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Abstract

Motivated by the wide adoption of authenticated encryption and TLS, we
suggest a basic channel abstraction, an augmented secure channel (ASC), that
allows a sender to send a receiver messages consisting of two parts, where one is
privacy-protected and both are authenticity-protected. Working in the tradition of
constructive cryptography, we formalize this idea and provide a construction of
this kind of channel using the lower-level tool authenticated-encryption.

We look at recent proposals on TLS 1.3 and suggest that the criterion by which
their security can be judged is quite simple: do they construct an ASC? Due to
this precisely defined goal, we are able to give a natural construction that comes
with a rigorous security proof and directly leads to a proposal on TLS 1.3 that, in
addition to being provably secure, is more efficient than existing ones.

1 Introduction

This paper defines and investigates a new abstraction of a secure channel. We call it an
augmented secure channel, or ASC. Like most types of channels, an ASC lets a sender
Alice send messages to a receiver Bob. But unlike more conventional types of channels,
each message has designated private and non-private parts. An active adversary Eve
occupies the system, but is limited to seeing the length of the private portion and the
contents of the non-private portion of each message—and to entirely shutting down
the channel. In particular, the adversary cannot inject messages or induce out-of-order
message delivery. Additionally, the non-private portion can contain an implicit part,
already known to the receiver, that is not transmitted but still authenticated, e.g., to
bind the message to a given context.

The service an ASC provides is motivated by the ascendancy of both TLS and
authenticated encryption. We take the rise of these tools, and what they deliver, as an
indication that customary conceptualizations of secure channels may not have been rich
enough to deliver the service that protocol designers routinely need.
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Authenticated encryption. While ASCs are closely related to schemes for authen-
ticated encryption (AE) and authenticated encryption with associated data (AEAD),
an ASC and an AE/AEAD-scheme are very different things. An ASC is a reasonably
high-level object: an abstract resource that parties can employ, getting compositional
guarantees when they do. Our formulation of ASCs will be in the tradition of constructive
cryptography [16, 17]. In contrast, an AEAD-scheme is a comparatively low-level primi-
tive: it is a tuple of algorithms that is “good” in some particular, complexity-theoretic
sense.

The AEAD notion emerged over a sequence of works [2, 3, 12, 13, 22, 23, 24] having
two distinct purposes: to minimize the misuse of symmetric encryption primitives
and to gain efficiency advantages over generic composition schemes (i.e., traditional
ways to meld privacy-only encryption schemes and message-authentication codes). But
in moving from conventional encryption to AEAD, the basic conception of what a
symmetric encryption is was thoroughly revamped: authenticity became an intrinsic
part of the goal; so too did the allowance of (non-private) associated data A; while
probabilism, formerly seen as indispensable, was surfaced and subsumed by a nonce N .
Roughly said, an AEAD-scheme would nowadays be defined as a triple of algorithms
Π = (K, E ,D) where a computationally-reasonable adversary A has poor advantage at
distinguishing encryption and decryption oracles (EK(N,A,M),DK(N,A,C)) from a
pair of oracles ($(N,A,M),⊥(N,A,C)), where K is generated by K, the $(N,A,M)
oracle returns an appropriate number of random bits, the ⊥(N,A,C) oracle always
returns ⊥, the adversary repeats no nonce N in queries to its first oracle, and queries
that would result in trivial wins are disallowed.

The new conceptualization for symmetric encryption gained surprising rapid accep-
tance. The IEEE, IETF, ISO, and NIST all stepped in to standardize AEAD-schemes
(e.g., in NIST SP 800-38C and SP 800-38D, IEEE 802.11i, ISO 19772, and IETF
RFC 3610, 5116, 5288, 5297, and 7253). Methods that had been previously embedded
in widely-deployed systems and standards, (e.g., Kerberos, SSH, and SSL) were recog-
nized as attempts—sometimes rather clumsy ones—to achieve AE/AEAD. Revisions
to widely-used protocols started to deploy the ready-built solutions to AEAD rather
than the ad hoc and error-prone mechanisms that had provided no real abstraction
boundaries other that of block ciphers, hash functions, or MACs.

Understanding the goal of TLS. A lot of previous work has focused on proving the
security of TLS (mainly for versions prior to 1.3) [8, 9, 11, 14, 15, 19, 20, 25]. Motivated
by the adoption of AEAD in TLS 1.3, we give a novel interpretation for the goal of the
TLS record layer: constructing a specific instantiation of an ASC. Indeed, messages
in the TLS record protocol consist of private and non-private parts, which are both
authenticated.

We show how a generic ASC construction directly leads to this specific instantiation
of an ASC. We thereby obtain a provably secure TLS record protocol. This protocol
improves existing proposals on TLS 1.3 by reducing the size of transmitted records and
the number of elements in the authenticated data.

The gap between definitions and their use. Classical cryptographic definitions,
including the AEAD definition reviewed above, do not capture in which contexts a
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scheme satisfying them can securely be used. They consider a specific attack model
and give certain capabilities to an adversary that tries to win some game, but it is
not a priori clear which capabilities an adversary has in a particular application, or
even what her final goal is. To illustrate our point, consider the standard notions for
encryption schemes, IND-CPA and IND-CCA. While IND-CCA is stronger, it is not
obvious in which applications an IND-CCA encryption scheme is needed and where
IND-CPA would suffice. These considerations are highly security-relevant. For complex
protocols like TLS or IPSec, one has to make sure that any overall attack can be
translated to an attack against the CPA or CCA game or another hardness assumption;
only then the protocol is sound. But such analyses are complex and cannot be reused
for the analysis of other protocols or attack models.

To solve this problem, we divide a complex protocol into several less complex
construction steps. Each step specifies precisely what is assumed and what is achieved.
Following the tradition of constructive cryptography1 (CC) [16, 17], we model guarantees
and expectations as resources that provide a specified service to each party. Every
party possesses an interface to the resources via which it can request that service. We
consider resources with three interfaces, labeled A (for Alice), B (for Bob) and E (for
Eve). The construction notion of CC provides the following compositional guarantee:
a constructed resource (e.g., an ASC) can be used in any other construction as an
assumed resource. We obtain modularity in the sense that the overall security follows
automatically from individual security proofs.

The approach has already been applied successfully in many other contexts. For
example, the results in [6, 7] shed new light on the definitions of public-key encryption
schemes and even led to a new security definition.

2 Preliminaries

Notation. We describe our systems with pseudocode using the following conventions:
We write x← y for assigning the value y to the variable x. For a distribution D over
some set, x� D denotes sampling x according to D. For a finite set X, x� X denotes
assigning to x a uniformly random value in X. Typically queries to systems consist of a
suggestive keyword and a list of arguments (e.g., (send,M) to send the message M).
We ignore keywords in writing the domains of arguments, e.g., (send,M) ∈M indicates
that M ∈M.

AEAD. Let Σ be an alphabet (a finite nonempty set). Typically an element of Σ is
a bit (Σ = {0, 1}) or a byte (Σ = {0, 1}8). For a string x ∈ Σ∗, |x| denotes its length.
We define the syntax of a scheme for authenticated encryption with associated data
(AEAD) following [22].

Definition 1. An AEAD-scheme Π is a triple of algorithms Π = (K, E ,D), where K is
a randomized algorithm that samples a key K ∈ Σ∗, E is a deterministic algorithm that
maps a key K ∈ Σ∗, a nonce N ∈ N , additional data A ∈ A, and a message M ∈ M
to a ciphertext C ∈ C, and D is a deterministic algorithm that maps (K,N,A,C) ∈

1We suspect that alternative definitional frameworks, like treating ASCs in the UC framework [5] or
RSIM [1, 21], would yield closely related findings.
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Initialization
K � K

Oracle Enc

Input: (N,A,M) ∈ N ×A×M
C ← E(K,N,A,M)

return C

Oracle Dec

Input: (N,A,C) ∈ N ×A× C
M ← D(K,N,A,C)

return M

RealΠ

Initialization
K � K

Oracle Enc

Input: (N,A,M) ∈ N ×A×M
C′ ← E(K,N,A,M)

C � Σ|C
′|

return C

Oracle Dec

Input: (N,A,C) ∈ N ×A× C
return ⊥

IdealΠ

Figure 1: Real and ideal security game for AEAD-schemes.

Σ∗×N ×A×C toM∪{⊥}. We assume the domains N , A,M, and C are equal to Σ∗

and require for all K,N,A,M ∈ Σ∗ that D
(
K,N,A, E(K,N,A,M)

)
= M . We further

require the length of a ciphertext |E(K,N,A,M)| only depend on the length of the
corresponding message |M |.

We define the security game for AEAD-schemes using the all-in-one formulation
from [10]. A scheme is considered secure if all valid and efficient adversaries A have
poor advantage according to the following definition.

Definition 2. We define the advantage of an adversary A as the difference in the
probability that it outputs 1 in the real and ideal games defined in Figure 1:

Advae
Π (A) := Pr

[
ARealΠ = 1

]
− Pr

[
AIdealΠ = 1

]
.

An adversary is valid if it does not repeat Enc or Dec queries, does not ask queries
Enc(N,A,M) and Enc(N,A′,M ′) (i.e., does not repeat nonces), and does not ask a
query Dec(N,A,C) where C was returned by a preceding query Enc(N,A,M).

3 Revisiting the Functionality and Modeling of Communi-
cation Channels

In constructive cryptography, communication channels are modeled as resources with
three interfaces: Interface A for sender Alice, interface B for receiver Bob, and interface E
for adversary Eve. Different types of such channels have been studied that differ in the
capabilities of the adversary Eve [7, 16, 18].

In the following paragraphs, we present a formalization of secure and insecure
channels and argue why in many applications users might need more services than
provided by either. To resolve this mismatch, we introduce a new type of channel, which
we call augmented secure channel (ASC), that provides those missing functionalities.

3.1 Existing Formalizations

Insecure channel. The insecure channel IC allows messages to be input repeatedly
at interface A. Each message is subsequently leaked at the E-interface. At interface E,
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Initialization
Q ← empty FIFO queue

Interface A

Input: (send,M) ∈ Σ∗

Q.enqueue(M)
output M at interface E

Interface E

Input: deliver
if |Q| > 0 then

M ← Q.dequeue()
output M at interface B

Input: (inject,M) ∈ Σ∗

output M at interface B

Resource IC

Figure 2: The insecure channel resource.

arbitrary messages (including those that were previously input at interface A) can be
injected such that they are delivered to B. This channel does not give any security
guarantees to Alice and Bob. A formal description is provided in Figure 2.

Secure channel. The typical formalization of a secure channel follows the same basic
structure as an insecure channel but where the ability of the adversary is limited to seeing
the length of the transmitted messages and to deliver messages input at interface A. In
particular, the adversary cannot inject new messages or induce out-of-order message
delivery. A description of the secure channel can be derived from Figure 2 by omitting
the inject-query and by restricting the leakage at interface E to |M | on inputs (send,M)
at interface A.

3.2 What Service Should a Secure Channel Provide?

In many relevant security protocols, like TLS, transmitted data packets are usually
divided into a header part and a payload part. While both are required to be authentic,
only the payload has to remain confidential.

We further observe that the header often contains context information since binding
a message to a given context is good security-engineering practice. Moreover, parts of
the context are already known to the receiver. This part does not have to be transmitted
but should still be authenticated. This suggests splitting the header into two parts: an
explicit part and an implicit part that describes the unknown and known parts of the
header.

We conclude that there is a need for an abstract functionality that allows one to
transmit a message together with the explicit part of a header such that the message
remains private and the message as well as both the explicit and the implicit part of
the header are authenticated.

Augmented secure channel. We now present the channel abstraction that formal-
izes the desired service. The augmented secure channel ASC is described in Figure 3:
The sender can provide a triple consisting of the explicit part of a header E ∈ HE,
the implicit part of the header I ∈ HI, and a message M ∈M. The message remains
confidential and the explicit part of the header is leaked at the adversarial interface. If
the receiver knows the implicit part of the header, he can recover the message using the
query (fetch, I) and verify the authenticity of the message and both parts of the header.
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Initialization
S ← empty FIFO queue
R← empty FIFO queue
halt← 0

Interface A

Input: (send, E, I,M) ∈ HE ×HI ×M
S.enqueue((E, I,M))
output (E, |M |) at interface E

Interface B

Input: (fetch, I) ∈ HI

if |R| > 0 and halt = 0 then
(E′, I′,M ′)←R.dequeue()
if I′ = I 6= ⊥ then

output M ′ at interface B
else

halt← 1
output ⊥ at interface B

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(E, I,M)← S.dequeue()
R.enqueue((E, I,M))
output (newMsg, E) at interface B

Input: (injectStop, E) ∈ HE

if halt = 0 then
R.enqueue((⊥,⊥,⊥))
output (newMsg, E) at interface B

Resource ASC

Figure 3: Description of ASC, an augmented secure channel.

If the verification fails, the system stops delivering messages and signals an error by
outputting ⊥. The adversary has the ability to deliver messages and to inject a special
element that will terminate the channel at the receiver’s side once fetched. Delivering
a message notifies the receiver of the new message and provides him with the explicit
part of the header.

4 Constructing an Augmented Secure Channel via Authen-
ticated Encryption

After motivating the need for the new channel ASC, we now show how to construct
it using an AEAD-scheme. We first introduce the assumed resources from which we
construct ASC and describe the protocol that achieves this construction. We finally
prove the security of our construction.

4.1 Assumed Resources

We construct the augmented secure channel from an insecure channel IC and a shared
secret key. We introduce a shared key resource SKK for some key distribution K that
initially chooses a key according to K and outputs this key to interfaces A and B while
interface E remains inactive. See Figure 4. We denote by [SKK, IC] the resource that
provides at each interface access to the corresponding interface of both the key and the
channel.

4.2 Protocol

A protocol is modeled in constructive cryptography as a pair of converters that specify
the actions of both honest parties Alice and Bob. A converter is a system with two
interfaces: the inner interface in is connected to an interface of a resource and the
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Initialization
k � K

Interface A

Input: getKey
output k at A.

Interface B

Input: getKey
output k at B.

Resource SKK

Figure 4: The shared secret key resource.

outer interface out becomes the new connection point of that resource towards the
environment. Attaching a converter to an interface changes the local behavior at that
interface and hence yields a new resource.2

For an AEAD-scheme Π = (K, E ,D), we present the protocol (encΠ, decΠ) as
pseudocode in Figure 5. The converter for the sender, encΠ, accepts inputs of the form
(send, E, I,M) at its outer interface and encrypts the message M using E . The nonce is
implemented as a counter, the additional data3 is H = (E, I) and the key is provided
by the key-resource SKK. An encoding of the resulting ciphertext and the explicit part
of the header is output to the insecure channel IC.

The receiver converter decΠ receives inputs from IC and queues the header-ciphertext
pairs internally in a queue Q. For each newly arrived message a notification is output at
the outer interface. The next ciphertext C in the queue is decrypted if decΠ is invoked
with the implicit part of the corresponding header. The parameters for decryption are
again the header as the additional data, the counter as the nonce and the shared key.
On success, the corresponding plaintext is output at the outer interface. If decryption
fails, the converter stops and signals an error by outputting ⊥.

4.3 The Construction Notion

In order to show that the protocol (encΠ, decΠ) constructs ASC from [SKK, IC] in the
sense of constructive cryptography, we have to prove the availability condition and the
security condition that are derived from the general construction notion in [16].

Random experiments. Both conditions make statements about random experi-
ments DR in which a distinguisher D plays the role of an interactive environment
for some resource R. The distinguisher D is a system that provides inputs to the
connected resource and receives the outputs generated by the resource. For example,
D
(
encΠ

AdecΠ
B [SKK, IC]

)
is the experiment that captures “the protocol in action” in

the environment provided by D. More concretely, in each step of these experiments,
the distinguisher provides an input to one of the interfaces A, B, or E and observes the
output that is generated in reaction to that input. This process continues iteratively
by having D providing adaptively the next input and receiving the next output. The

2For example, the resource encΠ
AdecΠ

B [SKK, IC] is obtained by attaching Alice’s converter encΠ

at interface A and Bob’s converter decΠ at interface B of [SKK, IC], where the interfaces are indicated
by superscripts.

3Here, (E, I) ∈ HE ×HI denotes an encoding of that pair as an element in A. Abusing notation,
we generally do not distinguish between a tuple and its encoding as an element in Σ∗.
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Initialization
N ← 0
output getKey to SKK
let K be the returned value from SKK

Interface out

Input: (send, E, I,M) ∈ HE ×HI ×M
A← (E, I)
C ← E(K,N,A,M)
N ← N + 1
output (send, (E,C)) to IC

Converter encΠ

Initialization
Q ← empty FIFO queue
N ← 0
halt← 0
output getKey to SKK
let K be the returned value from SKK

Interface in

Input: (E,C) ∈ HE × C from IC
if halt = 0 then
Q.enqueue((E,C))
output (newMsg, E) at out

Interface out

Input: (fetch, I) ∈ HI

if |Q| > 0 and halt = 0 then
(E,C)← Q.dequeue()
A← (E, I)
M ← D(K,N,A,C)
N ← N + 1
if M = ⊥ then halt← 1
else output M at out

Converter decΠ

Figure 5: The protocol converters for the sender (left) and the receiver (right) that
construct ASC via an AEAD-scheme Π = (K, E ,D).

experiment ends by D outputting a bit 0 or 1 that indicates its guess to which system it
is connected. The distinguishing advantage of D for two resources R and S is defined as

∆D (R,S) = Pr [DR = 1]− Pr [DS = 1] .

Availability condition. The first condition captures the situation when no attacker
interferes with the protocol execution. We require that in this case, the intended
functionality is available to the honest parties. This condition can be seen as a
correctness condition for the protocol.

No attacker being present is formalized by a special converter dlv that is attached at
interface E and always ensures the delivery of messages. Concretely, on any input at its
inner interface, dlv outputs deliver to the channel connected to its inner interface and does
not provide any service at its outer interface. Formally, the availability condition places
a bound on the advantage in distinguishing the systems encΠ

AdecΠ
BdlvE [SKK, IC] and

dlvEASC, i.e., a bound on

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvEASC

)
= Pr

[
D
(
encΠ

AdecΠ
BdlvE [SKK, IC]

)
= 1
]
− Pr

[
D
(
dlvEASC

)
= 1
]

for any distinguisher D.

Security condition. The second condition captures the situation where an adversary
attacks the protocol execution using its capabilities at interface E. The effects of such
an attack have to be indistinguishable from the effects in the system corresponding
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to the constructed resource with some simulator attached at the adversarial interface.
This captures that all attacks on the protocol can be translated by a simulator to
an attack on the constructed resource. Turned around, if the constructed resource is
secure by definition, there is no successful attack on the protocol. More concretely,
the security condition places a bound on the advantage in distinguishing the systems
encΠ

AdecΠ
B [SKK, IC] and simE

ASC ASC for some simulator simASC, i.e., a bound on

∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)

= Pr
[
D
(
encΠ

AdecΠ
B [SKK, IC]

)
= 1
]
− Pr

[
D
(
simE

ASC ASC
)

= 1
]

for any distinguisher D.

4.4 Proof of the Construction

The following two lemmata relate the AEAD-security game to the distinguishing
advantage in the availability and security condition, respectively. We begin with the
availability condition:

Lemma 1. There is an (efficient) transformation ρ described in the proof that maps
distinguishers D for two resources to valid adversaries A = ρ(D) for the AEAD-security
game such that

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvEASC

)
≤ Advae

Π (ρ(D)).

Proof. In encΠ
AdecΠ

BdlvE [SKK, IC], the converter dlv is attached at interface E and
answers any output produced by IC with the input deliver. This essentially converts IC
into a reliable transmission channel: whatever pair (E,C) is input by converter encΠ, it
is immediately delivered to decΠ that outputs a notification (newMsg, E) at its outer
interface. Furthermore, if the ith input at interface A is (send, Ei, Ii,Mi), and the ith
input at interface B is (fetch, Ii), then the output at interface B is Mi. The same holds
for system dlvEASC. Only if the ith input at interface B is (fetch, I ′i) for I ′i 6= Ii, then
the behavior of the two systems can differ: While dlvEASC always returns ⊥ in this
case, for encΠ

AdecΠ
BdlvE [SKK, IC] it is possible that a message M 6= ⊥ is returned.

Since this is the only difference between the two systems, we can upper bound the
distinguishing advantage by the probability that D can provoke such an output at
interface B when interacting with encΠ

AdecΠ
BdlvE [SKK, IC]. It remains to bound the

probability of this event, subsequently denoted by F .
Note that F occurs exactly if the encryption algorithm of the AEAD-scheme returns

a message M 6= ⊥ on input a different additional data than used for encryption.
Based on this observation, we build an adversary A that emulates a view towards
distinguisher D that is identical to an interaction of D with encΠ

AdecΠ
BdlvE [SKK, IC]

if A gets access to its real oracles. The probability of provoking event F is preserved in
this case. In contrast, if A gets access to the ideal oracles, the condition for event F
cannot be satisfied as we argue below. This is a suitable distinguishing criterion.

More formally, the reduction is defined as follows: The adversary A = ρ(D) ini-
tially sets NA, NB ← 0, initializes an empty FIFO queue Q, and then emulates an
execution to D as follows. When D inputs (send, E, I,M) at interface A, A ask the
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Initialization
Q1,Q2 ← empty FIFO queues
let K̂ ∈ K, N̂ ∈ N , Â ∈ A be arbitrary

Interface in

Input: (E, `) ∈ HE × N
choose M` ∈M with |M`| = `

C` ← E(K̂, N̂ , Â,M`)
C � Σ|C`|

Q1.enqueue((E,C))
Q2.enqueue((E,C))
output (E,C) at out

Interface out

Input: deliver
if |Q1| > 0 then

(E,C)← Q1.dequeue()
execute commands for (inject, (E,C))

Input: (inject, (E,C)) ∈ HE × C
if |Q2| = 0 then

output (injectStop, E) at in
else

(E′, C′)← Q2.dequeue()
if E = E′ and C = C′ then

output deliver at in
else

output (injectStop, E) at in

Converter simASC

Figure 6: The simulator for the security condition of the construction of ASC.

query (NA, (I, E),M) to the oracle Enc to receive the answer C. It then executes
NA ← NA + 1 and Q.enqueue((E, I, C)), and emulates the output (newMsg, E) at
interface B for D. Inputs (fetch, I) at interface B are ignored if Q is empty. Otherwise,
A executes (E′, I ′, C ′)← Q.dequeue() and asks the query (NB, (I, E

′), C ′) to the ora-
cle Dec to receive the answer M and sets NB ← NB + 1. It then emulates the output M
at interface B for D.

If M 6= ⊥ and I ′ 6= I (i.e., the event F occurs), A stops and returns 1. If M = ⊥,
A ignores subsequent inputs at interface B. When D outputs a bit and F has not
occurred, A returns 0. Observe that if A gets access to the ideal oracles, the conditions
of event F cannot be met. We conclude the proof by noting that Advae

Π (ρ(D)) equals
the probability of the event F .

The next lemma implies the security condition of the construction:

Lemma 2. For the simulator simASC defined in Figure 6, there is an (efficient) trans-
formation ρ′ described in the proof that maps distinguishers D for two resources to valid
adversaries A = ρ′(D) for the AEAD-security game such that

∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
≤ Advae

Π (ρ′(D)).

Proof. Let D be a distinguisher for encΠ
AdecΠ

B[SKK, IC] and simE
ASCASC. We define

an adversary A = ρ′(D) for the AEAD-security game as follows. The adversary A

initially sets NA, NB, flag← 0, initializes an empty FIFO queue S and two empty lists4

L and R, and then emulates an execution of D by translating inputs of the distinguisher
to oracle queries as well as answers from the oracles to outputs of the resource for D.
There are four types of inputs D can make:

(send, E, I,M) at interface A: If R contains strictly less than NA+1 elements, A asks
the query (NA, (E, I),M) to the oracle Enc and receives the answer C. It then

4For a list L, we denote by L ‖ x the list L with x appended. Furthermore, the ith element of a list
L with n elements is denoted by L[i] for i ∈ {0, . . . , n− 1}.
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stores (NA, E, I,M,C) in the list L, emulates the output (E,C) at interface E
for D, sets NA ← NA + 1, and executes S.enqueue((E,C)).

If R contains at least NA + 1 elements, there is a pair R[NA] = (E,C). A asks
the query (NA, (E, I), C) to the oracle Dec to receive the plaintext M . If M 6= ⊥,
A sets flag ← 1, returns 1 as its decision and halts. If M = ⊥, the tuple
(NA, E, I,⊥, C) is stored in L and A asks the query (NA, (E, I),M) to the oracle
Enc, receives the answer C and stores (NA, E, I,M,C) in the list L. Finally, A
emulates the output (E,C) at interface E for D, sets NA ← NA + 1, and executes
S.enqueue((E,C)).

deliver at interface E: If |S| > 0, A executes (E,C) ← S.dequeue() followed by
R ← R ‖ (E,C). If ⊥ has not been output at interface B, A emulates the
output (newMsg, E) at interface B.

(inject, (E,C)) at interface E: The adversary A executes R ← R ‖ (E,C). If ⊥ has
not been output at interface B, A emulates the output (newMsg, E) at interface B.

(fetch, I) at interface B: If R is empty, the input is ignored. Otherwise, A executes
(E,C)← R[NB ]. If (NB, E, I,⊥, C) is in L, A emulates the output ⊥ at interface
B and ignores subsequent inputs at interface B. If (NB, E, I,M,C) is in L for some
M ∈M, A emulates the output M at interface B for D and sets NB ← NB + 1.
Otherwise, A asks the query (NB, (E, I), C) to the oracle Dec to receive the
plaintext M . The output M is emulated at interface B and the counter NB is
incremented. If M = ⊥, A ignores subsequent inputs at interface B.

When D outputs a bit b and if flag = 0, A returns b and halts. Note that A is a valid
adversary since it asks at most one Enc and Dec query for each nonce (and therefore
does not repeat queries) and never asks a query to the oracle Dec for a ciphertext
that has been returned by a query to Enc for the same parameters (because for such
ciphertext, the corresponding tuple is in the list L). To analyze the success probability
of A, let F be the random variable that takes on the value of flag at the end of the
random experiment between A and RealΠ.

We claim that the view of D when connected to simE
ASCASC is identical to the

view emulated by A with access to the ideal oracles. Additionally, the view of D when
connected to encΠ

AdecΠ
B [SKK, IC] is identical to the view emulated by A with access

to the real oracles as long as flag = 0. This implies the statement of the lemma:

Advae
Π (A) = Pr

[
ARealΠ = 1

]
− Pr

[
AIdealΠ = 1

]
= Pr[F = 1] + Pr[F = 0] · Pr

[
ARealΠ = 1 | F = 0

]︸ ︷︷ ︸
= Pr[D(encΠ

AdecΠ
B [SKK,IC])=1]

− Pr
[
AIdealΠ = 1

]
≥ Pr

[
D
(
encΠ

AdecΠ
B [SKK, IC]

)
= 1
]
− Pr

[
D
(
simE

ASC ASC
)

= 1
]

= ∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
.

A proof of this claim can be found in Appendix A. It involves the analysis of the
same possible possible inputs by D as above and comparing the resulting outputs.

The following theorem summarizes the results from Lemma 1 and Lemma 2.

11



Initialization
S ← empty FIFO queue
halt← 0

Interface A

Input: (send, T,M) ∈ T ×M
S.enqueue((T,M))
output (T, |M |) at interface E

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(T,M)← S.dequeue()
output (T,M) at interface B

Input: terminate
if halt = 0 then

halt← 1
output ⊥ at interface B

Resource SECTLS

Figure 7: Description of the channel SECTLS.

Theorem 1. The protocol (encΠ, decΠ) constructs ASC from [SKK, IC]. More specifi-
cally, we have for the simulator simASC in Figure 6 and for all distinguishers D

∆D
(
encΠ

AdecΠ
BdlvE [SKK, IC], dlvEASC

)
≤ Advae

Π (ρ(D))

and ∆D
(
encΠ

AdecΠ
B [SKK, IC], simE

ASC ASC
)
≤ Advae

Π (ρ′(D)),

where ρ and ρ′ are the reductions defined in the proofs of Lemma 1 and Lemma 2,
respectively.

5 The Goal and Improvement of TLS 1.3

Version 1.3 of TLS is currently in draft state at the IETF.5 Unlike TLS 1.2, the new
version of the record payload protection protocol mandates AEAD-ciphers6 and the
format of the authenticated data has changed. More specifically, in the current draft, the
authenticated data in TLS 1.3 consists of the sequence number of the current fragment,
the protocol version, and the message type, e.g., whether it is an “alert,” a “handshake,”
or an “application” message. This section treats the record protocol and assumes that a
shared key has been derived in the TLS handshake.

5.1 Formalizing the Goal of TLS Record Payload Protection

What does it mean for the TLS record layer to be secure? We propose a simple answer
to this question in the form of a new channel abstraction. Each packet in the TLS
record layer contains a payload and specifies its associated type. While the entire packet
is authenticated, only the content of the packet has to be private and hidden from the
attacker. This resembles a specific type of channel: a secure channel where messages
are tagged with a non-private type-flag. The TLS record payload protection can be
considered secure if it provably constructs this secure channel. We formalize this channel
as the resource SECTLS and provide a formal description thereof in Figure 7. The set
of types is defined as T := {0, . . . , 255}.

5We refer to the most recent draft (retrieved on April 6, 2015) that is available for download at
https://tools.ietf.org/html/draft-ietf-tls-tls13-05.

6Previous versions of TLS supported MAC-then-Encrypt with different encryption modes.
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Initialization
V ← {3, 4}

Interface out

Input: (send, T,M) ∈ T ×M
output (send, T, V,M) to ASC

Converter tlsSnd

Initialization
V ← {3, 4}

Interface in

Input: (newMsg, T ) ∈ T
if halt = 0 then

output (fetch, V ) to ASC
let M be the returned value from ASC
if M 6= ⊥ then

output (T,M) at out
else

halt← 1
output ⊥ at out

Converter tlsRcv

Figure 8: The protocol converters for the sender (left) and the receiver (right) that
construct SECTLS from ASC.

Note that in contrast to ASC, the channel SECTLS does not contain an implicit
part of the header and messages are directly delivered to Bob without the need to fetch
them. Therefore, SECTLS does not allow the authentication of data without sending it.
One can thus view SECTLS as an augmented secure channel that is more restricted
than ASC but also simpler to use.

5.2 Achieving the Goal

In this section, we present a construction of the channel SECTLS from ASC. To
this end, we introduce the protocol (tlsSnd, tlsRcv), which is described in Figure 8
and manages the usage of the resource ASC. We adhere closely to the current TLS
specification in setting the corresponding values. The implicit part I of the header
consists of the protocol version V (which corresponds to {3, 4} and consists of two
bytes7) and the explicit part E consists of the message type T (one byte).

Theorem 2. The protocol (tlsSnd, tlsRcv) constructs SECTLS from ASC. More specif-
ically, we have for the simulator simTLS defined in Figure 9 and for all distinguishers D

∆D
(
tlsSndAtlsRcvBdlvEASC, dlvESECTLS

)
= 0 (1)

and ∆D
(
tlsSndAtlsRcvBASC, simE

TLSSECTLS

)
= 0. (2)

Proof. The availability condition (1) is easy to verify: On input (send, T,M) at in-
terface A, the system dlvESECTLS directly outputs (T,M) at interface B. The same
holds for system tlsSndAtlsRcvBdlvEASC: On input (send, T,M), the converter tlsSnd
inputs (send, T, V,M) to ASC. The converter tlsRcv then obtains the notification
(newMsg, T ) and queries (fetch, V ) to ASC, which results in the output M from ASC,
which in turn triggers tlsRcv to output (T,M). Since the two systems behave identically,
every distinguisher has advantage 0 in distinguishing them, i.e., (1) follows.

7The value {3, 4} corresponds to TLS version 1.3. The reason for this value is that the version of
TLS 1.0, as the successor of SSL 3.0, is encoded as the value {3, 1}.
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Interface in

Input: (T, `) ∈ T × N
output (T, `) at out

Interface out

Input: deliver
output deliver at in

Input: (injectStop, T ) ∈ T
output terminate at in

Converter simTLS

Figure 9: The simulator for the security condition of the construction of SECTLS.

To verify the security condition (2), we distinguish the possible inputs to the system:

Input (send, T,M) at interface A: In the system tlsSndAtlsRcvBASC, this input re-
sults in the converter tlsSnd inputting (send, T, V,M) to ASC, which yields the
output (T, |M |) at interface E of ASC. In simE

TLSSECTLS, the values (T, |M |)
are given to the simulator, which then outputs (T, |M |) at its outer interface.

Input deliver at interface E: In tlsSndAtlsRcvBASC, if the queue S in ASC is empty,
nothing happens. Otherwise, tlsRcv receives the notification (newMsg, T ). Then,
tlsRcv inputs (fetch, V ) to ASC if it has not already halted. In this case, there
have been only inputs deliver at interface E and therefore the verification within
ASC succeeds. Thus, tlsRcv obtains the message M and outputs (T,M).

In simE
TLSSECTLS, the simulator inputs deliver to SECTLS. If S in SECTLS is

empty, nothing happens. Otherwise, the next tuple (T,M) in S is output at
interface B if the channel has not halted before.

Input (injectStop, T ) at interface E: In the system tlsSndAtlsRcvBASC, the notifica-
tion (newMsg, T ) is output to tlsRcv. The converter tlsRcv then outputs (fetch, V )
to ASC and since the element is an inserted empty element, the verification
within ASC fails and tlsRcv outputs ⊥ and stops by setting halt← 1.

In simE
TLSSECTLS, simTLS terminates the session, which causes the output ⊥ at

interface B and results in no further messages being processed by Bob.

To see that the two described systems behave identically, we only have to observe that
they both terminate the session if an empty message is injected into the channel and
that all inputs are delivered in order until termination. We again conclude that every
distinguisher has advantage 0 in distinguishing these systems, i.e., we obtain (2). This
completes the proof.

5.3 Deriving a More Efficient Proposal for TLS 1.3

We have shown that (tlsSnd, tlsRcv) constructs SECTLS fromASC. Since by Theorem 1,
the protocol (encΠ, decΠ) constructs the channel ASC from a shared secret key and an
insecure channel, we can invoke the composition theorem of constructive cryptography
to conclude that the composition of both protocols constructs SECTLS from a shared
key SKK and an insecure channel IC, see Figure 10 for a graphical illustration of the
composed protocol.

The composed protocol for the sender tlsA works as follows: On input (send, T,M),
the message M is encrypted with a call to the AEAD-scheme as C ← E(K,N,A,M),

14



encΠtlsSnd

SKK

IC

A

E

tlsRcvdecΠ B

tlsA tlsB

Figure 10: Illustration of the composed protocol (tlsA, tlsB). For a secure AEAD-scheme,
the resource encΠ

AdecΠ
B [SKK, IC] inside the dashed box is indistinguishable from

simE
ASCASC.

where K is the shared key retrieved from SKK, N is the internal counter and A = (T, V )
is the additional data. Finally, the pair (T,C) is sent over the insecure channel.

The protocol for the receiver tlsB works analogously: On input a new pair (T,C)
from IC, the ciphertext is decrypted to M ← D(K,N,A,C), where N is the internal
counter, A is the additional data and K is the shared key as above. Note that the
implicit part of the header is fixed and provided by tlsRcv immediately after receiving
the notification (newMsg, T ) from decΠ.

In summary, the protocol (tlsA, tlsB) provably achieves the goal of the TLS record
layer and is more efficient than existing proposals as explained below. Note that the key
resource SKK is constructed by the handshake protocol if both parties are authenticated.
In [14], the authors consider the more general case where only one party is authenticated,
which yields a weaker key resource. We have chosen the setting where both sides are
authenticated to simplify the presentation, but we point out that our result can be
generalized to the more general setting straightforwardly.

Our proposal. Based on the above construction, we derive improvements to the
current draft of TLS 1.3. More concretely, we recommend:

1. The nonce of the AEAD-scheme should be a counter (i.e., the sequence number
of the fragment) and not be explicitly sent as part of the TLS record. The nonce
can be left-padded with zeros to be of the appropriate length.

2. The sequence number should be removed from the additional data part.

3. After the handshake, the version number does not need to be transmitted explicitly
as part of the TLS record. However, it should still be part of the additional data.

Our proposal improves upon current drafts of TLS 1.3 by reducing the amount
of data sent in each TLS record. It further reduces the number of elements in the
additional data. Moreover, our proposal comes with a rigorous security proof. Because
of this proof, it is guaranteed that our choice of parameters is adequate. For example,
this clarifies that the nonce need not be unpredictable or derived from other values,
which is a priori unclear.

We are aware that item 3 would require a new structure of TLS fragments and hence
there might be objections against this change. However, we stress that only respecting
item 1 and item 2 of our proposal is also secure (i.e., constructs SECTLS). The proof
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for the case where the version number is moved to the explicit part of the header is
essentially identical to the one presented in Section 5.2.
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A Concluding the Proof of Lemma 2

To conclude the proof of Lemma 2 in Section 4.4, we have to show that the view of
D when connected to simE

ASCASC is identical to the view emulated by A with access
to the ideal oracles and the view of D when connected to encΠ

AdecΠ
B [SKK, IC] is

identical to the view emulated by A with access to the real oracles as long as flag = 0.
To prove this claim, we distinguish the possible inputs by D and compare the

resulting outputs:

(send, E, I,M) at interface A: In system encΠ
AdecΠ

B [SKK, IC], the converter encΠ

evaluates C ← E(K,N, (E, I),M), where N is the number of sent messages before
this input. The explicit part E of the header is sent together with C over IC,
which outputs the pair (E,C) at interface E. The same output is emulated by A

in the real game since the oracle Enc in this case also evaluates the algorithm E .
In the system simE

ASC ASC, the triple (E, I,M) is inserted into the senders queue
of ASC and the pair (E, |M |) is output to the simulator simASC, which in turn
generates a uniformly random ciphertext C of the same length as ciphertexts for
M . Note that by Definition 1, the length of ciphertexts only depend on the length
of the message, so the values of K̂, N̂ , and Â used by simASC to determine this
length are irrelevant. The simulator then stores (E,C) in its own queue for later
reference and outputs this pair at interface E. Note that Enc in IdealΠ generates
ciphertexts with the same distribution, so the view emulated by A is identical.

deliver at interface E: If the sender’s queue it non-empty, the next element (E,C) is
dequeued from it and D receives the output (newMsg, E) from interface B if there
has not been an output ⊥ in both systems and in the emulated view.

(inject, (E,C)) at interface E: In encΠ
AdecΠ

B [SKK, IC], the injected pair is inserted
into the receiver’s queue of the converter decΠ and the notification (newMsg, E)
is output at interface B.

In simE
ASC ASC, the simulator checks whether the injected pair is equal to the top-

element (E′, C ′) of its queue Q2. If this is the case, the simulator outputs deliver
with the effect that the notification (newMsg, E) is output at interface B. If
(E,C) 6= (E′, C ′), simASC injects a stop element by (injectStop, E), which also
yields the output (newMsg, E) at interface B. Note that by definition of ASC,
this element is guaranteed to yield ⊥ when fetched at interface B.

We see that in the emulation by A, D receives (newMsg, E) from interface B if
there has not been an output ⊥ before at interface B. The same holds for both
systems encΠ

AdecΠ
B [SKK, IC] and simE

ASC ASC in an interaction with D.

(fetch, I) at interface B: Assume this is the ith input at interface B, there have been at
least i inputs deliver or inject at interface E, and there has not been an output ⊥ so
far (otherwise the input is always ignored). In the system encΠ

AdecΠ
B [SKK, IC],

the converter decΠ retrieves the top element of its queue. This value is equal to
the ith delivered or injected pair (E,C) at interface E. The converter decΠ then
computes M ← D(K, i− 1, (E, I), C) and outputs M .

In the view emulated by A in the real game, (E,C) also corresponds to the ith
delivered or injected pair. If the tuple (i− 1, E, I,M,C) is found in L for some
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M ∈M, M is output at interface B. By the correctness of the AEAD-scheme, M
is then equal to the output of the algorithm D for the corresponding parameters.
If no such tuple is in L, A decrypts C with the corresponding parameters using
the oracle Dec and also outputs the resulting message at interface B. Since the
real oracle Dec evaluates D, we conclude that the views are identical in this case.

In simE
ASC ASC, the resource checks whether I = I ′, where (E′, I ′,M ′) is the next

element in the queue R. If this is the case, it outputs M ′ at interface B, otherwise
it outputs ⊥. Furthermore, only those elements can be successfully fetched that
do not correspond to stop-elements (⊥,⊥,⊥). By construction of the simulator,
the ith element of the sender’s queue is only delivered if the ith injected pair
(E,C) at interface E matches the simulated pair output at interface E in reaction
to the ith input (send, E′, I ′,M ′) at interface A. In any other case, a stop-element
is injected into the receiver’s queue.

To determine whether the values of the ith injection match the simulated values
for the ith input at interface A, simASC maintains the queue Q2 such that its top
element, after i injections, stores exactly these values. Note that the queue Q1

on the other hand is only needed to simulate the queue of the insecure channel
IC in the real world and to figure out the next message in the simulation of a
deliver-request.

In the view emulated by A in the ideal game, the list L ensures that the same
message M ′ is output at interface B if all the values match as above. Furthermore,
if there is not a match, the output is ⊥ because the ideal oracle Dec always
returns ⊥. In particular, the condition that the ith simulated pair correspond to
the ith injected pair is equivalent to requiring that the tuple (i− 1, E, I,M,C),
for some message M , is an element of L.
Hence, the views for D are also identical in this case.

This concludes the proof of the claim and thus of the lemma.
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