comparison of the outputs of the two aggregations.
Extrapolating the cost model. Our cost model accurately characterizes the prover’s runtime for the word counting
example. When changing the input, the costs change as follows:

(i) the costs of ΠMap
fmt and ΠMap

sum remain fixed for all MapReduce computations;
(ii) the costs of ΠReduce

fmt , ΠReduce
sum and Πfin remain stable as they only exhibit a slight dependency on the length of

k2, but do not otherwise depend on the specific MapReduce computation;
(iii) the cost of ΠMap

exe changes depending on Nmax, the maximum number of mapper outputs, and Map’s cost.
The cost of ΠReduce

exe is dominated by the cost incurred by performing dmax
in proof verifications, each costing ≈ 90,000

gates.
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9 Conclusion
In this paper we studied the feasibility of cluster computing in zero knowledge, focusing on a concrete distributed
architecture: MapReduce. We designed, built, and evaluated a distributed zk-SNARK for proving the correctness of
MapReduce computations. Our approach relies on a new bootstrapping theorem for zk-SNARKs, which transforms
any zk-SNARK into a distributed zk-SNARK for MapReduce. Several open problems remain.

First, are there approaches to cluster computing in zero knowledge that do not rely on recursive proof composition?
This appears to be an interesting direction even without requiring proofs to be non-interactive and succinct.

Second, further reducing the concrete cost of running a PCD prover (beyond the speedup achieved by our multi-
predicate PCD) remains an important question. Fast PCD systems would find exciting applications not only to scalable
zero knowledge (as in [BCTV14a]) or distributed zero knowledge (as in this work), but also in many other settings
[CT10, CT12, CTV13].

Third, while MapReduce is useful for many distributed computations, it does not fit all. For some iterative compu-
tations (e.g., deep network training [DCMC+12]), more general architectures such as Spark [ZCFSS10, ZCDD+12]
and GraphLab [LGKB+12] are more suitable. It is an interesting question to explore to what extent one can push
“compliance engineering” (or, more generally, constructing distributed zero-knowledge proof systems) for other types
of parallel distributed computations.

Finally, exploring concrete applications is an interesting direction. Here, existing state-of-the-art circuit generators
that compile high-level languages, such as C, into arithmetic circuits can be used to obtain more complex instances of
Map and Reduce functions, which can then be plugged into our system.
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A Formal definition of (non-distributed) zk-SNARKs for MapReduce
We define zk-SNARKs for MapReduce; an informal definition appears in Section 3.1. A (non-distributed) zk-SNARK
for MapReduce is a tuple of polynomial-time algorithms

(COMM,MR.KeyGen,MR.Prove,MR.Verify)

where COMM is a commitment scheme and the other three algorithms satisfy the following properties.
Completeness. The honest prover can convince the verifier for any instance in the language. Namely, for every
security parameter λ, MapReduce pair (Map,Reduce), and instance-witness pair

(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce),

Pr

[
MR.Verify(vk, cm, y, πMR) = 1

∣∣∣∣ (pk, vk)← MR.KeyGen(1λ,Map,Reduce)
πMR ← MR.Prove(pk, cm, y, x, cr)

]
= 1 .

Succinctness. For every security parameter λ, MapReduce pair (Map,Reduce), and key pair (pk, vk) generated by
MR.KeyGen(1λ,Map,Reduce), (i) an honestly-generated proof πMR hasOλ(1) bits, and (ii) MR.Verify(vk, cm, y, πMR)
runs in time Oλ(|y|).
Proof of knowledge (and soundness). If the verifier accepts a proof for an instance, the prover “knows” a witness
for that instance. (Thus, soundness holds.) Namely, for every constant c > 0 and every polynomial-size adversary
A there is a polynomial-size witness extractor E such that, for every large-enough security parameter λ, for every
MapReduce pair (Map,Reduce) of size λc,

Pr

 MR.Verify(vk, cm, y, πMR) = 1(
(cm, y), (x, cr)

)
6∈ RCOMM

(Map,Reduce)

∣∣∣∣∣∣
(pk, vk)← MR.KeyGen(1λ,Map,Reduce)

(cm, y, πMR)← A(pk, vk)
(x, cr)← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge.15 Namely, there is a polynomial-
time stateful simulator S such that, for all stateful distinguishers D, the following probabilities are negligibly-close:

Pr

 (
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce)

D(πMR) = 1

∣∣∣∣∣∣∣∣
(Map,Reduce)← D(1λ)

(pk, vk)← MR.KeyGen(1λ,Map,Reduce)(
(cm, y), (x, cr)

)
← D(pk, vk)

πMR ← MR.Prove(pk, cm, y, x, cr)


and

Pr

 (
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce)

D(πMR) = 1

∣∣∣∣∣∣∣∣
(Map,Reduce)← D(1λ)

(pk, vk)← S(1λ,Map,Reduce)(
(cm, y), (x, cr)

)
← D(pk, vk)

πMR ← S(cm, y)

 .

15Perfect zero knowledge can be achieved at the expense of a negligible probability of error in the completeness property.
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B Formal definition of PCD with multiple predicates
We define multi-predicate PCD by giving syntactic and correctness properties of a multi-predicate PCD system; an
informal definition appears in Section 4. We assume familiarity with the notions of transcript and compliance (see
Section 4). A multi-predicate PCD system is a triple of polynomial-time algorithms (G,P,V) working as follows.

• G(1λ, ~Π) → (pk, vk). On input a security parameter λ (presented in unary) and a vector of compliance predicates
~Π, the key generator G probabilistically samples a proving key pk and a verification key vk. We assume, without
loss of generality, that pk contains (a description of) the vector ~Π.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify ~Π-
compliance of messages, as follows.

• P(pk,msg, loc, ~msgin, ~πin)→ π. On input a proving key pk, output message msg, local data loc, and input messages
~msgin with proofs ~πin, the prover P outputs a proof π for the statement “msg is ~Π-compliant”.

• V(vk,msg, π)→ b. On input a verification key vk, a message msg, and a proof π, the verifier V outputs b = 1 if he
is convinced by π that msg is ~Π-compliant.

The triple (G,P,V) satisfies the following properties.
Completeness. The honest prover can convince the verifier that the output of any compliant transcript is indeed
compliant. Namely, for every security parameter λ, vector of compliance predicates ~Π, and transcript generator TGen,

Pr

[
~Π(T) = OK

V
(
vk,msg, π

)
6= 1

∣∣∣∣ (pk, vk)← G(1λ, ~Π)
(T,msg, π)← ProofGen(pk,TGen)

]
= 0 .

Above, ProofGen(pk,TGen) denotes the following procedure: (i) let T be the transcript generated by TGen; (ii) let
TGen be the PCD meta-prover corresponding to TGen; (iii) let ~π be the proofs output by TGen(pk); (iv) let msg be
the lexicographically-first message in OUTS(T), and π the corresponding proof in ~π; (v) output (T,msg, π). In other
words, completeness requires that if T is ~Π-compliant then msg’s proof (which is the result of invoking P for each
message in T, as T was being constructed by TGen) is accepted by the PCD verifier V.
Succinctness. For every security parameter λ, vector of predicates ~Π, and (pk, vk) ∈ G(1λ, ~Π), (i) an honestly-
generated proof π has Oλ(1) bits, and (ii) V(vk,msg, π) runs in time Oλ(|msg|).
Proof of knowledge (and soundness). If the verifier accepts a proof for a message msg, the prover “knows” a
compliant transcript T with output msg. (Thus, soundness holds.) Namely, for every constant c > 0 and every
polynomial-size adversary A there is a polynomial-size witness extractor E such that, for every large-enough security
parameter λ, for every vector of compliance predicates ~Π of size λc,

Pr

 V(vk,msg, π) = 1(
msg 6∈ OUTS(T) ∨ ~Π(T) 6= OK

) ∣∣∣∣∣∣
(pk, vk)← G(1λ, ~Π)

(msg, π)← A(pk, vk)
T← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge.16 Namely, there is a polynomial-
time stateful simulator S such that, for all stateful distinguishers D, the following probabilities are negligibly-close:

Pr

 Φ = 1

∣∣∣∣∣∣∣∣
~Π← D(1λ)

(pk, vk)← G(1λ, ~Π)
(msg, loc, ~msgin, ~πin)← D(pk, vk)

π ← P(pk,msg, loc, ~msgin, ~πin)

 and Pr

 Φ = 1

∣∣∣∣∣∣∣∣
~Π← D(1λ)

(pk, vk)← S(1λ, ~Π)
(msg, loc, ~msgin, ~πin)← D(pk, vk)

π ← S(msg)

 .

Above, Φ = 1 if and only if: (i) there is Π ∈ ~Π such that Π(msg, loc, ~msgin) accepts; (ii) for each i ∈ {1, . . . , len( ~msgin)},
either ~msgin[j].type = 0 or V(vk, ~msgin[j], ~πin[j]) = 1; and (iii) D(π) = 1.

16Perfect zero knowledge can be achieved at the expense of a negligible probability of error in the completeness property.
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C Formal definition of preprocessing zk-SNARKs
The text of this definition is from [BCTV14a]. Given a field F, a preprocessing zk-SNARK [BCIOP13, BCCT13] for
F-arithmetic circuit satisfiability is a triple of polynomial-time algorithms (G,P, V ), with V deterministic, working
as follows.

• G(1λ, C) → (pk, vk). On input a security parameter λ (presented in unary) and an F-arithmetic circuit C, the
key generator G probabilistically samples a proving key pk and a verification key vk. We assume, without loss of
generality, that pk contains (a description of) the circuit C.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove/verify knowl-
edge of witnesses in the relation RC , as follows.

• P (pk, x, a) → π. On input a proving key pk and any (x, a) ∈ RC , the prover P outputs a non-interactive proof π
for the statement “there is a such that (x, a) ∈ RC”.

• V (vk, x, π) → b. On input a verification key vk, an input x, and a proof π, the verifier V outputs b = 1 if he is
convinced by π that there is a such that (x, a) ∈ RC .

The triple (G,P, V ) satisfies the following properties.
Completeness. The honest prover can convince the verifier for any instance in the language. Namely, for every
security parameter λ, F-arithmetic circuit C, and instance-witness pair (x, a) ∈ RC ,

Pr

[
V (vk, x, π) = 1

∣∣∣∣ (pk, vk)← G(1λ, C)
π ← P (pk, x, a)

]
= 1 .

Succinctness. For every security parameter λ, F-arithmetic circuit C, and (pk, vk) ∈ G(1λ, C), (i) an honestly-
generated proof π has Oλ(1) bits, and (ii) V (vk, x, π) runs in time Oλ(|x|).
Proof of knowledge (and soundness). If the verifier accepts a proof for an instance, the prover “knows” a witness
for that instance. (Thus, soundness holds.) Namely, for every constant c > 0 and every polynomial-size adversary
A there is a polynomial-size witness extractor E such that, for every large-enough security parameter λ, for every
F-arithmetic circuit C of size λc,

Pr

 V (vk, x, π) = 1
(x, a) /∈ RC

∣∣∣∣∣∣
(pk, vk)← G(1λ, C)

(x, π)← A(pk, vk)
a← E(pk, vk)

 ≤ negl(λ) .

Statistical zero knowledge. An honestly-generated proof is statistical zero knowledge.17 Namely, there is a polynomial-
time stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are negligibly-
close:

Pr

 (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣
C ← D(1λ)

(pk, vk)← G(1λ, C)
(x, a)← D(pk, vk)
π ← P (pk, x, a)

 and Pr

 (x, a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣
C ← D(1λ)

(pk, vk)← S(1λ, C)
(x, a)← D(pk, vk)

π ← S(x)

 .

17Perfect zero knowledge can be achieved at the expense of a negligible probability of error in the completeness property.
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D More details for the construction of ~ΠMR

We provide additional details for the construction of ~ΠMR = (ΠMap
exe ,Π

Reduce
exe ,ΠMap

fmt ,Π
Map
sum,Π

Reduce
fmt ,ΠReduce

sum ,Πfin).
While in Section 5.1 we consider only the (artificial) case where each mapper outputs a single phase-2 record, the
construction below also handles the case where each mapper may output multiple phase-2 records.

Furthermore, the construction below handles the extensions mentioned in Section 2.4.3: (a) a reducer may output
multiple phase-3 records; (b) a Map or Reduce function takes as additional input a set of parameters p; and (c) a Map or
Reduce function takes as additional input an auxiliary input z. The relation RCOMM

(Map,Reduce) is correspondingly modified
to comprise the pairs

(
(p, cm, y), (z, x, cr)

)
such that COMM.Ver(x, cm, cr) = 1 and y = [Mapp,z,Reducep,z](x).

In the figures below (Figure 16, Figure 17, Figure 18, Figure 19) we give pseudocode for the upgraded compliance
predicates in ~ΠMR. Beyond the ingredients already used in Section 2.4.3, we also use a collision-resistant function H .

ΠMap
exe(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 1.
3. Check that ~msgin[1].type = 0.
4. Parse ~msgin[1].payload as a tuple (cm, i, k1, v1) where:
• cm is a commitment (for the scheme COMM);
• i is an index;
• (k1, v1) is a phase-1 record.

5. Parse msg.payload as a tuple (sid, i′, N, ρ) where:
• sid is a session identifier;
• i′ is an index;
• N is a positive integer;
• ρ is a root (for the scheme MERKLE).

6. Parse loc as a tuple(
p, z, rt,M, cmz, crrt, crM , crz, ap, ((apl, k

2
l , v

2
l ))

N
l=1

)
where:
• p are MapReduce parameters;
• z is a MapReduce auxiliary input;
• rt is a commitment (for the scheme MERKLE);
• M is a positive integer;
• cmz is a commitment (for the scheme COMM∗);
• crrt, crM , crz are randomness (for the scheme COMM∗);
• ap, ap1, . . . , apN are authentication paths (for the scheme MERKLE);
• (k2

1, v
2
1), . . . , (k2

N , v
2
N ) are phase-2 records.

7. Check that sid = H(cm‖p‖cmz).
8. Check that i′ = i.
9. Check that 0 ≤ i < M .

10. Parse cm as a pair (cmrt, cmM ) where both components are commitments
for the scheme COMM∗.

11. Check that COMM∗.Ver(rt, cmrt, crrt) = 1.
12. Check that COMM∗.Ver(M, cmM , crM ) = 1.
13. Check that COMM∗.Ver(z, cmz, crz) = 1.
14. Check that MERKLE.CheckPath

(
rt, i, (k1, v1), ap

)
= 1.

15. For l = 1, . . . , N :
check that MERKLE.CheckPath

(
ρ, l, (k2

l , v
2
l ), apl

)
= 1.

16. Check that
(
(k2
l , v

2
l )
)N
l=1

= Mapp,z(k1, v1).

ΠReduce
exe (msg, loc, ~msgin)

1. Check that ~msgin[j].type = ΠMap
exe .type for each j.

2. Parse each ~msgin[j].payload as a tuple (sid′j , i
′
j , Nj , ρj) where:

• sid′j is a session identifier;
• i′j is an index;
• Nj is a positive integer;
• ρj is a root (for the scheme MERKLE).

3. Parse msg.payload as a tuple (sid′′, ρ, cmk2 , cmdin
) where:

• sid′′ is a session identifier;
• dout is a positive integer;
• ρ is a root (for the scheme MERKLE);
• cmk2 , cmdin

are commitments (for the scheme COMM∗).
4. Parse loc as a tuple(

p, z, crz, crk2 , crdin
, (lj , apin,j , k

2
j , v

2
j)
din
j=1, (apout,o, k

3
o, v

3
o)
dout
o=1

)
where:
• p are MapReduce parameters;
• z is a MapReduce auxiliary input;
• cmz is a commitment (for the scheme COMM∗);
• crk2 , crdin

are randomness (for the scheme COMM∗).
• l1, . . . , ldin

are indices;
• apin,1, . . . , apin,din

are authentication paths (for the scheme MERKLE);
• apout,1, . . . , apout,dout

are authentication paths (for the scheme MERKLE);
• (k2

1, v
2
1), . . . , (k2

din
, v2
din

) are phase-2 records;

• (k3
1, v

3
1), . . . , (k3

dout
, v3
dout

) are phase-3 records.
5. Check that sid′′ = H(cm‖p‖cmz).
6. Check that sid′′ = sid′j for each j.
7. Check that the (i′j , lj) are distinct, and let din be their number.

8. Check that all the k2
j ’s are equal, and set ~v2 := (v2

j)j .
9. Check that COMM∗.Ver(k2

1, cmk2 , crk2 ) = 1.
10. Check that COMM∗.Ver(din, cmdin

, crdin
) = 1.

11. For j = 1, . . . , din:
check that 0 ≤ lj < Nj and
check that MERKLE.CheckPath

(
ρj , lj , (k

2
j , v

2
j), apin,j

)
= 1.

12. For o = 1, . . . , dout:
check that MERKLE.CheckPath

(
ρ, o, (k3

o, v
3
o), apout,o

)
= 1.

13. Check that
(
(k3
o, v

3
o)
)dout
o=1

= Reducep,z(k2
1,
~v2).

Figure 16: Summary of the construction of ΠMap
exe and ΠReduce

exe .
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ΠMap
fmt(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 1.
3. Check that ~msgin[1].type = ΠMap

exe .type.
4. Parse ~msgin[1].payload as a tuple (sid, i, N, ρ) where:
• sid is a session identifier;
• i is an index;
• N is a positive integer;
• ρ is a root (for the scheme MERKLE).

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (sid′, a⊥, a>, b, c) where:
• sid′ is a session identifier;
• a⊥, a>, b, c are positive integers.

7. Check that sid′ = sid.
8. Check that a⊥ = a> = i.
9. Check that b = 1.

10. Check that c = N .

ΠReduce
fmt (msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 1.
3. Check that ~msgin[1].type = ΠReduce

exe .type.
4. Parse ~msgin[1].payload as a tuple (sid, ρ, cmk2 , cmdin

) where:
• sid is a session identifier;
• ρ is a root (for the scheme MERKLE);
• cmk2 , cmdin

are commitments (for the scheme COMM∗).
5. Parse loc as a tuple (k2, din, crk2 , crdin

), where:
• k2 is a phase-2 key;
• din is a positive integer;
• crk2 , crdin

are randomness (for the scheme COMM∗).
6. Parse msg.payload as a tuple (sid′, a⊥, a>, b, c) where:
• sid′ is a session identifier;
• a⊥, a>, b, c are positive integers.

7. Check that sid′ = sid.
8. Check that COMM∗.Ver(k2, cmk2 , crk2 ) = 1.
9. Check that COMM∗.Ver(din, cmdin

, crdin
) = 1.

10. Check that a⊥ = a> = k2 (after converting k2 to a positive integer).
11. Check that b = 1.
12. Check that c = din.

Figure 17: Summary of the construction of ΠMap
fmt and ΠReduce

fmt .

ΠMap
sum(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that each ~msgin[j].type lies in {ΠMap

fmt.type,ΠMap
sum.type}.

4. Parse each ~msgin[j].payload as a tuple (sidj , a
⊥
j , a

>
j , bj , cj) where:

• sidj is a session identifier;
• a⊥j , a

>
j , bj , cj are positive integers.

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (sid, a⊥, a>, b, c) where:
• sid is a session identifier;
• a⊥, a>, b, c are positive integers.

7. Check that sid = sid1 = sid2.
8. Check that a>1 < a⊥2 , a⊥ = a⊥1 , a> = a>2 .
9. Check that b = b1 + b2.

10. Check that c = c1 + c2.

ΠReduce
sum (msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that each ~msgin[j].type lies in {ΠReduce

fmt .type,ΠReduce
sum .type}.

4. Parse each ~msgin[j].payload as a tuple (sidj , a
⊥
j , a

>
j , bj , cj) where:

• sidj is a session identifier;
• a⊥j , a

>
j , bj , cj are positive integers.

5. The local data loc is not used; ignore it.
6. Parse msg.payload as a tuple (sid, a⊥, a>, b, c) where:
• sid is a session identifier;
• a⊥, a>, b, c are positive integers.

7. Check that sid = sid1 = sid2.
8. Check that a>1 < a⊥2 , a⊥ = a⊥1 , a> = a>2 .
9. Check that b = b1 + b2.

10. Check that c = c1 + c2.

Figure 18: Summary of the construction of ΠMap
sum and ΠMap

sum.

Πfin(msg, loc, ~msgin)

1. Let d be the number of input messages in ~msgin.
2. Check that d = 2.
3. Check that ~msgin[1].type ∈ {ΠMap

fmt.type,ΠMap
sum.type}.

4. Check that ~msgin[2].type ∈ {ΠReduce
fmt .type,ΠReduce

sum .type}.
5. Parse each ~msgin[j].payload as a tuple (sidj , a

⊥
j , a

>
j , bj , cj) where:

• sidj is a session identifier;
• a⊥j , a

>
j , bj , cj are positive integers.

6. Parse the local data loc as a tuple (cm, p, cmz,M, crM ) where:
• cm is a commitment (for the scheme COMM);
• p are MapReduce parameters;
• cmz is a commitment (for the scheme COMM∗);
• M is a positive integer;
• crM is randomness (for the scheme COMM∗).

7. Parse msg.payload as a tuple (sid, R) where:
• sid is a session identifier;
• R is a positive integer.

8. Check that sid = sid1 = sid2.
9. Check that sid = H(cm‖p‖cmz).

10. Parse cm as a pair (cmrt, cmM ) where both components are commitments
for the scheme COMM∗.

11. Check that COMM∗.Ver(M, cmM , crM ) = 1.
12. Check thatM = b1.
13. Check thatR = b2.
14. Check that c1 = c2.

Figure 19: Summary of the construction of Πfin.
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E More details for the construction of MR.Prove

The construction of MR.Prove in Section 5.2 uses the compliance engineering result of Section 5.1 as a black box. For
additional intuition, we sketch here the construction of MR.Prove in terms of the compliance predicates constructed
in Theorem 5.2’s proof; as in Section 5.1, we focus, for simplicity, on the (artificial) case where each mapper outputs
a single phase-2 record. As in the proof, ~ΠMR equals the vector (ΠMap

exe ,Π
Reduce
exe ,ΠMap

fmt ,Π
Reduce
fmt ,ΠMap

sum,Π
Reduce
sum ,Πfin).

On input a proving key pk, an instance (cm, y), and a witness (x, cr), the prover MR.Prove computes a non-
interactive proof πMR for the statement “I know (x, cr) such that

(
(cm, y), (x, cr)

)
∈ RCOMM

(Map,Reduce)” as follows.

1. Initialization.
• Parse pk as (Map,Reduce, pkpcd), where (Map,Reduce) is a MapReduce pair and pkpcd a PCD proving key.
• Set rt to be the root of a Merkle tree on x: rt := MERKLE.GetRoot(x). Let api be the authentication path for xi.
• Set M to be the number of records in the input x: M := len(x).
• Parse cm as (crrt, crM ), where crrt and crM are commitments for the scheme COMM∗.
• Allocate six empty lists: LMap, LShuffle, LReduce, Lproof , L1, and L2.

2. Prove correctness of execution of all mapper nodes.
For each i ∈ {1, . . . ,M}, prove that Map executes correctly when given the i-th phase-1 record xi = (k1, v1), as follows.
• Compute Map’s outputs: (k2, v2) = Map(k1, v1).
• Construct inputs for the predicate ΠMap

exe (see Figure 8):

– The (single) input message is msgin

{
.type := 0

.payload := (cm, i, k1, v1)
.

– The output message is msgout

{
.type := ΠMap

exe .type

.payload := (cm, i, k2, v2)
.

– The local data loc is (rt,M, crrt, crM , api).
• Set πin := ⊥. (The message msgin has no associated proof because it has type 0.)
• Use the PCD prover P to prove that msgout is ~ΠMR-compliant: π := P(pk,msgout, loc, (msgin), (πin)).
• Append (msgout, π) to LMap.
• Append (i, k2, v2, π) to LShuffle.

3. Prove correctness of execution of all reducer nodes.
For each unique phase-2 key k2 in LShuffle, prove that Reduce executes correctly, as follows.
• Let (ij , k

2, v2
j , πj)

din
j=1 be the list of tuples in LShuffle that share the same key k2.

• Compute Reduce’s outputs: (k3, v3) = Reduce(k2, (v2
j)
din
j=1).

• Generate a commitment to k2: (cmk2 , crk2 ) := COMM∗.Gen(k2).
• Generate a commitment to din: (cmdin , crdin ) := COMM∗.Gen(din).
• Construct inputs for the predicate ΠReduce

exe (see Figure 8):

– The input messages are ~msgin where, for each j ∈ {1, . . . din}, ~msgin[j]

{
.type := ΠMap

exe .type

.payload := (cm, ij , k
2
j , v

2
j)

.

– The output message is msgout

{
.type := ΠReduce

exe .type

.payload := (cm, k3, v3, cmk2 , cmdin )
.

– The local data loc is (crk2 , crdin ).
• Collect the proofs for the input messages: ~πin := (πj)

din
j=1.

• Use the PCD prover P to prove that msgout is ~ΠMR-compliant: π := P(pk,msgout, loc, ~msgin, ~πin).
• Append (msgout, π) to LReduce.
• Append π to Lproof , cmk2 to L1, and cmdin to L2.

4. Prove correctness of aggregation of mapper nodes’ outputs.
The messages in LMap are pairwise aggregated via a binary tree with these messages as leaves. The aggregation consists of two
parts: reformatting the leaves through ΠMap

fmt , and then pairwise aggregating internal nodes, one layer at a time, through ΠMap
sum.

Part 1: reformat leaves via ΠMap
fmt. Recall that LMap =

(
(msgi, πi)

)M
i=1

and each message msgi has payload (cm, i, k2
i , v

2
i ).

Initialize Lnext-layer to be an empty list, and perform the following steps for each i ∈ {1, . . . ,M}.
• Construct inputs for the predicate ΠMap

fmt (see Figure 11):
– The input messages are ~msgin := (msgi).
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– The output message is msgout

{
.type := ΠMap

fmt .type

.payload := (cm, i, i, 1, 1)
.

– The local data loc is empty (it equals ⊥).
• Collect the proofs for the input messages: ~πin := (πi).
• Use the PCD prover P to prove that msgout is ~ΠMR-compliant: π := P(pk,msgout, loc, ~msgin, ~πin).
• Append (msgout, π) to Lnext-layer.
Part 2: aggregate internal nodes via ΠMap

sum. While Lnext-layer contains more than one pair, process adjacent pairs in Lnext-layer

as follows. Set Lcur-layer := Lnext-layer and clear Lnext-layer; recall that the i-th message msgi in Lcur-layer has payload (cm, a⊥i , a
>
i ,

bi, ci). For each i ∈ {1, . . . , dlen(Lcur-layer)/2e}, execute the following.
• If 2i ≤ len(Lcur-layer), process the (2i− 1)-th and (2i)-th message-proof pairs in Lcur-layer.

– Construct inputs for the predicate ΠMap
sum (see Figure 12):

– The input messages are ~msgin := (msg2i−1,msg2i).

– The output message is msgout

{
.type := ΠMap

sum.type

.payload := (cm, a⊥2i−1, a
>
2i, b2i−1 + b2i, c2i−1 + c2i)

.

– The local data loc is empty (it equals ⊥).
– Collect the proofs for the input messages: ~πin := (π2i−1, π2i).
– Use the PCD prover P to prove that msgout is ~ΠMR-compliant: π := P(pk,msgout, loc, ~msgin, ~πin).

• If 2i > len(Lcur-layer), forward the leftover (2i− 1)-th pair in Lcur-layer, by setting (msgout, π) := (msg2i−1, π2i−1).
• Add (msgout, π) to Lnext-layer.
When the above loop terminates, there is a single message-proof pair in Lnext-layer; denote it by (msgMap

sum , π
Map
sum ).

5. Prove correctness of aggregation of mapper nodes’ outputs.
The messages in LReduce are pairwise aggregated via a binary tree with these messages as leaves. Similarly to Step 4, the
aggregation consists of two parts: reformatting the leaves through ΠReduce

fmt , and then pairwise aggregating internal nodes, one
layer at a time, through ΠReduce

sum . There are only small differences from Step 4: leaf messages contain the commitments cmk2

and cmdin (and ΠReduce
fmt is responsible for ensuring the correctness of their decommitted values), and internal messages maintain

not one but two partial sums (counting the number of distinct keys k2, as well as the sum of all din). Overall, the computation of
the final message-proof pair (msgReduce

sum , πReduce
sum ) is quite similar to Step 4, and thus we do not spell out the details.

6. Prove that the results of the two aggregations are consistent.
Prove that msgMap

sum (aggregating messages in LMap) and msgReduce
sum (aggregating messages in LReduce) are consistent. Consistency

of these two implies that all mappers’ outputs have been correctly shuffled and then processed by reducers.
• Construct inputs for the predicate Πfin (see Figure 13).

– The input messages are ~msgin := (msgMap
sum ,msgReduce

sum ).

– The output message is msgout

{
.type := Πfin.type

.payload := (cm, len(y))
.

– The local data loc is (M, crM ).
• Collect the proofs for the input messages: ~πin := (πMap

sum , π
Reduce
sum ).

• Use P to prove that msgout is ~ΠMR-compliant: πfin := P(pk,msgout, loc, ~msgin, ~πin).
7. Construct the final proof.
• Set πMR := (Lproof ,L1,L2, πfin) and output πMR.

Note that MR.Prove consist of: (i) a MapReduce computation of complexity similar to the MapReduce computation
being proved (handling Step 2 and Step 3); (ii) a small number of cheap MapReduce computations to prove the
correctness of aggregation for mapper and reducer nodes’ outputs (handling Step 4 and Step 5); and (iii) a simple local
computation (handling Step 6). Overall, one can see that MR.Prove is indeed (Map,Reduce)-complexity-preserving.

Remark E.1. As described above, MR.Prove proves compliance over a (distributed-computation) transcript T having
the following output messages OUTS(T):

msg0

{
.type := Πfin.type

.payload := (cm, len(y))
and, for each i ∈ {1, . . . , len(y)}, msgi

{
.type := ΠReduce

exe .type

.payload := (cm, yi,L1,i,L2,i)
.

These output messages are slightly different than what required by (cm, y)-compatibility, because each msgi addition-
ally contains L1,i and L2,i (cf. Definition 5.1). Because both are commitments, the difference does not affect security;
we use these merely for improved efficiency (and could eliminate them if needed, by introducing len(y) new nodes to
the distributed computation, each responsible for dropping the extra terms from a message).
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