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Abstract. Over the last years lattice-based cryptography has received much attention due to versatile
average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers.
But despite of promising constructions, only few results have been published on implementation issues on
very constrained platforms. In this work we therefore study and compare implementations of Ring-LWE
encryption and the Bimodal Lattice Signature Scheme (BLISS) on an 8-bit Atmel ATxmega128 microcon-
troller. Since the number theoretic transform (NTT) is one of the core components in implementations
of lattice-based cryptosystems, we review the application of the NTT in previous implementations and
present an improved approach that significantly lowers the runtime for polynomial multiplication. Our
implementation of Ring-LWE encryption takes 41 ms for encryption and 12 ms for decryption. To compute
a BLISS signature, our software takes 316 ms and 111 ms for verification. These results outperform imple-
mentations on similar platforms and underline the feasibility of lattice-based cryptography on constrained
devices.
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1 Introduction

RSA and ECC-based schemes are the most popular asymmetric cryptosystems to date, being deployed
in billions of security systems and applications. Despite of their predominance they are known to be
susceptible to attacks using quantum computers [49] on which significant resources are spent to boost
their further development [46]. Additionally, RSA and ECC have been shown to be quite inefficient on
very small and constrained devices like 8-bit AVR microcontrollers [25,30]. A possible alternative are
asymmetric cryptosystems based on hard problems in ideal lattices. The special algebraic structure of
ideal lattices [36] defined in R = Zq[x]/〈xn + 1〉 allows a significant reduction of key and ciphertext
sizes and enables efficient arithmetic using the number theoretic transform (NTT)1 [5,40,51]. To realize
lattice-based public key encryption several proposals exists (see [10] for a comparison) like classical
NTRU [29] (defined in Zq[x]/〈xn − 1〉), provably secure NTRU [50] (defined in Zq[x]/〈xn + 1〉), or
a scheme based on the ring learning with errors (RLWE) problem [33, 36] (from now on referred
to as RLWEnc). From an implementation perspective the RLWEnc scheme is currently one of the
best-studied lattice-based public key encryption schemes (see [7, 11, 13, 44, 45, 47]) and is similar to a
recently proposed key exchange protocol [8,42]. Concerning signature schemes, several proposals exist
like GLP [24] (derived from [35]), BG [1], PASSSign [28], a modified NTRU signature scheme [38], or
a signature scheme derived from a recently proposed IBE scheme [20]. However, so far the Bimodal
Lattice Signature Scheme (BLISS) [18] seems superior in terms of signature size, performance, and
security. Despite their popularity implementation efforts so far mainly led to very efficient hardware
designs for RLWEnc [11, 45, 47] and BLISS [43] and fast software on 32-bit microcontrollers [41]
but only few works cover constrained 8-bit architectures [6, 7]. Additionally, current works usually
rely on the straightforward Cooley-Tukey radix-2 decimation-in-time algorithm (e.g., [7, 13, 43, 47])
to implement the NTT and thus to realize polynomial multiplication c = a · b for a,b, c ∈ R as
c = INTT(NTT(a)◦NTT(b)). However, by taking a closer look at works on the implementation [12,16]
of the highly related fast Fourier transform (FFT) it becomes evident that the sole focus on Cooley-
Tukey radix-2 decimation-in-time algorithms prevents further optimizations of the NTT, especially
given the constraints of an 8-bit architecture.

1 The NTT can be regarded as Fast Fourier Transform over Zq.



Contribution. The contribution of this work is twofold. We first review different approaches and
varieties of FFT algorithms and then adapt and optimize these algorithms for the polynomial multi-
plication use-case prevalent in ideal lattice-based cryptography. Improvements compared to previous
work are mainly achieved by merging certain operations into the NTT itself (multiplication by n−1,
powers of ψ and ψ−1) and by removing the expensive bit-reversal step. In the second part we provide
an efficient implementation of these NTT algorithms on the 8-bit AVR/ATxmega architecture. With
respect to the constrained resources of our target platform, we further speed-up the NTT by applying
a modular reduction algorithm that does not require integer division. By using this optimized NTT we
achieve speed records for RLWEnc and BLISS. Our work shows that lattice-based cryptography can
be used to realize the two most basic asymmetric primitives (public key encryption and signatures)
on very constrained devices and with high performance. To the best of our knowledge, we provide
the smallest implementation of BLISS on AVR in terms of flash consumption and also fastest imple-
mentation in terms of runtime since one signature computation requires only 316 ms and verification
requires 111 ms. By performing encryption in 41 ms and decryption in 12 ms, our implementation of
RLWEnc also outperforms previous work on AVR.

Outline. In Section 2 we review the number theoretic transform (NTT), RLWEnc, and BLISS. We
then show NTT algorithms that are better suited for polynomial multiplication in Section 3. Our AVR
ATxmega128 implementation is described in detail in Section 4 and we discuss our results in Section 5.

2 Background

In this section we introduce the NTT, and explicitly describe its application in the algorithms of the
RLWEnc public key encryption scheme and the BLISS signature scheme.

2.1 The Number Theoretic Transform and Negacyclic Convolutions

The number theoretic transform (NTT) [5, 40, 51] is similar to the discrete Fourier transform (DFT)
but all complex roots of unity are exchanged for integer roots of unity and arithmetic is also carried
out modulo an integer q in the field GF (q)2. Main applications of the NTT, besides ideal lattice-based
cryptography, are integer multiplication (e.g., Schönhage and Strassen [48]) and signal processing [5].
The forward transformation ã = NTT(a) of a length n sequence {a[0], ..,a[n−1]} to {ã[0], . . . , ã[n−1]}
with elements in Zq is defined as ã[i] =

∑n−1
j=0 a[j]ωij mod q, i = 0, 1, . . . , n − 1 where ω is a root

of unity. The inverse transform a = INTT(ã) is defined as a[i] = n−1
∑n−1

j=0 ã[j]ω−ij mod q, i =

0, 1, . . . , n−1 where ω is exchanged by ω−1 and the final result scaled by n−1. Due to the requirement
of being a primitive root of unity it holds that ωn = 1 mod q, ω

n
2 = −1 mod q and ωi 6= 1 mod q for

any i = 1, . . . , n− 1.

The main operation in ideal lattice-based cryptography is polynomial multiplication3. Schemes
are usually defined in R = Zq[x]/〈xn + 1〉 with modulus xn + 1 where n is a power of two and
one can make use of the negacyclic convolution property of the NTT that allows carrying out a
polynomial multiplication in Zq[x]/〈xn + 1〉 using length-n transforms and no zero padding. When
a = (a[0], . . .a[n−1]) and b = (b[0], . . .b[n−1]) are polynomials of length n with elements in Zq, ω be
a primitive n-th root of unity in Zq and ψ2 = ω, then we define d = (d[0], . . .d[n− 1]) as the negative
wrapped convolution of a and b so that d = a · b mod xn + 1. We then define ā = PowMulψ(a) =
(a[0], ψa[1], . . . , ψn−1a[n − 1]) as well as the inverse multiplication by powers of ψ−1 denoted as a =
PowMulψ−1(ā). Then it holds that d = PowMulψ−1(INTT(NTT(PowMulψ(a)◦PowMulψ(b)))) [15,16,51],

2 Actually, this is overly restrictive and the NTT is also defined for certain composite numbers (n has to divide p − 1
for every prime factor p of q). However, for the given target parameter sets common in lattice-based cryptography we
can restrict ourselves to prime moduli and refer to [40] for further information on composite moduli NTTs.

3 Similar to exponentiation being the main operation of RSA or point multiplication being the main operation of ECC.

2



where ◦ denotes point-wise multiplication. For simplicity, we do not always explicitly apply PowMulψ
or PowMulψ−1 when it is clear from the context that a negacyclic convolution is computed.

2.2 The RLWEnc Cryptosystem

The semantically secure public key encryption scheme RLWEnc was proposed in [33, 36, 37] and is
also used as a building block in the identity-based encryption scheme (IBE) by Ducas, Lyubashevsky,
and Prest [20]. We provide the key generation procedure RLWEncgen in Algorithm 1, the encryption
procedure RLWEncenc in Algorithm 2, and the decryption procedure RLWEncdec in Algorithm 3. All
algorithms explicitly use calls to the NTT and function names used later on during the evaluation of
our implementation (see Section 5). The exact placement of NTT transformations is slightly changed
compared to [47] which saved one transformation compared to [44] as c2 is not transmitted in NTT
form and thus removal of least significant bits is still possible (see [20,44]).

Algorithm 1 RLWEnc Key Generation
Precondition: Access to global constant ã = NTT(a)
1: function RLWEncgen()
2: r̃1 ← NTT(SampleGauss())
3: r̃2 ← NTT(SampleGauss())
4: p̃ = r̃1 − ã◦r̃2
5: return (pk, sk) = (p̃, r̃2)
6: end function

Algorithm 2 RLWEnc Encryption
Precondition: Access to global constant ã = NTT(a)
1: function RLWEncenc(ã, p̃, µ ∈ {0, 1}n)
2: ẽ1 = NTT(SampleGauss())
3: ẽ2 = NTT(SampleGauss())
4: c1 = ã◦ẽ1 + ẽ2

5: h̃2 = p̃◦ẽ1

6: e3 ← SampleGauss()
7: c2 = INTT(h̃2) + e3 + Encode(m)
8: return (c1, c2)
9: end function

Algorithm 3 RLWEnc Decryption
1: function RLWEncdec(c = [c1, c2], r̃2)
2: return Decode(INTT(c1◦r̃2) + c2).
3: end function

The main idea of the scheme is that during encryption the n-bit encoded message m̄ = Encode(m)
is added to pe1 + e3 (in NTT notation INTT(h̃2) + e3) which is uniformly random and thus hides the
message. Decryption is only possible with knowledge of r2 since otherwise the large term ae1r2 cannot
be eliminated when computing c1r2 + c2. The encoding of the message of length n is necessary as the
noise term e1r1 + e2r2 + e3 is still present after calculating c1r2 + c2 and would prohibit the retrieval
of the binary message after decryption. With the simple threshold encoding encode(m) = q−1

2 m the

value q−1
2 is assigned only to each binary one of the string m. The corresponding decoding function

needs to test whether a received coefficient z ∈ [0..q − 1] is in the interval q−1
4 ≤ z < 3 q−14 which is

interpreted as one and zero otherwise. As a consequence, the maximum error added to each coefficient
must not be larger than | q4 | in order to decrypt correctly. The probability for decryption errors is
mainly determined by the tailcut τ and the standard deviation σ of the Gaussian error polynomials
e1, e2, e3 sampled by SampleGauss. In this context, decreasing s reduces the error probability but also
negatively affects the security of the scheme [23,33]. Increasing q on the other hand increases the key
size, ciphertext expansion, and reduces performance (on certain devices). To support the NTT, Göttert
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et al. [23] proposed parameter sets (n, q, s) where σ = s/
√

2π denoted as RLWEnc-Ia (256, 7681, 11.31)
and RLWEnc-IIa (512, 12289, 12.18). Lindner and Peikert [33] originally proposed the parameter sets
RLWEnc-Ib (192, 4093, 8.87), RLWEnc-IIb (256, 4093, 8.35) and RLWEnc-IIIb (320, 4093, 8.00). The se-
curity level of RLWEnc-Ia and RLWEnc-IIb are roughly comparable and RLWEnc-IIb provides 105.5 bits
of security, according to a refined security analysis by Liu and Nguyen [34] for standard LWE and
the original parameter sets. The RLWEnc-IIa parameter set uses a larger dimension n and should thus
achieve even higher security than the 156.9 bits obtained by Liu and Nguyen for RLWEnc-IIIb. For the
IBE scheme in [20] the parameters n = 512, q ≈ 223 and a trinary error/noise distribution is used.

2.3 The BLISS Cryptosystem

In this work we only consider the efficient ring-based instantiation of BLISS [18]. We recall the key
generation procedure BLISSgen in Algorithm 4, the signing procedure BLISSsign in Algorithm 5,
and the verification procedure BLISSverify in Algorithm 6. Key generation requires uniform sampling
of sparse and small polynomials f ,g, rejection sampling (Nκ(S)), and computation of an inverse.
To sign a message, two masking polynomials y1,y2 ← DZn,σ are sampled from a discrete Gaussian
distribution using the SampleGauss function. The computation of ay1 is performed using the NTT
and the compressed u is then hashed together with the message µ by Hash. The binary string c′ is
used by GenerateC to generate a sparse polynomial c. Polynomials y1,y2 then hide the secret key
which is multiplied with the sparse polynomials using the SparseMul function which exploits that only
κ coefficients in c are set and only d1 + d2 coefficients in s1 and s2. After a rejection sampling and
compression step the signature (z1, z

†
2, c) is returned. The verification procedure just checks norms of

signature components and compares the hash output with c in the signature.

In this work we focus on the 128-bit secure BLISS-I parameter set which uses n = 512 and
q = 12289 (same base parameters as RLWEnc-IIa). The density of the secret key is δ1 = 0.3 and δ2 = 0,
the standard deviation of the coefficients of y1and y2 is σ = 215.73 and the repetition rate is 1.6. The
number of dropped bits in z2 is d = 10, κ = 23, and p = b2q/2dc. The final size of the signature is 5.6
kb with Huffman encoding and approx. 7680 kb without Huffman encoding.

3 Faster NTTs for Lattice-Based Cryptography

In this section we examine fast algorithms for the computation of the number theoretic transform
(NTT) and show techniques to speed-up polynomial multiplication for lattice-based cryptography4.
The most straightforward implementation of the NTT is a Cooley-Tukey radix-2 decimation-in-time
(DIT) approach [14] that requires a bit-reversal step as the algorithm takes bit-reversed ordered
input and produces naturally ordered output (from now on referred to as NTTCTbo→no). To compute
the NTT as defined in Section 2.1 the NTTCTbo→no algorithm applies the Cooley-Tukey (CT) butterfly

which computes a′ ← a + ωb and b′ ← a − ωb for some values of ω, a, b ∈ Zq overall n log2(n)
2 times.

The biggest disadvantage of relying solely on the NTTCTbo→no algorithm is the need for bit-reversal,
multiplication by constants, and that it is impossible to merge the final multiplication by powers of
ψ−1 into the twiddle factors of the inverse NTT (see [47]). With the assumption that twiddle factors
(powers of ω) are stored in a table and thus not computed on-the-fly it is possible to further simplify
the computation and to remove bit-reversal and to merge certain steps. This assumption makes sense
on constrained devices like the ATxmega which have a rather large read-only flash.

4 Most of the techniques discussed in this section have already been proposed in the context of the fast Fourier transform
(FFT). However, they have not yet been considered to speed up ideal lattice-based cryptography (at least not in works
like [7, 13, 43, 47]). Moreover, some optimizations and techniques are mutually exclusive and a careful selection and
balancing has to be made.
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Algorithm 4 BLISS Key Generation
1: function BLISSgen()
2: Choose f ,g as uniform polynomials with exactly d1 = dδ1ne entries in {±1} and d2 = dδ2ne entries in {±2}
3: S = (s1, s2)t ← (f , 2g + 1)t

4: if Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
5: aq = (2g + 1)/f mod q (restart if f is not invertible)
6: Return(pk = A, sk = S) where A = (ã1 = NTT(aq), q − 2) mod 2q
7: end function

Algorithm 5 BLISS Signing
1: function BLISSsign(µ∈{0, 1}∗, pk=A, sk=S)
2: y1 ← SampleGauss()
3: y2 ← SampleGauss()
4: u = 2ζ · INTT(ã1◦NTT(y1)) + y2 mod 2q
5: c′ ← Hash(bued mod p, µ)
6: c← GenerateC(c′)
7: Choose a random bit b
8: z1 ← y1 + (−1)bSparseMul(s1, c)
9: z2 ← y2 + (−1)bSparseMul(s2, c)

10: Continue with probability

11: 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
12: otherwise restart
13: z†2 ← (bued − bu− z2ed) mod p
14: Return (z1, z

†
2, c)

15: end function

Algorithm 6 BLISS Verification
1: function BLISSverify(µ∈{0, 1}∗, pk=A, sk=S)
2: if ‖(z1|2d · z†2)‖2 > B2 then Reject
3: if ‖(z1|2d · z†2)‖∞ > B∞ then Reject
4: r← INTT(ã1◦NTT(z1))
5: c′ = Hash

(⌊
2ζ · r + ζ · q · c

⌉
d

+ z†2 mod p, µ)
6: Accept iff c = GenerateC(c′)
7: end function

3.1 Merging the Inverse NTT and Multiplication by Powers of ψ−1

In [47] Roy et al. use the standard NTTCTbo→no algorithm for a hardware implementation and show
how to merge the multiplication by powers of ψ (see Section 2.1) into the twiddle factors of the
forward transform. However, this approach does not work for the inverse transformation due to the
way the computations are performed in the CT butterfly as the multiplication is carried out before
the addition. In this section we show that it is possible to merge the multiplication by powers of ψ−1

during the inverse transformation using a fast decimation-in-frequency (DIF) algorithm [22]. The DIF
NTT algorithm splits the computation into a sub-problem on the even outputs and a sub-problem
on the odd outputs of the NTT and has the same complexity as the NTTCTbo→no algorithm. It requires
usage of the so-called Gentlemen-Sande (GS) butterfly which computes a′ ← a+ b and b′ ← (a− b)ω
for some values of ω, a, b ∈ Zq. Following [12, Section 3.2], where ωn is a n-th primitive root of unity
and by ignoring the multiplication by the scalar n−1, the inverse NTT and application of PowMulψ
can be defined as

a[r] =ψ−r
n−1∑
`=0

A[`]ω−r`n = ψ−r

n
2
−1∑
`=0

A[`]ω−r`n +

n
2
−1∑
`=0

A[`+
n

2
]ω
−r(`+n

2
)

n

 (1)

=ψ−r

n
2
−1∑
`=0

(
A[`] + A[`+

n

2
]ω
−rN

2
n

)
ω−r`n , r = 0, 1, . . . , n− 1. (2)
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When r is even this results in

a[2k] =

n
2
−1∑
`=0

(
A[`] + A[`+

n

2
]
)
ω−k`n

2
(ψ2)

−k
(3)

and for odd r in

a[2k + 1] =

n
2
−1∑
`=0

(
A[`]−A[`+

n

2
]ω−`n

)
ω−k`n

2
ψ−2k+1 (4)

=

n
2
−1∑
`=0

(
A[`]−A[`+

n

2
]ψω−`n

)
ω−k`n

2
(ψ2)

−k
, k = 0, 1, . . . ,

n

2
− 1. (5)

The two new half-size sub-problems where ψ is exchanged by ψ2 can now be again solved using the
recursion. As a consequence, when using an in-place radix-2 DIF algorithm it is necessary to multiply
all twiddle factors in the first stage by ψ−1, all twiddle factors in the second-final stage by ψ−2 and
in general by ψ−2

s
for stage s ∈ [0, 1, . . . , log2(n) − 1] to merge the multiplication by powers of ψ−1

into the inverse NTT (see Figure 1 for an illustration). In case the PowMulψ or PowMulψ−1 operation
is merged into the NTT computation we denote this by an additional superscript ψ or ψ−1, e.g.,as
NTTCT,ψno→bo.

3.2 Removing Bit-Reversal

For memory efficient and in-place computation a reordering or so-called bit-reversal step is usually
applied before or after a NTT/FFT transformation due to the required reversed input ordering of the
NTTCTbo→no algorithm used in works like [7, 13,43,47].

However, by manipulation of the standard iterative algorithms and independently of the used
butterfly (CT or GS) it is possible to derive natural order to bit-reversed order (no → bo) as well
as bit-reversed to natural order (bo → no) forward and inverse algorithms. The derivation of FFT
algorithms with a desired ordering of inputs and outputs is described in [12] and we followed this
description to derive the NTT algorithms NTTCTbo→no, NTT

CT
no→bo, NTT

GS
no→bo, and NTTGSbo→no, as well

es their respective inverse counterparts. It is also possible to construct self-sorting NTTs (no → no)
but in this case the structure becomes irregular and temporary memory is required (see [12]).

3.3 Tuning for Lattice-Based Cryptography

The optimizations discussed in this section so far can be used to generically optimize polynomial mul-
tiplication in Zq[x]/〈xn+1〉. However, for lattice-based cryptography there are special conditions that
hold for most practical algorithms; in the NTT-enabled algorithms of RLWEnc and BLISS every point-
wise multiplication (denoted by ◦) is performed with a constant and a variable, mostly randomly sam-
pled polynomial. Thus the most common operation in lattice-based cryptography is not simple polyno-
mial multiplication but multiplication of a (usually random) polynomial by a constant polynomial (i.e.,
global constant, or public key). Thus the scaling factor n−1 can be multiplied into the pre-computed
and pre-transformed constant ã = n−1NTTCTno→bo(a). Taking into account that we also want to remove
the need for bit-reversal and want to merge the multiplication by powers of ψ into the forward and in-
verse transformation (as discussed in Section 3.1) we propose to use a NTTCT,ψno→bo for the forward trans-

formation and a INTTGS,ψ
−1

bo→no for the inverse transformation. In this case a polynomial multiplication

c = a · e can be implemented without bit-reversal as c = INTTGS,ψ
−1

bo→no

(
NTTCT,ψno→bo(a)◦NTTCT,ψno→bo(b)

)
.

In Figure 2 we compare the necessary blocks for the straightforward approach and our proposal and
provide an example flow diagram for n = 8 in Figure 1. For more details, pseudo-code of NTTCT,ψno→bo is

provided in Algorithm 7 and pseudo-code of INTTGS,ψ
−1

bo→no is given in Algorithm 8.
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Fig. 1. Signal flow graph for multiplication of a polynomial x by a pre-transformed polynomial ã = NTTCT,ψno→bo(a), using

the NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no algorithms.

Fig. 2. Comparison of naive implementation of polynomial multiplication by a pre-computed constant using only

NTTCTbo→no and INTTCTbo→no (1) and our proposed approach (2) using NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no .

4 Implementation of Lattice-Based Cryptography on ATxmega128

In this section we provide details on our implementation of the NTT as well as RLWEnc, and BLISS
on the ATxmega128 (see Appendix A.2 for more information).

4.1 Implementation of the NTT

For the use in RLWEnc, and BLISS we focus on the optimization of the NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no
transformations. We implemented both algorithms in C and optimized modular multiplication using
assembly language.

Modular Multiplication. To implement the NTT according to Section 3 a DIT NTTCT,ψno→bo and a

DIF INTTGS,ψ
−1

bo→no transformation are required and the most expensive computation in both algorithms

is integer multiplication and reduction modulo q (n log2(n)
2 times per NTT). In [7] Boorghany, Sarmadi,

and Jalili report that most of the runtime of their FFT/NTT is spent on the computation of modulo
operations. They review modular reduction algorithms for suitability and propose an approximate
variant of Barrett reduction [3] which leads to an FFT/NTT that is 1.26 times faster than one using
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mm12289(a, b)

uint8_t v[4];

c = a*b;

v = 12289 << 14

REDUCE28:

if (c >= v)

c = c -v

v = v << 1;

REDUCE27:

if (c >= v)

c = c -v

v = v << 1;

REDUCE26:

if (c >= v)

c = c -v

v = v << 1;

REDUCE25:

if (c >= v)

c = c -v

v = v << 1;

REDUCE24:

if (c >= v)

c = c -v

v = v << 1;

...

Fig. 3. Efficient prime specific modular multiplication for q = 7681 and q = 12289.

the compiler generated modulo reduction. However, a straightforward implementation using the C-
operator % with a constant modulus is quite expensive and requires around 600 cycles in our own
experiments due to the generic libc modular reduction (call udivmodsi4). As a consequence, the
software of the authors of [7] still consumes approx. 754668

256
2

log2(256)
= 736 cycles for one FFT/NTT

butterfly.
In this work we propose a faster approach on ATxmega for moduli commonly used in lattice-based

cryptography. The reason that Barrett reduction or the other modular reduction algorithms discussed
in [7] are relatively inefficient is that the AVR does not provide a fast division operation but also not
very fast bit-shifting (e.g., ROL/ROR can only shift an 8-bit register by one bit to the left or right).
As a consequence, we implemented a subtract-and-shift algorithm which loads the shifted modulus
as constant and the input into a temporary register. It then continues to compare the value in the
temporary register to this modulus, subtracts if the input is larger or equal to the modulus and then
shifts the modules by one to the right. This continues until the shifted modulus is equal to the original
modulus and the pseudo-code is shown in Figure 3. The biggest improvement in assembly stems from
the ability to limit the operations on the active registers. As an example, when the input is 28 bits
wide the first comparisons and shifts have to be performed on four registers (REDUCE28 to REDUCE25),
but after four iterations all operations (comparison, subtraction, shift) have to be performed only on
three registers (from REDUCE24), or two registers (from REDUCE16). This approach guarantees that
one modular multiplication for q = 7681 takes at most 216 cycles. While we do not take into account
constant time operation for side-channel protection, the implementation can be made trivially constant
time and then runs always runs with the worst-case runtime.

Extraction of Stages. As additional optimization we use specific routines for the first and the last
stage of each NTT. A common optimization is to recognize that ω0 = 1 in the first stage of the
NTTCTno→bo so that only additions are required. As we merge the multiplication by powers of ψ into the
NTT this is not the case anymore (see Figure 1). However, it is still beneficial to write a specific loop

that performs the first stage of the NTTCT,ψno→bo and the last stage of the INTTGS,ψ
−1

bo→no transformation to
achieve less loop overhead (simpler address generation) and less loads and stores.

Usage of Look-up Tables for Narrow Input Distributions. As discussed in Section 3.3 it is
common in lattice-based cryptography to apply forward transformations mostly to values sampled
from a narrow Gaussian error/noise distribution (other polynomials are usually constants and pre-
computed). In this case only a limited number of possible inputs to the butterfly of the first stage

of the NTTCT,ψno→bo transformation exist and it is possible to pre-compute look-up tables to speed-up
the modular multiplication. The range of possible inputs coefficients to the first stage butterfly is
rather small, since they are Gaussian distributed and bounded by [−τσ, τσ] for standard deviation σ
and tail-cut factor τ . Additionally, we only store the result of multiplications of two positive factors.
That means that for negative inputs, we first multiply with −1 before the look-up and again after
the look-up. The same approach would also work for the binary error distribution used for the IBE
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scheme in [20] and it would be possible to cover even two or more stages due to the very limited input
distribution.

4.2 Implementation of LP-RLWE

Our implementation of RLWEncenc and RLWEncdec of the RLWEnc scheme as described in Section 2.2
mainly consists of forward and inverse NTT transformations (NTT and INTT), Gaussian sampling
(SampleGauss) and point-wise multiplication (Pointwise, also denoted as ◦). We assume that secret
and public keys are stored in the read-only flash memory, but loading from RAM would also be
possible, and probably even faster. Due to the usage of the NTT the NTTCT,ψno→bo transformation is
only applied on the Gaussian distributed polynomials e1, e2. Thus we can optimize the transformation
for this input distribution and with either σ = 4.52 or σ = 4.85 it is possible to substitute approx.
99.96% of the multiplications in stage one of NTTCT,ψno→bo by look-ups to a table of 16 entries that
requires only 32 bytes of flash memory. For the sampling of the Gaussian distributed polynomials
with high precision5 we use a cumulative distribution table (CDT) [17, 21]. We construct the table
M with entries pz = Pr(x ≤ z : x ← Dσ) for z ∈ [0, τσ] with a precision of λ = 128 bits. The
tail-cut factor τ determines the number of lines |zt| = dτσe of the table and reduces the output to
the range x ∈ {−dτσe, ..., dτσe}. To sample a value we choose a uniformly random y from the interval
[0, 1) and a bit b and return the integer (−1)bz ∈ Z such that y ∈ [pz−1, pz). Further we store only
the positive half of the tables and then sample a sign bit. For this, the probability of sampling zero
has been pre-halved when constructing the table. For efficiency reasons we just work with the binary
expansion of the fractional part instead of floating point arithmetic as all numbers used are smaller
than 1.0. The constant CDF matrix M is stored in the read-only flash memory with k = dστe rows
and l = dλ/8e columns. In order to sample a Gaussian distributed value we perform a linear search in
the table to obtain z. Another option would be binary search, however, for this table size with x← Dσ

being small, the evaluation can already be stopped after only a few comparisons with high probability.
The test if the random y is in the range [pz−1, pz) is performed in a lazy manner on bytes. In this
terms laziness means that a comparison is finished when the first bit (or byte on an 8-bit architecture)
has been found that differs between two values. Thus we do not need to sample the full λ bits of y
and obtain the result of the comparisons early. Random numbers are obtained from a pseudo random
number generator (PRNG) using the hardware AES-128 engine running in counter mode. The PRNG
is seeded by noise from the LSB of the analog digital converter. For the state (key, plaintext) 32 bytes
of statically allocated memory are necessary. The final table size is 624 bytes for q = 7681 and 660
bytes for q = 12289.

4.3 Implementation of BLISS

Besides polynomial arithmetic the most expensive operation for BLISS is the sampling of y1 and
y2 from a discrete Gaussian distribution (SampleGauss). For the rather large standard deviation of
σ = 215.73 (RLWEnc requires only σ = 4.85) a straightforward CDT sampling approach, even with
binary search, would lead to a large table with roughly τσ = 2798 entries of approx. 30 to 40 kilobytes
overall (see [6]). Another option for embedded devices would be the Bernoulli approach from [18]
implemented in [7] but the reported performance of 13,151,929 cycles to sample one polynomial would
cause a massive performance penalty. As a consequence, we implemented the hardware-optimized
sampler from [43] on the ATxmega. It uses the convolution property of Gaussians combined with
Kullback-Leibler divergence and mainly exploits that it is possible to sample a Gaussian distributed
value with variance σ2 by sampling x1, x2 from a Gaussian distribution with smaller standard deviation

5 It is debatable which precision is really necessary in RLWEnc and what impact less precision would have on the security
of the scheme, e.g., λ = 40. But as the implementation of the CDT for small standard deviations σ is rather efficient
and for better comparison with related work like [6, 7, 13] we chose to implement high precision sampling and set
λ = 128.
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σ′ such that σ′2 + k2σ′2 = σ2 and combining them as x1 + kx2 (for BLISS-I k = 11 and σ′ = 19.53).
Additionally, the performance of the σ′-sampler is improved by the use of short-cut intervals where
each possible value of the first byte of the uniformly distributed input is assigned to an interval that
specifies the range of the possible sampled values. This approach reduces the number of necessary
comparisons and nearly compensates for the additional costs incurred by the requirement to sample
two values (x1, x2 with σ′ = 19.53) instead of one directly (with σ = 215.73). The sampling is again
performed in a lazy manner and we use the same PRNG based on AES-128 as for RLWEnc.

To implement the NTTCTno→bo we did not use a look-up table for the first stage as the input range
[−στ, στ ] of y1 or z1 is too large. To realize the reduction mod 2q, we create a second reduction
function by simply extending the approach from Figure 3. The difference is that for the modulus
2q, v is loaded with the initial value 12289 << 16 and therefore two additional steps REDUCE30 and
REDUCE29 have to be inserted. Finally, we exclude the last step that subtracts q to get a result in [0, 2q].
For the instantiation of the random oracle (Hash) that is required during signing and verification we
have chosen the official AVR implementation of Keccak [4]. From the output of the hash function the
sparse polynomial c with κ coefficients equal to one is generated by the GenerateC (see [19, Section
4.4]) routine. We store only κ indices where a coefficient of c is one. This reduces the dynamic RAM
consumption and allows a more efficient implementation of the multiplication of c by s1 and s2 using
the SparseMul routine. Using column-wise multiplication and by ignoring all zero coefficients, the
multiplication can be performed more efficiently than with the NTT.

5 Results and Comparison

All implementations are performed on an ATxmega128A1 8-bit microcontroller running at 32 MHz
featuring 128 Kbytes read-only flash, 8 Kbytes RAM and 2 Kbytes EEPROM. Cycle accurate per-
formance measurement were obtained using two coupled 16-bit timer/counters and dynamic RAM
consumption is measured using stack canaries (see Appendix A.2). All public and private keys are as-
sumed to be stored in the flash of the microcontroller and we consider the .text + .data + .bootloader
sections to determine the flash memory utilization. For our implementation we used no calls to the
standard library, the avr-gcc compiler in version 4.7.0 and the following compiler options (shortened):
-Os -fpack-struct -ffunction-sections -fdata-sections -flto.

LP-RLWE. Detailed cycle counts for the encryption and decryption as well as the most expensive
operations are given in Table 1. The costs of the encryption are dominated by the NTT (two NTTCT,ψno→bo
and one INTTGSbo→no) which requires approx. 70% of the overall cycles for RLWEnc-Ia. The Gaussian
sampling is rather efficient (19% of the overall cycles) due to the small standard deviation and re-

quires approx. 328 (RLWEnc-Ia) or 324 (RLWEnc-IIa) cycles per sample. The reason that NTTCT,ψno→bo
is slightly faster than INTTGS,ψ

−1

bo→no is that we use the table look-up for the first stage of the forward
transformation (see Section 4.2). The remaining amount of cycles (11%) is consumed by additions,
point-wise multiplications by a constant/key stored in the flash (PwMulFlash), and message encoding
(Encode). In Table 1 we also list cycle counts of operations that are now obsolete, especially BitRev and
PowMul. For PowMul we assume an implementation where the powers of ψ are computed on-the-fly to
save flash memory, otherwise the costs are the same as PwMulFlash. An implementation of RLWEncenc
using only NTTCTbo→no and INTTCTbo→no but the optimized modular reduction from Section 4.1 required
1,654,784 cycles (RLWEnc-Ia; speedup 1.25) and 4,651,007 cycles (RLWEnc-IIa; speedup 1.42). Decryp-

tion is extremely simple, fast, and basically calls one INTTGS,ψ
−1

bo→no routine, the decoding and an addition
so that roughly 84 decryption operation could be performed per second on the ATxmega128. Note
that we also evaluated RLWEnc-Ib, RLWEnc-IIb, RLWEnc-IIIb using classic schoolbook multiplication
and Karatsuba multiplication and provide results in Appendix A.3. However, it turned out that these
algorithms cannot beat the NTT and might only be advantageous when extremely small code size is
required
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Table 1. Cycle counts and Flash memory consumption in bytes for the implementation of Ring-LWEEncrypt on an
8-bit ATxmega128 microcontroller using the NTT. The stack usage is divided into a fixed amount of memory necessary
for plaintext, ciphertext, and additional components (like random number generation) and the dynamic consumption of
the encryption and decryption routine. We encrypt a message of n bits.

Operation (n=256, q=7681) (n=512, q=12289)

Cycle counts and stack usage

RLWEncenc 1,314,977 (109 bytes) 3,279,142 (102 bytes)
RLWEncdec 381,254 (73 bytes) 1,019,350 (68 bytes)

NTTCT,ψno→bo 304,621 799,540

INTTGS,ψ
−1

bo→no 299,925 831,027
SampleGauss 83,897 166,118
PwMulFlash 54,748 141,891
AddEncode 16,761 35,801
Decode 4,407 8,759

Cycle counts of obsolete functions

NTTCTbo→no 323,584 970,752
BitRev 29,696 75,776
BitrevDual 32,768 79,872
PowMulψ 104,448 274,432

Static memory consumption in bytes

Complete binary 6,758 9,424
RAM 1,088 2,144

The NTT can be performed in place so that no additional large temporary memory on the stack
is needed. But storing the NTT twiddle factors for forward and inverse transforms in flash consumes
2n words = 4n bytes which is around 15% of the allocated flash memory for q = 7681 and around
22% for q = 12289.

BLISS. In Table 2, we present detailed cycle counts for signing and verifying as well as for the most
expensive operations in BLISS-I. Due to the rejection sampling and the chosen parameter set 1.6
signing attempts are required on average to create one signature. One attempt requires 7,164,858
cycles on average and only a small portion of the computation, i.e. the hashing of the message, does
not have to be repeated in case of a rejection. During a signing attempt the most expensive operation
is the sampling of a two Gaussian distributed polynomials which takes 2×1,140,600 = 2,281,200 cycles

(32% of the overall cycles). The calls of NTTCT,ψno→bo and INTTGS,ψ
−1

bo→no account for 24% of the overall
cycles of one attempt. In contrast to the RLWEnc implementation we do not use a look-up table for
the first stage of NTTCT,ψno→bo. Additionally, we do not implement a separate modulo reduction after the
subtraction in the GS butterfly (b′ ← (a − b)ω) and reduce the result after the multiplication which

explains the slightly better performance of INTTGS,ψ
−1

bo→no . Hashing the compressed u and the message
µ is time consuming and accounts for roughly 19% of the overall cycles during one attempt. Savings
would be definitely possible by using a different hash function (see [2] for an evaluation of different
functions) but Keccak appears to be a conservative choice that matches the 128-bit security target
very well. The sparse multiplication takes only 503,627 cycles for one multiplication which is less
than a single NTT. This makes it a favorable approach on the ATxmega and and overall the sparse
multiplication is 3.6 times faster a NTT multiplication approach that would require one NTTCT,ψno→bo,

two INTTGS,ψ
−1

bo→no and two PwMulFlash calls. The flash memory consumption includes 2n words which
equals 4n = 2048 bytes for the NTT twiddle factors and 3374 bytes for look-up tables of the sampler.
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Table 2. Cycle counts and Flash memory consumption in bytes for the implementation of BLISS on an 8-bit ATxmega128
microcontroller. The stack usage is divided into a fixed amount of memory necessary for for message, signature, and
additional components (like random number generation) and the dynamic consumption of the signing and verification
routine. We sign a message of n bits.

Operation (n=512, q=12289)

Cycle counts and stack usage

BLISSsign 10,108,515 (4012 bytes)
BLISSverify 3,560,893 (1103 bytes)

NTTCT,ψno→bo 855,595

INTTGS,ψ
−1

bo→no 833,568
SampleGauss 1,140,600
SparseMul 503,627
Hash 1,335,040
GenerateC 4,410
DropBits 11,826

cosh
(
〈z,Sc〉
σ2

)
75,601

M exp
(
− ‖Sc‖2

2σ2

)
37,389

Static memory consumption in bytes

Complete binary 18,802
RAM 2,411

Comparison. A detailed comparison of our implementation with related work that also targets the
AVR6 platform is given in Table 3. Our implementation of RLWEnc-Ia encryption outperforms the
software from [7] by a factor of 2.3 and results from [6] by a factor of 3.8 in terms of cycle counts.
Decryption is 3.6 times and 6.5 times faster, respectively.

A comparison between our implementation of BLISS-I and the implementations of [7] and [6]
is difficult since the authors implemented the signature as authentication protocol. Therefore they
only provide the runtime of a complete protocol run that corresponds to one signing operation and
one verification in our results, but without the expensive hashing as the sparse polynomial c is not
obtained from a random oracle but randomly generated by the other protocol party. However, our
implementations of BLISSsign and BLISSverify still require less cycles than the implementation of
BLISS-I. The biggest improvement stems from the usage of the KL-convolution sampler from [43]
which is superior (1,140,600 cycles per polynomial) compared to the Bernoulli approach (13,151,929
cycles per polynomial [7]) and the straight-forward CDT approach used in [6]. As our implementation
of BLISS-I needs 18,802 bytes of flash memory, it is also smaller than the implementation of [6] that
requires 66.5 kB of flash memory and the implementation of [7] that needs 25.1 kB of flash memory.

Compared with the 80-bit secure McEliece cryptosystem based on QC-MDPC codes from [26]
we get 20 times less cycles for the encryption and even 228 times less cycles for decryption. Our
128-bit secure BLISS-I implementation is 2.3 times faster for signing and 9.2 faster for verification
compared to an implementation of the Ed25519 signature scheme for an ATmega2560 [30]. Translating
the implementation results for RSA and ECC given in [25] to cycle counts, it turns out that an ECC
secp160r1 operation requires 6.5 million cycles. RSA-1024 encryption with public key e = 216+1 takes
3.4 million cycles and RSA-1024 decryption with Chinese Remainder Theorem (CRT) requires 87.9
million cycles. A comparison with NTRU implementations is currently not easily possible due to lack
of published results for the AVR platform7.

6 While the ATxmega128 and ATxmega64 compared to the ATmega64 differ in their operation frequency and some
architectural differences cycle counts are mostly comparable.

7 One exception is a Master thesis by Monteverde [39], but the implemented NTRU251:3 variant is not secure any more
according to recent recommendations in [27].
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Table 3. Comparison with related work. Cycle counts marked with (∗) indicate the runtime of BLISS-I as authentication
protocol instead of signature scheme.

Scheme Device Operation Cycles OP/s

RLWEnc-Ia (n = 256), our work ATxmega128 (32 MHz) Enc/Dec 1,314,977 381,254 24.35 83.99
RLWEnc-IIa (n = 512), our work ATxmega128 (32 MHz) Enc/Dec 3,279,142 1,019,350 9.76 31.40
RLWEnc-Ia (n = 256) [7] ATmega64 (8 MHz) Enc/Dec 3,042,675 1,368,969 2.63 5.84
RLWEnc-Ia (n = 256) [6] ATxmega64A3 (32 MHz) Enc/Dec 5,024,000 2,464,000 6.37 12.98

BLISS-I, our work ATxmega128 (32 MHz) Sign/Verify 10,108,515 3,560,893 3.17 8.99
BLISS-I (Bernoulli) [7] ATmega64 (8 MHz) Sign+Verify 42,069,682∗ 0.19
BLISS-I (CDT) [6] ATxmega64A3 (32 MHz) Sign+Verify 19,328,000∗ 1.65

NTTCT,ψno→bo (n = 256), our work ATxmega(32 MHz) NTT 334,646 95.52
NTTCTbo→no (n = 256) [7] ATmega64 (8 MHz) NTT 754,668 10.60
NTTCTbo→no (n = 256) [6] ATxmega64A3 (32 MHz) NTT 1,216,000 26.32

NTTCT,ψno→bo (n = 512), our work ATxmega(32 MHz) NTT 855,595 37.38
NTTCTbo→no (n = 512) [7] ATmega64 (8 MHz) NTT 2,207,787 3.62
NTTCTbo→no (n = 512) [6] ATxmega64A3 (32 MHz) NTT 2,752,000 11.63

QC-MDPC [26] ATxmega256 (32 MHz) Enc/Dec 26,767,463 86,874,388 1.20 0.36
Ed2551 [30] ATmega2560 (16 MHz) Sign/Verify 23,211,611 32,619,197 0.67 0.49
RSA-1024 [25] ATmega128 (8 MHz) Enc/Dec 3,440,000 87,920,000 2.33 0.09
ECC-ecp160r1 [25] ATmega128 (8 MHz) Point mul. 6,480,000 1.23

We also refer to [13] for an implementation of RLWEnc-Ia and RLWEnc-IIafor an ARM Cortex-M4
(32-bit, 168 MHz) which especially makes use of the 32-bit wide registers (e.g., to load two coefficients
with memory access) to which a comparison is naturally hard.
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44. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryption on reconfigurable hardware.
In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8282, pp. 68–85. Springer (2013), http://dx.doi.org/10.1007/978-3-662-43414-7_4 1, 3
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A Appendix

A.1 NTT Algorithms

For a description of NTTCT,ψno→bo see Algorithm 7 and for INTTGS,ψ
−1

bo→no see Algorithm 8.

Algorithm 7 Optimized CT Forward NTT
Precondition: Store n powers of ψ in bit-reversed order

in psi∗

1: function NTTCT,ψno→bo(a)
2: m← 1
3: k ← n/2
4: while m < n do
5: for i = 0 to m− 1 do
6: jF irst← 2 · i · k
7: jLast← jF irst+ k − 1
8: ψi ← psi∗[m+ i]
9: for j = jF irst to jLast do

10: l← j + k
11: t← a[j]
12: u← a[l] · ψi
13: a[j]← t+ u mod q
14: a[l]← t− u mod q
15: end for
16: end for
17: m← m · 2
18: k ← n/2
19: end while
20: Return a
21: end function

Algorithm 8 Optimized GS Inverse NTT

Precondition: Store n powers of ψ−1 in bit-reversed or-
der in invpsi∗

1: function INTTGS,ψ
−1

bo→no (a)
2: m← n/2
3: k ← 1
4: while m > 1 do
5: for i = 0 to m− 1 do
6: jF irst← 2 · i · k
7: jLast← jF irst+ k − 1
8: ψi ← invpsi∗[m+ i]
9: for j = jF irst to jLast do

10: l← j + k
11: t← a[j]
12: u← a[l]
13: a[j]← t+ u mod q
14: a[l]← (t− u) · ψi mod q
15: end for
16: end for
17: m← m/2
18: k ← k · 2
19: end while
20: Return a
21: end function

A.2 The Atmel ATxmega128A1

In this section we briefly introduce the target device and the profiling system for runtime measurements
in more detail.

The Target Device.

Our implementation targets the 8-bit Atmel ATxmega128A1 microcontroller on an Xplain evalua-
tion board. The microcontroller is equipped with 128 Kbytes flash for storage of program code and
constants, 8 Kbytes of RAM and 2 Kbytes of EEPROM. The maximum operating frequency is 32
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MHz and the ALU is connected to 32 8-bit registers. Some registers have special purposes like R0
and R1 which are connected to an 8× 8-bit multiplier or registers R26-31 which are used to address
the flash, RAM or EEPROM. The microcontroller supports native AES and DES encryption but no
floating point operations. The controller can be programmed directly in assembly or by using other
higher level languages, e.g, C/C++ together with the popular gcc compiler framework. The ATxmega
is compatible8 with the AVR instruction set which can also be found in smaller devices, e.g., from
the ATmega family. Each instruction takes a fixed amount of cycles mainly depending on the type of
operation that should be carried out. As an example the add instruction just needs one clock cycle, the
unsigned multiplication mul two, the relative call rcall two cycles and load/store operations targeting
the RAM one or two cycles.

Measurement of Performance and Resource Consumption. Atmel has published a cycle accurate simu-
lator for most AVR families. However, the simulator is slow and not optimal to simulate large runtimes
typical in public key cryptography. As a consequence, we implemented a profiling framework directly
on our development board. For this purpose, we used the microcontroller’s capabilities to provide a 32
bit timer/counter by connecting two 16 bit timers over the event system. Thus we are able to provide
cycle accurate measurements of execution times. Measurements of flash memory consumption (.text +
.data + .bootloader) include program code and constants and are obtained from the avr-size utility.
Dynamic RAM consumption (stack) which is freed after a function returns is measurement during
runtime using a stack canary.

A.3 Implementation of RLWEnc using Schoolbook Multiplication

Ideal lattices are represented by ideals of the ring Zq[x]/〈xn + 1〉 with polynomials of n integer coef-
ficients such that f(x) = f0 + f1x + f2x

2 + ... + fn−1x
n−1 ∈ Zq[x]. Polynomial multiplication can be

computed without expanding a temporary result by considering the special rule that xn ≡ −1. This
leads to the classical ”schoolbook” multiplication algorithm

ab =

n−1∑
i=0

n−1∑
j=0

(−1)b
i+j
n ca[i]b[j]xi+j mod n mod q. (6)

Advantages of the algorithm are its simplicity, in-place modular reduction and that it does not depend
on any parameters (e.g., n or q) of the multiplied polynomials. The time complexity of O(n2) is
obviously the drawback of this method. However, for constrained platforms with multiple optimizations
goals, it was demonstrated (e.g., in [25,31]) that variants of this method can still be very competitive
with respect to the more efficient multiplication techniques discussed later on.

Implementation. We realized the modular multiplication and reduction modulo q = 4093 (mm4093)
in assembly exploiting that 212 mod 4093 = 3. Therefore, we can split the 2 log2 q wide output u of the
log2 q × log2 q multiplier into an upper and a lower part. Thus u25..0 mod 4093 ≡ 212u25..12 + u11..0 =
3u25..12 + u11..0 = 2u25..12 + u25..12 + u11..0. The maximal size of the result for two modulo q reduced
coefficients is 4104 and requires at maximum one additional subsequent subtraction. The multiplication
by 3 is realized by shift and addition operations. As we have chosen to represent Zq[x]/〈xn + 1〉 as a
polynomial with unsigned coefficients in [0, ..., q − 1] we do not have to deal with more complicated
signed arithmetic and reduction. By carefully assigning the available 8-bit registers according to the
compiler’s calling convention we ensure that no push and pop instructions are necessary in mm4093.
The inner loop of the polynomial multiplication routine implemented in assembly mainly consist of ld
and lpm instructions to read the first coefficient from RAM and the second coefficient from the flash.
A subsequent call to mm4093 performs the modular multiplication and a branch determines whether

8 There are small differences between AVR families but the core arithmetic relevant for cryptographic operations is
basically the same.
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Table 4. Cycle counts and flash memory consumption for the implementation of RLWEnc on an 8-bit ATxmega128
microcontroller using the schoolbook algorithm.

Operation (n=192, q=4093) (n=256, q=4093) (n=320, q=4093)

Cycle counts and stack usage

encrypt 7,294,976 (446 bytes) 12,289,025 (573 bytes) 21,684,224 (705 bytes)
decrypt 3,205,121 (444 bytes) 5,491,712 (571 bytes) 9,798,655 (703 bytes)

SchoolMul 3,264,511 5,571,584 9,967,615
SampleGauss 55,296 73,727 89,088
AddEncode 12,773 16,915 20,707
Decode 3,331 4,419 5,507

Static memory consumption in bytes

Flash 4,648 5,032 5,418
RAM 824 1,088 1,352

i+ j > n so that the result has to be subtracted or just added to the memory address i+ j mod n.
The implementation of the encryption procedure consists of three calls to the Gaussian sampler, two
calls to SchoolMul and the threshold encoding step.

Results. Results for schoolbook multiplication given in Table 4 show that it takes more than seven
million cycles for an encryption operation using the smallest parameter set n = 192. For decryption
it can be seen that approx. 90 percent of the computation time is spent on the two polynomial
multiplications (SchoolMul) while all other operations like addition and decoding have only a marginal
impact on the runtime. Larger parameter sets turned out to be impractical, e.g., the largest variant
for n = 320 already consumes more than 21.7/9.8 million cycles for encryption/decryption. The RAM
consumption is mainly dominated by the need to be able to store one temporary polynomial which
accounts for 2n bytes of memory on the stack. Improvements might be possible when q is chosen as a
power of two (see [9,45]) due to even simpler reduction. In our implementation the reduction modulo
4093 accounts for approx. 25 cycles in mm4093 (called ≈ n2 times), however, schoolbook multiplication
still does not seem to be competitive.

A.4 Implementation of RLWEnc using Karatsuba Multiplication

Polynomial multiplication with improved complexity O(nlog(3)) can be achieved with Karatsuba’s
method [32]. The idea behind this method is to trade one expensive multiplication with three cheap
additions by means of the divide and conquer principle. Our implementation applies the Karatsuba
method up to a configurable number of iterations. In practice it is reasonable to limit the recursion to a
certain degree in order to avoid too much computations due to the increasing number of additions. The
remaining low-degree polynomial multiplications are then performed with the schoolbook algorithm.
In case the degree of the input polynomials is not a power of two, we apply zero padding.

Implementation. Implementations of Karatsuba on constrained devices show typically the drawback
of a significant memory consumption, especially, with extensive recursions. We initially aim at reducing
memory allocation and thus reserve 2n words to store the result of a multiplication and

∑r
i=0

n
2i

words
of additional SRAM storage, depending on the number of recursions r. Immediate reallocation of
memory is performed after a recursion step has been completed. Since the degree of the polynomial
is then twice as large as the degree of the intermediate polynomials in this recursion we can use the
previously disposed memory as a temporary storage for further intermediate polynomials. For the
modular multiplications of individual coefficients we apply the assembler implementation mm4093
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introduced above. We also measure the impact of changing the parameter q from 4093 to 40969. We
implement a mm4096 function to exploit the fact that 4096 is a power of two.

Results. Table 5 and 6 provide cycle counts for a recursive implementation of the Karatsuba al-
gorithm. We experimentally evaluated that six levels of recursion lead to an optimal runtime for all
dimensions. With roughly 2.9 million cycles for one encryption and 1.3 million cycles for decryption,
this implementation outperforms schoolbook multiplication and is also able to deal with larger values
of n. With q=4096 the performance is even better and also the flash memory consumption decreases
since we do not need a complex modular reduction function anymore. However, the recursive nature
of the Karatsuba algorithm and the need to reduce the polynomial modulo xn + 1 after it has been
completely multiplied leads to significant dynamic RAM consumption (stack usage).

Table 5. Cycle counts and Flash memory consumption in bytes for the implementation of RLWEnc on an 8-bit
ATxmega128 microcontroller using the Karatsuba algorithm. As the parameter sets are identical, cycle counts for helper
functions like sampling and encoding can be obtained from Table 4.

Operation (n=192, q=4093) (n=256, q=4093) (n=320, q=4093)

Cycle counts and stack usage

encrypt 2,858,803 (2,143 bytes) 4,467,168 (2,760 bytes) 6,426,197 (3,392 bytes)
decrypt 1,336,957 (2,139 bytes) 2,108,398 (2,756 bytes) 3,054,861 (3,388 bytes)

Static memory consumption in bytes

Flash 5,920 6,304 6,690
RAM 826 1,090 1,354

Table 6. Cycle counts and Flash memory consumption in bytes for the implementation of RLWEnc on an 8-bit
ATxmega128 microcontroller using the Karatsuba algorithm with a modified parameter q=4096.

Operation (n=192, q=4096) (n=256, q=4096) (n=320, q=4096)

Cycle counts and stack usage

encrypt 2,158,343 (2,128 bytes) 3,240,959 (2,820 bytes) 4,528,167 (3,458 bytes)
decrypt 994,944 (2,180 bytes) 1,508,089 (2,818 bytes) 2,124,268 (3,456 bytes)

Static memory consumption in bytes

Flash 4,956 5,340 5,726
RAM 826 1,090 1,354

9 Note that the impact on security is currently not clear, but we still see it as an interesting experiment. We also refer
to [45] for a description of a hardware implementation of RLWEnc with q being a power of two and a brief discussion
on this choice.
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