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Abstract. Sanitizable signature schemes are a type of malleable signatures where the signer grants a designated
third party, called the sanitizer, signing rights in the sense that the sanitizer can modify designated parts and adapt
the signature accordingly. Ateniese et al. (ESORICS 2005) introduced this primitive and proposed five security
properties, which were formalized by Brzuska et al. (PKC 2009). Subsequently, Brzuska et al. (PKC 2010) sug-
gested an additional security notion, called unlinkability, which says one cannot link sanitized message-signature
pairs of the same document and gave a generic construction based on group signatures that have a certain structure.
Here, we present the first efficient instantiation of unlinkable sanitizable signatures. Our construction is based
on a novel type of signature schemes with rerandomizable keys. Intuitively, this property allows to rerandomize
both the signing and the verification key independently but consistently. This allows us to sign the message with
a rerandomized key and to prove in zero-knowledge that the derived key originates from either the signer or the
sanitizer. We instantiate this generic idea with Schnorr signatures and efficient Σ-protocols which we convert into
non-interactive zero-knowledge proofs via the Fiat-Shamir transformation. Our construction is at least one order of
magnitude faster than the fastest known construction.

1 Introduction

Sanitizable signature schemes were introduced by Ateniese et al. [1] and similar primitives were concurrently proposed
by Steinfeld, Bull, and Zheng [26], by Miyazaki et al. [21], and by Johnson et al. [20]. The basic idea of this primitive
is that the signer specifies parts of a (signed) message such that a dedicated third party, called the sanitizer, can
change the message and adapt the signature accordingly. Sanitizable signatures have numerous applications, such
as the anonymization of medical data, replacing commercials in authenticated media streams, or updates of reliable
routing information [1]. After the first introduction of sanitizable signatures in [1], the desired security properties were
later formalized by Brzuska et al. [4]. At PKC 2010, Brzuska et al. [5] identified an important missing property called
unlinkability. Loosely speaking, this notion says that one cannot link sanitized message-signature pairs of the same
document. This property is essential in applications like the sanitization of medical records because it prevents the
attacker from combining information of several sanitized versions of a document in order to reconstruct (parts of) the
original document. The authors also showed that unlinkable sanitizable signatures can be constructed from a certain
class of group signatures [2] in a blackbox-fashion. However, to this date, such generic constructions of unlinkable
sanitizable signatures are inherently slow, since no efficient group signature scheme that has the required properties
is known. This leaves us in an unsatisfactory situation. Either we use efficient sanitizable signature schemes that only
achieve a subset of the security properties [1,4] or we have to rely on an inefficient blackbox construction of unlinkable
sanitizable signatures.

In this work, we close this gap by presenting the first efficient unlinkable sanitizable signature scheme that achieves
all security properties. Our scheme only requires 15 exponentiations for signing, 17 for the verification, and 14 for
sanitizing a message-signature pair. This is at least one order of magnitude faster than the fastest previously known
construction. For a detailed performance comparison, refer to Section 1.2.



KGensig KGensan Sign Sanit Verify Proof Judge

This paper 7 E 1 E 15 E 14 E 17 E 23 E 6 E
[5] using [17] 1 E 1 E 194 E + 2P 186 E + 1P 207 E + 62P 14 E + 1P 1 E + 2 P
[5] using [16] 1 E 4 E 2831 E 2814 E 2011 E 18 E 2 E

Table 1. Comparison of the dominant operations in our construction instantiated as described in Section 5 with the construc-
tion of Brzuska et al. [5] instantiated with Schnorr signatures and the group signature schemes of Groth [17] and Furukawa and
Yonezawa [16] respectively. E and P stand for group exponentiations and pairing evaluations respectively.

1.1 Overview of our Construction

In this section, we describe the main idea of our construction and the underlying techniques. Our solution is based on
a novel type of digital signature schemes called signatures with perfectly rerandomizable keys. This type of signature
scheme allows to rerandomize both the signing and the verification key independently. It is required that the reran-
domization is perfect, meaning that rerandomized keys must have the same distribution as the original key. The new
unforgeability notion for this type of signature scheme requires that it is infeasible for an attacker to output a forgery
under either the original or a rerandomized key, even if the randomness is controlled by the attacker.

We show that this security notion is fulfilled by Schnorr’s signature scheme [24,25], which is one of the most
efficient signature schemes based on the discrete logarithm assumption. We also show that our notion is achievable
in the standard model by slightly modifying the signature scheme of Hofheinz and Kiltz [18,19]. Apart from their
usefulness in constructing highly efficient sanitizable signatures, this primitive might also be of independent interest.

Construction of Unlinkable Sanitizable Signature Schemes. Our construction of an unlinkable sanitizable signature
scheme is based on signature schemes having perfectly rerandomizable keys. The main idea of the scheme is to
sign the message with a rerandomized key and then prove, in zero-knowledge, that the key was derived from either
the signer or the sanitizer. More precisely, to sign a message m, the signer extracts those parts of the message that
cannot be modified by the sanitizer. We denote by mFIX this fixed part of the message together with some auxiliary
information such as the sanitizer’s key. The signer then signs mFIX with a (regular) strongly unforgeable signature
scheme and signs the whole message together with both signer and sanitizer keys with a signature scheme that has
perfectly rerandomizable keys. However, the signer cannot sign this part directly as this would reveal the identity of the
signer. Instead, the signer chooses a fresh randomness ρ and rerandomizes his key-pair and appends a zero-knowledge
proof that the derived keys descend either from signer’s or the sanitizer’s key. Sanitizing a message follows the same
idea: the sanitizer modifies the message and signs it with a rerandomized version of his key pair and appends a zero-
knowledge proof for the same language. To turn this idea into an efficient scheme, we do not use (inefficient) generic
instantiations of zero-knowledge, but an efficient sigma protocol tailored to our problem that we then convert via the
Fiat-Shamir transformation [14] into an efficient non-interactive zero-knowledge proof.

1.2 Evaluation and Comparison

To demonstrate the efficiency of our approach, we compare both the computational and the storage complexity of
our construction to suitably instantiated versions of the scheme due to Brzuska et al. [5]. We instantiate the signature
scheme in [5] using a deterministic version of Schnorr’s signature scheme. Instantiating the group signature scheme
used in [5] on the other hand is quite hard. The construction requires very specific properties of the group signature
scheme. Namely, it is required that user keys can be generated independently of and, in particular, before the group
manager’s key. This property originates from the definitions of Bellare, Micciancio, and Warinschi [2], however almost
no efficient group signature scheme follows their definitions. Only very few group signature schemes such as [17,16]
can be adapted to have this property and at the same time fulfill all security requirements needed in [5].

We instantiate [5] with the group signature schemes of Groth [17] and of Furukawa and Yonezawa [16]. To the best
of our knowledge, these are the two most efficient group signature schemes that can be adapted to allow an instantiation
of [5].

In Table 1 we provide a comprehensive comparison of the computational costs of all algorithms. It is easy to see
that in the most important algorithms, i.e., signing, sanitizing, and verification, our construction is at least one order of

2 For the sake of simplicity we do not distinguish between elements of different groups such as Zq and G. This simplification
slightly favors [5] using [17], since group signatures in this scheme consist exclusively of G-elements.
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pksig sksig pksan sksan σ π

This paper 7 14 1 1 14 4
[5] using [17] 1 1 1 1 69 1
[5] using [16] 1 1 5 1 1620 3

Table 2. Comparison of the key, signature, and proof sizes in our construction instantiated as described in Section 5 with the
construction of Brzuska et al. [5] instantiated with Schnorr signatures and the group signature schemes of Groth [17] and Furukawa
and Yonezawa [16] respectively. Here pksig , sksig , pksan, and sksan refer to the signer’s and sanitizer’s public and secret keys,
while σ refers to the signature, and π refers to the proof that is used to determine accountability. The sizes are measured in group
elements.2

magnitude faster than both instantiations of [5]. Similarly, Table 2 provides an overview of the storage complexity of
the different constructions. It is easy to see that the signatures in our construction are the smallest by a large margin.

Note that both the number of exponentiations and the number of group elements for Furukawa and Yonezawa’s
group signature scheme depend linearly on the security parameter. In our comparison, the scheme is instantiated with
100 bit security.

1.3 Related Work

Ateniese et al. [1] first introduced sanitizable signatures and gave an informal description of the following properties:
Unforgeability ensures that only the honest signer and sanitizer can create valid signatures. Immutability says that
the (malicious) sanitizer can only modify designated parts of the message. Transparency guarantees that signatures
computed by the signer and the sanitizer are indistinguishable. Accountability demands that, with the help of the
signer, a proof of authorship can be generated, such that neither the malicious signer nor the malicious sanitizer can
deny authorship of the message. These properties were later formalized by Brzuska et al. [4] and the unlinkability
property was introduced by Brzuska et al. in [5]. Later, in [6], Brzuska et al. introduce the notion of non-interactive
public accountability, which allows a third party, without help from the signer, to determine, whether a message
originates from the signer or the sanitizer. In [7], the same authors provide a slightly stronger unlinkability notion and
an instantiation that has non-interactive public accountability and achieves their new unlinkability notion. However,
non-interactive accountability and transparency are mutually exclusive. That is, no scheme can fulfill both properties
at the same time. In this work we focus on schemes that have (interactive) accountability and transparency. Another
line of research by Sebastien Canard and Amandine Jambert [9] considers different methods for limiting the allowed
operations of the sanitizer. That is, they show how to limit the set of possible modifications on one single block and
how to enforce the same modifications on different message blocks. In [10], Canard et al. extend sanitizable signatures
to the setting with multiple signers and sanitizers.

2 Sanitizable Signatures

Sanitizable signature schemes allow the delegation of signing capabilities to a designated third party, called the san-
itizer. These delegation capabilities are realized by letting the signer “attach” a description of the admissible mod-
ifications ADM for this particular message and sanitizer. The sanitizer may then change the message according to
some modification MOD and update the signature using his private key. More formally, the signer holds a key pair
(sksig, pksig) and signs a message m and the description of the admissible modifications ADM for some sanitizer
pksan with its private key sksig . The sanitizer having a matching private key sksan can update the message according
to some modification MOD and compute a signature using his secret key sksan. In case of a dispute about the origin of a
message-signature pair, the signer can compute a proof π (using an algorithm Proof) from previously signed messages
that proves that a signature has been created by the sanitizer. The verification of this proof is done by an algorithm
Judge (that only decides the origin of a valid message-signature pair in question; for invalid pairs such decisions are
in general impossible).

Admissible Modifications Following [4,5] closely, we assume that ADM and MOD are (descriptions of) efficient deter-
ministic algorithms such that MOD maps any messagem to the modified messagem′ = MOD(m), and ADM(MOD) ∈
{0, 1} indicates if the modification is admissible and matches ADM, in which case ADM(MOD) = 1. By FIXADM
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we denote an efficient deterministic algorithm that is uniquely determined by ADM and which maps m to the im-
mutable message part FIXADM(m), e.g., for block-divided messages FIXADM(m) is the concatenation of all blocks
not appearing in ADM. We require that admissible modifications leave the fixed part of a message unchanged, i.e.,
FIXADM(m) = FIXADM(MOD(m)) for all m ∈ {0, 1}∗ and all MOD with ADM(MOD) = 1. Analogously, to avoid
choices like FIXADM having empty output, we also require that the fixed part must be “maximal” given ADM, i.e.,
FIXADM(m

′) 6= FIXADM(m) for m′ /∈ {MOD(m) |MOD with ADM(MOD) = 1}.

2.1 Definition of Sanitizable Signatures

In this section we recall the definitions of sanitizable signature schemes [4,5].

Definition 1 (Sanitizable Signature Scheme). A sanitizable signature scheme SanS = (KGensig,KGensan,Sign,
Sanit,Verify,Proof, Judge) consists of seven algorithms:
(sksig, pksig)← KGensig(1

κ): The signer key generation algorithm takes as input the security parameter 1κ and
generates a key pair (sksig, pksig).

(sksan, pksan)← KGensan(1
κ): The sanitizer key generation algorithm takes as input the security parameter 1κ and

generates a key pair (sksan, pksan).
σ ← Sign(m, sksig, pksan,ADM): The signing algorithm takes as input a message m ∈ {0, 1}∗, a signer secret key

sksig , a sanitizer public key pksan, as well as a description ADM of the admissible modifications to m by the
sanitizer and outputs a signature σ. We assume that ADM can be recovered from any signature.

{(m′, σ′),⊥} ← Sanit(m,MOD, σ, pksig, sksan): The sanitizing algorithm takes as input a message m ∈ {0, 1}∗, a
description MOD of the desired modifications to m, a signature σ, the signer’s public key pksig , and a sanitizer
secret key sksan. It modifies the message m according to the modification instruction MOD and outputs a new
signature σ′ for the modified message m′ = MOD(m) or possibly ⊥ in case of an error.

b← Verify(m,σ, pksig, pksan): The verification algorithm takes as input a message m, a candidate signature σ, a
signer public key pksig , as well as a sanitizer public key pksan and outputs a bit b.

π ← Proof(sksig,m, σ, pksan): The proof algorithm takes as input a signer secret key sksig , a messagem, a signature
σ, and a sanitizer public key pksan and outputs a proof π.

d← Judge(m,σ, pksig, pksan, π): The judge algorithm takes as input a message m, a signature σ, signer and sani-
tizer public keys pksig, pksan, and proof π. It outputs a decision d ∈ {Sign, San} indicating whether the message-
signature pair was created by the signer or the sanitizer.

For a sanitizable signature scheme the usual correctness properties should hold, saying that genuinely signed or sani-
tized messages are accepted and that a genuinely created proof by the signer leads the judge to decide in favor of the
signer. For a formal approach to correctness see [4].

2.2 Security of Sanitizable Signatures

In this section we recall the definitions of the necessary security properties of immutability, accountability, trans-
parency, and unlinkability from [5]. Due to space constraints, we keep the descriptions of the definitions short and
omit most definitions of the oracles (unless the functionality is not obvious); we refer the reader to [4,5] for compre-
hensive descriptions and discussions. Weaker security notions, such as unforgeability and privacy are already implied
by accountability and transparency, respectively, as shown in [4].

Immutability. Informally, this property says that a malicious sanitizer cannot change inadmissible blocks.

Definition 2 (Immutability). A sanitizable signature scheme SanS is immutable if for all PPT adversaries A the
probability that the experiment ImmutSanSA (κ) evaluates to 1 is negligible (in κ), where

Experiment ImmutSanSA (κ)
(sksig, pksig)← KGensig(1

κ)

(pk∗san,m
∗, σ∗)← ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

letting (mi,ADMi, pksan,i) and σi denote the
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Experiment San-AccSanSA (κ)
(sksig, pksig)← KGensig(1

κ)

(pk∗san,m
∗, σ∗)← A

Sign(·,sksig,·,·),
Proof(sksig,·,·,·)(pksig)

letting (mi,ADMi, pksan,i) and σi
denote the queries and answers to
and from oracle Sign

π ← Proof(sksig,m
∗, σ∗, pk∗san)

Output 1 if for all i the following holds:
(pk∗san,m

∗) 6= (pksan,i,mi) and
Verify(m∗, σ∗, pksig, pk

∗
san) = 1 and

Judge(m∗, σ∗, pksig, pk
∗
san, π) 6= San

Experiment Sig-AccSanSA (κ)
(sksan, pksan)← KGensan(1

n)

(pk∗sig,m
∗, σ∗, π∗)← ASanit(·,·,·,·,sksan)(pksan)

letting (mi,MODi, σi, pksig,i) and
(m′i, σ

′
i) denote the queries and

answers to and from oracle Sanit.
Output 1 if for all i the following holds:

(pk∗sig,m
∗) 6= (pksig,i,m

′
i) and

Verify(m∗, σ∗, pk∗sig, pksan) = 1 and
Judge(m∗, σ∗, pk∗sig, pksan, π

∗) 6= Sign

else output 0.

Fig. 1. Sanitizer- and Signer-accountability experiments.

Experiment TransSanSA (κ)
(sksig, pksig)← KGensig(1

κ)
(sksan, pksan)← KGensan(1

κ)
b← {0, 1}

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

letting MSanit/Sign and MProof denote
the sets of messages output by the Sanit/Sign
and queried to the Proof oracle respectively.

Output 1 if
(
a = b and MSanit/Sign ∩MProof = ∅

)
Else output 0

The oracle Sanit/Sign is defined as:
Sanit/Sign(m,MOD,ADM)
σ ← Sign(m, sksig, pksan,ADM)
(m′, σ0)← Sanit(m,MOD, σ, pksig, sksan)
σ1 ← Sign(m′, sksig, pksan,ADM)
output (m′, σb)

Experiment UnlinkabilitySanSA (κ)
(sksig, pksig)← KGensig(1

κ)
(sksan, pksan)← KGensan(1

κ)
b← {0, 1}

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·,·),LoRSanit(·,·) (pksig, pksan)
if a = b then output 1, else output 0

The oracle LoRSanit is defined as:
LoRSanit((m0,MOD0, σ0), (m1,MOD1, σ1))

if Verify(mi, σi, pksig, pksan) = 1
and ADMi(MODi) 6= 0 for i ∈ {0, 1}, and
MOD0(m0) = MOD1(m1) and ADM0 = ADM1

then
(m′, σ′)← Sanit(mb,MODb, σb, pksig, sksan)
output (m′, σ′)

else output ⊥.

Fig. 2. The experiments for transparency and unlinkability.

queries and answers to and from oracle Sign.
Output 1 if Verify(m∗, σ∗, pksig, pk

∗
san) = 1 and for all i the following holds:

pk∗san 6= pksan,i or m∗ /∈ {MOD(mi) |MOD with ADMi(MOD) = 1}
Else output 0.

Accountability. This property demands that the origin of a (possibly sanitized) signature should be undeniable. We
distinguish between sanitizer-accountability and signer-accountability and formalize each security property in the
following.

Definition 3 (Sanitizer-Accountability). A sanitizable signature scheme SanS is called sanitizer-accountable if for
all PPT adversaries A the probability that the experiment San-AccSanSA (κ) evaluates to 1 is negligible (in κ), where
the experiment San-AccSanSA (κ) is defined in Figure 1.

Definition 4 (Signer-Accountability). A sanitizable signature scheme SanS is called signer-accountable if for all
PPT adversaries A the probability that the experiment Sig-AccSanSA (κ) evaluates to 1 is negligible (in κ), where the
experiment Sig-AccSanSA (κ) is defined in Figure 1.

Transparency. Informally, this property says that one cannot decide whether a signature has been sanitized or not.

Definition 5 (Proof-Restricted Transparency). A sanitizable signature scheme SanS is proof-restrictedly transpar-
ent if for all PPT adversaries A the probability that the experiment TransSanSA (κ) evaluates to 1 is negligibly bigger
than 1/2 (in κ), where the experiment TransSanSA (κ) is defined in Figure 2.
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Unlinkability. This security notion demands that it is not possible to use the signatures to identify sanitized message-
signature pairs originating from the same source.

Definition 6 (Unlinkability). A sanitizable signature scheme SanS is unlinkable if for all PPT adversaries A the
probability that the experiment UnlinkabilitySanSA (κ) evaluates to 1 is negligibly bigger than 1/2 (in κ), where the
experiment UnlinkabilitySanSA (κ) is defined in Figure 2.

3 Unforgeable Signatures Schemes Under Rerandomizable Keys

Our sanitizable signature scheme is based on signatures that are unforgeable under rerandomizable keys, meaning that
it is computationally hard to forge a signature even if the adversary learns signatures on messages under rerandomized
keys (where the randomness to rerandomize the keys is chosen by the attacker). This new notion for digital signatures
may also be of independent interest. To define this property and the corresponding security notion formally, we denote
by pp ← SSetup(1κ), (sk, pk) ← SGen(1κ), σ ← SSign(sk,m), b ← SVerify(pk,m, σ) the standard algorithms of a
digital signature scheme.

Definition 7 (Digital Signature Scheme with Perfectly Rerandomizable Keys). A signature scheme Σ = (SSetup,
SGen,SSign,SVerify) has perfectly rerandomizable keys if there exist two additional PPT algorithms (RandSK,
RandPK) and a randomness space χ such that:
RandSK(sk, ρ): The secret key rerandomization algorithm takes as input a secret key sk and a randomness ρ ∈ χ and

outputs a new secret key sk′.
RandPK(pk, ρ): The public key rerandomization algorithm takes as input a public key pk and a randomness ρ ∈ χ

and outputs a new public key pk′.

CORRECTNESS: The scheme is correct if and only if all of the following holds:

1. For all κ ∈ N, all (sk, pk)← SGen(1κ), allm ∈ {0, 1}∗, and σ ← SSign(sk,m), it holds that SVerify(pk,m, σ) =
1.

2. For all κ ∈ N, all (sk, pk)← SGen(1κ), all randomness ρ, all m ∈ {0, 1}∗, and σ ← SSign(RandSK(sk, ρ),m),
it holds that SVerify(RandPK(pk, ρ),m, σ) = 1.

3. For all key pairs (sk, pk), and a uniformly chosen randomness ρ, the distribution of (sk′, pk′) and (sk′′, pk′′) is
identical, where pk′ ← RandPK(pk, ρ), sk′ ← RandSK(sk, ρ), and (sk′′, pk′′)← SGen(1κ)

In the following, we define unforgeability under rerandomized key attacks. In this definition, the adversary has access
to two oracles. The first one, denoted by O1 is a regular signing oracle. The second one, denoted by O2 is an oracle
that takes as input a message m and some randomness ρ. It then rerandomizes the private key according to ρ and signs
the message using this key.

Definition 8 (Unforgeability under Rerandomized Keys). A signature scheme with perfectly rerandomizable keys
Σ = (SGen,SSign,SVerify,RandSK,RandPK) is unforgeable under rerandomized keys (UFRK) if for all PPT ad-
versaries A the probability that the experiment UFRKΣA(κ) evaluates to 1 is negligible (in κ), where

Experiment UFRKΣA(κ) :
(sk, pk)← SGen(1κ)
Q := ∅
(m∗, σ∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)
Output 1 if one of the two conditions is fulfilled
1. If SVerify(pk,m∗, σ∗) = 1

and m∗ 6∈ Q
2. If SVerify(RandPK(pk, ρ∗),m∗, σ∗) = 1

and m∗ 6∈ Q
else output 0

O1(sk,m) :
Q := Q ∪ {m}
σ ← SSign(sk,m)
output σ

O2(sk,m, ρ) :
Q := Q ∪ {m}
sk′ ← RandSK(sk, ρ)
σ ← SSign(sk′,m)
output σ
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Given this definition of unforgeability, one can easily obtain the “standard” notion of existential unforgeability by
giving the adversary only access to O1 and only checking the first condition.

Definition 9 (Existential Unforgeability). A signature scheme with perfectly rerandomizable keysΣ = (SGen,SSign,
SVerify,RandSK,RandPK) is said to be existentially unforgeable under chosen message attacks (EUF) if for all PPT
adversaries A the probability that the experiment EUFΣA(κ) evaluates to 1 is negligible (in κ), where EUFΣA(κ) is
defined as UFRKΣA(κ), but the adversary only gets access to O1 and wins if the first condition is fulfilled.

Observe that Definition 8 does not trivially follow from Definition 9. In fact very few standard model signatures
can be proven secure according to definition Definition 8 and some well known schemes are trivially forgeable un-
der rerandomized keys. Examples include the signature schemes due to Boneh and Boyen [3] and Camenisch and
Lysyanskaya [8]. The attacks to these schemes are sketched in Appendix A.

Definition 10 (Strong Existential Unforgeability). A signature scheme with perfectly rerandomizable keys Σ =
(SGen,SSign,SVerify,RandSK,RandPK) is strongly existentially unforgeable under chosen message attacks (s-EUF)
if for all PPT adversaries A the probability that the experiment s-EUFΣA(κ) evaluates to 1 is negligible (in κ), where
s-EUFΣA(κ) is defined as UFRKΣA(κ), but the adversary only gets access to O1 and O1 maintains Q := Q ∪ {m,σ}.
The adversary wins only if the following condition is fulfilled: SVerify(pk,m∗, σ∗) = 1 and (m∗, σ∗) 6∈ Q.

3.1 Instantiations

In this section, we show that our security notion is achievable in the random oracle and the standard model. In the
random oracle model, we prove that Schnorr’s signature scheme [24,25] is unforgeable under rerandomized keys
and in the standard model we show that a slightly modified version of the signature scheme due to Hofheinz and
Kiltz [18,19] satisfies our notion.

Random Oracle Model We show that Schnorr’s signature scheme [24,25] is unforgeable under rerandomized keys.
Our proof technique is based on a trick – first observed by Fischlin and Fleischhacker [15] in the context of an
impossibility result – that allows moving a signature from one public key to another knowing only the difference
between the two corresponding secret keys.

Definition 11 (Schnorr Signature Scheme). Let G be a cyclic group of prime order q with generator g and let
H : {0, 1}∗ → Zq be a hash function. The Schnorr signature scheme SSS, working over G, is defined as follows:
SGen(1κ): Pick sk← Zq at random, compute pk := gsk, and output (sk, pk).
SSign(sk,m): Pick r ← Zq at random and compute R := gr, compute c := H(R,m) and y := r + sk · c mod q.

Output σ := (c, y).
SVerify(pk,m, σ): Parse σ as (c, y). If c = H(pk−cgy,m), then output 1, otherwise output 0.
RandSK(sk, ρ): Compute sk′ := sk+ ρ mod q and output sk′.
RandPK(pk, ρ): Compute pk′ := pk · gρ and output pk′.

Obviously all three correctness conditions hold. It remains to show that SSS is unforgeable under rerandomized keys.

Theorem 1 (Unforgeability of Schnorr Signatures Under Rerandomized Keys). The signature scheme SSS as
defined in Definition 11 is unforgeable under rerandomized keys as defined in Definition 8 in the random oracle model
if the discrete logarithm problem in G is hard.

Proof. Assume towards contradiction that there exists an adversary A such that the probability that the experiment
UFRKSSS

A evaluates to 1 is at least 1/poly(κ). We then construct an adversary B against the existential unforgeability
of SSS defined as follows:
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BO1(sk,·)(pk) :

(σ∗,m∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)

Parse σ∗ as (c, y)
y′ := y − ρ∗c
output (c, y′),m∗

O2(sk, ρ,m) :

(c, y)← O1(sk,m)

y′ := y + ρc

output (c, y′)

where B answers all queries to O1(sk,m) with its own oracle and the simulation of O2(sk,m) is shown on the right.
It is easy to see that the simulation ofA’s signing oracle is perfect. The signature under pk received byO2 consists

of c and y. The c value is independent of the signing key, therefore only the y value needs to be adapted. The adapted
value is computed as

y′ = y + ρc = r + sk · c+ ρc = r + (sk+ ρ) · c.

Obviously (c, y′) is therefore a signature on m under pk · gρ with the same randomness as (c, y). It follows that the
answers to signing queries are distributed exactly as in the UFRKSSS

A (κ) experiment.
Similarly the output of B is computed from the output of A. Whenever A outputs a valid signature, message,

randomness triple (σ∗,m∗, ρ∗), we have that σ∗ = (c, y) where c = H(gr,m) and y = r + (sk + ρ∗) · c for some
r ∈ Zq . We therefore have

y′ := y − ρ∗c = r + (sk+ ρ∗) · c− ρ∗c = r + sk · c

and thus (c, y′) is a valid signature on m under pk.
Further, in answering signing queries for A, the adversary B queries the exact same messages as A and therefore

whenever A wins in the UFRKSSS
A (κ) experiment, B wins in the EUFSSS

A (κ) experiment. Combining this with the
well known proof of existential unforgeability of Schnorr signatures by Pointcheval and Stern [22,23] rules out the
existence of A under the discrete logarithm assumption in the random oracle model.

Standard Model In the standard model an instantiation of a signature scheme with unforgeability under rerandomized
keys can be found in the work of Hofheinz and Kiltz [18,19]. To prove this formally, we adapt the technique that we
used in the proof of Schnorr’s signature scheme to this setting, which allows us to reduce the unforgeability under
rerandomized keys to standard existential unforgeability.

The scheme of Hofheinz and Kiltz requires a programmable hash function [18,19], but since security properties
of programmable hash functions are not relevant to our proofs, we therefore omit them here and refer the interested
reader to [18,19]. It should be noted that we slightly adapt the Hofheinz Kiltz signature scheme, which works on type
1 and type 2 pairings. In particular, in SSign we choose s as a random element from Zq and not as a random bit string.
This slightly increases the signature’s size, but does not influence the original functionality or security proof.

Definition 12 (Programmable Hash Function [18,19]). A programmable hash function (Gen,Eval) consists of two
algorithms:
k ← Gen(1κ): The key generation algorithm takes as input the security parameter 1κ and generates a public key k.
y ← Eval(k,m): The deterministic evaluation algorithm takes as input a key k and a message m ∈ {0, 1}` and

outputs a hash value y.

Given the definition of programmable hash functions, we review the signature scheme due to Hofheinz Kiltz and define
the rerandomization algorithms.

Definition 13 (Hofheinz Kiltz Signature Scheme [18,19]). Let e : G1 × G2 → Gt be a bilinear map. Let g1 and
g2 be generators of G1 and G2, respectively. Let PHF = (Gen,Eval) be a programmable hash function with domain
{0, 1}∗ and range G1. The signature scheme HKSS is defined as follows:
SSetup(1κ): Generate a key for PHF as k ← Gen(1κ) and output pp = k.
SGen(1κ): Pick sk← Zq at random, compute pk := gsk2 , and output (sk, pk).
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SSign(sk,m): Parse k from pp. Pick s ← Zq uniformly at random and compute y := Eval(k,m)
1

sk+s . Output σ :=
(s, y).

SVerify(pk,m, σ): Parse σ as (s, y). If e(y, pk · gs2) = e(Eval(k,m), g2) then output 1, otherwise output 0.
RandSK(sk, ρ): Compute sk′ := sk+ ρ mod q and output sk′.
RandPK(pk, ρ): Compute pk′ := pk · gρ2 and output pk′.

Obviously all three correctness conditions hold. It remains to show that HKSS is unforgeable under rerandomized
keys.

Theorem 2 (Unforgeability of HKSS Under Rerandomized Keys). The signature scheme HKSS as defined in
Definition 13 is unforgeable under rerandomized keys as defined in Definition 8 in the standard model, if HKSS is
unforgeable under chosen message attacks as defined in Definition 9.

Proof. Assume towards contradiction that there exists an adversary A such that the probability that the experiment
UFRKHKSS

A (κ) evaluates to is bigger than 1/poly(κ).
We then construct an adversary B against the existential unforgeability of HKSS as follows:

BO(sk,·)(pk) :

(σ∗,m∗, ρ∗)← AO1(sk,·),O2(sk,·,·)(pk)

Parse σ∗ as (s, y)
s′ := s+ ρ∗

output (s′, y),m∗

O2(sk, ρ,m) :

(s, y)← O(m)

s′ := s− ρ
output (s′, y)

where B answers all queries to O1(sk,m) with its own oracle and the simulation of O2(sk,m) is shown on the right.
It is easy to see that A’s simulation of the signing oracle is perfect, since whenever an adversary that sends (ρ,m) and
receives a signature (s′, y) then it holds that e(y, pk · gρ2 · gs

′

2 ) = e(Eval(k,m)
1

sk+s , g
sk+ρ+(s−ρ)
2 ) = e(Eval(k,m), g2).

Similarly, B outputs a valid signature (s′ = s+ρ∗, y) form∗ under pk, wheneverA returns a valid signature (s, y)
for m∗ under the rerandomized key pk · gρ2 , since e(y, (pk · gρ2) · gs2) = e(y, pk · gρ+s2 ) = e(y, pk · gs′2 ). Combining this
with the proof of existential unforgeability of Hofheinz Kiltz signatures from [18,19] rules out the existence of A.

4 Efficient Sanitizable Signatures

In this section we show how to build efficient unlinkable sanitizable signatures from signatures with perfectly reran-
domizable keys. After defining the required preliminaries in Section 4.1, we provide a formal description of our con-
struction in Section 4.2. We will provide a proof of security in Section 4.3. A concrete instantiation of our construction
will be given in Section 5

4.1 Preliminaries

In this section we shortly recall the definitions and security notions of the other building blocks required for our
construction of sanitizable signatures. Namely we recall the definitions of CCA secure public key encryption and
non-interactive zero-knowledge proof systems.

CCA secure public key encryption We shortly recall the definitions of a public key encryption scheme as well as
the standard notion of CCA security.

Definition 14 (Public Key Encryption Scheme). A public key encryption scheme E = (EGen,Enc,Dec) consists of
three efficient algorithms:
EGen(1κ): The key generation algorithm takes as input the security parameter 1κ and generates a key pair (dk, ek).
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Enc(ek,m): The encryption algorithm takes as input an encryption key ek and a message m ∈ {0, 1}∗ and outputs a
ciphertext c.

Dec(dk, c): The decryption algorithm takes as input a decryption key dk, a ciphertext c and outputs a message m.

CORRECTNESS: The scheme is correct if and only if for all κ ∈ N, all (dk, ek)← EGen(1κ), all m ∈ {0, 1}∗, and all
c← Enc(ek,m), it holds that m = Dec(dk, c) = 1.

Definition 15 (Indistinguishability under Chosen Ciphertext Attacks). A public key encryption scheme E = (EGen,
Enc,Dec) has indistinguishable encryptions under chosen ciphertext attacks (IND-CCA) if for all (possibly stateful)
PPT adversaries A = (A0,A1) the probability that the experiment IND-CCAEA(κ) evaluates to 1 is negligibly bigger
than 1/2 (in κ), where

Experiment IND-CCAEA(κ) :
(dk, ek)← EGen(1κ)
b← {0, 1}
m0,m1 ← ADec(dk,·)

0 (ek)
cb ← Enc(ek,mb)

a← ADec′(dk,cb,·)
1 (cb)

if a = b, then output 1
else output 0

Dec′(dk, cb, c) :
if c 6= cb
then output Dec(dk, c)
else output ⊥

Non-Interactive Zero-Knowledge Proof System We recall the definitions and security properties of non-interactive
zero-knowledge proof systems.

Definition 16 (Non-Interactive Zero-Knowledge Proof System). A non-interactive zero-knowledge proof system
(SZK,PZK,VZK) for a language L with the corresponding relationR consists of three algorithms:
SZK(1

κ): The setup algorithm takes as input the security parameter 1κ and generates a common reference string crs.
PZK(crs, x, w): The prove algorithm takes an input the common reference string crs, a statement x, and a witness w

and outputs a zero-knowledge proof π.
VZK(crs, x, π): The verification algorithm takes as input the common reference string crs, a statement x, and a proof

π and outputs 0 or 1.

Definition 17 (Perfect Completeness). A NIZK scheme has perfect completeness if and only if for all κ ∈ N and all
adversaries A it holds that

Pr[ crs← SZK(1
κ); (x,w)← A(crs);π ← PZK(crs, x, w);VZK(crs, x, π) = 1 |x ∈ L ] = 1

Soundness, Zero-Knowledge and the proof of knowledge property are defined as follows:

Definition 18 (Perfect Soundness). A NIZK scheme has perfect soundness if and only if for all κ ∈ N and all
adversaries A it holds that

Pr[ crs← SZK(1
κ); (x, π)← A(crs) : VZK(crs, x, π) = 0 |x 6∈ L ] = 1

Definition 19 (Zero-knowledge). A NIZK scheme has computational zero-knowledge if for all κ ∈ N there exists an
efficient simulator S = (S0,S1) such that for all adversaries A it holds that∣∣∣∣∣Pr

[
crs← SZK(1

κ) : APZK(crs,·,·)(crs) = 1
]

−Pr
[
(crs,T)← S0(1

κ) : AS′(crs,T,·,·)(crs) = 1
] ∣∣∣∣∣ ≤ negl(κ),

where S′(crs,T, x, w) = S1(crs,T, x) if (x,w) ∈ R and outputs failure otherwise.
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Definition 20 (Proof of Knowledge). A NIZK scheme is a proof of knowledge if there exists an efficient extractor
Ext = (Ext0,Ext1) such that the following conditions hold:

For all polynomial time adversaries A it holds that∣∣∣∣Pr[ crs← SZK(1
κ) : A(crs) = 1]

−Pr[ (crs,T)← Ext0(1
κ) : A(crs) = 1]

∣∣∣∣ ≤ negl(κ).

For all polynomial time adversaries A it holds that

Pr

[
(crs,T)← Ext0(1

κ); (x, π)← A(crs) = 1;
w ← Ext1(crs,T, x, π) : (x,w) ∈ R

∣∣∣∣VZK(crs, x, π) = 1

]
≥ 1

poly(κ)
.

4.2 Our Construction
In the following, we describe our construction of a sanitizable signature scheme based on signatures with reran-
domizable keys. The basic idea is that a signature of our scheme is comprised of a public key pk′, a signature of
the message, which is valid under this key pk′, and a zero-knowledge proof that pk′ is a rerandomization of the
signer’s or the sanitizer’s public key. To allow for an easy Proof and Judge algorithm, we have to provide a way
to check that pk′ is in fact the rerandomization of the signer’s or the sanitizer’s public key. Therefore, we also in-
clude an encryption of the actual public key, so that the signer can provably decrypt. Similar to previous construc-
tions [4,5], our signature also contains a second signature, signed by the signer, on the fixed part of the message
and a description of valid modifications ADM. We require a signature scheme with perfectly rerandomizable keys
Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) that is unforgeable under rerandomized keys, a deterministic
strongly existentially unforgeable signature schemeΣFIX = (SSetupFIX,SGenFIX,SSignFIX,SVerifyFIX), a CCA secure
public key encryption scheme E = (EGen,Enc,Dec) as well as two perfectly sound non-interactive zero-knowledge
proof systems ΠPoK = (SPoK,PPoK,VPoK) and ΠZK = (SZK,PZK,VZK) for the two languages L1 and L2 specified
below. The proof system ΠPoK is also required to be a proof of knowledge.

The two languages of our the proof systems are defined as follows: Intuitively, the first one says that the ciphertext
c contains the encryption of the signer’s (resp. sanitizer’s) public key and the randomness that was used to derive the
rerandomized key pk′. More formally, the language L1 contains tuples (ek, c, pk′, pksan, pk) for which there exists
witness w = (ω, ρ) such that

c = Enc(ek, pk;ω) ∧ pk′ = RandPK(pk, ρ)

or
c = Enc(ek, pksan;ω) ∧ pk′ = RandPK(pksan, ρ).

The second language L2 is used for the proof algorithm and contains tuples (ek, c, p̂k) for which there exists witness
w = (ψ, dk) such that

(ek, dk) = EGen(κ;ψ) ∧ p̂k = Dec(dk, c).

Given the primitives specified above and the definitions of L1 and L2, we are ready to define our sanitizable signature
scheme SanS = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) as follows:

Setup and Key Generation. The setup algorithm generates two common reference strings for the two different zero-
knowledge proofs (of knowledge) and the key generation algorithm the required keys. They are formally defined as
follows:

Setup(1κ) :

crsPoK ← SPoK(1
κ)

crsZK ← SZK(1
κ)

pp← SSetup(1κ)

KGensig(1
κ) :

(sk, pk)← SGen(1κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

(dk, ek)← EGen(1κ;ψ)

sksig :=

(
skFIX, sk, dk,

pkFIX, pk, ek, ψ

)
pksig := (pkFIX, pk, ek)

output (sksig, pksig)

KGensan(1
κ) :

(sksan, pksan)← SGen(1κ)

output (sksan, pksan)
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Signing and Sanitizing. The signing and sanitizing are very similar algorithms. In both cases the algorithm first
parse their inputs and Sanit further checks that MOD is actually an admissible modification and modifies the message
accordingly. the Sign algorithm now signs the fixed part with skFIX, while Sanit can simply reuse the σFIX of the input
signature. The remainder of the two algorithms proceeds identically, by rerandomizing the respective key, encrypting
the original key, proving that sk′ is indeed a rerandomization and signing the full message together with signer’s and
sanitizer’s public keys as seen in the following:

Sign(m, sksig, pksan,ADM) :

Parse sksig as (skFIX, sk, dk, pkFIX, pk, ek, ψ).

pksig := (pkFIX, pk, ek)

mFIX := (FIXADM(m),ADM, pksan)

σFIX := SSignFIX(skFIX,mFIX)

ρ← χ

sk′ ← RandSK(sk, ρ)

pk′ ← RandPK(pk, ρ)

c← Enc(ek, pk;ω)

stmt := (c, ek, pk, pksan, pk
′)

τ ← PPoK(crs, stmt, (ρ, ω))

σ′ := SSign(sk′, (m, pksig, pksan))

output σ = (σFIX, σ
′,ADM, pk′, c, τ)

Sanit(m,MOD, σ, pksig, sksan) :

Parse pksig as (pkFIX, pk, ek).

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

If ADM(MOD) = 0

output ⊥
m̂ := MOD(m)

ρ← χ

ŝk′ ← RandSK(sksan, ρ)

p̂k′ ← RandPK(pksan, ρ)

ĉ← Enc(ek, pksan;ω)

stmt := (ĉ, ek, pk, pksan, p̂k
′)

τ̂ ← PPoK(crs, stmt, (ρ, ω))

σ̂′ := SSign(ŝk
′
, (m̂, pksig, pksan))

output (m̂, σ̂ = (σFIX, σ̂
′,ADM, p̂k′, ĉ, τ̂))

Verification. The verification of a signature is rather simple. The verification algorithm simply checks that both signa-
tures and the proof of knowledge verify:

Verify(m,σ, pksig, pksan) :

Parse pksig as (pkFIX, pk, ek).

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

mFIX := (FIXADM(m),ADM, pksan)

stmt := (c, ek, pk, pksan, pk
′)

if

 SVerifyFIX(pkFIX,mFIX, σFIX) = 1
and SVerify(pk′, (m, pksig, pksan), σ

′) = 1
and VPoK(crs, stmt, τ) = 1


then output 1
else output 0

Proving and Judging. To prove who computed an accused signature, the signer first verifies that the given signature
is indeed valid. It then parses its inputs and decrypts the ciphertext c, thus revealing who computed the signature. To
convince the judge, the signer further computes a zero knowledge proof asserting that the decryption was performed
correctly. The Judge algorithm therefore, naturally, checks whether the proof of decryption is correct. If the proof π
further contains pksan, Judge decides that the signature was indeed produced by the sanitizer. In all other cases, Judge
defaults to blaming the signer. This follows naturally from the fact that the signer also serves as the authority in a
sanitizable signature scheme and is thus much more powerful.
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Proof(sksig,m, σ, pksan) :

If Verify(m,σ, pksig, pksan) = 0

output ⊥
Parse sksig as (skFIX, sk, dk, pkFIX, pk, ek, ψ).

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

p̂k← Dec(dk, c)

stmt := (ek, c, p̂k)

φ← PZK(crs, stmt, (ψ, dk))

output (p̂k, φ)

Judge(m,σ, pksig, pksan, π) :

Parse pksig as (pkFIX, pk, ek).

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

Parse π as (p̂k, φ).

stmt := (ek, c, p̂k)

if
(

pksan = p̂k
and VZK(crs, stmt, φ) = 1

)
then output San
else output Sign

4.3 Security Proof

We now proceed by showing that our construction satisfies all necessary security definitions of a sanitizable signature
scheme.

Theorem 3 (Sanitizer Accountability). If Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) is a signature
scheme with perfectly rerandomizable keys that is unforgeable under rerandomized keys ΠZK = (SZK,PZK,VZK)
is a perfectly sound non-interactive zero knowledge proof system, and ΠPoK = (SPoK,PPoK,VPoK) is a perfectly
non-interactive zero-knowledge proof of knowledge system, then the construction given in Section 4 is sanitizer-
accountable.

Proof. Let A be a probabilistic polynomial time adversary against the sanitizer accountability of SanS. Let (pk∗san,
m∗, σ∗) denote the output of A, where σ∗ can be parsed as (σFIX, σ

′,ADM, pk′, c, τ) and let pksig = (pkFIX, pk, ek).
By definition of Proof it holds that π = (p̂k, φ) and Dec(dk, c) = p̂k. Observe that in the case of San-AccSanSA (κ) =

1, the following conditions must hold by definition of sanitizer accountability:

(pk∗san,m
∗) 6= (pksan,i,mi) (1)

Verify(m∗, σ∗, pksig, pk
∗
san) = 1 (2)

Judge(m∗, σ∗, pksig, pk
∗
san, π) = Sign (3)

where (mi,ADMi, pksan,i) denotes the ith query to the Sign oracle.
By the definition of Verify, it follows from Equation 2 that

SVerify(pk′, (m∗, pksig, pk
∗
san), σ

′) = 1 (4)

and VPoK(crsPoK , (c, ek, pk, pk
∗
san, pk

′), τ) = 1. (5)

From Equation 3 it follows by the definition of Judge that at least one of the following must not hold:

p̂k = pk∗san (6)
or Verify(m∗, σ∗, pksig, pk

∗
san) = 1 (7)

or VZK(crsZK , (ek, c, p̂k), φ) = 1 (8)

However, clearly Equation 7 must hold since this is already ensured by Equation 2, and Equation 8 clearly follows
from the correctness of ΠZK and the fact that φ is computed honestly by Judge. It must thus hold that p̂k 6= pk∗san.
Since the correctness of E and the perfect soundness of ΠPoK guarantee, that p̂k ∈ {pk, pk∗san} it therefore follows
that

p̂k = pk. (9)
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BO1(sk,·),O2(sk,·,·)
1 (pk) :

crsPoK ← Ext0(1
κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

(dk, ek)← EGen(1κ;ψ)

pksig = (pkFIX, pk, ek)

(pk∗san,m
∗, σ∗)← ASign′(·,·,·),Proof′(·,·,·)(pksig)

Parse σ∗ as (σFIX, σ
′,ADM, pk′, c, τ)

stmt := (c, ek, pk, pk∗san, pk
′)

ρ∗ ← Ext
A(·)
1 (crs,T, stmt, τ)

output ((m∗, pksig, pk
∗
san), σ

′, ρ∗)

Sign′(m, pksan,ADM) :

ρ← χ

pk′ ← RandPK(pk, ρ)

c← Enc(ek, pk;ω)

stmt := (c, ek, pk, pksan, pk
′)

τ ← PPoK(crsPoK , stmt, (ρ, ω))

mFIX := (FIXADM(m),ADM, pksan)

σFIX ← SSignFIX(skFIX,mFIX)

σ′ ← O2(sk, (m, pksig, pksan), ρ)

output σ = (σFIX, σ
′,ADM, pk′, c, τ)

Proof′(m,σ, pksan) :

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

If Verify(m,σ, pksig, pksan) = 0

return ⊥

p̂k← Dec(dk, c)

stmt := (ek, c, p̂k)

φ← PZK(crsZK , stmt, (ψ, dk))

output (p̂k, φ)

Fig. 3. Description of reduction B1, reducing the sanitizer accountability of SanS against the UFRK security of Σ.

Now, consider reduction B1, depicted in Figure 3 against the unforgeability under rerandomized keys of the un-
derlying signature scheme. Observe that this reduction is clearly efficient and perfectly simulates the view of A in the
game San-AccSanSA (κ). Furthermore, because of Equation 1, (m∗, pksig, pk

∗
san) is a message never queried to the sign-

ing oracle. As, further, whenever the extractor is successful in extracting the witness from τ , it follows from Equation 4
and Equation 9 that the forgery output by B1 is valid, it holds that

Pr
[
UFRKΣB1

(κ) = 1
]
≥ 1

poly(κ)
Pr
[
San-AccSanSA (κ) = 1

]
which must be negligible because the signature scheme is unforgeable under rerandomized keys.

Thus it must hold that Pr
[
San-AccSanSA (κ) = 1

]
is negligible.

Theorem 4 (Signer Accountability). IfΣ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) is a signature scheme
with perfectly rerandomizable keys that is unforgeable under rerandomized keys and ΠPoK = (SPoK,PPoK,VPoK) is
a perfectly non-interactive zero-knowledge proof of knowledge system, then the construction given in Section 4 is
signer-accountable.

Proof. Let A be a probabilistic polynomial time adversary against the signer accountability of SanS. Let (pk∗sig,m
∗,

σ∗, π∗) denote the output of A, where pk∗sig can be parsed as (pkFIX
∗, pk∗, ek∗), σ∗ can be parsed as (σFIX, σ

′,ADM,

pk′, c, τ), and π∗ can be parsed as (p̂k, φ).
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Observe that in the case of Sig-AccSanSA (κ) = 1, the following conditions must hold by definition of signer ac-
countability:

(pk∗sig,m
∗) 6= (pksig,i,mi) (10)

Verify(m∗, σ∗, pk∗sig, pksan) = 1 (11)

Judge(m∗, σ∗, pk∗sig, pksan, π
∗) = San (12)

where (mi,MODi, σi, pksig,i) and (m′i, σ
′
i) denotes the ith query and answer to the Sanit oracle respectively.

By the definition of Verify, it follows from Equation 11 that

SVerify(pk′, (m∗, pk∗sig, pksan), σ
′) = 1 (13)

VPoK(crsPoK , (c, ek, pk, pksan, pk
′), τ) = 1. (14)

From Equation 12 it follows by the definition of Judge that all of the following must hold:

pksan = p̂k (15)

VZK(crsZK , (ek
∗, c, p̂k), φ) = 1. (16)

Now, consider reduction B2, depicted in Figure 4 against the unforgeability under rerandomized keys of the under-
lying signature scheme.

BO1(sksan,·),O2(sksan,·,·)
2 (pksan) :

crsPoK ← Ext0(1
κ)

(pk∗sig,m
∗, σ∗)← ASanit′(·,·,·)(pksan)

Parse σ∗ as (σFIX, σ
′,ADM, pk′, c, τ)

Parse pk∗sig as (pkFIX, pk, ek)

stmt := (c, ek, pk, pksan, pk
′)

ρ∗ ← Ext
A(·)
1 (crsPoK ,TPoK, stmt, τ)

output ((m∗, pk∗sig, pksan), σ
′, ρ∗)

Sanit′(m,σ,MOD, pksig) :

Parse pksig as (pkFIX, pk, ek).

Parse σ as (σFIX, σ
′,ADM, pk′, c, τ).

If ADM(MOD) = 0

output ⊥
m̂′ := MOD(m)

ρ← χ

p̂k
′
← RandPK(pksan, ρ)

ĉ← Enc(ek, pksan;ω)

stmt := (c, ek, pk, pksan, p̂k
′
)

τ̂ ← PPoK(crsPoK , stmt, (ρ, ω))

σ̂′ ← O2(sk, (m̂
′, pksig, pksan), ρ)

σ̂ = (σFIX, σ̂
′,ADM, p̂k

′
, ĉ, τ̂)

output (m′, σ̂)

Fig. 4. Description of reduction B2, reducing the signer accountability of SanS against the UFRK security of Σ.

Observe that this reduction is clearly efficient and perfectly simulates the view of A in the game Sig-AccSanSA (κ).
Furthermore, because of Equation 10, (m∗, pksig, pk

∗
san) is a message never queried to the signing oracle. As, further,

whenever the extractor is successful in extracting the witness from τ , it follows from Equation 13 and Equation 15
that the forgery output by B2 is valid, it holds that

Pr
[
UFRKΣB2

(κ) = 1
]
≥ 1

poly(κ)
Pr
[
Sig-AccSanSA (κ) = 1

]
which must be negligible because the signature scheme is unforgeable under rerandomized keys.

Thus it must hold that Pr
[
Sig-AccSanSA (κ) = 1

]
is negligible.
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Theorem 5 (Immutability). IfΣFIX = (SSetupFIX,SGenFIX,SSignFIX,SVerifyFIX) is a deterministic signature scheme
that is strongly existentially unforgeable, then the construction given in Section 4 is immutable.

Proof. Let A be a probabilistic polynomial time adversary against the immutability of SanS. Let (pk∗san,m
∗, σ∗)

denote the output of A, where σ∗ can be parsed as (σFIX, σ
′,ADM, pk′, c, τ).

Observe that in the case of ImmutSanSA (κ) = 1, it must hold by definition of immutability that

Verify(m∗, σ∗, pksig, pk
∗
san) = 1 (17)

as well as at least one of the following

pk∗san 6= pksan,i (18)

or m∗ /∈ {MOD(mi) |MOD with ADMi(MOD) = 1} (19)

where (mi,MODi, σi, pksig,i) and (m′i, σ
′
i) denotes the ith query and answer to the Sanit oracle respectively.

By the definition of Verify, it follows from Equation 17 that

SVerifyFIX(pkFIX, (FIXADM(m
∗),ADM, pk∗san), σFIX) = 1. (20)

From Equation 19 it follows due to the maximality of FIX, that

FIXADM(m
∗) 6= FIXADMi(mi) (21)

and combining Equation 18 with Equation 21 we get that

(FIXADM(m
∗),ADM, pk∗san) 6= (FIXADMi(mi),ADMi, pksan,i) (22)

for all i.
Now, consider reduction B3, depicted in Figure 5 against the strong existential unforgeability of the underlying

signature scheme.

BO(sk,·)
3 (pkFIX) :

crsPoK ← SPoK(1
κ)

crsZK ← SZK(1
κ)

(sk, pk)← SGen(1κ)

(dk, ek)← EGen(1κ;ψ)

pksig := (pkFIX, pk, ek)

(m∗, σ∗, pk∗san)← A
Sign′(·,·,·),Proof(sksig,·,·)(pksig)

Parse σ∗ as (σFIX, σ
′,ADM, pk′, c, τ).

m∗FIX := (FIXADM(m),ADM, pk∗san)

output (m∗FIX, σ
∗
FIX)

Sign′(m, pksan,ADM) :

ρ← χ

pk′ ← RandPK(pk, ρ)

sk′ ← RandPK(sk, ρ)

c← Enc(ek, pk;ω)

stmt := (c, ek, pk, pksan, pk
′)

τ ← PPoK(crsPoK , stmt, (ρ, ω))

mFIX := (FIXADM(m),ADM, pksan)

σFIX ← O(mFIX)

σ′ ← SSign(sk′,m, ρ)

output σ = (σFIX, σ
′,ADM, pk′, c, τ)

Fig. 5. Description of reduction B3, reducing the immutability of SanS against the s-EUF security of ΣFIX.

Observe that this reduction is clearly efficient and perfectly simulates the view of A in the game ImmutSanSA (κ).
Furthermore, because of Equation 22, m∗FIX is a message never queried to the signing oracle. It therefore holds that

Pr
[
s-EUFΣFIX

B3
(κ) = 1

]
≥ Pr

[
ImmutSanSA (κ) = 1

]
which must be negligible because the signature scheme is strongly existentially unforgeable.

Thus it must hold that Pr
[
ImmutSanSA (κ) = 1

]
is negligible.
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Theorem 6 ((Proof-Restricted) Transparency). IfΠPoK = (SPoK,PPoK,VPoK) is a computationally zero-knowledge
perfectly sound proof of knowledge system, ΠZK = (SZK,PZK,VZK) is a computationally zero-knowledge proof sys-
tem, E = (EGen,Enc,Dec) is a CCA-secure public key encryption scheme, and Σ = (SSetup,SGen,SSign,SVerify,
RandSK,RandPK) is a signature scheme with perfectly rerandomizable keys that is unforgeable under rerandomized
keys, then SanS is (proof-restrictedly) transparent.

Proof. We use a series of games to prove that the two cases of the TransASanS(κ) are indistinguishable for any polyno-
mial time adversary A.
Game0 is exactly the TransASanS(κ) experiment with b fixed to 1.
Game1 works exactly as Game0, except that crsPoK is chosen as (crsPoK ,TPoK) ← SPoK,0(1

κ) and the proofs τ
in the answers to Sanit/Sign queries are computed as τ ← SPoK,1(crs,T, stmt), where SPoK,=(SPoK,0,SPoK,1) is
the simulator of ΠPoK .

Game2 works exactly as Game1, except that crsZK is chosen as (crsZK ,TZK)← SZK,0(1
κ) and the proofs of decryp-

tion φ in the answers to Proof queries are computed as φ← SZK,1(crs,T, (ψ, dk)), where SZK,=(SZK,0,SZK,1) is
the simulator of ΠZK .

Game3 works exactly as Game2, except for the following changes. The ciphertexts c in the answers to Sanit/Sign
queries are computed as c ← Enc(ek, pk) for an independently chosen but fixed public key pk. Let CSanit/Sign be
the set of ciphertexts computed this way. For ciphertexts c /∈ CSanit/Sign, the Proof oracle proceeds exactly as in
the previous game. For ciphertexts c ∈ CSanit/Sign however, the Proof oracle sets p̂k := pk instead of decrypting
c, before proceeding as before.

Game4 works exactly as Game3, except that the bit b is fixed to 0 and the Proof oracle sets p̂k := pksan for ciphertexts
c ∈ CSanit/Sign.

Game5 works exactly as Game4, except that the ciphertext c in the answers to queries to the Sanit/Sign oracle is
computed as c← Enc(ek, pksan) and the Proof oracle again always uses decryption to determine p̂k.

Game6 works exactly as Game5, except that crsZK is once again chosen honestly as crsZK ← SZK(1
κ) and the

proofs of decryption φ in the answers to Proof queries are computed honestly as φ← PZK(crsZK , stmt, (ψ, dk)).
Game7 works exactly as Game6, except that crsPoK is once again chosen honestly as crsPoK ← SZK(1

κ) and the
proofs τ in the answers to Sanit/Sign queries are computed honestly as τ ← PPoK(crsPoK , stmt, (ρ, ω)). This is
exactly the TransASanS(κ) experiment with b fixed to 0.

We argue that each pair of neighboring games cannot be distinguished, except with negligible probability, by a proba-
bilistic polynomial time adversary.

Game0 ≈ Game1 LetA be a probabilistic polynomial time adversary distinguishing Game0 and Game1 with probabil-
ity 1/2+ε(κ). Now, consider reduction B4, depicted in Figure 6 against the zero-knowledge property of the underlying
proof of knowledge system.

Observe that this reduction is clearly efficient and perfectly simulates the view of A in the Game0 if the oracle of
B4 is the honest prover and in Game1 if the oracle of B4 is the simulator. It thus follows immediately∣∣∣∣∣∣Pr

[
crsPoK ← SPoK(1

κ) : BPPoK(crsPoK ,·,·)
4 (crsPoK) = 1

]
−Pr

[
(crsPoK ,TPoK)← SPoK,0(1

κ) : BS
′(crsPoK ,TPoK,·,·)

4 (crsPoK) = 1
] ∣∣∣∣∣∣ = ε(κ).

Therefore ε(κ) must be negligible, because ΠPoK is zero knowledge.

Game1 ≈ Game2 LetA be a probabilistic polynomial time adversary distinguishing Game1 and Game2 with probabil-
ity 1/2+ε(κ). Now, consider reduction B5, depicted in Figure 7 against the zero-knowledge property of the underlying
non-interactive zero knowledge proof system.

Observe that this reduction is clearly efficient and perfectly simulates the view of A in the Game1 if the oracle of
B5 is the honest prover and in Game2 if the oracle of B5 is the simulator. It thus follows immediately∣∣∣∣∣∣Pr

[
crsZK ← SZK(1

κ) : BPZK(crsZK ,·,·)
5 (crsZK) = 1

]
−Pr

[
(crsZK ,TZK)← SZK,0(1

κ) : BS
′(crsZK ,TZK,·,·)

5 (crsZK) = 1
] ∣∣∣∣∣∣ = ε(κ).

Therefore ε(κ) must be negligible, because ΠPoK is zero knowledge.
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BO(·,·)
4 (crsPoK) :

crsZK ← SZK(1
κ)

pp← SSetup(1κ)

(sk, pk)← SGen(1κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

(dk, ek)← EGen(1κ;ψ)

sksig := (skFIX, sk, dk, pkFIX, pk, ek, ψ)

pksig := (pkFIX, pk, ek)

(sksan, pksan)← SGen(1κ)

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·,·),Sanit/Sign′(·,·,·) (pksig, pksan)

output a

Sanit/Sign′(m,MOD,ADM) :

If ADM(MOD) = 0

output ⊥
ρ← χ

sk′ ← RandSK(sksig, ρ)

pk′ ← RandPK(pksig, ρ)

mFIX := (FIXADM(m),ADM, pksan)

σFIX := SSignFIX(skFIX,mFIX)

m′ := MOD(m)

σ′ := SSign(sk′,m′)

c← Enc(ek, pk)

stmt := (c, ek, pk, pksan, pk
′)

τ ← O(stmt, (ρ, ω))

σ := (σFIX, σ
′,ADM, pk′, c, τ)

return (m′, σ)

Fig. 6. Reduction of the indistinguishability of Game0 and Game1 in the transparency proof to the zero-knowledge property of the
underlying proof system ΠPoK .

Game2 ≈ Game3 LetA be a probabilistic polynomial time adversary distinguishing Game2 and Game3 with probabil-
ity 1/2+ε(κ). Now, consider reduction B6, depicted in Figure 8 against the CCA security of the underlying encryption
scheme.

Note, that we reduce to a variant of CCA security, where the adversary can send multiple challenges to an oracleO.
The decryption oracle will not answer any queries made up of ciphertexts output by O. This variant of CCA security
follows from standard CCA security by a standard hybrid argument. Observe that this reduction is clearly efficient
Further, if the bit chosen by the IND-CCA experiment is 0, then B6 perfectly simulates Game2. The only place where
the reduction deviates from the exact behavior of Game2 is in answering Proof queries for ciphertexts in CSanit/Sign.
However, even in those cases, the “decryption” is in fact correct, and since the proof of decryption is simulated, the
fact that the witness is not known does not change the distribution of the answer.

If the bit chosen by the CCA experiment is 1, then B6 perfectly simulates Game3. It thus follows that

Pr
[
IND-CCAEBA6 (κ) = 1

]
≤ 1

2
+ ε(κ)

Therefore ε(κ) must be negligible, because E is CCA secure.

Game3 ≈ Game4 The only differences between the two games are the way in which queries to Sanit/Sign and Proof
oracles are answered. In the case of the Sanit/Sign oracle, the only difference is, that in Game3 the signer’s key is
rerandomized and in Game4, the sanitizer’s key is rerandomized. However, by virtue of the perfect rerandomizability
property of the signature scheme, the rerandomized keys are in fact distributed identically in both cases. Further, the
remainder of the signature is computed independently from the rerandomization factor ρ due to the simulation of the
proof τ . Therefore, the outputs of Sanit/Sign are distributed identically in both cases.

We denote by SSanit/Sign the sets of signatures output as answers by the Sanit/Sign oracle. In the case of the Proof
oracle, there is only a difference, if the attacker makes a valid query (m,σ = (σFIX, σ

′,ADM, pk′, c, τ), pk′san) such
that the following conditions hold.

Verify(m,σ, pksig, pk
′
san) = 1 (23)

∃(σFIX,i, σ
′
i,ADMi, pk

′
i, ci, τi) ∈ SSanit/Sign : c = ci, (24)
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BO(·,·)
5 (crsZK) :

(crsPoK ,TPoK)← SPoK,0(1
κ)

pp← SSetup(1κ)

(sk, pk)← SGen(1κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

(dk, ek)← EGen(1κ;ψ)

sksig := (skFIX, sk, dk, pkFIX, pk, ek, ψ)

pksig := (pkFIX, pk, ek)

(sksan, pksan)← SGen(1κ)

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof′(·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

output a

Proof′(m,σ, pksan) :

If Verify(m,σ, pksig, pksan) = 0

return ⊥
Extract c from σ.

p̂k← Dec(dk, c)

stmt := (ek, c, p̂k)

φ← O(stmt, (ψ, dk))

output (p̂k, φ)

Fig. 7. Reduction of the indistinguishability of Game1 and Game2 in the transparency proof to the zero-knowledge property of the
underlying proof system ΠZK .

BDec(dk,·),O(·,·)
6 (ek) :

(crsPoK ,TPoK)← SPoK,0(1
κ)

(crsZK ,TZK)← SZK,0(1
κ)

pp← SSetup(1κ)

(sk, pk)← SGen(1κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

sksig := (skFIX, sk, ?, pkFIX, pk, ek, ?)

pksig := (pkFIX, pk, ek)

(sksan, pksan)← SGen(1κ)

(sk, pk)← SGen(1κ)

CSanit/Sign := ∅

a← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof′(·,·,·),Sanit/Sign′(·,·,·) (pksig, pksan)

Output a

Sanit/Sign′(m,MOD,ADM) :

ρ← χ

sk′ ← RandSK(sk, ρ)

pk′ ← RandPK(pk, ρ)

σFIX := SSignFIX(skFIX,mFIX)

m′ := MOD(m)

σ′ := SSign(sk′,m′)

c← O(pk, pk)
CSanit/Sign := CSanit/Sign ∪ {c}
stmt := (c, ek, pk, pksan, pk

′)

τ ← SPoK,1(crsPoK ,TPoK, stmt)

σ := (σFIX, σ
′,ADM, pk′, c, τ)

return (m′, σ)

Proof′(m,σ, pksan) :

If Verify(m,σ, pksig, pksan) = 0

return ⊥
Extract c from σ.

If c ∈ CSanit/Sign

p̂k := pk

else

p̂k← Dec(c)

stmt := (ek, c, p̂k)

φ← SZK,(crsZK , stmt)

output (p̂k, φ)

Fig. 8. Reduction of the indistinguishability of Game2 and Game3 to the CCA security of the underlying encryption scheme.

Let query denote the event that such a query happens. We can split the probability of query occurs as follows:

Pr[query] = Pr
[
query ∧ pk′san 6= pksan

]
+ Pr

[
query ∧ pk′san = pksan

]
.

Note that in the first case A must compute a new proof τ , such that

VPoK(crsPoK , (ek, c, pk, pk
′
san, pk

′), τ) = 1.

Since c is an encryption of pk, and pk 6= pk except with negligible probability, the perfect soundness of ΠPoK implies
that pk′san = pk. This leads to a trivial reduction to the CCA security (even one-wayness) of the encryption scheme E .

In the second case, we can reduce to the UFRK security of the signature scheme Σ as depicted in Figure 9.
Since the reduction only runs a constant number of polynomial time bounded algorithms, the reduction B8 is

clearly efficient.
Further, it perfectly simulates both games up until a Proof query is made satisfying Equation 23 and Equa-

tion 24. Once such a query is made, the reduction outputs (m,σ′, ρi) as a forgery. The definition of transparency
guarantees that m is a new message that has not been queried to the UFRK signing oracle before. The fact that
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BO1(sk,·),O2(sk,·,·)
8 (pkUFRK) :

(crsPoK ,TPoK)← SPoK,0(1
κ)

(crsZK ,TZK)← SZK,0(1
κ)

pp← SSetup(1κ)

(sk, pk)← SGen(1κ)

(skFIX, pkFIX)← SGenFIX(1
κ)

(dk, ek)← EGen(1κ;ψ)

sksig := (skFIX, sk, dk, pkFIX, pk, ek, ψ)

pksig := (pkFIX, pk, ek)

(sksan, pksan)← SGen(1κ)

(sk, pk)← SGen(1κ)

CSanit/Sign := ∅

A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof′(·,·,·),Sanit/Sign′(·,·,·) (pksig, pksan)

Sanit/Sign′(m,MOD,ADM) :

ρ← χ

pk′ ← RandPK(pkUFRK, ρ)

σFIX := SSignFIX(skFIX,mFIX)

m′ := MOD(m)

σ′ := O2(m
′, ρ)

c← Enc(ek, pk)

CSanit/Sign := CSanit/Sign ∪ {(c, ρ)}
stmt := (c, ek, pk, pksan, pk

′)

τ ← SPoK,1(crsPoK ,TPoK, stmt)

σ := (σFIX, σ
′,ADM, pk′, c, τ)

return (m′, σ)

Proof′(m,σ, pk′san) :

If Verify(m,σ, pksig, pk
′
san) = 0

return ⊥
Parse σ as (σFIX, σ

′,ADM, pk′, c, τ).

If (ci, ρi) ∈ CSanit/Sign with ci = c

abort reduction, and output

(m,σ′, ρi) as forgery

p̂k← Dec(c)

stmt := (ek, c, p̂k)

φ← SZK,(crsZK , stmt)

output (p̂k, φ)

Fig. 9. Reduction of the indistinguishability of Game3 and Game4 in the case where pk′san = pksan to the UFRK security of the
underlying signature scheme.

Verify(m,σ, pksig, pk
′
san) = 1 guarantees that SVerify(pk′,m, σ′) = 1 and that VPoK(crsPoK , (ek, c, pk, pk

′
san, pk

′),

τ) = 1). In the case where pk′san = pksan, it holds that (ek, c, pk, pk′san, pk
′) /∈ L1. Therefore, due to the perfect

soundness, A cannot compute τ for a new statement of this form. This implies that pk′ = RandPK(pkUFRK, ρi), and
therefore (m,σ′, ρi) is a valid forgery.

It thus follows that

Pr[query] =Pr[query ∧ τ 6= τi] + Pr[query ∧ τ = τi]

≤
(
Pr
[
IND-CCAEBA7 (κ)

]
− 1

2

)
+ Pr

[
UFRKEBA8

(κ)
]

and therefore query happens only with negligible probability and Game3 and Game4 are thus indistinguishable.

Game4 ≈ Game5 This hop is completely symmetrical to the hop between Game2 to Game3. The reduction therefore
also works almost identically. The only difference being that the sanitizer’s key is randomized instead of the signer’s
when answering Sanit/Sign queries and and the Proof′ oracle sets p̂k := pksan for ciphertexts c ∈ CSanit/Sign.

Game5 ≈ Game6 This hop essentially reverts the changes made in the hop from Game1 to Game2. The reduction
therefore also works almost identically. The only difference being that the sanitizer’s key is randomized instead of the
signer’s when answering Sanit/Sign queries.

Game6 ≈ Game7 Just as in the hop before, this hop essentially reverts the changes made in the hop from Game0
to Game1. The reduction is once again almost identically, the difference being that the sanitizer’s key is randomized
instead of the signer’s when answering Sanit/Sign queries.

Since the distinguishing advantage of an probabilistic polynomial time attacker is negligible for each step, it
follows by a simple union bound that the two cases of TransASanS(κ) with b = 1 and b = 0 are also indistinguishable
and thus SanS is proof-restrictedly transparent.

Theorem 7 (Unlinkability). IfΣFIX = (SSetupFIX,SGenFIX,SSignFIX,SVerifyFIX) is a deterministic strongly existen-
tially unforgeable signature scheme, then the construction given in Section 4 is unlinkable.

Proof. Let A be a probabilistic polynomial time adversary against the signer unlinkability of SanS. Let

((m0
i ,MOD0

i , σ
0
i ), (m

1
i ,MOD1

i , σ
1
i ))
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be a query made by A to the LoRSanit oracle, where σbi can be parsed as (σbFIX,i, σ
′
i
b
,ADMb

i , pk
′b
i , c

b
i , τ

b
i ). The only

difference between the two cases of the unlinkability experiment is the distribution of the answers to these queries if it
holds that

Verify(m0
i , σ

0
i , pksig, pksan) = 1 (25)

Verify(m1
i , σ

1
i , pksig, pksan) = 1 (26)

ADM0
i (MOD0

i ) 6= 0 (27)

ADM1
i (MOD1

i ) 6= 0 (28)

MOD0
i (m

0
i ) = MOD1

i (m
1
i ) (29)

ADM0
i = ADM1

i (30)

Let (m∗b , σ
∗
b ) denote the answer to such a query depending on the choice of b in the experiment, where σ∗b can be

parsed as (σFIX,b, σ
′
b,ADMb, pk

′
b, cb, τb).

From Equation 30 it follows directly that

ADM0 = ADM1 (31)

Further, it follows from this, the definition of Sanit, and the perfect rerandomizability of the signature scheme Σ that
the the distributions

(σ′0,ADM0, pk
′
0, c0, τ0) ∼ (σ′1,ADM1, pk

′
1, c1, τ1) (32)

are identical.
From Equation 30 it follows by the uniqueness of FIXADM, that

FIXADM0
i
(m0

i ,ADM0, pksan) = FIXADM1
i
(m1

i ,ADM1, pksan). (33)

It holds by Equation 32, that the view ofA only differs in the two cases of the unlinkability experiment, if it makes
a query to LoRSanit such that in addition to Equation 25 through Equation 30 it holds that

σ0
FIX,i 6= σ1

FIX,i (34)

We denote by query the event that such a query happens and thus get

Pr
[
UnlinkabilitySanSA (κ) = 1

]
=

1

2
+ Pr[query]

Now, consider reduction B9, depicted in Figure 10 against the strong existential unforgeability of the underlying
signature scheme.

Observe that this reduction is clearly efficient and perfectly simulates the view ofA in the game UnlinkabilitySanSA (κ)
unless query occurs. Whenever query occurs, it holds because of Equation 33 that m0

FIX = m1
FIX. Further, since Σ is

deterministic, it holds that

{(m0
FIX, σ

0
FIX), (m

1
FIX, σ

1
FIX)} ∩ Lσ 6= ∅.

Together with Equation 25 and Equation 26 it thus follows that

Pr[query] = Pr[s-EUFΣB9
(κ) = 1

and therefore
Pr[UnlinkabilitySanSA (κ) = 1] =

1

2
+ Pr[s-EUFΣB9

(κ) = 1],

where the second part of the sum must be negligible because the signature scheme is strongly existentially unforgeable.
Thus it must hold that Pr

[
UnlinkabilitySanSA (κ) = 1

]
is only negligibly greater than 1/2.
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BO(skFIX,·)
9 (pkFIX) :

(dk, ek, ψ)← EGen(1κ;ψ)

(sk, pk)← SGen(1κ)

pksig := (pkFIX, pk, ek)

(sksan, pksan)← SGen(1κ)

Lσ = ∅
b← {0, 1}

A
Sign′(·,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·),LoRSanit′(·,·) (pksig, pksan)

Sign′(m, pksan,ADM) :

mFIX := (FIXADM(m),ADM, pksan)

σFIX ← O(mFIX)

Lσ := Lσ ∪ {(mFIX, σFIX)}
ρ← χ

pk′ ← RandPK(pk, ρ)

sk′ ← RandSK(sk, ρ)

c← Enc(ek, pk;ω)

stmt := (c, ek, pk, pksan, pk
′)

τ ← PPoK(crsPoK , stmt, (ρ, ω))

output (σFIX, σ
′,ADM, pk′, c, τ)

LoRSanit′((m0,MOD0, σ0), (m1,MOD1, σ1)) :

Parse σ0 as (σ0
FIX, σ

′0,ADM0, pk′
0
, c0, τ0).

Parse σ1 as (σ1
FIX, σ

′1,ADM1, pk′
1
, c1, τ1).

m0
FIX := (FIX0

ADM(m),ADM0, pksan)

m1
FIX := (FIX1

ADM(m),ADM1, pksan)

if Verify(m0, σ0, pksig, pksan) = 0 or Verify(m1, σ1, pksig, pksan) = 0

or ADM0(MOD0) = 0 or ADM1(MOD1) = 0

or MOD0(m0) 6= MOD1(m1)

output ⊥

if σ0
FIX 6= σ1

FIX

if (m0
FIX, σ

0
FIX) /∈ Lσ

abort and output (m0
FIX, σ

0
FIX)

else

abort and output (m1
FIX, σ

1
FIX)

(m′, σ′)← Sanit(mb,MODb, σb, pksig, sksan)

output (m′, σ′)

Fig. 10. Description of reduction B9, reducing the occurence of event query in the unlinkability experiment of SanS against the
s-EUF security of Σ.
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5 Instantiating the Construction

We instantiate our generic construction with compatible and efficient instantiations. For the two signature schemes, we
choose standard Schnorr signatures as defined in Definition 11 for Σ, as well as a derandomized version of Schnorr
signatures for ΣFIX

3. The encryption scheme and proof systems are instantiated with the Cramer Shoup encryption
scheme [13], and Σ-protocols that we convert into a non-interactive zero-knowledge proof via the Fiat-Shamir trans-
form [14]. The Cramer Shoup encryption scheme is defined as follows:

Definition 21 (Cramer Shoup Encryption Scheme). Let G be a cyclic group of prime order q with two random
generators g1, g2 and let H : {0, 1}∗ → Zq be a hash function. The Cramer Shoup encryption scheme, working over
G, is defined as follows:
EGen(1κ): The key generation algorithm proceeds as follows: Pick x, y, a, b, a′, b′ ← Zq uniformly at random, com-

pute h := gx1g
y
2 , h := ga1g

b
2, h := ga

′

1 g
b′

2 , set dk := (x, y, a, b, a′, b′) and ek := (h, c, d) and output (dk, ek).
Enc(ek,m): The encryption algorithm proceeds as follows: Parse ek as (h, c, d) and choose r ← Zq uniformly at

random. Compute α := H(gr1, gr2, hr ·m) and C := (gr1, g
r
2, h

r ·m, (cdα)r). Output C.
Dec(dk, C): The decryption algorithm proceeds as follows: Parse dk as (x, y, a, b, a′, b′) and C as (u, v, w, e). Com-

pute α := H(u, v, w) and check if ua+αa
′ · vb+ab′ = e holds. If it holds output w/(ux · vy). Otherwise output

⊥.

The remaining building blocks for our construction are the two non-interactive zero-knowledge proof systems. We
instantiate these NIZK here with specific Fiat-Shamir transformed [14] Σ-protocols specified below.

Σ-Protocol for Encryption of Public Key In this section we show how to instantiate the Proof of Knowledge for the
language L1. The statement that we want to prove in our concrete instantiation looks as follows:

stmt := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk
′, pksan, pk)

PoK

{
(ω, ρ) :

gω1 = c1 ∧ gω2 = c2 ∧ (cdα)ω = c4

∧ hω

gρ = c3
pk′ ∧

(
gρ1 = pk′

pk ∨ gρ1 = pk′

pksan

)}
.

Note that the statement that we are proving can be expressed as a logical combination of discrete logarithm proofs
of knowledge. For the design of each single discrete logarithm proofs we deploy Schnorr’s Σ-protocols from [24].
We then formulate the complete proof using standard parallel composition techniques, first introduced in [11,12]. The
complete protocol is depicted in Figure 11. It is worth mentioning that, in order to express the logical disjunction of
our statement, the prover must run the simulator S provided by the zero- knowledge property Definition 19. For the
specific case of Σ-protocols SΣ works by randomly sampling zi, si from Zq and computing Ti as gsi1 /(

pk′

pk )
zi (or

gsi1 /(
pk′

pksan
)zi , respectively). Finally, as mentioned above, the protocol can be made non-interactive by using the Fiat-

Shamir transformation. Note that this allow us to drop the first tuple of elements (T0, . . . , T5) since they can be simply
recomputed from the public parameters and the further messages of the protocol and their integrity can be checked by
recomputing the hash function.

Σ-Protocol for Proof of Decryption In this paragraph we show how to instantiate the proof of knowledge for the
language L2. We prove the following statement:

stmt := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

ZK{(χ, ψ) : gχ1 g
ψ
2 = h ∧ cχ1 c

ψ
2 =

c3

p̂k
}.

Again, for the concrete instantiation in Figure 12 we deploy parallel composition of Σ-protocols made non-
interactive via the Fiat-Shamir transformation.
Combining these building blocks yields a highly efficient sanitizable signature scheme.

3 Note, that while the original security proof[22,23] for Schnorr signatures only proves standard existential unforgeability, it can
be easily adapted to prove strong existential unforgeability
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stmt := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk
′, pksan, pk)

Prover (stmt, i, ω, ρ) Verifier (stmt)

(Ti, zi, si)← SΣ(1
κ)

u1−i, u2 ← Zq
T1−i := g

u1−i
1

T2 := gu2
1 T3 := gu2

2

T4 := (cdα)u2 T5 := hu2 T0, T1, T2, T3, T4, T5

z ← Zq
z1−i := z − zi z

s1−i := ρ · z1−i + u1−i
s2 := ω · z + u2 s0, s1, s2, z0

z1 := z − z0
gs01

?
= T0 · ( pk

′

pk
)z0

gs11
?
= T1 · ( pk′

pksan
)z1

gs21
?
= T2 · cz1

gs22
?
= T3 · cz2

(cdα)s2
?
= T4 · cz4

hs2

g
s0+s1
1

?
= T5

T0T1
· ( c3

pk′ )
z

Fig. 11. Σ-Protocol for Encryption of Public Key

stmt := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

Prover (stmt, χ, ψ) Verifier (stmt)

u0, u1 ← Zq
T := gu0

1 gu1
2 T

z ← Zq
s0 := χ · z + u0 z
s1 := ψ · z + u1 s0, s1

gs01 g
s1
2

?
= T · hz

cs01 c
s1
2

?
= T · ( c3

p̂k
)z

Fig. 12. Σ-Protocol for Proof of Decryption
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7. Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Efficient and perfectly unlinkable sanitizable signatures without
group signatures. In Public Key Infrastructures, Services and Applications, Lecture Notes in Computer Science, pages 12–
30. Springer Berlin Heidelberg, 2014. 1.3

8. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72,
Santa Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany. 3, A.2
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A Insecure Signature Schemes Under Rerandomized Keys

A.1 Boneh Boyen

The scheme by Boneh and Boyen [3] works in a bilinear groups setting and is proven existentially unforgeable under
the q-SDH assumption. The scheme works as follows: The secret key consists of x, y ∈ Z∗q and the public key consists
of the corresponding G2 elements u := gx2 and v := gy2 . To sign a message m ∈ Z∗q , the signer chooses a random

r ← Z∗q , computes s := g
1/(x+m+yr)
1 , and outputs the signature σ = (r, s). To verify that a signature is valid, the

verifier checks that e(s, u · gm2 · vr) = e(g1, g2) holds.
The keys of the scheme can be rerandomized additively. I.e., given randomness (ρ1, ρ2) ∈ Z2

q , secret keys are
randomized as (x′, y′) := (x+ ρ1, y + ρ2) and public keys are randomized as (u′, v′) := (u · gρ12 , v · g

ρ2
2 ).

Even though this scheme is proven existentially unforgeable and has perfectly rerandomizable keys it is trivially
forgeable under rerandomized keys. The attack is very simple: The adversaryA on input the public key (u, v) chooses
a random message m ∈ Z∗q as well as a random value ρ1 ∈ Z∗q . It then queries (m, (ρ1, 0)) to its signing oracle
receiving back a signature σ = (r, s). It it finally computes m′ := m+ ρ1 and outputs σ,m′, (0, 0) as a forgery.

It is easy to verify, that the verification equation actually holds for the output of A:

e(s, u · gm
′

2 · vr) = e(g1, g2) (35)

⇔ e(s, gx+m+ρ1+yr
2 ) = e(g1, g2) (36)

⇔ e(g
1

(x+ρ1)+m+yr

1 , gx+ρ1+m+yr
2 ) = e(g1, g2) (37)

⇔ e(g1, g2)
x+ρ1+m+yr
x+ρ1+m+yr = e(g1, g2) (38)

⇔ e(g1, g2) = e(g1, g2) (39)

Further, the only message queried to the signing oracle ism, andm′ 6= m. Therefore, it follows thatA wins the UFRK
game with probability 1.
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A.2 Camenisch Lysyanskaya

The signature scheme by Camenisch and Lysyanskaya [8] works in a symmetric bilinear groups setting and is proven
existentially unforgeable under the LRSW assumption. The scheme works as follows: The secret key consists of x, y ∈
Zq and the public key consists of the corresponding group elementsX := gx and Y := gy . To sign a messagem ∈ Zq ,
the signer chooses a random a ← G, computes b := ay and c := ax+mxy , and outputs the signature σ = (a, b, c). To
verify that a signature is valid, the verifier checks that e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c) hold.

The keys of the scheme can be rerandomized multiplicatively4. I.e., given randomness (ρ1, ρ2) ∈ Z2
q , secret keys

are randomized as (x′, y′) := (x · ρ1, y · ρ2) and public keys are randomized as (X ′, Y ′) := (Xρ1 , Y ρ2).
Again, this scheme is proven existentially unforgeable and has perfectly rerandomizable keys. Nevertheless it also

is trivially forgeable under rerandomized keys. The attack is very simple: The adversary A on input the public key
(X,Y ) chooses a random message m ∈ Z∗q as well as a random value ρ2 ∈ Z∗q \ {1}. It then queries (m, (1, ρ2)) to
its signing oracle receiving back a signature σ = (a, b, c). It it finally computes m′ := m · ρ2 and b′ := b(ρ

−1
2 ) and

outputs (a, b′, c),m′, (1, 1) as a forgery.
It is easy to verify, that the verification equation actually holds for the output of A. For the first check equation we

have:

e(a, Y ) = e(g, b′) (40)

⇔ e(a, gy) = e(g, b(ρ
−1
2 )) (41)

⇔ e(gy, a) = e(g, a(yρ2)·ρ
−1
2 ) (42)

⇔ e(gy, a) = e(g, ay) (43)
⇔ e(g, a)y = e(g, a)y. (44)

For the second check equation we have:

e(X, a) · e(X, b′)m
′
= e(g, c) (45)

⇔ e(gx, a) · e(gx, bρ
−1
2 )m·ρ2 = e(g, ax+mxyρ2) (46)

⇔ e(g, a)x · e(gx, ayρ2ρ
−1
2 )mρ2 = e(g, a)x+mxyρ2 (47)

⇔ e(g, a)x · e(g, a)mxyρ2 = e(g, a)x+mxyρ2 (48)

⇔ e(g, a)x+mxyρ2 = e(g, a)x+mxyρ2 . (49)

Further, the only message queried to the signing oracle is m, and m′ 6= m, since ρ2 6= 1. Therefore, it follows that A
wins the UFRK game with probability 1.

4 The keys can also be rerandomized additively, however in that case neither a proof of security nor an attack are apparent.
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