
Generalizing Homomorphic MACs for
Arithmetic Circuits?

Dario Catalano1, Dario Fiore2, Rosario Gennaro3, and Luca Nizzardo4??

1 Università di Catania, Italy. catalano@dmi.unict.it
2 IMDEA Software Institute, Spain. dario.fiore@imdea.org

3 City College of New York, USA. rosario@cs.ccny.cuny.edu
4 Università degli Studi di Milano-Bicocca, Italy. l.nizzardo@campus.unimib.it

Abstract. Homomorphic MACs, introduced by Gennaro and Wichs in
2013, allow anyone to validate computations on authenticated data with-
out knowledge of the secret key. Moreover, the secret-key owner can verify
the validity of the computation without needing to know the original (au-
thenticated) inputs. Beyond security, homomorphic MACs are required
to produce short tags (succinctness) and to support composability (i.e.,
outputs of authenticated computations should be re-usable as inputs for
new computations).
At Eurocrypt 2013, Catalano and Fiore proposed two realizations of ho-
momorphic MACs that support a restricted class of computations (arith-
metic circuits of polynomial degree), are practically efficient, but fail to
achieve both succinctness and composability at the same time.
In this paper, we generalize the work of Catalano and Fiore in several
ways. First, we abstract away their results using the notion of encodings
with limited malleability, thus yielding new schemes based on different
algebraic settings. Next, we generalize their constructions to work with
graded encodings, and more abstractly with k-linear groups. The main
advantage of this latter approach is that it allows for homomorphic MACs
which are (somewhat) composable while retaining succinctness. Interest-
ingly, our construction uses graded encodings in a generic way. Thus, all
its limitations (limited composability and non-constant size of the tags)
solely depend on the fact that currently known multilinear maps share
similar constraints. This means, for instance, that our scheme would sup-
port arbitrary circuits (polynomial depth) if we had compact multilinear
maps with an exponential number of levels.

1 Introduction

Following the recent development of cloud computing, it is becoming popular
for users to delegate the storage of their data to remote service providers. On

? c© IACR 2014. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on January 14, 2014. The version published by Springer-
Verlag is available in the proceedings of PKC 2014.

?? Work done while visiting CUNY.



one hand, this paradigm presents several benefits. For instance, users can access
the data from different devices and different places. Moreover, even devices with
limited storage capacity (e.g., smartphones) can have access to large amounts
of data. On the other hand, outsourcing data to remote (possibly untrusted)
providers exposes the users to severe risks of privacy and integrity. While the
community has devoted a lot of effort to finding ways to solve the privacy issue
(notably the ground-breaking work on fully-homomorphic encryption [29]), the
problem of integrity has received less attention. In particular, in this work we
consider the following problem. Imagine that Alice wants to outsource a large
amount of data to the cloud so that she can later (reliably) delegate the cloud to
perform computation on such data. By “reliably” here we mean that the cloud
should perform the computation and also be able to convince Alice that the
computation was carried out correctly. What makes this task non trivial is that
Alice does not keep a local copy of her data (i.e., the input of the computation)
and that the communication complexity of the protocol should not depend on the
size of the input. The latter restriction, for instance, rules out trivial solutions
in which Alice can send signed data to the cloud and then ask the same (signed)
data back in order to rerun the computation locally.

To solve this problem Gennaro and Wichs [28] put forward the notion of ho-
momorphic message authenticators (homomorphic MACs, for short). Informally,
a homomorphic MAC allows anyone, without knowledge of the secret key, to val-
idate computations on authenticated data, and allows the secret-key owner to
verify the results of these computations without knowing the original authen-
ticated inputs. Slightly more in detail, a homomorphic MAC scheme enables a
user to use his secret key to generate a tag σ that authenticates a message m.
Later, given tags σ1, . . . , σn for messages m1, . . . ,mn, anyone can run a pro-
gram P over σ1, . . . , σn to generate a short tag that authenticates (the output
of) P(m1, . . . ,mn). To properly formalize the idea of authenticating a program’s
output, Gennaro and Wichs introduced the notion of labeled data and programs.
The label of some message m is simply some string τ , which is used as auxiliary
information to authenticate m. Intuitively, one can think of labels as names (or
indexing) of the data. For instance, if a company outsources a database with
information on its employees, the label “(salary, i)” might be used to indicate
the salary value in the record corresponding to employee i. A labeled program P
generalizes labeling to computations as follows. P is defined by a circuit f and
a set of labels (τ1 . . . , τn), one for each of the circuit’s input wires. Intuitively,
labeled programs provide a way to specify on which inputs the circuit has to
be evaluated, without having to specify the exact values for such inputs. Ba-
sically, input labels can be seen as variable names in programming languages.
In this sense, given a labeled program P = (f, τ1, . . . , τn) and a set of tags
σ1, . . . , σn—each authenticating mi under label τi—anybody can run the (ho-
momorphic) evaluation algorithm σ←Eval(P, σ1, . . . , σn) to obtain a tag σ that
authenticates m = P(m1, . . . ,mn) as the output of P run on inputs labeled by
τ1, . . . , τn respectively.



Homomorphic MACs are required to satisfy three main properties. (1) They
must be secure, i.e., an adversary that can (adaptively) see the tags correspond-
ing to polynomially many messages of his own choice, should not be able to
produce valid tags for messages that are not produced as the output of P. (2) A
homomorphic MAC should be succinct, in the sense that the authenticity of P’s
output should be certifiable using much less communication than what required
to send the original inputs. (3) Finally, a homomorphic MAC should be com-
posable, in the sense that tags authenticating previous computations should be
usable as inputs to further authenticate new computations, i.e., computations
executed on the results of other computations.

In terms of realizations, Gennaro and Wichs [28] proposed a fully homo-
morphic MAC scheme that achieves all the above three properties for arbitrary
programs. On the negative side, their construction is unfortunately rather inef-
ficient as it relies on the full power of fully homomorphic encryption. Moreover,
it guarantees security only with respect to adversaries that are allowed to ask a
constant number of verification queries. In recent work [16], Catalano and Fiore
proposed a realization of homomorphic MACs that, while less general than [28],
is more interesting from a practical point of view: it is more efficient, it guar-
antees security for an unbounded number of verification queries, and it can be
based on minimal assumptions (OWFs). On the negative side, this efficiency gain
comes at the cost of a somewhat reduced flexibility. More precisely, in [16] two
solutions are proposed. The first one achieves full composability but guarantees
succinctness only for circuits of low degree. The second construction, instead,
achieves succinctness but does not guarantee fully-fledged composability5.

Our Contribution. In this paper, we generalize the work of Catalano and Fiore,
by proposing new constructions and extensions for their paradigm. In particular,
our contribution is threefold.

First, we devise a general methodology to construct succinct homomorphic
MACs using the notion of encodings with limited malleability first introduced
in [8]. Very informally, these are encodings that are additively homomorphic
and, at the same time, believed not to be multiplicative homomorphic. A bit
more precisely, for the case of deterministic encodings, we require that given the
econding of the ` powers of a random x, it must be computationally hard to
come up with the encoding of 1/x. We show that by encoding x as gx, then the
original scheme in [16] can be seen as an instance of our abstraction.

By replacing gx in [16] with Enc(x), and presenting encodings based on
different intractability assumptions, we then obtain new homomorphic MAC
schemes, relying on such assumptions. In particular, we discuss encoding instan-
tiations based on partially-homomorphic encryption schemes, such as Paillier
[36], Boneh-Goh-Nissim [13] and Brakerski-Vaikuntanathan [15]. We remark that
all such schemes, constitute examples of randomized encodings. In order for our
proofs to go through, however, we need to be able to check when two encodings

5 This second scheme guarantees what the authors call local composability. In a nut-
shell, local composability allows to arbitrarily compose programs only when all the
compositions are performed by the same entity.



encode the same element. To accommodate this, our security assumption must
be strengthened to assume that computing an encoding of 1/x remains hard
even if these encryption schemes are not semantically secure6.

The final resulting assumption (which we call `-inversion resistance in the
paper) is quite strong and somewhat non-standard: it is “non-constant” as it
depends on the parameter `, and also requires, in the security simulation, the
hypothetical existence of a “distinguisher” that breaks the semantic security
of the underlying encryption schemes. Yet assumptions of this type have been
regularly used for many protocols in this area (e.g. [8, 26], cf. Footnote 6), and
an intriguing open problem is to figure out how necessary they are.

For the same reason as in [16], though, the use of encodings for obtain-
ing compact tags undermines the composability property. Our second contri-
bution is a solution to this issue, which is obtained by further generalizing
the idea of encodings with limited malleability. In particular, we build on so-
called graded encodings, a notion recently proposed by Garg, Gentry and Halevi
[24], that also provides an “approximate” realization of (leveled) multilinear
groups. Basically, graded encodings are encodings that are additively homomor-
phic in the usual sense and multiplicatively homomorphic in a limited sense.7

Our second construction uses graded encodings to obtain a homomorphic MAC
scheme that achieves both composability and succinctness at the same time.
In particular, if we instantiate our MAC by using the GGH graded encoding,
we then obtain a scheme that allows for the following process: (1) one can
generate constant-size tags, each authenticating the results of a computation
yi = fi(m1, . . . ,mn) for i = 1 to t, where each fi is an arithmetic circuit of
degree at most D = poly(λ); (2) one can compose the above computations fi
by using a “composition circuit” φ of degree at most k. Namely, one can finally
authenticate y = φ(y1, . . . , yt) = f∗(m1, . . . ,mn), where f∗ = φ(f1, . . . , ft). Here
k is the degree of the multilinear groups. The size of the produced tags is linear
in the degree of the composition circuit φ. Compared to the scheme of Catalano
and Fiore, ours supports the same class of computations (i.e., arithmetic circuits
of polynomial degree) but enjoys a higher degree of composability, and preserves
succinctness as long as the composition circuit is low-degree.

Finally, we observe that our second scheme discussed above is generically
built from multilinear maps. In particular, all its limitations (bounded circuits
and size of the tags) are inherited from the current realizations of multilinear
maps (e.g., GGH encodings): we support circuits of polynomial degree because

6 There is no contradiction here, as we are requiring the adversary to compute some-
thing (Enc(1/x)) even if it is easy to decide if a given value t is an encoding of 0 or
not. A similar situation arises in the SNARK protocols of [8, 26], when implemented
with a randomized encoding – however in their case the assumptions made on the
encoding are knowledge, non-falsifiable, ones (i.e. it is hard to compute t = enc(x)
with x satisfying certain constraints, without knowing x). Our assumption is falsi-
fiable and conceptually simpler, though we do not know of any reduction from one
to the other.

7 Roughly speaking, the multiplicative homomorphism is limited in the sense that the
result of a multiplication lies into a different encoding set.



the maps have polynomially-many levels, and our tags have size linear in the de-
gree of the composition circuit because the maps are not compact. This means
that our scheme would support arbitrary circuits (polynomial depth) if we had
compact multilinear maps with an exponential number of levels. Furthermore,
our generic construction is proven secure against adversaries making an un-
bounded number of verification queries, in contrast to the fully-homomorphic
MAC of Gennaro-Wichs, that can support only a constant number of verifica-
tion queries. Therefore, although such powerful algebraic tools are not known,
our result has the potential of yielding a fully-fledged homomorphic MAC.

Related Work. The problem of realizing homomorphic (mostly linear) au-
thenticators either in the symmetric setting (MACs) or in the asymmetric one
(signatures) has been the subject of several recent papers, starting with the sem-
inal work of Johnson et al. [33]. The subject became popular more recently, due
to an important application of homomorphic signatures to linear network cod-
ing. Efficient schemes of this primitive have been proposed both in the random
oracle [10, 27, 12, 17] and in the standard model [1, 2, 18, 19, 23, 3]. Realizations
for more complex functionalities (i.e., beyond linear) have been proposed only
very recently [11, 28, 16, 4]. In addition to the works of Gennaro-Wichs [28] and
Catalano-Fiore [28] that we already discussed in the previous section, it is worth
mentioning two more works that are closely related to ours. Boneh and Freeman
defined the notion of (fully) homomorphic signatures and showed a realization
for bounded (constant) degree polynomials, from ideal lattices [11]. Compared
to our work (and more in general to homomorphic MACs) this solution has
the obvious advantage of allowing for public verifiability. On the negative side,
however, it is not truly practical and the bound on the degree of the supported
polynomials is more stringent than in our case (as they can support only poly-
nomials of constant degree). Very recently, Backes, Fiore and Reischuk [4] put
forward the notion of homomorphic MACs with efficient verification, which ex-
tends homomorphic MACs by requiring the verification algorithm to run more
efficiently than the time necessary to compute the program P against which it
verifies (precisely, they require amortized constant time). In [4], they propose a
construction of this primitive based on the decision linear assumption and show
applications to verifiable delegation of computation on outsourced data.

Other related work. Homomorphic signatures could be realized by using
Succinct Non-interactive Arguments of Knowledge (SNARKs) [6]. Informally,
a SNARK allows to construct a succinct argument that can be used to prove
knowledge of the witness of a given any NP statement. SNARKs enjoy the nice
property that the size of the proof is independent of the size of both statement
and witness. A drawback of SNARKs is that they are not very efficient in practice
and require either the random oracle model [35] or non-standard, non-falsifiable
assumptions [30]. Moreover, the composability of homomorphic signatures ob-
tained via SNARKs seems to be very limited [39, 7].
Homomorphic authenticators are also related to memory delegation [20] and
verifiable computation [34, 35, 31, 25, 5, 37, 22]. We refer to [28] for a detailed
discussion about similarities with these primitives.



2 Background and Definitions

In our work we use the notion of arithmetic circuits and related definitions. For
lack of space, we refer the interested reader to [38] for a nice survey on this
subject.

2.1 Homomorphic Message Authenticators

Labeled Programs. First, let us recall the notion of labeled programs in-
troduced by Gennaro and Wichs in [28]. A labeled program P is defined by
a tuple (f, τ1, . . . , τn) where f : Fn → F is a circuit, and the binary strings
τ1, . . . , τn ∈ {0, 1}∗ are the labels of the input nodes of f . Given some la-
beled programs P1, . . . ,Pt and a function g : Ft → F, the composed program
P∗ = g(P1, . . . ,Pt) is the circuit which evaluates a circuit g on the outputs of
P1, . . . ,Pt respectively. The labeled inputs of P∗ are all distinct labeled inputs
of P1, . . . ,Pt, i.e., all inputs with the same label are put together in a single
input of the new program. We denote with Iτ = (gid, τ) the identity program
with label τ where gid is the canonical identity function and τ ∈ {0, 1}∗ is some
input label. Notice that any program P = (f, τ1, . . . , τn) can be expressed as the
composition of n identity programs P = f(Iτ1 , . . . , Iτn).

Homomorphic Authenticator Scheme. A homomorphic message authenti-
cator scheme HomMAC consists of the following four algorithms:

KeyGen(1λ): on input the security parameter λ, the key generation algorithm
outputs a secret key sk and a public evaluation key ek.

Auth(sk, τ,m): given the secret key sk, an input-label τ and a message m ∈M,
it outputs a tag σ.

Ver(sk,m,P, σ): given the secret key sk, a message m ∈ M, a program P =
(f, τ1, . . . , τn) and a tag σ, the verification algorithm outputs 0 (reject) or 1
(accept).

Eval(ek, f,σ): given the evaluation key ek, a circuit f :Mn →M and a vector
of tags σ = (σ1, . . . , σn), the evaluation algorithm outputs a new tag σ.

Authentication Correctness. Intuitively, a homomorphic MAC satisfies
this property if any tag σ generated by the algorithm Auth(sk, τ,m) authenti-
cates with respect to the identity program Iτ . Formally, we require that for any

message m ∈ M, all keys (sk, ek)
$← KeyGen(1λ), any label τ ∈ {0, 1}∗, and any

tag σ
$← Auth(sk, τ,m), it holds: Pr[Ver(sk,m, Iτ , σ) = 1] = 1.

Evaluation Correctness. Informally, this property states that if the eval-
uation algorithm is given a vector of tags σ = (σ1, . . . , σn) such that each σi
authenticates some message mi as the output of a labeled program Pi, then the
tag σ produced by Eval must authenticate f(m1, . . . ,mn) as the output of the
composed program f(P1, . . . ,Pn).

More formally, let us fix a pair of keys (sk, ek)
$← KeyGen(1λ), a function

g :Mt →M and any set of message/program/tag triples {(mi,Pi, σi)}ti=1 such
that Ver(sk,mi,Pi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(ek, g, (σ1, . . . , σt)), then it must hold: Ver(sk,m∗,P∗, σ∗) = 1.



Succinctness. The size of a tag is bounded by some fixed polynomial in the
security parameter, that is independent of the number of inputs taken by the
evaluated circuit.

Security. Here we recall the security definition of homomorphic MACs pro-
posed by Catalano and Fiore [16] (which slightly weakens the one of Gennaro
and Wichs [28]). A homomorphic MAC scheme HomMAC is secure if for any
PPT adversary A we have Pr[HomUF−CMAA,HomMAC(λ) = 1] ≤ ε(λ) where ε(λ)
is a negligible function, and HomUF−CMAA,HomMAC(λ) is the experiment below.

Setup The challenger generates (sk, ek)
$← KeyGen(1λ) and gives ek to A. Also

a list T = ∅ is initialized.
Authentication queries The adversary can adaptively ask for tags on label-

message pairs of its choice. Given a query (τ,m), if (τ,m) ∈ T (i.e., the
query was previously made), then the challenger replies with the same tag
generated before. If T already contains a pair (τ,m′) ∈ T with m′ 6= m (i.e.,
the label τ was already queried with a different message), then the challenger

ignores the query. Otherwise, if (τ,m) /∈ T , the challenger computes σ
$←

Auth(sk, τ,m), returns σ to A and updates the list T = T ∪ (τ,m).
Verification queries The adversary is also given access to a verification oracle.
A can submit a query (m,P, σ) and the challenger replies with the output
of Ver(sk,m,P, σ).

Forgery When the adversary stops running, the experiment outputs 1 if one of
the verification queries made by A, say (m∗,P∗, σ∗), is a forgery.

The description of the experiment is thus concluded by defining what is
a forgery. To this end, we first recall the notion of a well-defined program
with respect to a list T . Informally, there are two ways for a program P∗ =
(f∗, τ∗1 , . . . , τ

∗
n) to be well-defined. Either all the τ∗i ’s are in T or, if there are

some labels τ∗i that are not in T , then the inputs associated with such labels
are “ignored” by f∗ when computing the output. In other words, inputs corre-
sponding to labels not in T do not affect the behavior of f∗ in any way.

More formally, a labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well defined with

respect to T if either one of the following two cases occurs:

1. there exists i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T (i.e., A never asked an
authentication query with label τ∗i ), and f∗({mj}(τj ,mj)∈T ∪ {m̃j}(τj ,·)/∈T )
outputs the same value for all possible choices of m̃j ∈M;

2. T contains tuples (τ∗1 ,m1), . . . , (τ∗n,mn), for some messages m1, . . . ,mn.

In the experiment HomUF−CMA, a tuple (m∗,P∗, σ∗) is a forgery if and only
if Ver(sk,m∗,P∗, σ∗) = 1 and one of the following conditions holds:

– Type 1 Forgery: P∗ is not well-defined w.r.t. T .
– Type 2 Forgery: P∗ is well defined w.r.t. T and m∗ 6= f∗({mj}(τj ,mj)∈T ),

i.e., m∗ is not the correct output of the labeled program P∗ when executed
on previously authenticated messages (m1, . . . ,mn).



As already noted in [16], the experiment HomUF−CMA requires the chal-
lenger to recognize whether a program submitted by the adversary in a veri-
fication query is well-defined or not, but the latter check might not be doable
in polynomial time, at least for certain classes of computations. Catalano and
Fiore observe that this is not a problem for the class of arithmetic circuits of
polynomial degree and over an exponentially large finite field. Here we give a
simple proposition (for lack of space its proof appears in the full version) to show
that testing whether a program is well-defined can be done even for arithmetic
circuits of degree d, over a finite field of order p such that d/p < 1/2.8

Proposition 1. Let λ, n ∈ N and let F be the class of arithmetic circuits f :
Fn → F over a finite field F of order p and such that the degree of f is at most d,
for d

p <
1
2 . Then, there exists a probabilistic algorithm that for any given f ∈ F ,

decides if there exists y ∈ F such that f(u) = y,∀u ∈ Fn (i.e., if f is constant)
and is correct with probability at least 1− 2−λ.

Furthermore, for the same class of computations, we show that Type-1 forg-
eries essentially “collapse” into Type-2 forgeries. Namely, we show that any ad-
versary winning in the experiment by producing a Type-1 forgery can be con-
verted into another adversary that wins by producing a Type-2 forgery. This is
formalized in the following proposition whose proof is deferred to the full version:

Proposition 2. Let λ ∈ N be the security parameter, and let F be the class of
arithmetic circuits f : Fn → F over a finite field F of order p and such that
the degree of f is at most d, for d

p <
1
2 . Let Eb be the event that the adversary

wins in experiment HomUF−CMA by producing a Type-b forgery (for b = 1, 2).
Then, if for any adversary B we have that Pr[HomUF−CMAB,HomMAC(λ) =
1 ∧ E2] ≤ ε, then for any adversary A producing a Type-1 forgery it holds
Pr[HomUF−CMAA,HomMAC(λ) = 1 ∧ E1] ≤ Q(ε+ 2−λ).

3 Compact Homomorphic MACs Based on Encodings
with Limited Malleability

In this section we describe a generalization of the scheme of Catalano and Fiore
[16] which uses a more general encoding to compress the tags. First we define
the encoding that we are going to use to compress the tags. We then show the
compact scheme and prove its security. Finally we show that the scheme from
[16] can be seen as an instance of this generalization, and we also present a
different implementation based on partially-homomorphic encryption.

Limited Malleability Encoding. An encoding E consists of three algorithms
(EncGen,Enc,Test) defined as follows:

8 For simplicity, we show this for 1/2. The same argument can be extended to d/p <
1/c for some constant c.



EncGen(1λ). Given the security parameter λ, it outputs a pair of public/secret
keys pk, dk, the message space Zp where p is a prime of at least λ-bits, and an
encoding space T . We denote with +, · the usual additions/multiplications
over Zp, while T is assumed to be an abelian group under operation ×.

Enc(pk,m). A possibly randomized algorithm which takes as input m ∈ Zp and
returns a value t ∈ T .

Test(dk,m, t) A deterministic algorithm which on input m ∈ Zp and t ∈ T
outputs 1 if t ∈ Enc(pk,m), and 0 otherwise.

On the testing algorithm. We note that if the encoding algorithm is deter-
ministic, the testing procedure can be easily carried out by re-encoding m and
checking that is equal to t. Also, note that in this case there is no need of a secret
key to test. This is the case for the discrete-log based encoding in [16]. For more
general encodings where the encoding algorithm might be randomized, a secret
decoding key dk might be needed to “decode” t and check that is equal to m.

Definition 1. We say that an encoding is additively homomorphic if for all
m,m′ ∈ Zp, and for all h ∈ Enc(pk,m) and h′ ∈ Enc(pk,m′) we have that
h× h′ ∈ Enc(pk,m+m′).

Limited Malleability. We now define our security assumption for the encod-
ings E that we use in our scheme. Basically, we ask that given ti = Enc(pk, xi)
for i = 0, . . . , ` it must be hard to compute t = Enc(pk, 1/x), even in the pres-
ence of an oracle which decides if an element of T is an encoding of 0 or not.
More formally, define the oracle O(dk, τ) which answers ”yes” if τ ∈ Enc(pk, 0)
and “no” otherwise. Then for any PPT (adversary) A, consider the following
experiment E-INVA(λ, `):

1. (pk, dk, p, T )← EncGen(1λ);
2. x← Z∗p;
3. hi ← Enc(pk, xi) for i = 1, . . . , `;
4. t← AO(dk,·)(pk, p, T, h0, . . . , h`)

We define A’s advantage in winning the E-INVA(λ, `) game as AdvE−INVA (λ, `)
= Pr[t ∈ Enc(pk, 1/x)].

Definition 2. We say that E is `-inversion-resistant if for every PPT A we
have that AdvE−INVA (λ, `) is negligible in λ.

The assumption states that computing Enc(pk, 1/x) must be difficult even if
we were able to efficiently decide if a string is the encoding of 1/x (because of
homomorphic properties of E deciding if τ is an encoding of 0 is equivalent to
deciding if τ is an encoding of an arbitrary element of Zp).

We remark that we do not require the existence of the oracle to implement the
encoding and our scheme. It is just needed by the simulation (therefore making
our assumption stronger than just computing Enc(pk, 1/x)).

The Scheme. We now describe a homomorphic MAC scheme that works for
arithmetic circuits of polynomial degree D (but does not support composition).



The authentication tags produced by our construction have size which is inde-
pendent of the size/depth of the circuit. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter, and D be a parameter of size
poly(λ). The key generation works as follows. Run EncGen(1λ) to generate

pk, dk, p, T . We assume that our circuits work over Zp. Next, select x
$← Zp,

a seed K of a pseudorandom function FK : {0, 1}∗ → Zp, and compute hi =
Enc(pk, xi), for i = 0 to D − 1. Output sk = (K, dk, x), ek = (h0, . . . , hD−1).

Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,
compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1) ∈ Z2

p. The authentication tags produced by Auth are interpreted
as degree-1 polynomials y(X) = y0 + y1X over the ring Zp[X].

Eval(ek, f,σ). The first step of this algorithm is the same as the Eval algorithm
of the homomorphic MACs construction based on OWFs proposed in [16].
The input is the evaluation key ek, an arithmetic circuit f : Znp → Zp, and

a vector σ of tags (σ1, . . . , σn) where each σi is a polynomial y(i)(X) ∈
Zp[X]. The first step is to compute the polynomial y(X) obtained by (ho-
momorphically) evaluating the circuit f over the polynomial ring Zp[X], i.e.,
y(X)←f(y(1)(X), . . . , y(n)(X)). Namely, additions and multiplications over
Zp are replaced by additions and multiplications of polynomials over Zp[X].
Let y0, . . . , yd be the coefficients of the polynomial y(X) (note that d ≤ D).
If d = 1 then the algorithm returns σ = (y0, y1), otherwise it computes
Λ = Πd−1

i=0 h
yi+1

i (where this product is computed in the group T defined by
the encoding) and returns σ = Λ.

Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be
a tag of either the form (y0, y1) ∈ Z2

p, or Λ ∈ T .
First, compute ρ = f(rτ1 , . . . , rτn) where rτi←FK(τi). Next, according to
the form of σ perform the following checks:

1. If σ = (y0, y1), then output 1 only if ρ = y0 + y1 · x ∧ y0 = m.
2. If σ = Λ, then let t = Λx and output Test(dk, ρ−m, t)

It is not difficult to check that the scheme is correct by the construction
of the polynomials y(X) and the correctness of the encoding E . The following
theorem proves the security of our construction. For lack of space, the proof of
Theorem 1 as well as a full proof of correctness appear in the full version.

Theorem 1. If E is (D−1)-inversion resistant, and F is a pseudorandom func-
tion, then the scheme described in Section 3 is a secure homomorphic MAC.

Possible Instantiations.
Discrete-Log Based Encoding. We first show that the protocol of Cata-
lano and Fiore [16] fits into the abstraction we just described. In their case the
encoding algorithms are as follows:

– EncGen(1λ) chooses a prime p of size at least λ, and a cyclic group T of order
p, and a generator g for it. pk = dk = (p, T, g). Note that the decoding key
is not secret.



– Enc(pk,m) = gm. Note that the encoding scheme is deterministic.
– Test(dk,m, t) checks if t = gm

The assumption that this encoding is `-inversion resistant is equivalent to the

`-Diffie-Hellman inversion assumption [14]: given g, gx, gx
2

, . . . , gx
`

it is hard to
compute g1/x. Note that the oracle which test if t is an encoding of 0 is trivially
implemented by checking if t = 1, since the encoding is deterministic.

Partially Homomorphic Encryption Schemes. Any encryption scheme
which is additively homomorphic over a prime field but is believed to be mul-
tiplicative homomorphic only up to a constant degree, constitutes a suitable
candidate to be an `-inversion resistant encoding. Let (KG,Enc,Dec) be such
an encryption scheme, then:

– EncGen(1λ) runs KG(1λ) to choose a public/secret key pair (pk, sk). It sets
pk to be the encoding public key and dk = sk its secret decoding key.

– Enc(pk,m) = Enc(pk,m). Note that in this case the encoding scheme is
randomized.

– Test(dk,m, t) checks if Dec(sk, t) = m

Examples of encryption schemes with such a partial homomorphic property in-
clude the “basic” version of the Brakerski and Vaikuntanathan FHE [15], Boneh,
Goh and Nissim [13], and Paillier [36] schemes. 9 Note that to use these schemes
in our protocol we need to require them to be `-inversion resistant as defined
earlier. This is a strong notion of security: we require them to be one-way in a
strong sense (given encryptions of ` successive powers of x, it is impossible to
come up with an encryption of 1/x) even in the presence of an oracle that breaks
the semantic security of the scheme.

4 A Compact Scheme with k-degree Composition

In this section we propose a homomorphic MAC based on multilinear groups.
Compared to [16], the main advantage of this scheme is that it provides a way to
both compress the tags and enable their (later) composition. Before describing
the scheme, we first recall the definition of graded encoding and its abstraction
of leveled multilinear maps.

Leveled Multilinear Maps and Graded Encodings. Informally speaking, a

k-graded encoding system for a ring R includes a system of sets {S(α)
i ⊂ {0, 1}∗ :

i ∈ [0, k], α ∈ R} such that for every fixed i ∈ [0, k] the sets {S(α)
i : α ∈ R}

are disjoint. The set S
(α)
i essentially contains the level-i encodings of α ∈ R.

9 Although Paillier and BGN schemes operate over the ring ZN where N is the product
of two large primes, note that the zero-divisors are only a negligible fraction of ZN .
Moreover, it is hard to find such divisors if we assume that factoring N is hard.
Therefore, it is not hard to see that with minor modifications the proof of Theorem
1 can be changed to accomodate this. More details appear in the full version.



As a first requirement, the system needs an algorithm to obtain an encoding

ai ∈ S(α)
i of some ring element α (notice that such encoding can be randomized).

Additionally, the encoding system is homomorphic in a graded sense. Namely,

let us abuse notation and assume that every set S
(α)
i is a ring where +, · are the

usual addition/multiplication operations. Then, for any ai ∈ S(α)
i and bi ∈ S(β)

i

we have ai + bj ∈ S
(α+β)
i . Furthermore, for ai ∈ S

(α)
i and bj ∈ S

(β)
j we have

ai · bj ∈ S(α·β)
i+j , if i + j ≤ k. Finally, the encoding system has an algorithm to

test if a given a is an encoding of 0 at level i, i.e., a ∈ S(0)
i .

Garg, Gentry and Halevi [24] recently proposed a candidate construction of
a randomized graded encoding system, which has some additional algorithms to
deal with the fact that the encoding is randomized. Another candidate was also
proposed by Coron, Lepoint and Tibouchi [21]. We refer to these works for a
precise definition of graded encodings. Here we note that graded encodings define
an “approximate” version of a multilinear group family. For ease of exposition,
we proceed our description of graded encodings by using the more abstract and
simpler multilinear groups. Although graded encodings slightly depart from this
abstraction (mainly because of the randomized “noisy” procedures), they can be
adapted to work in place of multilinear groups.

In generic multilinear groups we assume the existence of an algorithm G(1λ, k)
that, on input the security parameter and an integer k indicating the number of
levels (i.e., the number of allowed pairing operations), generates the description
pp of leveled multilinear groups (G1, . . . ,Gk), each of large prime order p > 2λ.
We let gi be a canonical generator of Gi and we assume that pp includes g1 ∈ G1.
The groups are such that there exists a set of bilinear maps {ei,j : Gi × Gj →
Gi+j}i,j≥1,i+j≤k such that ∀a, b ∈ Zp: ei,j(gai , gbj) = gabi+j . When it is obvious
from the context the indices i, j are dropped from ei,j .

Limited Malleability. To prove the security of our scheme we assume that
the encoding system is homomorphic only in a graded sense. Namely, given
the level-1 encodings of the ` powers of w ∈ R, it must be hard to compute
a level-k encoding of w`k+1. Framed in the context of multilinear groups, this
assumption can be seen as an extension of the computational Bilinear Diffie-
Hellman Inversion assumption (first defined by Boneh, Boyen and Goh [9]) to the
multilinear setting. Its hardness in the generic multilinear group follows by the
same argument as in the “master theorem” of [9], i.e., by the linear independence
of the polynomial x`k+1 w.r.t. the polynomials x, x2, . . . , x`k. It is worth noting
that a similar assumption, in the multilinear groups setting, has been recently
used by Hohenberger, Sahai and Waters [32].

Definition 3 ((`, k)-Multilinear Diffie-Hellman Inversion). Let pp be the
description of a set of multilinear groups and g1 ∈ G1 be a random generator.

Let w
$← Zp be chosen at random. We define the advantage of an adversary A

in solving the (`, k)-MDHI problem as AdvMDHI
A (λ) = Pr[A(g1, g

w
1 , . . . , g

w`

1 ) =

gw
k`+1

k ], and we say that the (`, k)-MDHI assumption holds for G if for every

PPT A and for ` = poly(λ), AdvMDHI
A (λ) is negligible in λ.



The Scheme. Our homomorphic MAC based on k-linear groups allows for the
following process: (1) one can generate constant-size tags, each authenticating
the results of a computation vi = fi(m1, . . . ,mn) for i = 1 to t, where each fi
is an arithmetic circuit of degree at most D = poly(λ); (2) one can compose the
above computations fi by using a “composition circuit” φ of degree at most k.
Namely, one can finally authenticate v = φ(v1, . . . , vt) = f∗(m1, . . . ,mn), where
f∗ = φ(f1, . . . , ft).

Before describing our scheme in full detail, we first provide an intuitive de-
scription. The basic idea of our construction is to first generate the authen-
tication tags as in [16] – i.e., as polynomials y(X) – and to publish in the
evaluation key level-1 encodings of the D powers of the secret value x, i.e.,
hi = gx

i

1 , i = 1, . . . , D. To authenticate a computation vi = fi(m1, . . . ,mn),
one first computes the polynomial y(i)(X)←fi(y1(X), . . . , yn(X)) ∈ Zp[X], and
then generates its “compressed” representation by computing the level-1 encod-

ing Λi = g
y(i)(x)−y(i)(0)
1 =

∏d
j=1(gx

j

1 )y
(i)
j . To further authenticate the composed

computation φ(v1, . . . , vt) (with φ of degree k), the idea is to compute the k-level

encoding Λ = (ga
k−1

k )y(x)−y(0), where y(X) ∈ Zp[X] is the polynomial obtained
from φ(y(1)(X), . . . , y(t)(X)). Precisely, Λ is computed by homomorphically eval-
uating φ over the level-1 encodings {Λi}i: additions in φ are replaced by the group
operation and multiplications are replaced by the pairing. In our scheme we also
publish encodings {ηi = gax

i

1 = hai }di=0 where a ∈ Zp is randomly chosen, and
we include in every tag another element Γ = Λa computed by using the values
{ηi}i. Very roughly, these additional encodings are introduced to enable one to
“move up” an encoding Λj from Gj to Gj+1 without publishing the generator
g1 ∈ G1, i.e., one computes Λj+1 = ej,1(Λj , g

a
1 ).

A full description of our scheme follows.

KeyGen(1λ, D, k). Let λ be the security parameter, and D, k be two parameters
of size poly(λ). The key generation works as follows.
Run G(1λ, k) to generate the description of k-linear groups G1, . . . ,Gk of

order p where p is a prime number of at least λ bits. Let g1
$← G1 be a

random generator, and choose random values a, x
$← Zp, and a seed K of a

pseudorandom function FK : {0, 1}∗ → Zp. Next, for i = 1 to D, compute

hi = gx
i

1 , ηi = hai and A1 = ga1 . Also, we let gi ∈ Gi be the canonical
generator of Gi which is obtained by repeatedly applying the graded map to
g1, i.e., let g2 = e(g1, g1) and gi = e(gi−1, g1). Similarly, we define Ai from

A1 and we observe that Ai = ga
i

i . Finally, compute σU = (1, (rU − 1)/x)

for a random rU
$← Zp. σU is essentially a tag for the value 1 under a fixed

canonical label (cf. the authentication algorithm).
Output sk = (K, g1, x, a), ek = (A1, h1, η1, . . . , hD, ηD, σU ) and let the mes-
sage space M be Zp.

Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,
compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1) ∈ Z2

p. The authentication tags produced by Auth are interpreted
as degree-1 polynomials y(X) = y0 + y1X over the ring Zp[X].



Eval1(ek, f,σ). This algorithm is the same as the Eval algorithm of the homo-
morphic MACs construction based on OWFs proposed in [16]: The input
is the evaluation key ek, an arithmetic circuit f : Znp → Zp, and a vector

σ of tags (σ1, . . . , σn) where each σi is a polynomial y(i)(X) ∈ Zp[X]. The
authentication tag σ computed by Eval1 is the polynomial y(X) obtained by
(homomorphically) evaluating the circuit f over the polynomial ring Zp[X],
i.e., y(X)←f(y(1)(X), . . . , y(n)(X)). Namely, additions/multiplications over
Zp are replaced by additions/multiplications of polynomials over Zp[X].

Compress(ek, σ). This algorithm takes as input an authentication tag σ of the
form y(X) ∈ Zp[X] of degree d (i.e., y(X) consists of d + 1 coefficients
(y0, . . . , yd)), and “compresses” the polynomial into a shorter value of con-
stant size. The resulting tag is a triple (y0, Λ1, Γ1) ∈ Zp×G1×G1 where Λ1

and Γ1 are computed as follows: Λ1 =
∏d
i=1 h

yi
i , Γ1 =

∏d
i=1 η

yi
i .

Eval2(ek, φ,σ). This algorithm allows to further apply homomorphic operations
on tags that were obtained using Eval1 and later compressed using Compress.
Eval2 takes as input the evaluation key ek, an arithmetic circuit φ : Znp → Zp
of degree at most k and a vector σ of tags (σ1, . . . , σn) such that each σi is a

triple (y
(i)
0 , Λ

(i)
1 , Γ

(i)
1 ) ∈ Zp×G1×G1. Without loss of generality, we assume

that in the circuit φ addition gates take inputs of the same degree i.10

Eval2 evaluates the circuit φ over the tags by replacing additions and multi-
plications as follows:

– Add(ek, σ1, σ2). On input two tags σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i ) and σ2 =

(y
(2)
0 , Λ

(2)
i , Γ

(2)
i ), it computes a tag σ = (y0, Λi, Γi) as follows: y0 =

y
(1)
0 + y

(2)
0 , Λi = Λ

(1)
i · Λ

(2)
i , Γi = Γ

(1)
i · Γ (2)

i .

– ConstMult(ek, σ1, c). On input a tag σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i ) and a constant

c ∈ Zp, it computes the tag σ = (y0, Λi, Γi): y0 = c · y(1)0 , Λi =

(Λ
(1)
i )c, Γi = (Γ

(1)
i )c.

– Mult(ek, σ1, σ2). This takes as input two tags σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i ) and

σ2 = (y
(2)
0 , Λ

(2)
j , Γ

(2)
j ) and outputs a tag σ = (y0, Λd, Γd) where d = i+j.

σ is computed as follows:

y0 = y
(1)
0 · y

(2)
0

Λd = e(Λ
(1)
i , Γ

(2)
j ) · e(Λ(1)

i , Aj)
y
(2)
0 · e(Ai, Λ(2)

j )y
(1)
0

Γd = e(Γ
(1)
i , Γ

(2)
j ) · e(Γ (1)

i , Aj)
y
(2)
0 · e(Ai, Γ (2)

j )y
(1)
0

Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be
a tag of either the form (y0, y1) ∈ Z2

p, or (y0, Λi, Γi) ∈ Zp ×G2
i .

First, compute ρ = f(rτ1 , . . . , rτn) where rτi←FK(τi). Next, according to
the form of σ perform the following checks:

1. If σ = (y0, y1) ∈ Z2
p, then output 1 only if ρ = y0 + y1 · x ∧ y0 = m.

10 Note that any circuit can be changed to meet this assumption: simply add multipli-
cations by a special variable with value 1. This change does not increase the circuit’s
degree, and its homomorphic evaluation can be performed by using the tag σU .



2. If σ = (y0, Λi, Γi) ∈ Zp × G2
1, then output 1 only if y0 = m ∧

(ga
i−1

i )ρ−m = Λi ∧ Λai = Γi.

For lack of space, the correctness of the scheme is shown in the full version.
In the following theorem we prove the security of the scheme for the class of

arithmetic circuits of (total) degree ∆ such that ∆ < p, and in particular when
0 < ∆/p < 1 is the inverse of a small constant (e.g., 1/2). For lack of space, the
proof of the theorem appears in the full version.

Theorem 2. If F is a PRF and the computational (D, k)-MDHI assumption
holds for G, then the homomorphic MAC scheme described in Section 4 is secure.

Possible Candidates. Here we discuss the possible instantiations of our scheme.
A brief summary is also provided in Table 1.

GGH Graded Encodings. A first instantiation is obtained by using the
recent proposal of multilinear maps [24, 21]. Since these realizations allow for
a number of levels k which is polynomial in the security parameter, we obtain
a homomorphic MAC that supports circuits of bounded polynomial degree and
that, in particular, allows for degree-k composition. Also, due to the properties of
the current multilinear maps realizations, the size of the final authentication tags
(i.e., as generated by Eval2) is O(d) where d ≤ k is the degree of the composition
circuit φ. This limitation stems from the fact that in all current realizations the
size of an encoding at level d is O(d). Hence, we obtain the following corollary.

Corollary 1. Assume that F is a PRF, G is an instantiation of multilinear
maps as in [24, 21], and the computational (D, k)-MDHI assumption holds for
G with D, k = poly(λ). Then the scheme of Section 4 is a secure homomorphic
MAC with authentication tags of size O(k) and that supports computations ex-
pressed by arithmetic circuits of degree at most D and composition circuits of
degree at most k.

Supporting circuits of polynomial depth via compact multilinear
maps. We note that the succinctness and the expressiveness (i.e., the class of
circuits that are supported) of our construction crucially depend on the prop-
erties of the graded encoding. In particular, it is interesting to note that, in
principle, we could support almost arbitrary circuits (i.e., of polynomial depth)
and achieve full succinctness if the scheme is implemented with multilinear maps
that allow for an exponential number of levels and that are compact. In this case,
it is not even necessary to distinguish between Eval1 and Eval2: we can “merge”
the algorithms Auth and Compress in order to create tags that are directly level-1
encodings, and then use Eval2 to perform all the homomorphic operations. Al-
though multilinear groups with such properties are not known, our result has
the potential of yielding a fully-fledged homomorphic MAC. Indeed, our con-
struction uses multilinear maps in a generic way, and its security holds against
adversaries making an unbounded number of verification queries, in contrast to
the fully-homomorphic MAC of Gennaro-Wichs, that can support only a con-
stant number of verification queries.



Corollary 2. Assume that F is a PRF, G is an (ideal) instantiation of com-
pact multilinear maps, and the computational (1, k)-MDHI assumption holds for
G for any k < p/2 ≈ 2λ−1. Then the scheme of Section 4 is a secure homomor-
phic MAC with authentication tags of size O(1) and that supports computations
expressed by arithmetic circuits of degree at most k.

Scheme
Tag

Composability
Supported

Assumption
Verif.

Size Computations Queries

CF13-1 [16] O(d) X degree-d circuits OWF X
CF13-2 [16] O(1) × degree-D circuits D-DHI X

GW13 [28] O(λ) X
Arbitrary

FHE ×
circuits

This work with graded
O(k)

degree-k degree-(D + k)
(D, k)-MDHI X

encodings [24, 21] circuits circuits

This work with
O(1) X

degree-k circuits
(1, k)-MDHI X

ideal k-linear maps ∀k : k/p < 1/2

Table 1. Summary of homomorphic MACs instantiations with message space Zp. The
last column indicates whether unbounded verification queries are supported or not.

Acknowledgements. The research of Dario Fiore is partially supported by the
European Commission’s Seventh Framework Programme Marie Curie Cofund
Action AMAROUT II (grant no. 291803). The research of Rosario Gennaro was
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of De-
fense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. S. Agrawal and D. Boneh. Homomorphic MACs: MAC-based integrity for network
coding. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors,
ACNS 09, volume 5536 of LNCS, pages 292–305. Springer, June 2009.

2. N. Attrapadung and B. Libert. Homomorphic network coding signatures in the
standard model. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 17–34. Springer, Mar. 2011.

3. N. Attrapadung, B. Libert, and T. Peters. Efficient completely context-hiding
quotable and linearly homomorphic signatures. In PKC 2013, volume 7778 of
LNCS, pages 386–404. Springer, 2013.



4. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation
on outsourced data. In 2013 ACM Conference on Computer and Communication
Security. ACM Press, November 2013.

5. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
111–131. Springer, Aug. 2011.

6. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS ’12: Proceedings of the 3rd Symposium on Innovations in Theoretical
Computer Science, 2012.

7. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. STOC, 2013.

8. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

9. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 440–456. Springer, May 2005.

10. D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In S. Jarecki and G. Tsudik, editors, PKC 2009,
volume 5443 of LNCS, pages 68–87. Springer, Mar. 2009.

11. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–
168. Springer, May 2011.

12. D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In D. Catalano, N. Fazio, R. Gennaro,
and A. Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 1–16. Springer,
Mar. 2011.

13. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer,
Feb. 2005.

14. X. Boyen. The uber-assumption family (invited talk). In S. D. Galbraith and K. G.
Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer,
Sept. 2008.

15. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In R. Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Com-
puter Society Press, Oct. 2011.

16. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits.
In EUROCRYPT 2013, 2013.

17. D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one
way functions and their applications. In TCC 2013, volume 7785 of LNCS, pages
680–699. Springer, 2013.

18. D. Catalano, D. Fiore, and B. Warinschi. Adaptive pseudo-free groups and appli-
cations. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 207–223. Springer, May 2011.

19. D. Catalano, D. Fiore, and B. Warinschi. Efficient network coding signatures in the
standard model. In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 680–696. Springer, May 2012.

20. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168. Springer,
Aug. 2011.



21. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. In CRYPTO 2013, 2013.

22. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In 2012 ACM Conference on Computer
and Communication Security. ACM Press, October 2012.

23. D. M. Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 697–714. Springer, May 2012.

24. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices
and applications. In EUROCRYPT 2013, 2013.

25. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 465–482. Springer, Aug. 2010.

26. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. In EUROCRYPT 2013, pages 626–645, 2013.

27. R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of
LNCS, pages 142–160. Springer, May 2010.

28. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In ASI-
ACRYPT 2013, 2013. Also in Cryptology ePrint Archive, Report 2012/290.

29. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

30. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011.

31. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: in-
teractive proofs for muggles. In R. E. Ladner and C. Dwork, editors, 40th ACM
STOC, pages 113–122. ACM Press, May 2008.

32. S. Hohenberger, A. Sahai, and B. Waters. Full domain hash from (leveled) multi-
linear maps and identity-based aggregate signatures. In CRYPTO 2013, 2013.

33. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature
schemes. In B. Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–
262. Springer, Feb. 2002.

34. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th ACM
STOC, pages 723–732. ACM Press, May 1992.

35. S. Micali. Cs proofs. In 35th FOCS, Nov. 1994.
36. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.
Springer, May 1999.

37. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In R. Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 422–439. Springer, Mar. 2012.

38. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science,
5(3-4):207–388, 2010.

39. P. Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In R. Canetti, editor, TCC 2008, volume 4948 of LNCS,
pages 1–18. Springer, Mar. 2008.


