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Abstract

Decision trees and random forests are common classifiers with widespread use. In this paper, we
develop two protocols for privately evaluating decision trees and random forests. We operate in the
standard two-party setting where the server holds a model (either a tree or a forest), and the client holds
an input (a feature vector). At the conclusion of the protocol, the client learns only the model’s output
on its input and a few generic parameters concerning the model; the server learns nothing. The first
protocol we develop provides security against semi-honest adversaries. Next, we show an extension of the
semi-honest protocol that obtains one-sided security against malicious adversaries. We implement both
protocols and show that both variants are able to process trees with several hundred decision nodes in
just a few seconds and a modest amount of bandwidth. Compared to previous semi-honest protocols for
private decision tree evaluation, we demonstrate tenfold improvements in computation and bandwidth.

1 Introduction

In recent years, machine learning has been successfully applied to many areas, such as spam classification,
credit-risk assessment, cancer diagnosis, and more. With the transition towards cloud-based computing,
this has enabled many useful services for consumers. For example, there are many companies that provide
automatic medical assessments and risk profiles for various diseases by evaluating a user’s responses to
an online questionnaire, or by analyzing a user’s DNA profile. In the personal finance area, there exist
automatic tools and services that provide valuations for a user’s car or property based on information the
user provides. In most cases, these services require access to the user’s information in the clear. Many
of these situations involve potentially sensitive information, such as a user’s medical or financial data. A
natural question to ask is whether one can take advantage of cloud-based machine learning, and still maintain
the privacy of the user’s data. On the flip side, in many situations, we also require privacy for the model.
For example, in scenarios where companies leverage learned models for providing product recommendations,
the details of the underlying model often constitute an integral part of the company’s “secret sauce,” and
thus, efforts are taken to guard the precise details. In other scenarios, the model might have been trained
on sensitive information such as the results from a medical study or patient records from a hospital; here,
directly revealing the model can not only compromise sensitive information, but also violate certain laws
and regulations.

In this work, we consider one particular class of machine learning classifiers, and seek to develop efficient
protocols for evaluating these classifiers in a privacy-preserving manner. Specifically, we examine decision
trees, and their generalization, random forests [1, 2]. Decision trees are simple classifiers that consist of
a collection of decision nodes arranged in a tree structure. As the name suggests, each decision node is
associated with a predicate or test on the query (for example, a possible predicate could be “age > 55”).
When the decision tree is binary, each decision node has exactly two children. To evaluate a binary decision
tree, we begin at the root. Then, at each decision node, we evaluate the corresponding predicate, and
depending on the outcome, proceed either to the node’s left child or right child. Thus, every input induces
a path through the decision tree. The output of the decision tree is simply the value of the leaf node in the
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induced path. Despite their simple structure, decision trees are widely used in machine learning, and have
been successfully applied to many scenarios such as heart disease diagnosis [3] and credit-risk assessment [4].

In this work, we develop a set of practical two-party protocols for privately evaluating decision trees and
random forests. In our setting, the server has a trained model of a decision tree or a random forest and the
client holds an input to the model. For example, in the case of heart disease diagnosis, the client’s input
might consist of a feature vector describing the symptoms she is currently experiencing, and the server’s
model would classify these symptoms as being indicative of heart disease or not. Abstractly, our desired
security property is that at the end of the protocol execution, the server should not learn anything about
the client’s input, and the client should not learn anything about the server’s model other than what can be
directly inferred from the output of the model. This is a natural setting in cases where we are working with
potentially sensitive and private information on the client’s side and where we desire to protect the server’s
model, which might consist of proprietary information.

This problem of privately evaluating decision trees falls into the more general area of privacy-preserving
computation. One general approach here leverages homomorphic encryption [5, 6], where the client sends to
the server an encryption of its input, and the server evaluates the function homomorphically and sends the
encrypted response back to the client. The client then decrypts to learn the output. While these methods
have been successfully applied to several problems in privacy-preserving data mining [7, 8], the methods
are typically limited to evaluating simple, low-depth functions. Another general approach is based on Yao’s
garbled circuits [9, 10, 11, 12, 13], where one party prepares a garbled circuit representing the joint function
they want to compute and the other party evaluates the circuit. In our setting, it does not suffice to simply
construct a circuit representing the decision tree and have the client and server privately compute the output
using Yao’s approach. This method necessarily reveals the structure of the decision tree to the client. To
ensure privacy for the model, we require the stronger primitive of private function evaluation. While it is
possible to apply Yao’s technique with universal circuits to achieve this stronger notion of privacy, these
constructions are less efficient in terms of bandwidth. In our work, we develop a specific protocol tailored
for decision tree evaluation.

Our contribution. First, we describe a decision-tree evaluation protocol that is secure against semi-honest
adversaries. In the semi-honest model, both the client and server follow the protocol specification, but may
try to learn additional information based on their view of the protocol execution. We then show how to
extend the semi-honest protocol to a one-sided secure protocol against malicious adversaries. Specifically,
this means that even if the client behaves maliciously, it still cannot learn additional information about the
server’s model. Conversely, if the server was malicious, we still guarantee privacy for the client’s input. The
one-sided nature of this definition means that a malicious server can cause the client to obtain a corrupted
output, but even then, is still unable to learn anything about the client’s input. This model is well-suited for
cloud-based applications where we assume the server is trying to provide a useful service, and thus, is not
incentivized to give corrupt or nonsensical output to the client; however, even if the server acts maliciously,
the privacy of the client’s input is preserved. We give formal simulation-based proofs of security for both
of our protocols in the real-world/ideal-world paradigm [14, 15, 16]. Our protocols leverage two standard
cryptographic primitives: additively homomorphic encryption and oblivious transfer.

To assess the practicality of our protocols, we implement both the semi-honest and the one-sided secure
protocols using standard libraries. We conduct experiments with decision trees with depth up to 20, as well
as decision trees with over 10,000 decision nodes to assess the scalability of our protocols. We also compare
the performance of our semi-honest secure protocol against the protocols of [17, 18, 19], and demonstrate
over 10x reduction in client computation and bandwidth, or both, while operating at a higher security level
(128 bits of security as opposed to 80 bits of security in past works). We conclude our experimental analysis
by evaluating our protocols on decision trees trained on several real datasets from the UCI repository [20]. In
most cases, our semi-honest decision tree protocol completes on the order of seconds and requires bandwidth
ranging from under 100 KB to several MB. This represents reasonable performance for a cloud-based service.

This work also provides the first implementation of a private decision tree evaluation protocol with
security against malicious adversaries. In our benchmarks, we additionally show that the performance of our
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one-sided secure protocol still outperforms existing protocols that only achieve semi-honest security.

2 Preliminaries

We begin by introducing some notation. Let [n] be the set of positive integers {1, . . . , n}, and Zp be the

ring of integers modulo p. For two k-bit strings x, y ∈ {0, 1}k, we write x ⊕ y for their bitwise xor. Let D
be a probability distribution. We write x

$←− D to denote that x is drawn uniformly at random from D. We
say that two distributions D1 and D2 are computationally indistinguishable if no probabilistic polynomial
time (PPT) algorithm can distinguish them except with negligible probability. A function f is negligible in
a parameter λ if for all positive integers c, f = o(1/λc).

Let P be a predicate. We write 1 {P(x)} to denote the indicator function for the predicate P, that is,
1 {P(x)} = 1 if and only if P(x) holds, and 0 otherwise.

2.1 Security Model

Our security definitions follow the real-world/ideal-world paradigm of [14, 15, 16, 21]. We define a two-party
protocol π to be a possibly randomized process that maps a pair of inputs to a pair of outputs. We refer to
the first party P1 as the client and the second party P2 as the server. We define a functionality to be the
function f computed by the protocol π. If we let xi denote the input of Pi and fi denote its output, then
we can express the functionality as the mapping (x1, x2) 7→ (f1(x1, x2), f2(x1, x2)). For private decision tree
evaluation, the desired functionality can be expressed as (x, T ) 7→ (T (x),−), where x is the client’s feature
vector and T is the server’s model. We write ‘–’ to indicate that the server receives no output. Informally,
our security notion compares a real-world execution of the protocol π against an ideal world instantiation
where the parties have access to a trusted party who evaluates f . We say that security holds if these two
executions are computationally indistinguishable. See Appendix A for a more formal treatment.

In our work, we consider two classes of adversaries: semi-honest adversaries and malicious adversaries.
A semi-honest adversary follows the protocol specification as directed, but may try to learn additional
information by analyzing the messages it receives as part of the protocol execution. On the other hand, a
malicious adversary can deviate arbitrarily from the protocol specification in order to achieve its goals.

Our first protocol for decision tree evaluation is secure against semi-honest adversaries. Thus, as long
as both parties follow the protocol, neither party learns more information at the end of the protocol than
desired. While semi-honest protocols are often easier to construct and more efficient, they do not always
capture the strong notions of security we desire. Thus, we also consider a stronger, one-sided notion of
security (see [21] for a more thorough discussion). In one-sided security, we require a strong simulation-
based notion of security to hold against a malicious client and a weaker notion of privacy to hold against a
malicious server. This means that even a malicious client cannot learn anything more than T (x) and what is
explicitly leaked by the protocol. On the other hand, while a malicious server cannot learn anything about
the client’s input x, it can still corrupt the client’s output. This is a suitable notion of security in scenarios
where the server is not incentivized to cause the client to receive corrupted or wrong outputs, but may try
to learn something about the value of x.

2.2 Cryptographic Primitives

In this section, we give a brief overview of the cryptographic tools and primitives that we use to construct
our protocols.

Homomorphic encryption. In this work, we require an additively homomorphic encryption scheme such
as [6, 22, 23]. A semantically secure public-key encryption system with message space R (we model R as
a ring) is specified by three algorithms KeyGen,Encpk,Decsk (for key generation, encryption, decryption,
respectively). We write pk and sk to denote the public and secret keys, respectively. We drop the pk and
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sk subscripts when the choice of keys is unambiguous. The key-generation algorithm outputs a public-
private key pair (pk, sk). The security requirement is the standard notion of semantic security [24]. In an
additively homomorphic encryption system, we require an additional public-key operation Addpk such that
for all messages m0,m1 ∈ R, the following holds with overwhelming probability:

Dec (Add (Enc(m0),Enc(m1))) = m0 +m1.

In addition to additive homomorphism, we also require that our scheme supports scalar multiplication, that
is, given an encryption Enc(m) of m ∈ R, there exists a public-key operation that produces an encryption
Enc(km) for all k ∈ Z.

It turns out that in our constructions, we do not need to decrypt arbitrary ciphertexts; instead, it suffices
to be able to test whether a given ciphertext is an encryption of 0. Thus, we instantiate our scheme with
the “exponential” variant of the ElGamal encryption scheme [25]. Since we exploit the particular structure
of the exponential ElGamal encryption scheme, we sketch out some additional details here. Let G be an
additively written group of prime order p for which the decisional Diffie-Hellman (DDH) assumption [26]
holds, and let P be a generator of G. The plaintext space is the ring Zp and the ciphertext space is G2.
Then, we have the following:

• KeyGen: Take s
$←− Zp and let Q← sP . Output the public key pk← (P,Q) and the secret key sk← s.

• Encpk(m): Take pk = (pk1, pk2). Choose r
$←− Zp and output the ciphertext ct← (r·pk1, r·pk2+m·pk1).

We write Encpk(m; r) to denote an encryption of m with randomness r.

• Decsk(ct): For ct = (ct1, ct2), output ct2 − sk · ct1.

• Addpk(ct, ct
′): Choose r

$←− Zp and output (ct1 + ct′1 + r · pk1, ct2 + ct′2 + r · pk2).

• ScalarMultiplypk(ct, k): Choose r
$←− Zp and output (k · ct1 + r · pk1, k · ct2 + r · pk2).

Observe that the “decryption” function does not produce an element of the plaintext space Zp: if ct is an
encryption of m, the decryption function produces the element mP ∈ G. Recovering m amounts to solving
a discrete log problem in G. In our protocols, it suffices to check if m is zero, which can be performed by
checking if mP is the identity in G. Moreover, we will use the fact that if ct is an encryption of a uniformly
random message m ∈ Zp, then Decsk(m) yields a uniformly random element in G (since |G| = p).

Oblivious Transfer. Oblivious transfer (OT) [27, 28, 29, 30] is a primitive commonly employed in cryp-
tographic protocols. In standard 1-out-of-n OT, there are two parties, denoted the sender and the receiver.
The sender holds a database x1, . . . , xn ∈ {0, 1}κ and the client holds a selection bit i ∈ [n]. At the end
of the protocol, the client learns xi and nothing else about the contents of the database; the server learns
nothing.

2.3 Decision Trees and Random Forests

Decision trees are frequently encountered in machine learning and can be used for both classification and
regression. We view a decision tree T : Zn → Z as implementing a function on an n-dimensional feature
space.1 We refer to elements x ∈ Zn as feature vectors. Evaluation of a decision tree on an input x ∈ Zn
corresponds directly to taking a path through the tree from the root to a leaf. More concretely, for each
internal node vk in the tree, we associate a boolean function fk(x) = 1 {xik < tk}. Here, ik ∈ [n] is an index
into a feature vector x ∈ Zn and tk is a threshold. For each leaf node `, we associate an output value z`.
To evaluate the decision tree on an input x ∈ Zn, we start at the root node, and at each internal node vk,
we evaluate fk(x). Depending on whether fk(x) = 0 or 1, we either take the left or right branch of the tree.

1In practice, the feature space is usually Rn rather than Zn; to apply our method to these scenarios, we use a fixed-point
encoding of real-valued elements as integers.
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We repeat this process until we reach a leaf node `. The value z` of the leaf node is the predicted response
T (x).

We also review some standard terminology for trees. First, the depth of a tree is the length of the longest
path from the root to a leaf. The ith layer of the tree is the set of nodes of distance i from the root. We say
a binary tree with depth d is complete if for 0 ≤ i ≤ d, the ith layer contains exactly 2i nodes.

Complete, binary trees. In general, decision trees need not be binary or complete. However, we note
that any non-binary tree can be transformed into a binary tree at the expense of increasing the depth of the
resulting tree.

Moreover, all incomplete binary trees can be transformed into a complete binary tree by introducing
dummy nodes. Let T be a binary tree with depth d. So long as there are leaf nodes v in the tree at a layer
` < d, we apply the following transformation: replace v with a dummy internal node with two children, each
of which is a terminal node with value z. For simplicity, we associate each dummy nodes with the trivial
boolean function f(x) = 0. Note that this has no effect on the classification, since irrespective of the path
taken at the dummy node, the response value is unchanged.

Node indices. We use the following indexing scheme to refer to nodes in a complete binary tree. Let T
be a decision tree with depth d. Set v1 to be the root node. We label the remaining nodes inductively: if
vi is an internal node, let v2i be its left child and v2i+1 be its right child. For convenience, we also define
a separate index from 0 to 2d − 1 for the leaf nodes. Specifically, if vi is the parent of a leaf node, then
we denote its left and right children by z2i−m−1 and z2i−m, where m is the number of internal nodes in T .
With this indexing scheme, the leaves of the tree, when read from left-to-right, correspond with the ordering
z0, . . . , z2d−1.

Paths in a binary tree. It is often useful to associate paths in a complete binary tree with bit strings
and vice versa. Specifically, let T be a complete binary tree with depth d. We can specify a path by a bit
string b = b1 · · · bd ∈ {0, 1}d, where bi denotes whether we visit the left child or the right child when we
are at a node at level i− 1. Starting at the root node (level 0), and traversing according to the bits b, this
process uniquely defines a path in T . We refer to this path as the path induced by b in T .

Similarly, we define the notion of a decision string for an input x on a tree T . Let m be the number of
internal nodes in a complete binary tree T . The decision string is the concatenation f1(x) · · · fm(x) of the
value of each predicate fi on the input x. Thus, the decision string encodes information regarding which
path the evaluation would have taken at every internal node. By construction, it also uniquely identifies the
evaluation path of x in T . Thus, we can also refer to the path induced by a decision string s in T . As part
of defining the path s, the decision string also specifies the index of the leaf node at the end of the path. We
let φ : {0, 1}m → {0, . . . ,m} be the function that maps a decision string s for a complete binary tree with
m decision nodes onto the index of the corresponding leaf node in the path induced by s in T .

Random forests. A natural way of improving the performance of decision tree classifiers is by combining
responses (e.g., taking the mean or mode) from many decision trees. In the case of a random forest, we train
many decision trees, where each tree is trained using a random subset of the features. This has the effect
of decorrelating the individual trees in the forest. More concretely, we can describe a random forest F by
an ensemble of decision trees F = {Ti}i∈[n]. If the random forest operates by computing the mean of the

individual decision tree outputs, then we have F(x) = 1
n

∑
i∈[n] Ti(x). See [2] for additional details.

3 Semi-honest Decision Tree Evaluation

In this section, we describe our two-party protocol for privately evaluating decision trees in the semi-honest
model. We show how to generalize these protocols to random forests in Section 5. In our scenarios, we assume
the client holds a feature vector and the server holds a model (either a decision tree or a random forest). The
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protocol we describe is secure assuming a semantically secure additively homomorphic encryption scheme
and a semi-honest secure OT protocol.

3.1 Setup

We make the following assumptions about our model:

• The client has a well-formed ElGamal key-pair. In the semi-honest setting, it suffices that the client
generates the key-pair at the beginning of the protocol using the KeyGen algorithm. In the malicious
setting, the client also has to include a proof of the well-formedness of its key. Since this issue is
orthogonal to the construction of our protocol, we assume that the client already has a valid key-pair
at the onset of the protocol.

• The client’s private data consists of a feature vector x = (x1, . . . , xn) ∈ Zn, where xi ≥ 0 for all i. Let
t be the bit-length of each component of the feature vector.

• The server holds a complete binary decision tree T withm internal nodes, some of which may be dummy
nodes (see Section 2.3). Let i1, . . . , i` denote the indices of the non-dummy internal nodes in T . For
each non-dummy node vik , we associate an index jk and a threshold tk such that fik(x) = 1 {xjk < tk}.
For the dummy nodes v, we set the boolean function to fv(x) = 0. The output space of T is {0, 1}κ,
that is, the values of T at the leaves z0, . . . , zm are elements of {0, 1}κ.

Leakage. In constructing our protocol, we aim to minimize the amount of information leaked about the
decision tree. However, for practical purposes, our protocol will leak a small amount of information regarding
the tree: the depth d of the decision tree and the number ` of non-dummy internal nodes. It is possible to
hide the number of non-dummy nodes in the tree by treating every internal node in the tree as a non-dummy
node (for instance, each dummy node would have an associated index and threshold). This will increase the
runtime and bandwidth, but does provide increased privacy.

3.2 Building Blocks

In this section, we describe the construction of our decision tree evaluation protocol in the semi-honest
setting. Before presenting its full details (Figure 2), we provide a high-level survey of our methods. As
stated in Section 3.1, the decision trees we consider have a very simple structure known to the client: a
complete binary tree T with depth d. Let z0, . . . , z2d−1 be the leaf values of T . Suppose also that we allow
the client to learn the index i ∈

{
0, . . . , 2d − 1

}
of the leaf node in the path induced in T by x. If the client

knew the index i, it can then privately obtain the value zi = T (x) by engaging in a 1-out-of-2d OT with the
server. In this case, the server’s “database” is the set {z0, . . . , z2d−1}.

The problem with this simple scheme is that revealing the index of the leaf node to the client reveals too
much information about the structure of the tree. We address this by having the server randomize the tree,
that is, the server chooses a random subset of the internal nodes in the decision tree and interchanges their
left and right subtrees. After this randomization process, we can show that the decision string corresponding
to the client’s query is uniform over all bit strings with length 2d − 1. At this point, we can reveal to the
client the decision string corresponding to its input on the permuted tree. The basic idea for our semi-honest
secure decision tree evaluation protocol is thus as follows:

1. The server randomly permutes the tree T to obtain an equivalent tree T ′.

2. The client and server engage in a comparison protocol for each decision node in T ′. At the end of
this phase, the client learns the result of each comparison in T ′, and therefore, the decision string
corresponding to its input in T ′.

3. Using the decision string, the client determines the index i that contains its value zi = T (x). The
client engages in an OT protocol with the server to obtain the value zi.
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Let x, y ∈ Z, x 6= y, be t-bit integers with binary representation x1x2 · · ·xt, y1y2 · · · yt, respectively. Let (pk, sk)
be a public-private key-pair for an additively homomorphic encryption scheme over Zp. Assume the client holds
sk.

• Client’s input and server’s output: None.

• Server’s input: Encryptions Enc(x1), . . . ,Enc(xt) under the client’s public key pk, the value y, and a bit
b.

• Client’s output: A bit b′ such that b⊕ b′ = 1 {x < y}.

1. Server: Take s← 1− 2b. For i ∈ [t], choose ri
$←− Z∗p and define

ci = ri ·
[
xi − yi + s+ 3 ·

∑
j<i

(xj ⊕ yj)
]
. (1)

The server homomorphically computes Enc(ci) and sends {Enc(c1), . . . ,Enc(ct)} to the client in random
order.

2. Client: First, decrypt the received ciphertexts to obtain the set {c1, . . . , ct}. Then, compute and output
b′ ← 1{∃i : ci = 0}.

Figure 1: Private comparison protocol.

Comparison protocol. The primary building block we require for private decision tree evaluation is a
comparison protocol. We use a variant of the comparison protocol from [17, 22, 31]. This protocol is a two-
round protocol between a client and a server. The server possesses two t-bit integers: the bitwise encryption
of a value x under the client’s public key and the value y in the clear. At the end of the protocol, the client
and server each possess one bit of a secret sharing of the comparison bit 1 {x < y}. The client should not
learn anything about y. The protocol is given in Figure 1. We show that this protocol is correct.

Theorem 1. Let x 6= y be t-bit integers with binary representation x1x2 · · ·xt and y1y2 · · · yt, respectively.
Let (pk, sk) be the public-private key pair of an additively homomorphic public-key encryption scheme with
encryption function Enc and plaintext space Zp, such that p > 3t−1. Then, the protocol in Figure 1 correctly
implements the functionality (−, [(Enc(x1), . . . ,Enc(xn)) , y, b]) 7→ (b′,−) where b⊕ b′ = 1 {x < y}.

Proof. Consider the expression in (1):

ci = ri ·
[
xi − yi + s+ 3 ·

∑
j<i

(xj ⊕ yj)
]
∈ Zp

Since |xi − yi + s| ≤ 2 and 0 ≤
∑
j<i (xj ⊕ yj) ≤ 3(t − 1), we conclude that if p > 3t − 1, then ci = 0 over

Zp if and only if ci = 0 when the computation is performed over Z. Suppose the server’s input bit b = 0.
Then, s = 1. We show that x < y if and only if the client’s output bit b′ = 1. This is equivalent to showing
that there exists i such that ci = 0. We use the fact that x < y if and only if there exists i ∈ [t] such that
∀j < i : xj = yj and xi < yi. Consider the value of ci. Since xj = yj for all j < i,

∑
j<i (xj ⊕ yj) = 0.

Moreover, since xi < yi, it follows that xi = 0 and yi = 1, so xi − yi + s = 0. We conclude that ci = 0.
For the reverse direction, suppose there exists i such that ci = 0. Since |xi − yi + s| ≤ 2 and xj ⊕ yj ≥ 0,

ci = 0 only if for all j < i, xj = yj . Since s = 1, xi − yi + s = 0 if and only if xi − yi = −1, which implies
xi < yi. We conclude that x < y. The analysis for the case where b = 1 is similar.

To conclude the proof, we show that the server can compute Enc(ci). First, the server computes xi−yi+s
using the additive homomorphism of the encryption scheme. Next, it computes xj ⊕ yj using the fact that
xj⊕yj = xj if yj = 0 and 1−xj if yj = 1. Since the server knows y, this just requires additive homomorphism.
Finally, multiplication by ri can be performed if the scheme supports scalar multiplication.

7



Remark 1. It is important in the comparison protocol that x 6= y. Otherwise, if x = y, ci 6= 0 for all i in (1),
and so the client always outputs b′ = 0, which does not satisfy the requirement b⊕ b′ = 1 {x < y}. To ensure
that the comparison protocol will never be invoked on x, y ∈ Z where x = y, we use the fact that x ≤ y
if and only if 2x < 2y + 1. Thus, when comparing integers x and y, the server first augments the client’s
input with an extra encryption of 0 in the least significant bit (effectively substituting 2x for the client’s
input) and substitutes 2y + 1 for its own input. The output of the comparison protocol b′ then satisfies
b⊕ b′ = 1 {x ≤ y}.

Decision tree randomization. As mentioned at the beginning of Section 3.2, we apply a tree random-
ization procedure to hide the structure of the tree. For each decision node v, we interchange its left and
right subtrees with equal probability. Moreover, to preserve correctness, if we interchanged the left and right
subtrees of v, we replace the boolean function fv at v with its negation f̃v(x) := fv(x)⊕ 1. More precisely,
on input a decision tree T with m internal nodes v1, . . . , vm, we construct a permuted tree T ′ as follows:

1. Initialize T ′ ← T and choose s
$←− {0, 1}m. Let v′1, . . . , v

′
m denote the internal nodes of T ′ and let

f ′1, . . . , f
′
m be the corresponding boolean functions.

2. For i ∈ [m], set f ′i(x) ← fi(x) ⊕ si. If si = 1, then swap the left and right subtrees of v′i. Do not
reindex the nodes of T ′ during this step.

3. Reindex the nodes v′1, . . . , v
′
m in T ′ according to the standard indexing scheme described in Section

2.3. Output the permuted tree T ′.

In the above procedure, we obtain a new tree T ′ by permuting the nodes of T according to a bit-string
s ∈ {0, 1}m. We denote this process by T ′ ← πs(T ). By construction, for all x ∈ Zn and all s ∈ {0, 1}m, we
have that T (x) = πs(T )(x). Moreover, we define the permutation τs that corresponds to the permutation
on the nodes of T effected by πs. In other words, the node indexed i in T is indexed τ(i) in T ′. Then, if
σ ∈ {0, 1}m is the decision string of T on input x, τ(σ ⊕ s) is the decision string of πs(T ) on x.

3.3 Semi-honest Secure Decision Tree Evaluation

The protocol for evaluating a decision tree with security against semi-honest adversaries is given in Figure
2. Just to reiterate, in the first part of the protocol, the client and server participate in an interactive
comparison protocol that ultimately reveals to the client a decision string for a permuted tree. Given the
decision string, the client obtains the response via an OT protocol. We now show that this protocol is correct.

Lemma 1. If the client and server follow the protocol in Figure 2, then at the end of the protocol, the client
learns T (x).

Proof. Invoking Theorem 1, for k ∈ [`], bk ⊕ b′k = fjk(x). Since fv(x) = 0 for the dummy nodes v, we
conclude that σ is the decision string of x on T . Then, as noted in Section 3.1, τs(σ ⊕ s) = σ′ is the
corresponding decision string of x on πs(T ) = T ′. By correctness of the OT protocol, the client learns the
value of z′φ(σ′) = T ′(x) at the end of Step 5. Since the tree randomization process preserves the function, it

follows that z′φ(σ′) = T ′(x) = T (x).

We now prove that this protocol is secure against semi-honest adversaries. To simplify the proof, we
prove security in the OT-hybrid model (see Appendix A). In other words, we assume that in the final step
of the protocol in Figure 2, the client and server have access to a trusted party that implements the OT
functionality. By instantiating the OT protocol with a protocol secure against semi-honest adversaries (for
instance, the protocols of [29, 30]), and invoking the sequential composability theorem of Canetti [15], we
achieve full security against semi-honest adversaries.

Theorem 2. The protocol in Figure 2 securely computes (Definition 1) the functionality (x, T ) 7→ (T (x),−)
in the presence of semi-honest adversaries in the OT-hybrid model.

Proof. The proof is deferred to Appendix B.1.
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Let (pk, sk) be a public-private key-pair for an additively homomorphic encryption scheme over Zp. The client
holds the secret key sk. Let t = dlog2 pe.

• Client input: A feature vector x ∈ Znp . Let xi,j denote the jth bit of xi.

• Server input: A complete, binary decision tree T with m internal nodes. Let i1, . . . , i` be the indices of
the non-dummy nodes, and let fik (x) = 1 {xjk ≤ tk}, where jk ∈ [n] and tk ∈ Zp. For the dummy nodes
v, set fv(x) = 0. Let z0, . . . , zm ∈ {0, 1}κ be the values of the leaves of T . See Section 3.1 for more details.

• Client output: A value z = T (x).

• Server output: None.

1. Client: For each i ∈ [n] and j ∈ [t], compute and send Enc (xi,j) to the server.

2. Client and Server: The server chooses b
$←− {0, 1}`. For each k ∈ [`], the client and server engage in the

private comparison protocol of Figure 1 (with the transformation from Remark 1). On the kth iteration,
the server’s input to the comparison protocol consists of the ciphertexts Enc (xjk,1) , . . . ,Enc (xjk,t), the bit
bk, and the threshold tk. The server can send all of the messages for the ` comparisons in a single round.
The client then replies with all ` responses. Thus, this step just requires two rounds of communication.

3. Client: At the end of the comparison protocol, the client obtains shares b′1, . . . , b
′
`. The client sends

Enc(b′1), . . . ,Enc(b′`) to the server.

4. Server: The server chooses s
$←− {0, 1}m and constructs the permuted tree T ′ ← πs(T ), where πs is

the permutation associated with the bit-string s (see Section 2.3). Initialize σ ← 0m. For k ∈ [`],
update σik ← bk ⊕ b′k. Let τs be the permutation on the node indices of T effected by πs, and compute
σ′ ← τs(σ ⊕ s). The server homomorphically computes Enc(σ′) (each bit is encrypted individually) and
sends the result to the client.

5. Client and Server: The client decrypts the server’s message to obtain σ′ and then the client computes
the index i of the leaf node containing the response (the client computes i ← φ(σ′), with φ(·) as defined
in Section 2.3). Next, it engages in a 1-out-of-(m+ 1) OT with the server to learn the value zi. In the OT
protocol, the client supplies the index i and the server supplies the permuted leaf values z′0, . . . , z

′
m of T ′.

Figure 2: Semi-honest secure decision tree evaluation protocol.

3.4 Asymptotic Analysis

In this section, we briefly describe the asymptotic performance of the protocol in Figure 2. Let d be the
depth of the tree, n be the dimension of the feature space, ` be the number of non-dummy internal nodes,
and t be the precision (the number of bits needed to represent each component of the feature vector).
Consider the client’s computation. First, encrypting its feature vector bitwise requires O(nt) public-key
operations. Next, the client receives `t ciphertexts from the server for the comparison protocol; it decrypts
each set of ciphertexts to determine which ones contain an encryption of 0. This requires O(`t) computation.
Finally, after the client receives the (encrypted) decision string, it needs to decrypt O(d) bits in the string
to determine the index of the leaf node. Instantiating the OT with the Naor-Pinkas OT [28], the OT can be
performed in time O(d), for a total complexity of O (t(n+ `) + d).

On the server side, evaluating the comparisons requires O(`t) public-key operations. After receiving
the comparison responses, the server must construct the decision string, which has length 2d − 1. Using
the Naor-Pinkas OT, the server computation in the OT protocol is also O(2d). The overall computational
complexity for the server is then O

(
`t+ 2d

)
.

If we fix the precision t needed to encode elements of the feature space, then the client’s computation
is linear in the dimension, the number of comparisons, and the depth of the decision tree. For the server,
however, the complexity is linear in the number of comparisons, but exponential in the depth. Thus, our
protocols are better-suited for shallow decision trees (say, d < 20), which is oftentimes sufficient for practical
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applications.

4 One-Sided Decision Tree Evaluation

Next, we describe an extension of our proposed decision tree evaluation protocol that achieves stronger
security against malicious adversaries. Specifically, we describe a protocol that is fully secure against a
malicious client and private against a malicious server. To motivate the construction of the extended protocol,
we highlight two possible ways a malicious client might attack the protocol in Figure 2:

• In the first step of the protocol, a malicious client might send encryptions of plaintexts that are not in
{0, 1}. The server’s response could reveal information about the thresholds in the decision tree.

• When the client engages in OT with the server, it can request an arbitrary index i′ of its choosing and
learn the value zi′ of an arbitrary leaf node, independent of its query.

In the following sections, we develop tools that prevent these two particular attacks on the protocol. We then
show that the resulting protocol provides one-sided security against malicious adversaries. We work under
the same assumptions as in the semi-honest setting (Section 3.1) with one crucial difference: we no longer
distinguish between dummy and non-dummy nodes. In other words, if a node v ∈ T is a dummy node, we
still associate v with a (dummy) index iv and threshold tv. This will have implications on the performance
of our protocol, which we elaborate on in Section 6.

4.1 Building Blocks

To extend our protocol to operate in the presence of malicious adversaries, we make use of two additional
cryptographic primitives: proofs of knowledge and an adaptation of conditional OT. In this section, we give
a brief survey of these methods.

Proofs of knowledge. At the beginning of Section 4, we noted that a malicious client can deviate from
the protocol and submit encryptions of non-binary values as its query. To protect against this malicious
behavior, we require that the client include zero-knowledge proofs that certify it is submitting encryptions of
bits. Since we are using the exponential variant of the ElGamal encryption scheme, proving that a ciphertext
encrypts a certain value can be performed efficiently using the Chaum-Pedersen protocol [32]. Using the
standard OR proof transformation in [33, 34], we can prove that a ciphertext either encrypts a 0 or a 1.
Moreover, we apply the Fiat-Shamir heuristic [35] to make these proofs non-interactive in the random oracle
model.

In our exposition, we use the notation introduced in [36] to specify these proofs. We write statements
of the form PoK {(r) : c1 = rP ∧ c2 = rQ} to denote a zero-knowledge proof-of-knowledge of the integer r
that satisfies c1 = rP and c2 = rQ. All values not enclosed in parenthesis are assumed to be known to the
verifier. We refer readers to [37, 38] for a more complete treatment of these topics.

Conditional oblivious transfer. The second problem with the semi-honest protocol we highlighted per-
tains to the fact that the client is not bound to request the correct index in the OT protocol. To protect
against the client requesting an arbitrary index independent of its query, we modify the protocol such that
the client is only able to learn the value that corresponds to its query. We use a technique similar to con-
ditional oblivious transfer introduced in [39, 40]. Like OT, (strong) conditional OT is a two-party protocol
between a sender and a receiver. The receiver holds an input x and the sender holds two secret values k0, k1
and an input y. At the conclusion of the protocol, the receiver learns k1 if (x, y) satisfy some predicate Q,
and k0 otherwise. For instance, a “less-than” predicate would be Q(x, y) = 1 {x < y}. As in OT, the server
learns nothing at the conclusion of the protocol. Neither party learns Q(x, y). In our setting, we adapt the
comparison protocol in Figure 1 so that at the conclusion of the protocol, in addition to learning the output
bit b′, the client also learns an associated key kb′ . Since b′ is just a single share of the actual comparison
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Let x, y ∈ Z, x 6= y be t-bit integers with binary representation x1x2 · · ·xt, y1y2 · · · yt, respectively. Let pk =
(P,Q) be a public key for an exponential ElGamal cryptosystem with corresponding secret key sk = s (note that
Q = sP in this case). Let G be the plaintext space where |G| is a prime p.

• Client’s input and server’s output: None.

• Server’s input: Encryptions {Enc(xi)}i∈[t] under the client’s public key, the value y, a bit b, and two
scalars, α0, α1 ∈ Zp.

• Client’s output: A bit b′ such that b⊕ b′ = 1 {x < y} and a key k = kb′ , where ki = αiP for i ∈ {0, 1}.

1. Server: Let s← 1− 2b. For i ∈ [n], choose ri, r
′
i

$←− Zp and define

ci = ri ·
[
xi − yi + s+ 3 ·

∑
j<i

(xj ⊕ yj)
]

c′i = r′i ·
[
xi − yi − s+ 3 ·

∑
j<i

(xj ⊕ yj)
]

(2)

Choose blinding factors ρ1, . . . , ρn, ρ
′
1, . . . , ρ

′
n

$←− Zp. Compute the following tuples of ciphertexts:

A = (Enc(c1), . . . ,Enc(cn)) A′ = (Enc(c′1), . . . ,Enc(c′n))
B = (Enc(c1ρ1 + α0), . . . ,Enc(cnρn + α0)) B′ = (Enc(c′1ρ

′
1 + α1), . . . ,Enc(c′nρ

′
n + α1))

Randomly permute the entries in A and apply the same permutation to the entries in B. Repeat with A′

and B′. Send A,A′, B,B′ to the client.

2. Client: For each ciphertext Ai = Enc(ci) in A, test whether ci = 0. If so, then let k ← Dec(sk, Bi), where
Bi denotes the ith component of B. Output the key k and the bit b′ = 1. Otherwise, for each ciphertext
A′i = Enc(c′i) in A′, test whether c′i = 0. If so, then set k ← Dec(sk, B′i). Output the key k and the bit
b′ = 0. If neither condition holds, then output ⊥.

Figure 3: Private comparison protocol with conditional key transfer.

bit, it does not reveal any information about the comparison bit to the client. We present our modified
comparison protocol in Figure 3.

Theorem 3. Let pk = (P,Q) be an ElGamal public key and let sk = s be the corresponding secret key.
Let x 6= y be t-bit integers with binary representation x1x2 · · ·xt and y1y2 · · · yt, respectively. Let Zp be the
underlying plaintext space and suppose that p > 3t+ 1. Let f be the functionality(

−,
[
{Enc(xi)}i∈[t] , y, b, (α0, α1)

])
7→ ((b′, kb′) ,−) ,

where b⊕ b′ = 1 {x < y} and ki = αiP . Then, the protocol in Figure 3 securely computes f in the presence
of malicious clients.

Proof (Sketch). We defer the formal proof to Appendix B.2, and give a sketch of the main arguments here.
In the private comparison protocol (Section 3.2, Figure 1), the client outputs 1 if and only if one of the
server’s ciphertexts Enc(ci) is an encryption of 0. This enables a simple method for hiding a value α.

For each encryption Enc(ci), the server chooses a random ρi
$←− Zp and homomorphically computes the

ciphertext Enc(ρici + α). If ci 6= 0, then ρici + α is uniform over Zp. Otherwise, ρici + α = α. Thus, if
the client has {Enc(ρici + α)} in addition to {Enc(ci)}, then the client is able to compute α if and only if
there exists i such that ci = 0. If for all i, ci 6= 0, then {Enc(ρici + α)} consists of encryptions of random
values in Zp; these values perfectly hide α. Since we instantiate the encryption scheme with exponential
ElGamal, the “decryption” operation applied to Enc(α) yields the group element αP . Thus, the modified
comparison protocol operates analogously to the simple comparison protocol in Figure 1, except by including
an additional set of ciphertexts, the client is able to learn not only the bit b′, but also an associated key
kb′ = αb′P .
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Let pk = (P,Q) be a public key for an exponential ElGamal cryptosystem with corresponding secret key sk. Let
G be the plaintext space where |G| is a prime p. We assume the client holds the secret key. Let t = dlog2 pe.

• Client input: A feature vector x ∈ Znp . Let xi,j denote the jth bit of xi.

• Server input: A complete, binary decision tree T with decision nodes v1, . . . , vm. For all k ∈ [m], the
predicate fk associated with decision node vk is of the form fk(x) = 1 {xjk ≤ tk}, where jk ∈ [n] is an
index and tk ∈ Zp is a threshold. Let z0, . . . , zm ∈ {0, 1}κ be the values of the leaves of T .

• Client output: A value z = T (x).

• Server output: None.

1. Client: For each i ∈ [n] and j ∈ [t], choose ri,j
$←− Zp. Then, compute and send encryptions

(ci,j , c
′
i,j)← Encpk(xi,j ; ri,j) = (ri,jP, ri,jQ+ xi,jP ),

along with proofs

πi,j ← PoK
{

(ri,j) :
[
ci,j = ri,jP ∧ c′i,j = ri,jQ

]
∨
[
ci,j = ri,jP ∧ c′i,j = ri,jQ+ P

]}
. (3)

2. Server: For each i, j, the server verifies the proof πij . If the proof fails to verify, it aborts the protocol.
Otherwise, the server does the following:

(a) Choose s
$←− {0, 1}m and compute T ′ ← πs(T ), where πs is the permutation associated with the bit-

string s (see Section 2.3). Let τ be the permutation effected by πs on the nodes of T . Let s′1 · · · s′m =
τ (s1 · · · sm). Similarly, define the permuted node indices i′1, . . . , i

′
m and thresholds t′1, . . . , t

′
m in T ′.

(b) Choose blinding factors α1,0, . . . , αm,0, α1,1, . . . , αm,1
$←− Zp. For i ∈ [m] and b ∈ {0, 1}, set ki,b ←

αi,bP .

(c) Let d = log2(m + 1) be the depth of T ′. For each leaf node zi in T ′, let b1 · · · bd be the binary
representation of i, and let i1, . . . , id be the indices of the nodes along the path from the root to

the leaf. Compute ẑi ← zi ⊕
(⊕

j∈[d] h
(
kij ,bj

))
, where h : G → {0, 1}κ is taken from a pairwise

independent family of hash functions.

(d) Send the blinded response vector [ẑ0, . . . , ẑm] to the client.

3. Client and Server: For each i ∈ [m], the client and the server engage in the extended private comparison
protocol of Figure 3 (with the transformation of the input from Remark 1). On the kth iteration, the server’s
input to the comparison protocol consists of the encrypted bits Enc (xjk,1) , . . . ,Enc (xjk,t), the bit s′k, the
threshold t′k, and blinding factors αk,0, αk,1.

4. Client: At the conclusion of the extended private comparison protocol, the client learns bits b′ = b′1, . . . , b
′
m

along with keys k1, . . . , km. Let i1, . . . , id be the indices of the internal nodes in the path induced by b′ in
a complete binary tree of depth d, and let ` be the index of the leaf node at the end of the path. Then,

the client computes and outputs z ← ẑ` ⊕
(⊕

j∈[d] h(kij )
)

.

Figure 4: One-sided secure decision tree evaluation protocol.

4.2 One-Sided Secure Evaluation of Decision Trees

The two-round, one-sided secure protocol for decision tree evaluation is described in Figure 4. As in the
semi-honest protocol, the client begins by sending a bitwise encryption of its feature vector to the server.
In addition to the ciphertexts, the client also submits zero-knowledge proofs that each of its ciphertexts is a
bitwise encryption. Next, the server randomizes the tree in the same manner as in the semi-honest protocol
(Section 3.2). Moreover, the server associates a randomly chosen key with each edge in the permuted tree.
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The server then blinds each leaf node using the keys along the path from the root to the leaf. There is a small
technicality here in that the keys here are not bit strings in {0, 1}κ, but rather elements in the elliptic-curve
group G. However, as long as |G| > 2κ, we can obtain a uniformly random key in {0, 1}κ using a pairwise
independent family of hash functions and invoking the leftover hash lemma [41]. The server then sends the
blinded response vector to the client. Finally, the server computes its response according to the extended
comparison protocol of Figure 3. From the extended comparison protocol, the client learns the keys for the
edges in the tree that are consistent with its query. Using these keys, the client unblinds the value (and only
this value) at the index corresponding to its query. We now state the security theorems for the protocol in
Figure 4. We defer the proofs to Appendix C.

Theorem 4 (Client Privacy). The protocol in Figure 4 is private against a malicious server.

Theorem 5 (Server Security). The protocol in Figure 4 securely computes the functionality (x, T ) 7→
(T (x),−) in the presence of a malicious client.

4.3 Asymptotic Analysis

We perform a similar analysis of the asymptotic performance for the one-sided secure protocol as we did
for the semi-honest secure protocol (Section 3.4). Since the analysis is similar, we just state the results.
Using the same parameters as in Section 3.4, the client’s computation requires O (nt+ d) operations and
the server’s computation requires O

(
2dt
)

operations. In comparison to the semi-honest secure protocol, the
client’s computation is lower, and in particular, independent of the number of decision nodes in the one-sided
secure protocol. The server’s computation, though, is substantially higher. Thus, if the server desires to
protect itself against a malicious client, then it potentially must do considerably more work (up to a factor
of t).

5 Extensions

In this section, we describe two extensions to our proposed protocol for private decision tree evaluation.
First, we provide a generalization of the protocol to support private evaluation of random forests. Next,
we describe a way to capture more expressive decision tree models, namely decision trees with categorical
variables.

Random forest evaluation. As mentioned in Section 2.3, a random forest classifier is an ensemble
classifier that aggregates the responses of multiple decision trees in order to obtain a more robust response.
Typically, response aggregation is done by taking a majority vote of the individual decision tree outputs, or
taking the average of the responses. A simple, but näıve method for generalizing our protocol to a random
forest F = {Ti}i∈[n] is to run the decision tree evaluation protocol n times, once for each decision tree Ti.
At the end of the n protocol executions, the client learns the values T1(x), . . . , Tn(x), and can then compute
the mean, majority, or some other function of the individual decision tree outputs.

The problem is that this simple protocol reveals to the client the values Ti(x) for all i ∈ [n]. In the case
where the output of the random forest is the average (or any affine function) of the individual classifications,
we can do better by using additive secret sharing. Specifically, suppose that the value of each leaf of Ti
(for all i) is an element of Zp. Then, at the beginning of the protocol, the server chooses blinding values

r1, . . . , rn
$←− Zp. For each tree Ti, the server blinds each of its leaf values v ∈ Zp by computing v ← v + ri.

Since ri is uniform over Zp, v is now uniformly random over Zp. The protocol execution proceeds as before,
except that the server also sends the client the value r ←

∑
i∈[n] ri. At the conclusion of the protocol,

the client learns the values {vi + ri}i∈[n] where vi = Ti(x). In order to compute the mean of v1, . . . , vn,

the client computes the sum
∑
i∈[n](vi + ri) − r =

∑
i∈[n] vi which is sufficient for computing the mean

provided the client knows the number of trees in the forest. We note that this protocol generalizes naturally
to evaluating any affine function of the individual responses with little additional overhead. The leakage in
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the case of affine functions is the total number of comparisons, the depth of each decision tree in the model
(or a bound on the depth if all the trees are padded to the maximum depth), and the total number of trees.
No information about the response value of any single decision tree in the forest is revealed.

Equality testing and categorical variables. In practice, feature vectors might contain categorical
variables in addition to numeric variables. When branching on the value of a categorical variable, the
natural operation is testing for set membership. For instance, if xi is a categorical variable that can take
on values from a set S = {s1, . . . , sn}, then a branching criterion is more naturally phrased in the form
1 {xi ∈ S′} for some S′ ⊆ S. We leverage this observation to develop a method for testing for set inclusion
based on private equality testing when the number of attributes is small. More precisely, to determine
whether xi ∈ S′, we test whether x = s for each s ∈ S′.

We use the two-party equality testing protocol of [42]. Fix a group G with generator P and let (pk, sk)
be a key-pair for an exponential ElGamal encryption scheme where the client holds the secret key sk. Let
Zp be the plaintext space for the encryption scheme. Let x, y ∈ Zp denote the client and server’s input to
the equality testing protocol, respectively. To test whether x = y, the client sends Enc(x) to the server. The

server then chooses a random r
$←− Z∗p and homomorphically computes Enc(r(x − y)) and sends it to the

client. The key observation is that r(x− y) is 0 if x = y, and otherwise, is uniform in Zp.
We now extend the decision tree evaluation protocol to support categorical variables with up to t classes,

where t is the number of bits needed to encode a numeric component in the feature vector. To evaluate
a decision function of the form 1 {xi ∈ S′}, where S′ = {y1, . . . , ym}, the server constructs the ciphertexts
Enc(rj(xi − yj)) for each yj ∈ S′ as above and additional dummy ciphertexts Enc(rj+1), . . . ,Enc(rt), for

rj+1, . . . , rt
$←− Z∗p. The server sends these ciphertexts to the client in random order. Clearly, xi ∈ S′ if and

only if one of these ciphertexts is an encryption of 0. Moreover, this set of ciphertexts is computationally
indistinguishable from the set of ciphertexts the client would receive for a comparison node. Finally, in the
decision tree evaluation protocol, we require that the client learns only a share of the value of the decision
variable. This is also possible for set membership testing: depending on the value of the server’s share of
the decision variable, the server can test membership in S′ or in its complement S′. Since

∣∣S′ ∪ S′∣∣ ≤ t, the
decision tree evaluation protocols can support these tests with almost no modification. The only difference
in the semi-honest setting is that the client encrypts categorical variables directly rather than bitwise. In
the one-sided secure setting, the client additionally needs to prove that it sent an encryption of a valid
categorical value. To facilitate this, we number the categories from 1 to |S| ≤ n, where S is the set of all
possible categories for a given variable. Then, in addition to providing the encryption c ← Enc(x; r) of a
value x ∈ {1, . . . , |S|}, the client also includes a proof PoK {(x, r) : (c = Enc(x; r)) ∧ (1 ≤ x ≤ |S|)}. Since
|S| is small, this can be done using the same OR proof transformation of Chaum-Pedersen proofs.

6 Experimental Evaluation

We implemented the semi-honest (Figure 2) and one-sided secure protocol (Figure 4) for decision tree and
random forest evaluation (using the extension from Section 5). In the semi-honest setting, we also imple-
mented the extension for categorical variables described in Section 5. Our implementation was written in
C++ and we used the MSR-ECC library [43, 44] to implement the elliptic-curved-based exponential ElGa-
mal algorithm. For increased efficiency, we instantiate our protocol with sub-protocols that are provably
secure in the random oracle model.2 We instantiate the random oracle with SHA-256, and leverage the
implementation in the OpenSSL library. In the semi-honest protocol, we instantiated the semi-honest secure
1-out-of-n OT with the Naor-Pinkas OT [28], and implemented it using the the OT library of Asharov et al.
[30]. For the malicious-secure setting, we use NTL over GMP for the finite field arithmetic needed for the
Chaum-Pedersen proofs of knowledge. We compile our code using g++ 4.8.2 on a machine running Ubuntu

2We can obtain security in the standard model in the semi-honest setting by instantiating the OT with an OT that is
semi-honest secure in the standard model. Similarly, we can achieve one-sided security in the standard model by instantiating
the proofs of knowledge with a (multi-round) interactive protocol secure in the standard model.

14



Dataset n d m Method
Security End-to-End Computation (s)

Bandwidth (KB)
Level Time (s) Client Server

ECG 6 4 6
Barni et al. [18] 80 - 2.609 6.260 112.2
Bost et al. [17] 80 - 2.297 1.723 3555
Our protocol 128 0.344 0.136 0.162 101.9

Nursery 8 4 4
Bost et al. 80 - 1.579 0.798 2639

Our protocol 128 0.269 0.113 0.126 101.7

Table 1: Performance of protocols for semi-honest secure decision tree evaluation. The decision trees have m
decision nodes and depth d. The feature vectors are n-dimensional. The “End-to-End Time” column gives
the total time for the protocol execution, as measured by the client (including network communication).
Performance numbers for the Barni et al. and Bost et al. methods are taken from [17], which use a similar
evaluation environment.

14.04.1. In our experiments, we run the client-side code on a commodity laptop with a multicore 2.30 GHz
Intel Core i7-4712HQ CPU and 16 GB of RAM. We run the server on a compute-optimized Amazon EC2
instance with a dual-core 2.60GHz Intel Xeon E5-2666 v3 processor and 3.75 GB of RAM. While many com-
ponents of our protocol are parallelizable, we do not leverage parallelism in our benchmarks. The network
speed in our experiments is around 40-50 Mbps.

We conduct all experiments at a 128-bit security level. This corresponds to using a 256-bit elliptic curve
for the exponential ElGamal implementation (we use curve numsp256d1 from [43, 44]). In the semi-honest
setting, we also instantiate the OT scheme at the 128-bit security level using the parameters described in
[30]. For our first set of benchmarks, we compare our performance against the protocols in [17, 18] on
the ECG classification tree from [18] and the Nursery dataset from the UCI Machine Learning Repository
[20]. Since the decision tree used in [17] for the Nursery dataset is not precisely specified, we test our
protocol against a tree with the same depth and number of comparison nodes as in [17]. In our benchmarks
we measure the client computation, server computation, and total communication bandwidth between the
client and the server. Our results are summarized in Table 1. The numbers we report for the performance
of [17, 18] are taken from [17, Table 4].3 Our results show that despite running at a higher security level
(128 bits vs. 80 bits), our protocol is over 19x faster for the client and over 5x faster for the server compared to
the protocols in [17] based on somewhat homomorphic encryption (SWHE). Moreover, our protocol is more
than 25x more efficient in terms of communication. Compared to the protocol in [18] based on homomorphic
encryption and garbled circuits, of Barni et al. [18], our protocol is almost 20x faster for both the client and
the server, and requires slightly less communication.

Scalability and sparsity. To better understand the scalability of our protocols to larger decision trees, we
perform a series of experiments on randomly generated decision trees with different depths and densities. In
the first set of experiments, we consider complete decision trees. While complete decision trees are unlikely
to arise in practice, they serve as a “worst-case” bound on the performance of our protocol for trees of a
given depth. In our experiments, we fix the dimension of the feature space to n = 16 and the precision
to t = 64. We separately measure the time for the client’s and server’s computation as well as the total
communication between the two parties. These results are shown in Figure 5. For complete trees, the number
of comparisons m is exponential in the depth d. Recall from Section 3.4 that the client’s complexity is linear
in m, or equivalently, exponential in d for complete trees. Likewise, the server’s computation is exponential
in the depth of the tree. Since the number of decision nodes in a complete tree also grows exponentially in
the depth, the computation required for privately evaluating complete decision trees grows linearly in the
size of the tree. We also note that even for large trees with over ten thousand decision nodes, our protocol
still operates on the order of minutes.

3While our test environment is not identical to that in [17], they are similar: Bost et al. conduct their experiments on a
machine with a 2.66 GHz Intel Core i7 processor with 8 GB of RAM.
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Figure 5: Client and server computation (excluding network communication) and total bandwidth for semi-
honest protocol on complete decision trees.
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Figure 6: Client and server computation (excluding network communication) and total bandwidth for semi-
honest protocol on “sparse” trees.

We briefly compare our protocol against the private decision tree evaluation protocol of Brickell et al.
[19]. In their benchmarks, evaluating a 1100 node tree required approximately 5 minutes and 25 MB of
communication. On a similarly sized tree over an equally large feature space, our protocol completes in 30
seconds and requires about 10 MB of communication, representing a 10x improvement in computation and
2.5x in bandwidth.

In practice, however, it is unlikely that we encounter complete decision trees. To get a sense of the
computation time and bandwidth needed to evaluate trees that are sparse, we perform another set of exper-
iments on trees where the number m of decision nodes grows linearly in the depth d of the tree. Here, we
set m = 25d. We present the results of these experiments in Figure 6. The important observation here is
that the client’s computation now grows linearly, rather than exponentially in the depth of the tree. This is
consistent with the analysis in Section 3.4. Unfortunately, because the server computes a decision string for
the complete tree, the server’s computation increases exponentially in the depth. However, since the cost of
the homomorphic operations in the comparison protocol is greater than the cost of computing the decision
string, the protocol is still able to scale to deeper trees and maintain runtimes on the order of minutes. The
limiting factor in this case is the exponential growth in the size of the server’s response. Even though the
tree is sparse, because the decision string communicated by the server encodes information about every node
in the padded tree, the amount of communication from the server to the client is mostly unchanged. The
communication upstream from the client to the server, though, is significantly reduced (linear rather than
exponential in the depth).
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Figure 7: Client and server computation (excluding network communication) and total bandwidth for one-
sided secure protocol for decision tree evaluation.

One-sided secure protocol. Next, we consider the performance of the one-sided secure protocol from
Figure 4. Since this protocol does not distinguish between dummy and non-dummy nodes, the performance
is independent of the number of actual decision nodes in the tree. Thus, we only consider the benchmark
for complete, binary trees. Again, we fix the dimension n = 16 and the precision t = 64 in our experiments.
The results are summarized in Figure 7. As noted in Section 4.3, the client’s computation grows linearly
in the depth of the tree, and so, is virtually constant in these experiments. Notably, in all experiments in
Figure 7, the total computation time on the client side is less than half a second. Moreover, the amount of
communication from the client to the server depends only on n, t, and is independent of the size of the model.
Thus, the client’s computation is quite small in the one-sided secure protocol, and therefore, the protocol is
well-suited in scenarios where the computational power of the client is limited. The tradeoff though is that
the server now performs significantly more work. Nonetheless, even for trees of depth 12 (with more than
4000 decision nodes), the protocol completes in a few minutes. It is also worth noting that the one-sided
protocol is almost non-interactive, that is, the client does not have to be online when the server is computing
its response. This is in contrast to our semi-honest protocol which involved a small (constant) number of
rounds of communication in the course of the protocol execution.

As a final note, we also benchmarked the one-sided secure protocol on the ECG and Nursery datasets.
On the ECG dataset, the client’s and server’s computation took 0.191 and 0.948 s, respectively, with a total
communication of 660 KB. On the Nursery dataset, the client’s and server’s computation took 0.216 s and
0.937 s, respectively, with a total communication of 720 KB. Even in spite of the higher security level and
the stronger security guarantees, our protocol remains 2x faster than that of [17] in total computation time
and requires 3.5x less communication. Thus, even the one-sided secure protocol is viable in practice, and
for the reasons mentioned above (low client overhead and only two rounds of interaction), might be more
suitable than the semi-honest secure protocol in certain situations.

Random forests. As described in Section 5, we generalize our decision tree evaluation protocol to support
random forests with an affine aggregation function with almost no additional overhead than the cost of
evaluating each decision tree privately. The computational and communication complexity of the random
forest evaluation protocol is just the complexity of the decision tree evaluation protocol scaled up by the
number of trees in the forest. We give some example performance numbers for evaluating a random forest
with different number of trees. Each tree in the forest has depth at most 10 and contains exactly 100
comparisons. As before, we take n = 16 for the dimension and t = 64 for the precision. Our results are
summarized in Table 2.

Performance on real datasets. We conclude our analysis by describing experiments on decision trees
and random forests trained on real datasets. We benchmark our protocol on five datasets from the UCI
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k End-to-End (s)
Computation (s) Bandwidth (MB)
Client Server Client Server

10 26.161 4.652 19.069 0.247 9.106
25 65.067 11.343 47.756 0.430 22.761
50 130.496 22.252 95.133 0.736 45.520
100 256.362 44.759 190.196 1.346 91.037

Table 2: Semi-honest random forest evaluation benchmarks. Each forest consists of k trees (each tree has
depth at most 10 and exactly 100 comparisons). The “End-to-End” measurements include the time for
network communication.

Dataset n
Tree Forest
d m d m

breast-cancer 9 8 12 11 276
heart-disease 13 3 5 8 178

housing 13 13 92 12 384
credit-screening 15 4 5 9 349

spambase 57 17 58 16 603

Table 3: Parameters for decision trees and random forests trained on UCI datasets [20]: n is the dimension
of the data, m is the number of decision nodes in the model, d is the depth of the tree(s) in the model.

repository [20] spanning application domains such as breast cancer diagnosis and credit rating classification.
We train our trees using standard Matlab tools (classregtree and TreeBagger). To obtain more robust
models, we introduce a hyperparameter α ≥ 1 that specifies the minimum number of training examples that
must be associated with each leaf node in the tree. We choose α by running 10-fold cross validation [1] for
several candidate values of α. In most cases, α > 1, which has an added benefit of reducing the depth of the
resulting model. Additionally, for two of the datasets (housing and spambase), we choose the best value
for α such that the depth of the resulting trees and forests is within 20. The size and depth of the resulting
trees and forests, along with the dimension of the feature space for each of the datasets is given in Table 3.

Of the five datasets we use for the benchmarks, four are binary classification tasks. The exception is
the housing dataset which is a regression problem. The heart-disease and credit-screening datasets
incorporate a mix of categorical and numeric variables. In our experiments, we operate at a 128-bit security
level, and use 64 bits of precision to represent each component of the feature vector. For the random forest
experiments, we train a random forest consisting of 10 decision trees, again choosing the α hyperparameter
via 10-fold cross-validation. The performance of the semi-honest decision tree evaluation protocol on each of
the five datasets is summarized in Table 4 and the performance of the semi-honest random forest evaluation
protocol is summarized in Table 5. We remark that while our random forest extension only applies to affine
aggregation functions which are suitable for regression problems and not classification problems in general,
our classification examples are all examples of binary classification, in which case, taking the mean response
is appropriate. One might interpret the average in this case to be a measure of the confidence of the model
in the prediction.

The performance benchmarks demonstrate that our semi-honest secure protocols are suitable for eval-
uating trees and forests that could arise in practice. Even for relatively deep trees over high-dimensional
features spaces such as the spam classification (spambase) dataset, our semi-honest protocol completes in
under 20 seconds. In all cases, the client’s computation time in the semi-honest setting is under a second.
For all but the largest tree (spambase), the total bandwidth is under 2 MB. For smaller trees, the bandwidth
is usually on the order of 100-200 KB. With random forest evaluation, both the client and server have to
perform additional computation and there is more data exchanged. Nonetheless, the amount of computation
required from the client is on the order of a few seconds, and the server’s computation is also on the order of
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Dataset End-to-End (s)
Computation (s) Bandwidth (KB)
Client Server Upload Download

breast-cancer 0.545 0.190 0.293 73.7 132.0
heart-disease 0.370 0.143 0.134 73.3 43.9

housing 4.081 0.603 2.464 115.7 1795.2
credit-screening 0.551 0.128 0.135 49.9 45.0

spambase 16.595 0.628 12.902 463.4 17363.3

Table 4: Performance of semi-honest decision tree evaluation protocol on UCI datasets [20].

Dataset End-to-End (s)
Computation (s) Bandwidth (KB)
Client Server Upload Download

breast-cancer 9.671 1.431 6.888 106.7 4853.1
heart-disease 4.691 0.859 3.387 94.9 1758.2

housing 15.152 1.913 10.726 152.2 8357.4
credit-screening 8.737 1.553 6.446 92.9 3456.5

spambase 93.276 2.874 69.839 531.6 89310.7

Table 5: Performance of semi-honest random forest evaluation protocol on UCI datasets [20].

seconds (except in the case of spambase where the computation took over a minute). The communication
does increase for random forest evaluation, and the amount of data the client needs to download is a couple
MB. Excluding spambase, we believe this is still a modest amount of communication.

Because we did not implement the extension to categorical variables for the one-sided secure protocol,
we do not have complete benchmarks for all five datasets. We do have concrete results for the housing

and breast-cancer datasets. On the breast-cancer dataset, end-to-end decision tree evaluation using the
one-sided secure protocol completes in 12.3 s including network communication (client computation of just
0.263 s) and 8.2 MB of total communication. For the housing dataset, the decision tree evaluation completes
in 357.0 s (client computation of 0.384 s) and 256 MB of communication. As noted earlier, the one-sided
secure protocol is mostly non-interactive, so the client does not have to be online for most of the server’s
computation. These results indicate that for low-depth trees (d < 10), the one-sided secure protocol remains
viable, but the amount of communication does grow rapidly in the depth of the tree.

7 Related Work

We survey some of the related work that has been done in the area of privately evaluating decision trees.
The earliest work in this area tended to focus on training decision trees in a privacy-preserving manner
[45, 46, 47]. In the case of [46, 47] multiple parties each have their own individual datasets, and the objective
is to compute a decision tree on their joint data without revealing their individual datasets.

On the contrary, this work focuses on the problem of privately evaluating decision trees, where it is
assumed that one of the parties holds a trained decision tree or random forest. Several practical protocols
have been developed for privately evaluating decision trees, or more generally, linear branching programs. In
[18, 19], the authors develop protocols for privately evaluating linear branching programs (of which decision
trees are a special case) based on a combination of homomorphic encryption and garbled circuits. Because
these protocols solve a more general problem of evaluating linear branching programs, they are not as
competitive in performance in comparison to our protocol which exploits the simple structure of decision
trees. More recently, the work of [17] describes a fairly generic protocol for decision tree evaluation that
also splits up the decision tree evaluation protocol into two components: a comparison phase followed by
an evaluation phase. In [17], Bost et al. view the decision tree as a polynomial in the decision variable
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and evaluate the polynomial using a SWHE scheme [5, 48, 49]. In all of these works, the authors achieve
semi-honest security, although [19, 18] note that their protocols can be made secure in the malicious setting
without much difficulty. Nonetheless, we do not know of any existing implementations of a private decision
tree evaluation protocol that achieves stronger security.

On the more theoretical side, private decision tree evaluation falls into the category of private function
evaluation (where we view the decision tree as the underlying private function to be evaluated). In the last
few years, several generic approaches for private function evaluation have been proposed [50, 51] which are
asymptotically very efficient and can be made robust against malicious adversaries. Restricting to private
decision tree evaluation, Mohassel et al. describe a protocol for evaluating oblivious decision programs based
on OT in [52]. They provide an abstract method for evaluating decision programs in both the semi-honest
and malicious setting. However, it is unclear how to integrate comparisons efficiently into their protocol,
which would be necessary for evaluating the particular kind of decision trees considered in this work. Then,
there are also generic solutions for private function evaluation based on Yao’s circuits [9] where the circuit
being evaluated is the universal circuit, and the decision tree is provided as an input to the circuit. While
the protocols of [50, 51, 52] apply to our setting, we are not aware of any existing implementations of
these methods. In the case of using Yao’s circuits, Bost et al. note in [17] that these methods tend to be
prohibitively expensive in practice.

8 Conclusion

In this work, we present two protocols for privately evaluating decision trees and random forests. The first
protocol based on additive homomorphic encryption and oblivious transfer achieves security against semi-
honest adversaries. Our results show that our protocol achieves at least 5x improvement in computation
and communication compared to the recent protocol for private decision tree evaluation based on SWHE by
Bost et al. [17]. Moreover, we demonstrate that our protocols scale well to trees spanning tens of thousands
of internal nodes and depths up to 20; even on these large trees, our protocol completes on the order of a
few seconds to a couple of minutes. Moreover, we describe simple extensions for extending our protocol to
random forests as well as trees containing categorical variables. Our benchmarks demonstrate that even with
these extensions, our protocols still achieve strong performance on decision tree and random forest models
trained on real datasets.

Additionally, we extend our semi-honest secure protocol to a protocol that provides security against a
malicious client and privacy against a malicious server using efficient Chaum-Pedersen proofs and leveraging
a new variant of conditional oblivious transfer. While our one-sided secure protocol is less efficient compared
to our semi-honest secure protocol, our benchmarks still indicate that it is viable for shallow decision trees.
For the ECG and Nursery trees that have been used as benchmarks in previous works, we note that our one-
sided secure protocol still achieves better performance in terms of computation when compared to previous
semi-honest secure protocols. We do not know of any implementations of a private decision tree evaluation
protocol that achieves any kind of malicious security.

We conclude by noting that in our protocols, the server’s computation is always exponential in the depth
of the tree, which is not ideal for evaluating sparse, but deep trees. This requirement arises because we
assume that the general structure of the tree can be revealed to the client (thus, all trees are padded to a
complete tree). While asymptotically, the protocol in [17] scales polynomially in the depth of the decision
tree, the computational overhead of SWHE renders it impractical for evaluating trees of even moderate
depth. We leave as an open question whether more efficient protocols, possibly employing additional rounds
of interaction, can be designed for the problem of privately evaluating decision trees and random forests.
Another interesting direction to consider would be to perform an empirical analysis of different generic
methods for private function evaluation [50, 51] and see how these methods compare against custom protocols
for this particular problem.
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A Real/Ideal World Security Model

Our security definitions follow the simulation-based approach of [14, 15, 16, 21]. We follow the conventions
in [16, 53] and view the protocol execution as occurring in the presence of an adversary A and coordinated
by an environment E = {Eλ}, which is parameterized by a security parameter λ. The environment E is
responsible for choosing the inputs to the execution and plays the role of distinguisher between the real and
ideal executions. We specialize our definitions to the setting of a two-party protocol computing a single-
output functionality where only the client receives an output. In the following, we write f for the two-party
functionality and π for the two-party protocol that computes f .

Real model of execution. In the real-world, the protocol execution proceeds as follows:
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1. Inputs: For i ∈ {1, 2}, E chooses inputs xi and sends (1λ, xi) to the ith party Pi. If Pi is corrupted
by the adversary A, then E gives xi to A. Finally, E sends some auxiliary information z to A.

2. Protocol Evaluation: The parties begin executing the protocol π. All honest parties behave accord-
ing to the protocol specification. The adversary A has full control over the behavior of the corrupted
party and sees all messages received by the corrupted party. If A is semi-honest, then A directs the
corrupted party to follow the protocol as specified.

3. Output: The honest party computes and gives its output to the environment E . The adversary also
computes a function of its view and gives it to E .

At the end of the protocol execution, the environment E outputs a bit b ∈ {0, 1}. Let REALπ,A,E(λ) be the
random variable corresponding to the value of this bit.

Ideal model of execution. In the ideal-world execution, the parties have access to a trusted third party
(TTP) that evaluates the function f . We now describe the ideal-world execution:

1. Inputs: For i ∈ {1, 2}, E chooses inputs xi and sends xi to Pi. If Pi is corrupted by the adversary A,
then E gives xi to A. Finally, E sends some auxiliary information z to A.

2. Submission to Trusted Party: If Pi is honest, then it gives xi to the TTP. If a party Pi is corrupted,
then Pi can submit any input x′i to the TTP as directed by A. If A is semi-honest, then x′i = xi.

3. Answer from Trusted Party: Upon receiving inputs (x1, x2), the TTP computes and sends f1(x1, x2)
to the client P1.

4. Output: An honest party gives the message (if any) it received from the TTP to E . The adversary
computes a function of its view of the protocol execution and gives it to E .

At the end of the protocol execution, the environment E outputs a bit b ∈ {0, 1}. Let IDEALf,A,E(λ) be
the random variable corresponding to the value of this bit. Informally, we say that a two-party protocol
π securely computes a functionality f if for all efficient adversaries A in the real-world, there exists an
adversary S in the ideal-world (sometimes referred to as a simulator) such that the outputs of the protocol
executions in the real and ideal worlds are computationally indistinguishable. More formally, we have the
following:

Definition 1 (Security). Let π be a two-party protocol for computing a functionality f = (f1(x1, x2),−).
Then, π securely computes f in the presence of malicious (resp., semi-honest) adversaries if for all PPT adver-
saries (resp., semi-honest adversaries) A, there exists a PPT adversary (resp., semi-honest adversary) S such
that for every polynomial-size circuit family E = {Eλ},

REALπ,A,E(λ)
c
≈ IDEALf,S,E(λ).

In this work, we also consider the weaker notion of privacy, which captures the notion that an adversary
does not learn anything about the inputs of the other parties beyond what is explicitly leaked by the
computation and its inputs/outputs. We use the definitions from [53]. Specifically, define the random
variable REAL′π,A,E(λ) exactly as REALπ,A,E(λ), except in the final step of the protocol execution, the
environment E only receives the output from the adversary (and not the output from the honest party).
Define IDEAL′f,A,E(λ) similarly. Then, we can define the notion for a two-party protocol to privately compute
a functionality f :

Definition 2 (Privacy). Let π be a two-party protocol for computing a functionality f = (f1(x1, x2),−).
Then, π privately computes f in the presence of malicious (resp., semi-honest) adversaries if for all PPT adver-
saries (resp., semi-honest adversaries) A, there exists a PPT adversary (resp., semi-honest adversary) S such
that for every polynomial-size circuit family E = {Eλ},

REAL′π,A,E(λ)
c
≈ IDEAL′f,S,E(λ).
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Hybrid models. When constructing cryptographic protocols, it is often useful to decompose the desired
functionality f into a sequence of simpler functionalities f1, . . . , fn, and devise protocols π1, . . . , πn for each of
the sub-functionalities. To simplify the proofs of security in this setting, we work in a hybrid model where we
assume that during the protocol execution, the parties also have access to a trusted party that evaluates each
sub-functionality. If we then instantiate each sub-functionality with a (semi-honest) secure implementation,
and make sure that the protocol messages of the sub-functionalities are not interleaved with the messages
of the main protocol or other sub-functionalities (e.g., the protocols are composed sequentially), then the
sequential composition of π1, . . . , πn (semi-honest) securely realizes f . Refer to [15] for further details.

B Security Proofs

In this section, we give the formal proofs for Theorems 2 and 3.

B.1 Proof of Theorem 2

As noted in Section 3.1, our protocol reveals the depth d of the decision tree, the number of comparisons
`, the dimension n of the feature vectors, and the number of bits t used to encode each component of the
feature vector. Thus, when constructing the ideal-world adversary, we give the adversary the values d, `, n, t.
Finally, in the OT-hybrid model, we can assume that the parties have access to a trusted party for evaluating
the OT.

Adversarial server. First, we prove security against a semi-honest server. Intuitively, security against
a semi-honest server follows from the fact that the server’s view of the protocol execution consists only of
ciphertexts, and thus, reduces to a semantic security argument. We now give the formal argument. Let A
be a semi-honest server in the real protocol. We construct an ideal-world simulator S as follows:

1. At the beginning of the protocol execution, S receives the input T from the environment E . The
simulator S also receives the decision tree parameters d, `, n, t. The simulator S sends the tree T to
the trusted party.

2. Start running A on input T . Next, S generates a public-private key-pair (pk, sk) for the additive
homomorphic encryption scheme used in the protocol execution. Then, S computes and sends nt fresh
encryptions Enc(0) of 0 to the server.

3. After A replies with the results of the comparison protocol, S computes and sends ` fresh encryptions
Enc(0) of 0 to A.

4. Output whatever A outputs.

We argue that REALπ,A,E(λ)
c
≈ IDEALπ,S,E(λ). Using Lemma 1 and the fact that A is semi-honest, we have

that at the end of the protocol execution in the real world, the client obtains T (x) where x is the client’s input.
Since S is semi-honest, this also holds in the ideal world. Because T (x) is a deterministic function in the
inputs T , x, the joint distribution of the client’s output and the adversary’s output decomposes. To complete
the proof, it thus suffices to show that the view S simulates for A is computationally indistinguishable from
the view of A interacting in the real protocol.

The view ofA in the real protocol consists of two components: the bitwise encryptions {Enc(xi,j)}i∈[n],j∈[t]
of the client’s input and the encrypted bit string {Enc(b′i)}i∈[`]. When interacting with the simulator S,
adversary A sees nt independent encryptions of 0, followed by ` independent encryptions of 0. Security
immediately follows by semantic security of the public-key encryption scheme.
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Adversarial client. Next, we prove security against a semi-honest client. Let A be a semi-honest client
in the real protocol. We construct a semi-honest simulator S in the ideal world as follows:

1. At the beginning of the protocol execution, S receives the input x from the environment E . The
simulator S is also given the decision tree parameters d, `, n, t. The simulator sends x to the trusted
party. The trusted party replies with ẑ.

2. Start running A on input x. Let pk be the client’s public key.

3. Choose a random string σ̂
$←− {0, 1}m. In addition, choose b

$←− {0, 1}`. Then, for each k ∈ [`]:

• If bk = 0, set ĉk,j
$←− Zp for all j ∈ [t].

• If bk = 1, let j∗
$←− [t]. Then, for all j ∈ [t] where j 6= j∗, set ĉk,j

$←− Zp. Set ĉk,j∗ ← 0.

4. WhenA submits the encryption of its feature vector (Step 1), reply with the ciphertexts {Enc(ĉk,j)}k∈[`],j∈[t].

5. When A sends the encrypted bit string (Step 4), reply with the bitwise encryption Enc(σ̂) of σ̂.

6. When A sends an index to the ideal OT functionality, reply with ẑ.

7. Output whatever A outputs.

In the decision tree functionality, the server has no output. Thus, to show security against a semi-honest
client, it suffices to show that the output of S is computationally indistinguishable from the output of A. We
show that the view S simulates for A is computationally indistinguishable from the view of A interacting in
the real protocol.

The client’s view in the real protocol consists of three components: the ciphertexts {Enc(ck,j)}k∈[`],j∈[t]
from the private comparison protocol, the decision string Enc(σ′), and the response z from the trusted OT
functionality. We now show that{

{ck,j}k∈[`],j∈[t] , σ
′, z
}

︸ ︷︷ ︸
view in real protocol

c
≈
{
{ĉk,j}k∈[`],j∈[t] , σ̂, ẑ

}
︸ ︷︷ ︸

simulated view

.

By correctness of the protocol (Lemma 1), z = T (x) in the real protocol. In the view S simulates, ẑ is the
response from the trusted party, and so ẑ = T (x) = z. It suffices then to show that the joint distribution of
the remaining components are properly distributed.

Consider the distribution of σ′ in the real protocol. By construction, σ′ = τ(σ ⊕ s). Since s is chosen
uniformly and independently of σ, σ ⊕ s is uniform over {0, 1}m. Since τ is just a permutation on the bits,
σ′ = τ(σ ⊕ s) remains independently uniform over {0, 1}m. Thus, σ′ is identically distributed as σ̂.

Finally, consider the distribution of the {ck,j} in the real protocol. These components are computed
according to (1) in the private comparison protocol of Figure 1. Since each ck,j is pre-multiplied by a
uniformly random rk,j ∈ Zp, each ck,j is either 0 or random in Zp. Fix an index k ∈ [`] and consider the
set of values {ck,j}j∈[t]. By construction of (1), at most one ck,j = 0. Let b′k = 1 {∃j : ck,j = 0}. From

Lemma 1, we have that bk ⊕ b′k = 1 {xik < tk}. Since the server chooses bk uniformly and independently
of 1 {xik < tk}, b′k is also uniform over {0, 1}. In particular this means that with equal probability, the set
{ck,j}j∈[t] contains t uniformly random elements of Zp or t − 1 uniformly random elements of Zp and one

component equal to 0. Since the ciphertexts in {ck,j}j∈[t] are randomly permuted in the real protocol, if

{ck,j}j∈[t] contains an element ck,j∗ = 0, it follows that j∗ is uniform in [t]. Finally, since each comparison

is processed independently, ck,j is independent of ck′,j′ whenever k 6= k′. But this is precisely the same

distribution from which S samples the ĉk,j , and so we conclude that {ck,j}k∈[`],j∈[t]
c
≈ {ĉk,j}k∈[`],j∈[t].

We have demonstrated that
{
{ck,j}k∈[`],j∈[t] , σ

′, z
}

c
≈
{
{ĉk,j}k∈[`],j∈[t] , σ̂, ẑ

}
, and so the view S simulates

for A is computationally indistinguishable from the view A sees in the real protocol. Correspondingly, the
output of S is computationally indistinguishable from the output of A; security follows.
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B.2 Proof of Theorem 3

In this section, we give a proof of Theorem 3, that is, we show that the protocol in Figure 3 securely computes
the functionality (

−,
[
{Enc(xi)}i∈[t] , y, b, (α0, α1)

])
7→ ((b′, kb′)−)

against malicious adversaries, where b⊕ b′ = 1{x < y}, ki = αiP , and pk = (P,Q) is the public key for the
encryption scheme. Let A be a malicious client interacting in the real protocol. We construct an adversarial
client S in the ideal world such that the output of S is computationally indistinguishable from the output of
A. This suffices to prove security since the server does not produce any output. The simulator S operates
as follows:

1. In the ideal execution, the trusted party gives S the tuple (b̂, k̂), where b̂ ∈ {0, 1} and k̂ ∈ G.

2. For i ∈ [n], S chooses ĉ1, . . . , ĉn, ĉ
′
1, . . . , ĉ

′
n

$←− Zp and d̂1, . . . , d̂n, d̂
′
1, . . . , d̂

′
n

$←− Zp. Next, choose an

index i∗
$←− [n].

• If b̂ = 1, update ĉi∗ = 0 and d̂i∗ = k̂.

• If b̂ = 0, update ĉ′i∗ = 0 and d̂′i∗ = k̂.

3. Construct the tuples

Â = (Enc(ĉ1), . . . ,Enc(ĉn)) Â′ = (Enc(ĉ′1), . . . ,Enc(ĉ′n))

B̂ =
(
Enc(d̂1), . . . ,Enc(d̂n)

)
B̂′ =

(
Enc(d̂′1), . . . ,Enc(d̂′n)

)
,

and send Â, Â′, B̂, B̂′ to A. Note that here we overload the encryption function. Specifically, if the

public key pk is the tuple (P,Q), then for k ∈ G, we define Encpk(k) = (rP, rQ + k) where r
$←− Zp.

When m ∈ Zp, we define Encpk(m) as in Section 2.2.

4. Output whatever A outputs.

We argue that the view of A interacting in the real protocol is computationally indistinguishable from its
view when interacting with S. The view of A in the real protocol is specified by the tuples A,A′, B,B′. We
show that

{A,A′, B,B′}︸ ︷︷ ︸
view in real protocol

c
≈
{
Â, Â′, B̂, B̂′

}
︸ ︷︷ ︸
simulated view

.

Consider the joint distribution of {c1, . . . , cn, c′1, . . . , c′n} in the real protocol. Let β = b⊕ 1{x < y}. There
are two possibilities:

• Suppose β = 1. There are two possibilities:

– b = 0 and x < y. Applying the argument from the proof of Theorem 1, there exists i∗ ∈ [n] such
that ci∗ = 0 and for all i 6= i∗, ci is independently uniform in Zp. Moreover, in the real protocol,
the server randomly shuffles the elements of A so the index i∗ is uniform in [n]. Using a similar
argument, we conclude that all j ∈ [n], each c′j is independently uniform in Zp.

– b = 1 and y < x. Again applying the argument from the proof of Theorem 1, we have that in the
real protocol, the components of A,A′ are distributed exactly as in the first case.

In the simulation, S receives (b̂, k̂) from the TTP, so by construction, b̂ = b ⊕ 1{x < y} = β. From
the specification of the simulator, we conclude that the joint distribution of the components of A,A′

in the real protocol is identically distributed as the components Â, Â′ in the simulation.
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• Suppose β = 0. There are again two possibilities: either b = 1 and x < y or b = 0 and y < x. Using
the same style argument as in the first case, we show that the joint distribution of A,A′ in the real
protocol is identically distributed as the components Â, Â′ in the simulation.

Next, consider the components in B and B′ conditioned on A and A′ in the real protocol. Each component
Bi and B′i depends only on the corresponding component Ai and A′i, respectively. If ci 6= 0, then ciρi+α0 is
uniform over Zp, since ρi is chosen uniformly and independently over Zp. The same is true for c′iρ

′
i+α1 when

c′i 6= 0. In particular, if ci, c
′
i 6= 0, then the corresponding Bi or B′i is independent of the other components

in the joint distribution. Consider the case ci = 0. Then, in the real distribution Bi = Encpk(α0) =
Encpk(k0) (where we use the overloaded definition of the encryption function). If instead c′i = 0, then
B′i = Encpk(α1) = Encpk(k1). In other words, Bi contains an encryption of a uniformly random element
if ci 6= 0, and an encryption of k0 otherwise. An analogous statement holds for B′i. This is precisely the

same distribution from which the simulator is drawing the values B̂ and B̂′, so we conclude that the view
of A is computationally indistinguishable when interacting with the real protocol and interacting with the
simulator. Security follows.

C Analysis of One-Sided Secure Protocol

In this section, we complete our analysis of the correctness and security of the one-sided secure protocol in
Figure 4. First, we show that the protocol is correct.

Lemma 2. If the client and server follow the protocol in Figure 4, then at the end of the protocol, the client
learns T (x).

Proof. From Theorem 3, at the conclusion of Step 3 of the protocol, the client learns bits b′k for k ∈ [m]
where s′k⊕ b′k = 1 {xjk < t′k}. Let b′ denote the bit string b′1 · · · b′m. Then, b′ is the decision string of x on T ′,
and so the leaf with index φ(b′) (as defined in Section 2.3) in T ′ contains the value T ′(x) = T (x). Again,
invoking Theorem 3, for each i ∈ [m], the client also obtains the keys ki,b′i . Then, if we denote φ(b′) by `, the
client learns the key associated with each edge from the root to the leaf `. This allows the client to compute
the value used to blind z` in the blinded response vector; correctness follows.

Before presenting the security proof, we first characterize the distribution of values in the blinded response
vector [ẑ0, . . . , ẑm]. In particular, we show that given keys ki,bi , all but one entry in the blinded response
vector is uniformly random over the set of bit strings {0, 1}κ. More formally, take a complete binary tree T
with depth d and let {0, 1}κ be the output space of T . Set m← 2d−1 to be the number of internal nodes in

T . For j ∈ [m], choose kj,0, kj,1
$←− {0, 1}κ. Next, for i = 0, . . . ,m, let b1 · · · bd be the binary representation

of i and let i1, . . . , id be the indices of the nodes in the path induced by b1 · · · bd in T . Set zi as follows:

zi ←
⊕
j∈[d]

kij ,bj . (4)

Intuitively, we associate a uniformly random key with each edge in T (or equivalently, two keys with each
internal node). The value zi is the xor of the keys associated with each edge in the path from the root to
leaf i. Now, we state the main lemma on the distribution of each zi conditioned on knowing exactly one of
the two keys associated with each internal node.

Lemma 3. Fix a complete binary tree T with depth d. Set m ← 2d − 1 and for each 0 ≤ i ≤ m, construct

zi according to (4) where kj,b
$←− {0, 1}κ for all j ∈ [m] and b ∈ {0, 1}. Take any bit-string b ∈ {0, 1}m and

let `← φ(b) be the index of the leaf node in the path induced by b in T . Then, for all i 6= `, the conditional
distribution of zi given

{
kj,bj

}
j∈[m]

is independent of {zj}j 6=i and uniformly random over {0, 1}κ.

Proof. We argue by induction in the depth of the tree. When d = 1, there are exactly two keys k1,0 and
k1,1, and moreover, z0 = k1,0 and z1 = k1,1. Since k1,0 and k1,1 are independently uniform over {0, 1}κ, the
claim follows.
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For the inductive step, take a tree T of depth d > 1 and a bit-string b ∈ {0, 1}m. Let ` be the index of
the leaf node in the path induced by b in T . Let T̃ be the complete subtree of T (with a common root) of
depth d − 1. For i = 0, . . . , 2d−1, let b̃1 · · · b̃d−1 be the binary representation of i and let ĩ1, . . . , ĩd−1 be the
indices of the nodes in the path induced by b̃1 · · · b̃d−1 in T̃ . Then, define the value z̃i ←

⊕
j∈[d−1] kĩj ,b̃j .

Set m̃ ← 2d−1 − 1, and b̃ ← b1 · · · bd−1. Let ˜̀ be the index of the leaf node in the path induced by b̃ in
T̃ . Invoking the induction hypothesis, we have that for all i 6= ˜̀, the conditional distribution of z̃i given{
kj,bj

}
j∈[m̃]

is uniformly and independently random over {0, 1}κ. In other words, conditioned on the set{
kj,bj

}
j∈[m̃]

, we have that[
z̃0, . . . , z̃˜̀−1, z̃˜̀+1, . . . , z̃m̃

]
≡
[
r̃0, . . . , r̃˜̀−1, r̃˜̀+1, . . . , r̃m̃

]
, (5)

where r̃0, . . . , r̃m̃ are independently and uniformly random over {0, 1}κ. Note that (5) holds even if we
condition over the full set of keys

{
kj,bj

}
j∈[m]

, since z̃i is independent of kj,bj for j > m̃.

Each zi is defined to be the xor of the keys along the path from the root to the ith leaf. We can decompose
this as taking the xor of all the keys along the path from the root to the parent of the ith leaf, and xoring
with the key associated with the edge from the parent to the leaf. Next, observe that the xor of the keys
from the root to the parent of the ith leaf is precisely z̃bi/2c. Finally, let pi denote the index of the parent

node of the ith leaf in T . Then,

zi =
⊕
j∈[d]

kij ,bj = z̃bi/2c ⊕ kid,bd = z̃bi/2c ⊕ kpi,(i mod 2) (6)

We show that [z0, . . . , z`−1, z`+1, . . . , zm] ≡ [r0, . . . , r`−1, r`+1, . . . , rm], where r0, . . . , rm are independent and
uniform in {0, 1}κ. From (6), we can write zi = z̃bi/2c ⊕ kpi,(i mod 2). Let A be the subset of {zi}i 6=` for
which we are given the key kpi,(i mod 2), and let B be the subset of {zi}i 6=` such that we are not given the
key kpi,(i mod 2). To complete the proof, we use a hybrid argument. In the first hybrid, we show that the
conditional distribution of the elements of A and B is identical to the conditional distribution of A and B′,
where each element in B′ is chosen uniformly and independently from {0, 1}κ. In the second hybrid, we
show that the conditional distribution of A and B is identical to the conditional distribution of A′ and B′,
where each element in A′ is chosen uniformly and independently from {0, 1}κ.

For the first hybrid, take any zi ∈ B. Since B contains the elements zi for which we are not given the
associated key kpi,(i mod 2), we can write zi as z̃i′ ⊕ kj′,1−b′j , for some 0 ≤ i′ ≤ m̃ and j′ ∈ [m]. Now, kj′,1−b′j
was chosen independently and uniformly from {0, 1}k, and thus, is independent of

{
kj,bj

}
j∈[m]

. Moreover,

zi is the only element that depends on kj′,1−b′j . We conclude then that zi is independently and uniformly

distributed in {0, 1}κ, and the claim follows.
For the second hybrid, take any zi ∈ A. We can write zi = z̃i′ ⊕ kj′,bj′ for some i′ 6= ˜̀ and j′ ∈ [m].

Then, invoking (5), z̃i′ is uniformly random in {0, 1}κ. Moreover, no other element in A depends on z̃′i,
so we conclude that zi is independent of all the other elements of A. Finally, since the elements of B′ are
independent, uniform draws from {0, 1}κ, zi is independent of all the other elements in A and B′. Thus, the
conditional distribution of A and B′ is identical to the conditional distribution of A′ and B′, and the claim
holds.

By induction on d, we conclude that for all i 6= `, the conditional distribution of zi given
{
kj,bj

}
j∈[m]

is

uniform over {0, 1}κ, and independent of zj for all j 6= i.

We now show that the protocol in Figure 4 is one-sided secure, that is, secure against a malicious client
and private against a malicious server. Similar to the semi-honest setting, we allow the protocol to reveal
the depth d of the decision tree. As before, we assume that the decision trees is complete, and so the number
of internal nodes m is given by 2d − 1.

Proof of Theorem 4 (Client Privacy). LetA be a PPT server. We construct a simulator S that interacts
only with the ideal functionality such that the output of the simulator is computationally indistinguishable
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from the output of B in the real world. As in the case of the semi-honest protocol, our protocol reveals some
basic parameters regarding the size of the decision tree: the depth d of the decision tree, the dimension n of
the feature vectors, and the precision t of the components in the feature vector. These values are given to
the simulator at the beginning of the protocol execution.

1. The environment gives an input T to the simulator. In addition, the environment gives the simulator
the decision tree parameters d, n, t.

2. The simulator starts running A on input T .

3. For each i ∈ [n] and j ∈ [t], set x̃i,j ← 0 and r̃i,j
$←− Zp. Construct ciphertexts c̃i,j ← Enc (x̃i,j ; r̃i,j)

and corresponding proofs

π̃i,j ← PoK {(ri,j) : c̃i,j = Enc (0; ri,j) ∨ c̃i,j = Enc (1; ri,j)} .

Note that these are the same Chaum-Pederson style proofs as (3) used in the real protocol (Figure 4).
Send the ciphertexts c̃i,j and proofs π̃i,j to A.

4. Output whatever A outputs.

The view of the adversary A when interacting in the real protocol is computationally indistinguishable
from its view when interacting with the simulator S. This is easy to see since the view of A consists
only of ciphertexts and the associated zero-knowledge proofs. Thus, by semantic security of the underlying
encryption scheme, and the zero-knowledge property of the proofs, we conclude that the view of A in the two
cases is computationally indistinguishable, and thus, the output of A in the real scheme is computationally
indistinguishable from the output of S in the ideal world.

Proof of Theorem 5 (Server Security). To simplify the proof, we prove security in a hybrid model
where we assume we have access to a trusted party for evaluating the functionality in Figure 3. Denote
this functionality fcomp. Specifically, we assume that in Step 3 of the protocol in Figure 3, the client and
server interact with a trusted party for fcomp. Then, by instantiating the trusted party with the protocol
in Figure 3, and invoking Theorem 3 along with the sequential composability theorem of [15], we achieve
security against a malicious client. Let A be a PPT client in the real world. We describe an ideal-world
simulator S:

1. The environment gives an input x to S, along with the decision tree parameters d, n, t. Set m← 2d−1.
The simulator starts running A on input x.

2. Algorithm A can abort, in which case, the simulator also aborts. Otherwise, for i ∈ [m], j ∈ [t],
algorithm A will send a ciphertext Enc(x̂i,j ; ri,j) along with a proof πi,j that x̂i,j ∈ {0, 1}.

3. For each i ∈ [m], j ∈ [t], verify the proof πi,j . If any proof fails to verify, abort the protocol, and output
whatever A outputs. Otherwise, apply the knowledge extractor to πi,j to extract the randomness ri,j
used to encrypt each x̂i,j . If the knowledge extractor fails, then output ⊥. From this, the simulator
learns each bit x̂i,j of each component of the client’s input vector. Denote the extracted client input
by x̂. The simulator sends x̂ to the TTP, and receives T (x̂).

4. Choose z̃1, . . . , z̃m+1
$←− {0, 1}κ as well as a random bit-string b̃′

$←− {0, 1}m. For each i ∈ [m], choose

α̃i
$←− Zp, and compute k̃i ← α̃iP . Let i1, . . . , id be the indices of the nodes in the path induced by b̃′ in

a complete binary tree of depth d, and let ` be the index of the leaf node at the end of the path. Update

z̃` ← T (x̂)⊕
(⊕

i∈[d] h(k̃i)
)

, where h : G→ {0, 1}κ is drawn from the same pairwise independent hash

family (as in the real scheme).

5. Send the response vector [z̃1, . . . , z̃m+1] to A. The simulator also simulates the response of the trusted
party for evaluating the extended comparison protocol and gives b̃′ and keys k̃1, . . . , k̃m to A.
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6. Output whatever A outputs.

We show that on input x from the environment, the output of the simulator S is computationally
indistinguishable from the output of A in the real world. First, we argue that if A aborts the protocol before
sending any messages, then the simulator also aborts, so the behavior of A and S is identical up to the
end of Step 2 of the simulation. Next, if the simulator aborts the protocol because the proofs fail to verify,
then in the real protocol, the server would also abort the protocol (since the proofs are sound). Thus, the
behavior of the simulator up to this point is identical to the behavior of the server in the real-world, and so,
the outputs of the simulator are identically distributed as the outputs of A.

Next, since the proofs are valid, the knowledge extractor fails to extract the client’s query x with negligible
probability. Suppose the knowledge extractor successfully extracts the client’s query x. Then, we argue that
the simulator’s message to A is computationally indistinguishable from the server’s message to A in the real
protocol. Consider the view of adversary A in the real protocol. Recall that we have replaced Step 3 with
a call to the ideal functionality for evaluating the extended comparison protocol. Then, the view consists of
a bit string b′ ∈ {0, 1}m, keys k1,b′1 , . . . , km,b′m , and a blinded response vector [ẑ1, . . . , ẑm]. We consider each
of these components:

• In the real protocol, each key ki,b′i is independently uniform over G. This is the same distribution from

which S samples the simulated keys k̃i. Thus, the keys are properly distributed.

• Next, consider the distribution of b′ in the real protocol. By correctness of the extended comparison
protocol, bk⊕ b′k = zk, where zk = 1 {xik < t} is the result of the kth comparison. Equivalently, we can
write b′ = b ⊕ z, where z = z1 · · · zm. In the real protocol, the server chooses b uniformly at random
(and independent of z), so we conclude that b′ is uniform over {0, 1}m. Thus, the distribution of b̃′ is
indistinguishable from that of b′.

• Finally, consider the blinding factors used to construct the blinded response vector in the real protocol.
Since the keys are statistically close to uniform (by applying the leftover hash lemma [41] to an
appropriately chosen pairwise independent family of hash functions), we can invoke Lemma 3 to argue
that each component {zi}i6=` is blinded by an independently random element in {0, 1}κ. Thus, the
elements [z1, . . . , z`−1, z`+1, zm] of the blinded response vector are independently and uniform over
{0, 1}κ. Finally, in the real protocol, if the client queried on input x̂, then by correctness of the

protocol (Lemma 2), ẑ` = T (x̂)⊕
(⊕

i∈[d] ki

)
. This is precisely the same distribution from which the

simulator sampled the values [z̃1, . . . , z̃m].

We conclude that the view of adversary A when interacting in the real protocol is computationally indistin-
guishable from its view when interacting with the simulator S. Security then follows in the hybrid model.
As noted earlier, by instantiating the ideal functionality fcomp with the extended comparison protocol in
Figure 3, we achieve security against malicious clients.
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