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Abstract. The general concept of Physically Unclonable Functions
(PUFs) has been nowadays widely accepted and adopted to meet the
requirements of secure identification and key generation/storage for cryp-
tographic ciphers. However, shattered by different kinds of attacks, it has
been proved that the promised security features of arbiter PUFs, includ-
ing unclonability and unpredictability do not hold unconditionally. It has
been stated in the literature that arbiter PUFs can be broken by launch-
ing modeling attacks, i.e., applying machine learning methods. In this
case, a large set of Challenge-Response Pairs (CRP) is collected by an
attacker, aiming at mathematically modeling the Challenge-Response be-
havior for a given arbiter PUF. However, the success of all existing mod-
eling attacks rests so far on pure trial and error estimates. This means
that neither the probability of obtaining a useful model (confidence), nor
the maximum number of required CRPs, nor the correct prediction of
an unknown challenge (accuracy) is guaranteed at all. To address these
issues, this work will present a Probably Approximately Correct (PAC)
learning algorithm. This proves that learning of any arbiter PUF for pre-
scribed levels of accuracy and confidence can be done in polynomial time.
Based on some crucial discretization process, we are able to define a De-
terministic Finite Automaton (of polynomial size), which exactly accepts
that regular language that corresponds to the challenges mapped by the
given PUF to one responses. We also prove that the maximum required
number of CRPs is polynomial in the number of arbiter stages. A further
analysis reveals that this maximum number of CRPs is also polynomial
in the maximum deviation of the arbiter delays as well as the pre-defined
levels of accuracy and confidence. To the best of our knowledge this is the
first algorithm which can provably learn an arbitrary arbiter PUF. More-
over, our proof of the PAC learnability of arbiter PUFs gives many new
insights into the correct construction of secure arbiter PUFs in general.
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1 Introduction

Physically Unclonable Functions (PUFs), as introduced by Gassend et al. [6],
have attracted a great deal of research interest due to their potential enhance-
ment of numerous applications. These applications are ranging from hardware



fingerprinting and authentication [27, 31] to secure storage for encryption mech-
anisms [13, 28]. Arbiter PUFs are one type of PUF instantiations [15], where
the core idea is to exploit the delay differences between symmetrically designed
electrical paths on a silicon chip to generate a somehow random but unique
response [12].

Similar to all kind of PUFs, unclonability and unpredictability are the main
requirements of the arbiter PUF family [3, 23]. However, contrary to these basic
requirements, previous work in the literature introduced different successful at-
tacks on arbiter PUFs. The attacks on arbiter PUFs can be classified into two
categories: side channel attacks and modeling (i.e., machine learning) attacks.
The former type of attack uses the side channel information, such as photonic
emissions and electromagnetic radiations, to physically characterize an arbiter
PUF [30, 5, 4]. On the other hand, modeling attacks require only a subset of
Challenge-Response Pairs (CRPs) to build a mathematical model of the arbiter
PUF, which later can predict the response of that arbiter PUF with some prob-
ability [12, 25]. As being non-invasive, modeling attacks can be more cost and
time effective in comparison to side channel attacks.

Although an increase in the number of PUF stages or the addition of non-
linearity to the PUF response can reduce the effectiveness of modeling attacks [13,
29], by using extra side channel information and utilizing more advanced machine-
learning tools (i.e., requiring a larger subset of CRPs) an attacker can still break
the security of such arbiter PUFs [26, 16]. It has been verified experimentally
that the number of CRPs required for a successful attack increases exponen-
tially with the number of stages [16]. This raises the natural question to what
preciseness an attacker in general can model an arbiter PUF with an arbitrary
number of stages. In other words, how many CRPs are really required to model
the PUF for given levels of accuracy and final model delivery confidence. Unfor-
tunately, this issue has not been solved at all in the literature so far and thus
modeling attacks rely only on trial and error or heuristic approaches.

In this paper we present a novel well-defined mathematical representation
of arbiter PUFs. Based on this representation, we introduce a polynomial-time
learning algorithm that provably learns the challenge-response behavior of an
arbitrary arbiter PUF for given levels of accuracy and confidence. We will show
how the levels of accuracy and confidence of a model are related to the number
of collected CRPs and the number of stages of an arbiter PUF, as well as the
maximum variation of delay values. In contrast to what has been claimed in
the literature so far, we will prove that the maximum number of CRPs required
for the attack is polynomial in the number of stages. Finally, we evaluate the
time complexity of our learning algorithm and prove that it is polynomial in the
length of a given arbiter PUF, its maximum variation of delays and levels of
accuracy and confidence. The main contributions of this paper are as follows:

A learning algorithm for prescribed levels of accuracy and con-
fidence. Based on a new mathematical representation for arbiter PUFs, we
introduce a learning algorithm, which is able to model the PUF for given levels
of accuracy and confidence. The proposed algorithm can be applied to break



the security of different types of arbiter PUFs, including non-linear PUFs (e.g.,
XOR arbiter PUFs).

Discretization of real-valued delay values. Our mathematical represen-
tation is based on defining a set of proper integer delay values that, at first
glance, are contrary to the real delay values, which can be observed on a chip.
However, we will first explain that the statistical relevant delay values of an ar-
biter PUF are distributed in a limited interval. Secondly, it will be demonstrated
how we can discretize the different delay values with regard to the limited preci-
sion of the arbiter placed at the end of its respective chain. Finally, due to these
facts, we present a mapping between these discrete delay values to a fitting set
of integer values.

Calculation of the maximum number of CRPs required for our new
attack. In order to learn the challenge-response behavior of an arbiter PUF for
given levels of accuracy and confidence, we prove that the maximum number
of CRPs required for launching our attack is polynomial in the length of an
arbiter PUF. Besides that, the impact of the limited variation of the delays on
the learnability of an arbiter PUF is also discussed.

Evaluation of the time complexity of the new attack. Finally, we will
evaluate the time complexity of our learning algorithm. Our proofs reveal that
the running time of the proposed learning algorithm is polynomial in the length
of the given arbiter PUF, the maximum variation of delays and the given levels
of accuracy and confidence.

2 Notation and preliminaries

This section provides basic background and notations required to understand the
present paper. Particular emphasis is given to arbiter PUFs, regular languages,
DFAs, and PAC learning. Unfortunately, all these different fields have their own
established nomenclature which we kept in each of the following sections for the
sake of simplicity. However, since our framework covers all these individual fields,
caution and flexibility regarding the notations used in more than one fields are
required by the reader.

2.1 Arbiter PUFs

PUFs are physical input to output mappings, which are most often entangled
with the intrinsic silicon properties of a chip. The input and output of a PUF
are called challenge and response, respectively. A PUF can be described by
the function fPUF : C → Y where fPUF(c) = y, C = {0,1}n being the set of
challenges, and Y = {0,1} the set of responses, c.f. [15]. PUFs in general have
a set of crucial properties, including being evaluable, unique, unclonable, and
one-way, c.f. [15].

Arbiter PUFs are one of the major classes of the PUFs. An arbiter PUF
consists of multiple switch blocks, so called stages, connected in a chain that
ends in an arbiter, see Figure 2. In our notation, n is the number of stages of an



Fig. 1: Schematic of an arbiter-PUF

arbiter PUF under consideration. A challenge is a string c = c[1] · · · c[n] of n bits,
where each bit (e.g., c[i]) is fed into a single stage (e.g., ith stage). The signal
propagates through the direct paths inside the ith stage if c[i] = 0, otherwise the
crossed paths are utilized. Let Bi denote a random variable related to the delay
within the ith stage. The realizations of the variables Bi in an arbiter PUF are
certain βi,1, βi,2, βi,3, and βi,4. Here βi,1 and βi,2 are the delays of the upper
and lower direct paths in the ith stage, respectively, see Figure 2. On the other
hand, the delays of the upper and lower crossed paths in the ith stage are βi,3
and βi,4, respectively. Bi follows a Gaussian distribution with the mean µi and
the deviation ωi, cf. [24].

We define Ai as a random variable which corresponds to the total delay
between the enable point and the outputs of the ith stage of the PUF. Following
the linear additive model of the arbiter PUF, cf. [12], we have

Ai =
∑i
k=1 Bk.

The realizations of the partial sums Ai at the outputs of the ith stage are denoted
by αi,j , where j represents the upper and lower output (i.e., j = 1 for upper and
j = 2 for lower output), see Figure 2. The arbiter at the end of the PUF chain
has a precision γ > 0, and compares the arrival times of signals on the upper
and lower paths (i.e., αn,1 and αn,2). More formally, we assume that the output
of the arbiter is “1” if αn,1 − αn,2 > γ, whereas it is “0” if αn,2 − αn,1 > γ.
The metastable condition, where |αn,1 − αn,2| < γ, will be discussed later in
Section 5. Finally, in order to take into account the impact of different path
configurations for αn,1 and αn,2, we define the single bit

ui =
i⊕

k=1

c[k]

related to the history of the paths that the signal follows.

2.2 Regular Language and Principles of DFAs

We assume that the reader is familiar with regular languages and Deterministic
Finite Automata (DFA). Therefore, we will only briefly recall the notations,
which will be used throughout this paper. We follow the standard notation, as
found in [1] and [9]. Consider the alphabet Σ = {0,1} and the set of all strings



Σ∗ over Σ. By |c| we denote the length of strings c ∈ Σ∗, and by λ the empty
string of length |λ| = 0.

A DFA A is given by A = (Q, δ,Σ, q0, F ) over the alphabet Σ, with Q
being the set of states, the initial state q0, and the accepting states F ⊆ Q.
The transition function δ : Q × Σ → Q is defined as follows. For all q ∈ Q,
a ∈ Σ and c ∈ Σ∗ we have δ(q, λ) = q and its canonical continuation to Σ∗, i.e.,
δ(q, ac) = δ(δ(q, a), c). The set of strings accepted by A is called its accepted
language L(A) := {c ∈ Σ∗ | δ(q0, c) ∈ F}, i.e., a regular language. A state qi
is live, if there exist c1, c2 ∈ Σ∗ such that c1c2 ∈ L(A) with δ(q0, c1) = qi and
δ(qi, c2) ∈ F . Otherwise, qi is called dead.

2.3 The PAC Model

The idea of the PAC (Probably Approximately Correct) model is that successful
learning of an unknown target should yield, with high probability, a hypothesis
that is a good approximation of the unknown target. In order to describe this
idea more precisely, we recall now the basic definitions of the PAC model. For a
more thorough introduction into this model and the PAC learning framework,
the reader is referred to the excellent textbook [11].

Let Cn be a target concept class over the instance space Xn = {0, 1}n, and
let X = ∪n≥1Xn and C = ∪n≥1Cn. Hn as the hypothesis space and H are
defined similarly. The notion of approximation is defined by assuming that there
is an arbitrary probability distribution D on the instance space Xn, giving the
probability of each instance. We then define the error of a hypothesis h ∈ H
with respect to a fixed target concept c ∈ C, denoted by error(h), as

error(h) :=
∑
x∈h4cD(x),

where4 is the symmetric difference. The concept class C is called PAC learnable
by the hypothesis space H if there exists a polynomial time algorithm L and
a polynomial p(·, ·, ·) such that for all n ≥ 1, all target concepts c ∈ Cn, all
distributions D on the instance space Xn, and all ε and δ, with 0 < ε, δ < 1, the
following holds. If the algorithm L is given at least p(n, 1/ε, 1/δ) independent
random samples of c drawn according to D, then with probability at least 1− δ
the algorithm L returns a hypothesis h ∈ Hn such that error(h) ≤ ε. The
smallest polynomial p is called the sample complexity of L. With respect to C
and H, two cases are interesting. The first is, where C = H. In this case we
say that C is properly PAC learnable. On the other hand, although the other
case seems to be obvious, it should be more carefully considered. Indeed, if C
is a concept class and there exists a hypothesis class H such that: a) H can be
evaluated on given instances in polynomial time, and b) C is PAC learnable by
H, then we eventually say that C is PAC learnable.

2.4 PAC Learning of a Regular Language

It has been proven by Angluin [1] that regular languages are PAC learnable
by DFAs. A DFA (as defined above) is one possible representation of a regular
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Fig. 2: The distribution of Bi (blue) with the mean µ and deviation ω. Four ex-
amples of possible realization of Bi are βi,1, βi,2, βi,3, and βi,4, which correspond
to four delays at the ith stage. The distribution of total propagation delay from
the enable point to the outputs of last stage in an arbiter PUF with length n
(red), with mean nµ and deviation

√
nω.

language (i.e., the target concept) that can be learned by Angluin’s algorithm.
The learning algorithm proposed in [1] efficiently learns an unknown regular set
from an adequate teacher. For an arbitrary conjecture, the original algorithm
calls the teacher to query whether the conjecture is correct. In the case that it
is not correct, the teacher provides a counterexample.

Of crucial importance for our purposes is the fact that Angluin also proved
that her original algorithm can be modified to obtain an algorithm for PAC
learning regular languages. In this case, instead of providing counterexamples
to the learning algorithm, it gets access to an Oracle EX, providing labelled
examples. For a given input c the oracle EX : Σ∗ → Σ returns a label p(c)
identifying whether the string c belongs to the regular language L under consid-
eration. Hence for all c ∈ L, we have p(c) = 1, and otherwise p(c) = 0. A labeled
example is the pair (c, p(c)) and the set of positive examples (i.e., p(c) = 1) is
denoted by S1, whereas the set of negative examples is S0.

3 Representing Arbiter PUFs by DFAs

In this section we will derive a polynomial-sized representation of arbiter PUFs
by DFAs. To this end, we first show how the real delay values of an arbiter PUF
can be mapped to a finite set of integer values. On the basis of this mapping, we
introduce a DFA-based representation of an arbiter PUF.

3.1 Discretization Process of Delay Values

As mentioned before, the delay differences in the stages of an arbiter PUF are
caused by variations in the manufacturing processes. It has been shown that
Bi (the aforementioned random variable describing the delay of the ith stage)



follows a Gaussian distribution, c.f. [24]. Thus, Bi ∼ N(µi,ωi) and its Probability
Density Function (PDF) fBi

(βi) is given by

fBi
(βi) = 1

ωi

√
2π
e−(βi−µi)

2/2ω2
i .

The mean µi is often reported by manufactures as the nominal propagation
delay of the utilized multiplexer, and the standard deviation ωi is caused by
the variations in the manufacturing process, c.f. [20]. As 99.7% of a gaussian
distribution lie within the range of three standard deviation away from the mean
value, the realizations of the Bi for the ith stage (i.e., βi,1, βi,2, βi,3, and βi,4)
are drawn from an interval, whose length is 6ω, see Figure 2.

By the additive linear model of the arbiter PUF we have Ai =
∑i
k=1 Bi,

where Ai is the random variable, which shows the total propagation delays at
the outputs of the ith stage. Therefore, the PDF of the total propagation delays
at the outputs of each stage are the convolution of all PDFs of the previous
stages [21], i.e., fAi

(αi) = fBi
(βi) ∗ fBi−1

(βi−1) ∗ · · · ∗ fB1
(β2) ∗ fB1

(β1). As all
delays on each stage follow the normal distribution, Ai also follows the normal
distribution. Hence, in an arbiter PUF of length n, if we assume that µ1 = µ2 =
· · · = µn = µ and ω1 = ω2 = · · · = ωn = ω, we can write

fAi
(αi) = 1

iω
√

2π
e−(αi−iµ)2/2iω2

.

As a result, the random variable An, corresponding to the total propagation
delays until the last stage, will have the mean nµ and the standard deviation√
nω, see Figure 2. Therefore, we can assume that all statistically relevant delay

values will lie in a limited interval, whose length is 6
√
nω (i.e. within three

standard deviation away from the mean value nµ).
It is obvious that the delay differences are real numbers. However, the arbiter

at the end of the chain provides only a limited precision in terms of comparing
the total propagation delays of two paths [18]. Hence, it can compare two signals
with delay differences only above a certain threshold, say γ > 0. As a result, the
actual number of different delay values, which can be observed and compared
by the arbiter are limited to

M =
⌈

6
√
nω
γ

⌉
.

Due to this fact, all propagation delays at the output of each stage (i.e., αi,j ,
where 0 ≤ i ≤ n and 1 ≤ j ≤ 2) can be mapped to integer values between 0
and M , corresponding to the minimum and maximum real values, respectively.
The mapped values are denoted by αi,j , and therefore, we have αi,j ∈ Z. In this
case, the response of the arbiter is “1” if αn,1 − αn,2 > 1, whereas it is “0” if
αn,2 − αn,1 > 1. The arbiter is in the metastable condition, if |αn,1 − αn,2| = 0.

3.2 Building a DFA out of an Arbiter PUF

According to the definition of a PUF, as presented in Section 2.1, it seems tempt-
ing to represent PUFs by boolean functions. However, being physical instances,



boolean functions cannot concisely capture the physical characteristics of a PUF.
Still, we can evaluate a PUF in polynomial time (see Section 2.1). However, in
order to PAC-learn the intrinsic challenge-response behavior of a given PUF, a
polynomial-size representation of its behavior is required. Therefore, we aim to
derive such a concise representation that can be used in a second step to pro-
vide a PAC-learning algorithm, which works in polynomial time and learns the
unknown challenge-response behavior of an arbiter PUF for predefined levels of
accuracy and confidence.

Consider a PUF, whose challenge-response functionality is given by the map-
ping fPUF : C → Y where fPUF(c) = y, C is the set of challenges, and Y is the
set of responses, c.f. [15]. For an arbiter PUF we of course have C = {0,1}n
and Y = {0,1}. Let us define LfPUF

:= {c ∈ C | fPUF(c) = 1}. We have
LfPUF

⊆ {0,1}n ⊆ Σ∗, where Σ = {0,1}. Hence, LfPUF
can be thought as being

the accepted language of a certain automaton. It accepts those strings c ∈ C,
whose length is n and fPUF (c) = 1.

In order to build an automaton A, we will use the notation of the “integer”
PUF propagation delays αi,j , see Section 3.1. See Figure 3 for the central idea
of our automaton construction. After reading the first challenge bit applied to
the first stage, A transits from q0 (the initial state) to either q1,1 or q1,2, de-
pending on whether c[1] = 0 or c[1] = 1. Here q1,1 and q1,2 correspond to tuples
((α1,1, α1,2), u1, i = 1), where the first elements of them are ordered pairs of
possible delays at the output of the first stage. Note that due to the physical
characteristics of the arbiter PUF — after the signal propagated through either
the direct or crossed path — two different pairs of delays will be obtained. These
two pairs are included in q1,1 and q1,2. The second element of these tuples is u1

which “memorizes” the first ith bits of the challenge, for the first stage we have
i = 1 and thus, u1 = c[1]. Finally, the third element of these tuples represents the
depth in which the respective nodes are, e.g., i = 1 for q1,1 and q1,2. This com-
ponent “counts” the number of bits of the input c, which have been consumed
so far.

In order to further elaborate on the definition of qi,j , we provide an example
on how the DFA transits from qi,j to qi+1,j′ when reading c[i + 1] = 0, c.f.
Figure 3. As it can be seen from the figure, when ui+1 = 0, the first entry of
the pair (αi+1,1, αi+1,2) contains the delays on the upper paths (i.e., αi+1,1 =
αi,1 + βi+1,1), whereas for ui+1 = 1 it is composed of the delays on the lower
paths, i.e., αi+1,1 = αi,2 + βi+1,2. Hence, using ui+1, the correct sum is defined.
What has been explained here is applicable for the other stages of the arbiter
PUF as well, the other states of A can be defined similarly.

The further and crucial characteristics of this DFA representing an arbiter
PUF are as follows. In Figure 3, the states qn,1, . . . , qn,2n define the possible
accepting states in the following way. As mentioned in Section 3.1, assume that
fPUF(c) = 1 if αn,1 − αn,2 > 1, and when αn,2 − αn,1 > 1, fPUF(c) = 0. For a
challenge string c = c1c2 · · · cn, A accepts c if there is a sequence of states such
that r0 = q0, ri = δ(ri−1, ci) with 1 ≤ i ≤ n and rn ∈ F , where

F = {qn,k | qn,k = ((αn,1, αn,2), un, n) s.t. αn,1 − αn,2 > 1, 1 ≤ k ≤ 2n}.



Fig. 3: A DFA representing an arbiter PUF.

All other states, not being defined as accepting states, are of course rejecting.
Although it is possible that αn,1 = αn,2, in reality it will almost never occur
(see Section 5 for more details), thus we can safely exclude this case. The special
rejection state qr is reached after reading further bits following the nth bit of a
given input. After reaching the rejecting state, reading any further bit results in
staying in qr. We should stress that since challenges are n-bit strings, all longer
strings are rejected, as well as shorter strings.

As it is evident from the above discussion, the size of A as constructed above
and based upon the total delay at the output of each stage of the arbiter PUF
is clearly exponential in n. Consequently, if we represent an arbiter PUF by this
A, the output of a learning algorithm should be a hypothesis h with h ∈ Hn that
could not be evaluated in polynomial time at all. However, having a closer look,
it will be proved that this DFA has indeed only a size which is polynomial in n,
and can be used to PAC-learn an arbiter PUF. To shrink A, we use the results
of the discretization process of the real delay values.

As mentioned in Section 3.1, the total delay values can be mapped to the
finite set of integer values in [0,M ], where M can be regarded as a constant
independent of n. Therefore, the number of possible values of αi,j for 1 ≤ i ≤ n
and 1 ≤ j ≤ 2) is M + 1. For a given depth i, the number of possible pairs of
delays on the upper and lower paths (i.e., (αi,1, αi,2)) is thus at most (M + 1)2.
Consequently, the number of distinguishable pairs, i.e., corresponding to the



Fig. 4: The shrunk DFA representing an arbiter PUF. Note that the size of this
DFA is clearly polynomial in n.

different ordered pairs of sums in each level of A cannot exceed (M + 1)2, and
thus the total number of distinguishable states is limited by

O(n(M + 1)2).

Collapsing the indistinguishable states, a much smaller DFA as shown in Figure 4
is obtained.

4 PAC-learning of Arbiter PUFs

With the help of the polynomial-size DFA derived in Section 3, we can now
describe a PAC-learning algorithm to efficiently learn the challenge-response
behavior of a given arbiter PUF. Such a PAC-learning algorithm can be derived
by adopting and modifying the algorithms presented in the literature [1, 11, 22].
The algorithm presented later by us can be seen as an adapted version of what
has been proposed by Angluin [1]. Here we only describe the algorithm briefly,
and refer the reader to [1] for further details.

A given PUF provides the learner with access to the Oracle EX := fPUF.
See Section 2.4 and Figure 5. The oracle EX provides labelled examples, whose
length are exactly n. Moreover, the length n of the examples, the maximum
delay value M , and the levels for the accuracy and confidence are provided also
as inputs to the algorithm.

The main steps of the PAC-learning algorithm are depicted in Table 1. At
the first stage, h0 contains λ and no string c is accepted. Since all examples
with fPUF(c) = 0 are rejected, and h0 will be modified only after receiving a
positive example, we assume wlg. that the first example is positive. For the



Fig. 5: Block diagram of the PAC-learning algorithm

ith example, the algorithm examines whether hi−1 is consistent. Then hi−1 is
updated, if it is not consistent with the example. The procedures of checking the
consistency and updating a hypothesis are described extensively in [1] and [11],
and are not further discussed by us. Moreover, the proof of the correctness of
the above algorithm L is also presented in [1], and the reader is again referred
to her celebrated result. The algorithm ensures that L makes at most rmax calls
to the oracle EX, and that the final output h is an ε/2-approximation of S1, as
shown by the following theorem.

Theorem 1. Let N := O(nM2) that represents the number of live states, then
L returns a hypothesis h after at most O(N + (1/ε)(N log(1/δ) + N2)) calls to
EX, and with probability at least (1− δ/2), h is an ε/2-approximation of S1.

As all the details of the proof are already given by Angluin [1], we elaborate
only on a few interesting points from the proof given by Angluin. It is clear that
her algorithm is also applicable in the case that the oracle EX, as in our case,
provides only examples of length n. This means that the PAC-learning problem
addressed by us can be thought of as being a simplified version of the more
general problem solved in [1]. Furthermore, our algorithm is designed to learn
exactly those challenges yielding a 1 at the output of the final arbiter of the
given PUF.

The proof is based on the maximum number of calls that L makes to EX. We
can calculate the maximum number of calls rmax as follows. As at most (N − 1)
different hk have to be tested, we have

rmax =

(N−2)∑
i=0

(ri + 1)

= (N − 1) + 2/ε

(N − 1) ln(1/δ) + ln(2)

(N−2)∑
i=0

(i+ 1)


which results in

O
((

1 + 2
ε ln(1/δ)

)
n(M + 1)2 + 2

εn
2(M + 1)4

)
.



Now we calculate the probability that the output h is not a ε/2-approximation
of S1. As in [1] we have

Pr[error(h) > ε/2] =

(N−2)∑
i=0

(1− ε/2)ri

which yields that
Pr[error(h) ≤ ε/2] ≥ 1− δ

2 .

The time consumed by L is bounded by the time spent on searching for such
strings, which distinguish two states in hk. Since the maximum size of a set
containing all possible strings is |Σ| · |APUF|+1, which is 2(n · (M +1)2)+1, and
the related steps (step 4 to 8 in Figure 6) can be repeated at most rmax times,
the time complexity of L is bounded by

O
(
(1 + (2/ε) ln(1/δ))n2(M + 1)4 + (2/ε)n3(M + 1)6

)
.

Thus, we concluded that S1 can be efficiently learned (for given accuracy and
confidence levels), and the respective algorithm runs indeed in time polynomial
in n, M , 1/ε and 1/δ.

Algorithm

Input: A list of (ci, fPUF(ci)), (ε, δ), n, and M
Output: h

begin
1: h0 := λ
2: Wlog. let the first positive example be (c1, 1)
3: k = 0, i = 1
4: Examine the consistency of hk

5: if hk is not consistent with ci then
6: Update hk

7: k = k + 1
8: fi
9: i = i+ 1
10: Let ri := d2/ε(ln(1/δ) + (i+ 1) ln 2)e
11: while ri ≤ rmax do
12: Proceed with the next example
13: Do steps 4-8
14: od
15: h := hk

end

Table 1: PAC-learning algorithm L for fPUF.

5 Practical Considerations

We have proved that the arbiter PUF family is subject to PAC-learning attacks
and presented an algorithm, which predicts the output of an arbiter PUF for
given ε and δ. The notion of PAC-learning was already earlier used in the context
of PUFs by Hammouri et al. [8] to assess the security of their proposed scheme.
In order to do so, they represent a noiseless arbiter PUF as a Linear Threshold



Function (LTF) [2]. The LTF-model for PUFs is actually due to [7]. This im-
plicitly leads to the conclusion that a noiseless arbiter PUF is PAC-learnable,
as the Vapnik–Chervonenkis dimension of the proposed representation (LTF)
for a noiseless arbiter PUF is equal to n + 1. Consequently, a noiseless arbiter
PUF is in principle PAC-learnable under LTF-based representations. For more
details and a proof of this, c.f. [2]. Nevertheless, to the best of our knowledge,
this important fact has never been explicitly reflected in the respective litera-
ture so far. Seen from another perspective, our PAC algorithm works on the
basis of a DFA-based representation, which is only possible by the observation
that the delay values can be mapped to a finite set of integer values. And indeed
only this very last fact enables the preferred Perceptron algorithm to PAC-learn
LTFs as arising from arbiter PUFs, c.f. [2]. We will elaborate more on this very
interesting new direction in the journal version of this paper.

In [19] it has been demonstrated that the maximum delay deviation of each
inverter used in the PUF chain is 9 picoseconds for both cases, i.e., direct and
crossed paths on average for a Xilinx Virtex-5 FPGA. This delay difference is
virtually in line with what has been observed in [17], where for 12 XC5VLX110
chips (Xilinx Virtex-5 family) the delay deviation is smaller than 10 picoseconds
on all chips. Assuming 6ω = 10 ps, the maximum variation of delay at the end
of the PUF chain consisting of n stages is 10

√
n ps. However, this value has to

be divided by the precision of the arbiter to calculate the maximum value M ,
c.f. Sec. 3.1. For an absolute precise arbiter, the precision γ can be thought as
being infinitesimal, i.e., γ → 1/∞, see [19]. Nevertheless, the precision of the
arbiter is reported to be only in the range of 2.5 ps for a Xilinx Virtex-5 FPGA,
c.f. [19]. As an example, under the assumption that n = 128,

M = d6ω
√
n/γe = d10 ·

√
128/2.5e = 46.

Therefore, the size of the collapsed DFA would be only 282,752 states. This is far
less than the size of O(2128) states, which would be obtained without considering
the limited variation of the delays.

Naturally, to make PAC-learning of a concrete PUF less effective, one is
tempted to construct a PUF with a very large M . Theoretically, the maximum
delay value M can be increased by enlarging the manufacturing deviations, and
also using more precise arbiters. However, the deviation ω cannot be arbitrary
large on real production chips. For instance, when increasing ω, a Field Pro-
grammable Gate Array (FPGA) cannot be utilized anymore as a general pur-
pose device for other applications. Moreover, with regard to the higher cost, the
PUF constructors cannot arbitrarily increase the precision of the arbiter. Due
to these limitations, arbitrary large M ’s can be excluded in practice for FPGAs
and standard CMOS process devices.

In Section 3.2 we have stated that in practice it may rarely happen that
αn,1 = αn,2. This can be explained by the fact that this equation represents the
possible metastable condition of the arbiter PUF, when the output of the arbiter
is not persistent for a certain challenge c. Note that this metastablity of the
arbiter PUF must have been already solved by the PUF manufacturer. Moreover,



aiming at PAC-learning of an arbiter PUF under a DFA-based representation,
we can also easily overcome this issue by applying two well-known strategies.

– The label of every chosen example, e.g., fPUF(c), (potentially having the
metastablity situation) will be stabilized by majority voting through several
oracle calls on the same example (challenge).

– A problematic example resulting in different outputs at the arbiter can be
simply discarded and substituted by another randomly chosen example.

We have proved that the number of CRPs required for PAC-learning is poly-
nomial in n, M , 1/ε and 1/δ. This is contrary to what has been claimed and
verified empirically in previous work, e.g., in [16]). For instance, according to an
empirical formula presented in [25], the number of CRPs required for modeling
an arbiter PUF with 128 stages for an ε = 0.01 is approximately 6450, although
the upper-bound of the number of CRPs has not been calculated. The most
critical issue which is not addressed in [25], is that the success probability of
modeling an arbiter PUF for a given ε and a certain number of CRPs remains
unknown. In other words, it is not ensured that for a given level of confidence,
an arbiter PUF can be modeled for a given ε by collecting a polynomial-size
sub-set of CRPs. Our proposed PAC-learning framework addresses this issue in
a natural way.

The fact leading to the success of heuristic-based modeling attacks in gen-
eral is that although an arbiter PUF with n stages allows for 2n challenges, the
number of delay values forming αn,1 and αn,2 is only linear in n [14]. Possible
countermeasures against modeling attacks that have been introduced so far are
based on adding non-linearity to arbiter PUFs, such as XOR or feed-forward
arbiter PUFs [10]. It has been shown that these countermeasures are rather
effective (see [25, 16]). Thus, the number of CRPs required for modeling is expo-
nential in n in this case. We claim that although the non-linearity of an arbiter
PUF may result in a more complex representation of that, our approach can
be applied to break the security of the modified arbiter PUFs (XOR- and feed-
forward PUFs) as well. For instance, in the case of XOR-PUFs, if the number of
XORs is constant and independent of n, the DFA-representation that has been
proposed by us can be modified to enable even a PAC-learning algorithm of an
XOR-based arbiter PUF. Since the size of the modified DFA is still polynomial
in n and M , the number of CRPs required for modeling is polynomial in n, M
and 1/ε as well as 1/δ. The running time of algorithm remains polynomial in n,
M and 1/ε as well as 1/δ. To sum all this up, due to the constant value of M for
both, arbiter PUFs and its modified structures, it is possible to learn modified
arbiter PUFs for given ε and δ. Furthermore, it is ensured that the PAC-learning
algorithm runs in time polynomial in n, M , 1/ε and 1/δ.

6 Conclusion

In this paper, we have proved that arbiter PUFs are efficiently PAC-learnable un-
der a DFA-based representation. As our DFA-based representation of the arbiter



PUF requires integer delay values, we have presented a statistical discretization
and mapping process from the real values of the multiplexer delays to a set of
integer values. Based on the limited variation in different delay values, we are
able to construct a collapsed DFA, whose size is polynomial in the number of
stages and maximum variation of delay values. It is proved that in contrast to
other modeling attacks, our PAC-learning framework is provably able to learn
the challenge-response behavior of the PUF for given accuracy and confidence
levels. Furthermore, it has been shown that the maximum number of CRPs re-
quired for learning is polynomial in the number of stages, maximum deviation of
delay values, as well as given levels of accuracy and confidence. Finally, we have
evaluated the time complexity of our PAC-learning algorithm, which is polyno-
mial in the length n of the arbiter PUF, the maximum variation of delays and
levels of accuracy and confidence.
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