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1 Introduction

1.1 Block Ciphers and Key-Length Extension

Block ciphers (like DES [10] and AES [2]) are the workhorses of cryptography.
Most importantly, they constitute the basic building block within several modes
of operation for secret-key message encryption and authentication.

Formally, a block cipher with key length κ and block length n (often referred
to as a (κ, n)-block cipher) is a family of efficiently computable (and invertible)
permutations Ek on the set of n-bit strings indexed by a κ-bit key k. For example,
n = 64 and κ = 56 for DES, and n = 128 and κ ∈ {128, 192, 256} for AES.

Block-cipher security. Most applications assume and require that the un-
derlying block cipher behaves as a pseudorandom permutation (PRP), i.e., under
a random secret key, it cannot be efficiently distinguished from a uniformly ran-
dom permutation. To capture this notion, the PRP-security level of a block
cipher is defined as the complexity required to distinguish it from a random
permutation with non-negligible advantage.

The security level of a block cipher E is inherently limited by its key length
κ: Given very few plaintext-ciphertext pairs (xi, Ek(xi)), a generic brute-force
attack can easily recover the secret key k with roughly 2κ evaluations of E. This
easily yields a PRP distinguishing attack with the same complexity. Clearly, this
attack directly affects legacy designs with short keys, such as DES, for which
256 is well within the boundaries of feasible computation.

Key-length extension and the ICM. Nonetheless, legacy designs often re-
main attractive in niche applications, like e.g. in the financial sector, where
DES-based construction are used to encipher PIN numbers due to their short
block length (as in the EMV standard [1]). In order to mitigate the effects of
the above generic attacks, the well-known key-length extension (KLE) problem
addresses the following question:

“Does there exist a construction C transforming any (κ, n)-block cipher
E into a (κ′, n)-block cipher C[E] (for κ′ > κ), such that C[E] is secure
against generic attackers (using E as a black-box) investing more than
2κ effort?”

Starting with the work of Killian and Rogaway on DESX [15], and followed by
a series of subsequent works [5, 13, 14, 18, 12, 9], KLE has been formalized and
studied in the ideal cipher model (ICM), where the underlying block cipher is
modeled as an ideal cipher, i.e., Ek is an independent random permutation for
every individual key k. Then, ICM PRP security of a KLE construction C[E] is
captured by considering a random experiment where the attacker (also known
as a distinguisher) issues two types of queries:

– Block-cipher queries to evaluate the block cipher Ek(x) and E−1
k (y) for

any k, x, and y chosen by the distinguisher.
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– Construction queries to evaluate on a chosen n-bit input x either the
KLE construction C[E]K′ with a uniformly random secret κ′-bit key K ′, or
a uniform random permutation P independent of E. The respective inverses
can also be evaluated.

The distinguisher’s goal is to decide whether construction queries are answered
by the construction or by P , and its power is measured in terms of the number
qe ≤ 2n+κ of queries of the former type, and the number qc ≤ 2n of queries of
the latter type. Security of C is measured in terms of which values of (qc, qe) do
not allow distinguishing with non-negligible advantage.
Relaxing full-codebook security. So far, the security of KLE construc-
tions (with the notable exception of the work of Killian and Rogaway [15]) has
been analyzed in the full-codebook regime, i.e., where we allow qc = 2n, and then
see how large qe can be while still retaining pseudorandomness. However, there
is often no rational reason to assume that qc = 2n. Not only this value is usually
unreasonably large, but also, we can either easily restrict the number of block
cipher evaluations on a certain secret key at the application level (by enforcing
re-keying) or when using the KLE construction within a certain mode of oper-
ation, the security analysis of the latter may simply force security to only hold
for smaller qc anyway (e.g., qc ≤ 2n/2 for CBC modes).

In this paper, we relax the unreasonably strong requirement of full-codebook
security, and undertake the first in-depth investigation of the security of KLE
constructions in the realistic scenario where qc � 2n.

1.2 Plain and Randomized Cascades

Before we turn to our contributions, let us first review previous works on KLE
in the full-codebook regime qc = 2n. A summary of the attainable PRP security
levels is given in Appendix A.
Cascading-based KLE. The most natural KLE approach is perhaps cascading,
generalizing the idea behind triple DES. Formally, the cascade of length ` for
a (κ, n)-block cipher E is the (` · κ, n)-block cipher which takes an `κ-bit key
mk = (k1, . . . , k`) ∈ ({0, 1}κ)` and encrypts a plaintext x ∈ {0, 1}n by computing

y = CEmk[E](x) = Ek` ◦ Ek`−1 ◦ · · · ◦ Ek2 ◦ Ek1(x).

It is well known that the case ` = 2 still allows for a 2κ-query meet-in-the-middle
attack (even though only a smaller distinguishing advantage is achievable for
qe < 2κ as shown by Aiello et al. [3]). For the case r = 3 (which generalizes
3DES), Bellare and Rogaway [5] first proved PRP security for qe ≤ 2κ+n/2. This
result was later generalized to arbitrary length ` by Gaži and Maurer [13]. Their
bound on qe was however far from tight, and was first improved by Lee [18], and
a tight bound (matching an attack by Gaži [12]) was only recently given by Dai,
Lee, Mennink, and Steinberger [9].
Randomized cascades. Another approach to key-length extension generalizes
the DESX construction, using additional key material to randomize inputs and
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Table 1. Overview of our results. Parameters qc, qe for which we prove security.

Construction Security
XCE with r rounds qcq

r
e � 2r(n+κ) (Tight)

2XOR qe � max{2κ+n/2, 2κ+n−log(qc)} (Tight)

3XOR qc ≤ 22/3n : qe � 2κ+ 4−log(qc)
5 n

qc ∈ [2 2
3n, 2 3

4n] : qe � 2κ+(2−2 log(qc))n

3XSK qc ≤ 22/3n: qe � 2κ+ 4−log(qc)
5 n

CE with ` = 2r + 1 rounds qcq
r
e � 2r(κ+n), qc � 2κ, qe � 22κ

Two-key triple encryption qcqe � 2κ+n, qc � 2κ, qe � 22κ

outputs of block-cipher calls. (This technique is often called whitening.) For
example, the r-round XOR-cascade of a (κ, n)-block cipher E is the (κ + (r +
1)n, n)-block cipher which, on input key (k, z) (where z = (z0, z1, . . . , zr) consists
of (r + 1) n-bit strings) and message x, returns

XCE[E]((k, z), x) = ⊕zr ◦ Eφr(k) ◦ ⊕zr−1 ◦ Eφr−1(k) ◦ · · · ◦ ⊕z1 ◦ Eφ1(k) ◦ ⊕z0(x),

where ⊕z maps x′ to x′⊕z, and φ1, . . . , φr are permutations on the κ-bit strings
such that φi(k) 6= φj(k) for all k and i 6= j. Security bounds for XOR-cascades
in the full-codebook regime were proved by Lee [18] and by Gaži [12]. The latter
work considered a variant without the last whitening step, and in combination
with the result on key-alternating ciphers [8] led to tight bounds.

A simple variant of two-round XOR-cascades, called 2XOR, was studied by
Gaži and Tessaro [14], where the third key z2 is omitted, and z0 = z1. They prove
PRP security for qe ≤ 2κ+n/2, and that this security level is optimal (for qc = 2n)
with respect to a large class of two-call constructions. We finally emphasize that
the work by Killian and Rogaway [15] analyzing DESX (which is the case r = 1)
is a notable exception to the above restriction to the full-domain regime, and
exhibits a smooth security trade-off for any qc and qe as long as qc · qe ≤ 2n+κ.

1.3 Our Contributions

While tight bounds are known in the full-codebook regime, the landscape is still
mostly uncharted when moving to the case qc � 2n. This paper proves lower and
upper bounds on the PRP security level of existing and new KLE constructions
in the setting where qc � 2n. While a summary of our bounds is given in Table 1,
we now discuss our contributions a bit more in detail.

We start with the randomized case:

– Tight bounds for XOR cascades. We provide tight bounds for XOR-
cascades, matching an attack previously given by Gaži [12].

– Characterizing 2XOR. We complete the picture of the security of 2XOR
for all qc ≤ 2n, showing that qe ≤ 2κ+n/2 is tight when qc ∈ [2n/2, 2n],
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and observing that otherwise qc · qe ≤ 2κ+n is necessary and sufficient for
qc ≤ 2n/2.

– The 3XOR construction. We show that adding the whitening key to the
output of 2XOR yields a construction—that we name 3XOR—which is always
at least as secure as 2XOR and strictly more secure for 2n/4 < qc < 23/4n.

– A two-call construction with no re-keying.We finally propose a variant
of 3XOR (called 3XSK) where both block-cipher calls are with the same key,
whereas the middle whitening key is a permutation of the original one. The
security is comparable to that of 3XOR for qc ≤ 22/3n.

Our results also improve our picture with respect to plain cascading.

– Odd-length plain cascades. We prove that cascades of odd length ` =
2r + 1 are secure whenever qcqre � 2r(κ+n), qc � 2κ, and qe � 22κ. For
κ and n satisfying κ ≥ rn

r+1 , this improves on the security bound of Dai et
al. [9] when qc ≤ 2

rn
r+1 . Moreover, when κ ≥ n, this yields a tight bound

(matching Gaži’s attack [12]) for all parameters (for κ ≤ n, the situation is
more involved, see Section 5 for a complete discussion).

– Two-key triple encryption. We prove a similar bound for two-key triple
encryption, where the first and third keys are identical, as in Triple DES.

Overview of our techniques. It turns out that the techniques behind our
results are fairly general. We start by defining a general class of KLE con-
structions called randomized KLE schemes, that capture both plain cascades,
XOR-cascades and others. Our core technical tool is then a lemma relating the
security of a construction from this class to a particular cipher that can be
derived from it, called a sequential cipher, also introduced here. Such ciphers
constitute a generalization of key-alternating ciphers (or KACs, for short), stud-
ied in [6, 23, 16, 4, 17], and implement a block cipher by invoking a number of
permutations in a sequential manner. Our lemma generalizes a previous result
by Gaži [12], which only considered the case of KACs but neither our relaxation
to randomized KLEs, nor the case without a full codebook.

To instantiate some of our bounds, we provide a generalized analysis of se-
quential ciphers, extending recent bounds by Chen and Steinberger [8].

1.4 Further Related Works

We note in passing that an orthogonal line of works devoted to cascade-like
construction was initiated by Luby and Rackoff [19]. These works study standard
model security amplification achieved by plain and randomized cascades, and in
particular show how, when instantiated with a block cipher which is a weak PRP
in the sense of the attacker achieving a large distinguishing advantage, these
constructions reduce the best possible advantage with an increasing number of
rounds. Increasingly tighter bounds have been given by Maurer and Tessaro [21],
and by Tessaro [24]. An information-theoretic version of this question was also
studied [25, 20].
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2 Preliminaries

2.1 Basic Notation and Block Ciphers

In all the following, we fix integers n, κ > 0, and denote N = 2n and K = 2κ.
The set of all permutations on {0, 1}n will be denoted Pn. For a set T and an
integer ` ≥ 1, (T )` denotes the set of all sequences that consist of ` distinct
elements of T . For integers 1 ≤ ` ≤ t, we will write (t)` = t(t− 1) · · · (t− `+ 1).
If |T | = t, then (t)` becomes the size of (T )`.

A block cipher is a function family E : K×{0, 1}n → {0, 1}n such that for all
k ∈ K the mapping E(k, ·) is a permutation on {0, 1}n. We denote by BC(K, n)
the set of all such block ciphers, shortening to BC(κ, n) when K = {0, 1}κ. In
the ideal-cipher model, a block cipher E is chosen from BC(κ, n) uniformly at
random and made available to the participants through oracle queries. It allows
for two types of oracle queries E(k, x) and E−1(k, y) for x, y ∈ {0, 1}n and
k ∈ {0, 1}κ.1 The answer to an inverse query E−1(k, y) is x ∈ {0, 1}n such that
E(k, x) = y.

For a setQ = ((x1, y1), . . . , (xq, yq)) ∈ ({0, 1}n × {0, 1}n)q and a permutation
P ∈ Pn, we say that P extends Q, denoted P ` Q, if P (xi) = yi for i = 1, . . . , q.
The domain and the range of Q are defined as

Dom(Q) = {x ∈ {0, 1}n : (x, y) ∈ Q} , Rng(Q) = {y ∈ {0, 1}n : (x, y) ∈ Q}

respectively. By an abuse of notation, we will sometimes denote Q the bijection
from Dom(Q) to Rng(Q) such that Q(xi) = yi for i = 1, . . . , q. Thus, for another
set (bijection) Q′ ∈ ({0, 1}n × {0, 1}n)q

′
, we have

Dom(Q′ ◦ Q) = {x ∈ {0, 1}n : (x, y) ∈ Q ∧ y ∈ Dom(Q′)}
Rng(Q′ ◦ Q) = {y ∈ {0, 1}n : (x, y) ∈ Q′ ∧ x ∈ Rng(Q)}

and similar definitions for the composition of more than two bijections. For a set
Q = ((x1, k1, y1), . . . , (xq, kq, yq)) ∈ ({0, 1}n × {0, 1}κ × {0, 1}n)q and a block
cipher E ∈ BC(κ, n), we say that E extends Q, denoted E ` Q, if E(ki, xi) = yi
for i = 1, . . . , q.

2.2 Indistinguishability in Idealized Models

In this paper, we consider block ciphers that are built (in a black-box way) on top
of an existing primitive F . The primitive F is modeled as an ideal oracle (publicly
accessible to the adversary), whose answers follow some probability distribution.
Namely, we will consider two slightly different settings: the so-called KLE-setting
where F will be the ideal cipher E; and the so-called SC-setting2 where F will be
a tuple of random permutations P = (P1, . . . , Pm). In both settings, we consider
1 We interchangeably use both notations E(k, x) and Ek(x), and similarly E−1(k, y)
and E−1

k (y).
2 This refers to the notion of a sequential cipher defined in Section 3.1.
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a construction C which encrypts a message x ∈ {0, 1}n with some (master) key3

mk ∈ {0, 1}κ′ by making calls to F , and denote C[F ] the resulting block cipher
(hence C[F ] ∈ BC(κ′, n), and Cmk[F ] is the permutation associated to key mk).

To define security, we consider an adversary (a.k.a. distinguisher) D which
interacts with a pair of oracles that we denote generically (P, F ). The goal of D
is to distinguish whether it is interacting with (Cmk[F ], F ) for some uniformly
random key mk (a case we will informally refer to as the “real” world) or with
(P, F ) where P is a random n-bit permutation independent from F (the “ideal”
world). Note that in both worlds the first oracle P is a permutation that can be
queried in both directions. The distinguisher’s advantage is defined as

Advcca
C (D) =

∣∣∣Pr
[
DCmk[F ],F = 1

]
− Pr

[
DP,F = 1

]∣∣∣
where the first probability is taken over the random choice of mk and the ran-
dom answers of F , and the second probability is taken over the random choice
of P and F . We refer to D’s queries to its first and second oracle as construction
and primitive queries, respectively. In the KLE-setting (SC-setting), the prim-
itive queries are sometimes referred to more concretely as block-cipher queries
(permutation queries), respectively.

In the KLE-setting, for qc, qe ≥ 0 we define

Advcca
C (qc, qe) = max

D
Advcca

C (D)

where the maximum is taken over all distinguishers making exactly qc construc-
tion and qe ideal-cipher queries. Similarly, in the SC-setting, for qc, qp ≥ 0,

Advcca
C (qc, qp) = max

D
Advcca

C (D)

where the maximum is taken over all distinguishers making exactly qc construc-
tion queries and qp permutation queries to each permutation oracle Pi.

In all the paper, we assume that the distinguisher is computationally un-
bounded, deterministic, and that it never makes redundant queries (these last
two assumptions being wlog). In accordance with several recent works on the
topic, we are using Patarin’s H-coefficients technique [22] in some of our proofs.
Our use of the H-coefficients technique will be self-contained, for a more detailed
introduction to this method see for example [8].

3 From Randomized KLE Schemes to Sequential Ciphers

In this section we study the relationship of two general classes of constructions
that we first define. On one hand, we consider randomized KLE schemes that
3 We use the wording master key to emphasize that it will usually be used to derive
sub-keys for calling the underlying block cipher. We also write mk = (k, z) for key-
length extension schemes and mk = z for sequential ciphers (see Section 3.1).
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generalize both cascades and XOR-cascades,4 on the other hand we introduce
sequential ciphers that are in turn a generalization of key-alternating ciphers
(whose definition is also provided below). We show that every randomized KLE
scheme induces a sequential cipher and the security properties of these two con-
structions are tightly connected.

3.1 Definitions

Randomized KLE. Let n, κ > 0 be some fixed parameters denoting the block-
and key-length of the underlying block cipher, respectively. Fix additional pa-
rameters λ, r,m > 0. Let (φ1, . . . , φm) be m permutations of {0, 1}κ with the
property that for any k ∈ {0, 1}κ, the values (φ1(k), . . . , φm(k)) are distinct.
(Note that this imposes m ≤ 2κ.) Let σ : {1, . . . , r} → {1, . . . ,m} be a surjective
function.5 For i = 0, . . . , r, let

ρi : {0, 1}λ × {0, 1}n → {0, 1}n

be a function such that for each z ∈ {0, 1}λ, ρi(z, ·) (also denoted ρiz(·)) is a
permutation on {0, 1}n.6

A randomized key-length extension scheme R transforms a block cipher E ∈
BC(κ, n) into a new block cipher R[E] ∈ BC(κ + λ, n) specified as follows: for
a plaintext x ∈ {0, 1}n and a key (k, z) ∈ {0, 1}κ × {0, 1}λ, the ciphertext is
defined as (see Figure 1)

R[E]((k, z), x) = ρrz ◦ Ekσ(r) ◦ ρ
r−1
z ◦ Ekσ(r−1) ◦ · · · ◦ Ekσ(2) ◦ ρ

1
z ◦ Ekσ(1) ◦ ρ

0
z(x) .

where we simply write (k1, . . . , km) = (φ1(k), . . . , φm(k)). For a fixed key (k, z),
we also denote Rk,z[E] the permutation x 7→ R[E]((k, z), x).

Sequential Cipher. With the same primitives σ and (ρ0, . . . , ρr), a sequential
cipher S transforms a set of permutations P = (P1, . . . , Pm) into a block cipher
S[P ] ∈ BC(λ, n) specified as follows: for a plaintext x ∈ {0, 1}n and a key
z ∈ {0, 1}λ, the ciphertext is defined as (again see Figure 1)

S[P ](z, x) = ρrz ◦ Pσ(r) ◦ ρr−1
z ◦ Pσ(r−1) ◦ · · · ◦ Pσ(2) ◦ ρ1

z ◦ Pσ(1) ◦ ρ0
z(x) .

For a fixed key z, we denote Sz[P ] the permutation x 7→ S[P ](z, x).
4 Our randomized KLE schemes also cover the notion of sequential constructions in-
troduced in [12]. Since the latter are KLE schemes, they syntactically differ from the
notion of a sequential cipher considered here.

5 In case this causes confusion, r is the number of rounds, m is the number of distinct
keys that are used to call the underlying block cipher, and σ specifies which key is
used at each round.

6 Though each ρi is syntactically a block cipher, we prefer to avoid this wording since
in most of the paper the ρi’s will be much simpler than E, the block cipher underlying
the key-length extension scheme.
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x

z
k

Ekσ(1)ρ0
z

φσ(1)

Ekσ(2)ρ1
z

φσ(2)

Ekσ(r) yρrz

φσ(r)

x

z

Pσ(1)ρ0
z

Pσ(2)ρ1
z

Pσ(r) yρrz

Fig. 1. The randomized key-length extension construction R[E] (top), and its induced
sequential cipher R[P ] (bottom).

3.2 Induced Sequential Ciphers

When the key k is fixed in some key-length extension scheme R, the resulting
scheme can be regarded as a sequential cipher with key space {0, 1}λ using
independent random permutations P1, . . . , Pm in place of Eφ1(k), . . . , Eφm(k) in
the ideal cipher model. We formalize this remark as follows.

Definition 1. Let R be a randomized key-length extension scheme defined as
above. The induced sequential cipher of R, denoted R, is a sequential cipher which
specifies a block cipher R[P ] ∈ BC(λ, n) from an m-tuple of permutations P =
(P1, . . . , Pm) of {0, 1}n by replacing each call to E(φi(k), ·), resp. E−1(φi(k), ·)
when computing Rk,z[E](x) by a call to Pi(·), resp. P−1

i (·) in the computation
of Rz[P ](x).

Example 1. If we let σ be the identity, λ = (r + 1)n and ρi(z, u) = u ⊕ zi for
i = 0, . . . , r where z is split as z = (z0, . . . , zr) ∈ ({0, 1}n)r+1, then the resulting
randomized KLE and sequential cipher constructions are called an XOR-cascade
scheme and a key-alternating cipher (KAC), respectively.

More formally, the r-round XOR-cascade construction XCE turns a block
cipher E ∈ BC(κ, n) into a new block cipher XCE[E] ∈ BC(κ + (r + 1)n, n) as
follows. Let (φ1, . . . , φr) be r permutations of {0, 1}κ with the property that for
any k ∈ {0, 1}κ, the values (φ1(k), . . . , φr(k)) are distinct. Then for a plaintext
x ∈ {0, 1}n and a key (k, z) ∈ {0, 1}κ × ({0, 1}n)r+1 with z = (z0, . . . , zr), the
ciphertext is defined as (see also Figure 2):

XCE[E]((k, z), x) = ⊕zr ◦ Eφr(k) ◦ ⊕zr−1 ◦ Eφr−1(k) ◦ · · · ◦ ⊕z1 ◦ Eφ1(k) ◦ ⊕z0(x),

where ⊕zi denotes the mapping x 7→ x ⊕ zi. Its induced sequential cipher XCE
is the key-alternating cipher (hence denoted KAC)

XCE[P ](z, x) = KAC[P ](z, x) = ⊕zr ◦Pr ◦⊕zr−1 ◦Pr−1 ◦ · · · ◦ ⊕z1 ◦P1 ◦⊕z0(x) .
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A tight bound for the security of key-alternating ciphers was given in [8]. We
show how to extend their approach to the more general case of sequential ciphers,
as this will turn out to be useful in our later proofs. Due to space constraints,
we present this extension in Appendix B.

Example 2. A more specialized case of the XOR-cascade scheme (i.e., taking
r = 1) is the FX construction of [15] (the generic variant of DESX, attributed
to Rivest) which turns a block cipher E ∈ BC(κ, n) into a block cipher FX[E] ∈
BC(κ+ 2n, n) defined as

FXk,(z0,z1)[E](x) = Ek(x⊕ z0)⊕ z1.

The resulting construction FX, for a permutation P ∈ Pn, is

FX(z0,z1)[P ](x) = P (x⊕ z0)⊕ z1,

which is exactly the Even-Mansour cipher [11].

3.3 The Reduction

In this section we prove our main lemma that reduces the security of a random-
ized key-length extension scheme to the security of the corresponding induced
sequential cipher. It can be seen as a generalization of [12, Theorem 2] to more
general classes of constructions and as well to the setting where the number of
construction queries qc is arbitrary (rather than qc = 2n).

Lemma 1. Let R be a randomized key-length extension scheme and let R be its
induced sequential cipher. Then for qc, qe,M > 0, one has

Advcca
R (qc, qe) ≤

mqe
KM

+ Advcca
R (qc,M).

Proof. Consider a distinguisher D interacting with (P,E), where E is an ideal
cipher and P is either the construction Rk,z[E] for a uniformly random key
(k, z) ∈ {0, 1}κ × {0, 1}λ, or a random permutation independent from E. Fol-
lowing the H-coefficients technique [22, 8], we summarize all the information
gathered by the distinguisher when interacting with the system (P,E) in the
raw query transcript which is simply the ordered list of queries of D to its or-
acles together with their answers. From this raw query transcript we can build
the construction query transcript

QC = ((x1, y1), . . . , (xqc , yqc)),

where the i-th pair (xi, yi) indicates that the i-th query to the construction/ran-
dom permutation oracle was either P (xi) with answer yi or P−1(yi) with answer
yi. Similarly, we can build the ideal cipher query transcript

QE = ((u1, k1, v1), . . . , (uqe , kqe , vqe)),

10



where the i-th triple (ui, ki, vi) indicates that the i-th query to the ideal cipher
was either E(ki, ui) with answer vi or E−1(ki, vi) with answer ui. (Since the
distinguisher is deterministic, the raw query transcript can unambiguously be
reconstructed from the pair (QC ,QE).)

Moreover, in the real world, the key k (but not z) is given for free to D at the
end of its queries, while in the ideal world (where no such key exists), a dummy
key k is drawn uniformly at random and given to D. (This can only increase
the distinguishing advantage since D can disregard this additional information.)
This results in what we simply call the transcript τ = (QC ,QE , k) of the attack.
We will say that a transcript τ = (QC ,QE , k) is attainable if there exists a
permutation P and a block cipher E such that the interaction of D with (P,E)
yields queries transcripts (QC ,QE) (said otherwise, the probability to obtain
this transcript in the “ideal” world is non-zero). Finally, we let Tre, resp. Tid
denote the probability distribution of the transcript τ induced by the real world,
resp. the ideal world (note that these two probability distributions depend on
the distinguisher). By extension, we use the same notation to denote a random
variable distributed according to each distribution.

Let D be an optimal distinguisher making qc construction queries and qe
ideal-cipher queries such that7

Advcca
R (qc, qe) = Advcca

R (D) =
∑
τ∈T1

Pr[Tid = τ ]−
∑
τ∈T1

Pr[Tre = τ ]

and let T1 be the set of attainable transcripts τ = (QC ,QE , k) such that the dis-
tinguisher outputs 1 when obtaining τ . Given an ideal-cipher queries transcript
QE , we also define the set of bad keys as

Bad(QE) = {k ∈ {0, 1}κ : |{(x, y) : (x, k, y) ∈ QE}| > M}.

(Hence, a key k is bad if it appears strictly more than M times in QE .) We
say that an attainable transcript τ = (QC ,QE , k) is bad if φi(k) ∈ Bad(QE)
for some i = 1, . . . ,m, and good otherwise. We denote resp. Tbad and Tgood the
sets of bad and good transcripts (which form a partition of the set of attainable
transcripts T ). Then we have

Advcca
R (D) =

∑
τ∈T1

Pr[Tid = τ ]−
∑
τ∈T1

Pr[Tre = τ ]

≤
∑

τ∈Tbad

Pr[Tid = τ ] +
∑

τ∈T1∩Tgood

Pr[Tid = τ ]−
∑

τ∈T1∩Tgood

Pr[Tre = τ ] (1)

where the inequality follows from the fact that Tgood and Tbad form a partition
of the set of attainable transcripts T . We upper bound each summand in turn.

Since in the ideal world the key k is drawn uniformly at random at the end
of the interaction of the distinguisher with its oracles, we clearly can bound
7 Without loss of generality, we can assume

∑
τ∈T1

Pr[Tid = τ ] ≥
∑

τ∈T1
Pr[Tre = τ ]

by slightly modifying D if necessary.
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∑
τ∈Tbad

Pr[Tid = τ ] = Pr[Tid ∈ Tbad] as

Pr[Tid ∈ Tbad] ≤
m∑
i=1

Pr[k ←$ {0, 1}κ : φi(k) ∈ Bad(QE)] ≤ mqe
KM

, (2)

where the last inequality follows from the fact that each φi is a permutation
(hence φi(k) is uniformly random) and that the size of Bad(QE) is at most
qe/M by definition.

To upper bound the second term, we consider the following (probabilistic)
distinguisher D against construction R (in the random permutation model),
which uses D as a subroutine. D has access to m + 1 permutation oracles
(P0, P1, . . . , Pm), where P0 is either the construction Rz[P1, . . . , Pm] for some ran-
dom key z ←$ {0, 1}λ, or a random permutation independent from (P1, . . . , Pm).
At the beginning of the experiment, D draws a key k ←$ {0, 1}κ uniformly at
random. Then, D runs D and answers its queries as follows. First, it relays any
construction query from D to its own construction oracle and relays back the
corresponding answer to D. When D makes any ideal cipher query for some key
k′ /∈ {φ1(k), . . . φm(k)}, D simulates a perfectly random permutation associated
with k′. If D makes an ideal cipher query for some key φi(k), i = 1, . . . ,m, D
relays this query to permutation oracle Pi and forwards the corresponding an-
swer to D. However, if D attempts to make more than M queries corresponding
to some key φi(k), i = 1, . . . ,m, then D aborts and outputs 0. (Hence D always
makes at most M queries to each permutation oracle Pi, i = 1, . . . ,m.) Other-
wise, once D has finished its queries, D forwards k to D (recall that we include
k in the transcript) and outputs the same value as D. Clearly, when D is inter-
acting with (P0, P1, . . . , Pm), where P0 is the construction Rz[P1, . . . , Pm] then
it is perfectly simulating the real world (Rk,z[E], E) to D, while when D is inter-
acting with (P0, P1, . . . , Pm) where P0 is independent from (P1, . . . , Pm), then
it is perfectly simulating the ideal world (P,E) to D. Hence, the distinguishing
advantage of D is

Advcca
R (D) =

∣∣∣∣∣∣
∑

τ∈T1∩Tgood

Pr[Tre = τ ]−
∑

τ∈T1∩Tgood

Pr[Tid = τ ]

∣∣∣∣∣∣ . (3)

Since D makes at most qc queries to its construction and at most M queries to
each permutation oracle Pi, i = 1, . . . ,m, and since in the information-theoretic
setting the advantage of a probabilistic adversary cannot be larger than the one
of the best deterministic adversary, one has

Advcca
R (D) ≤ Advcca

R (qc,M). (4)

Combining (1), (2), (3), and (4), we obtain

Advcca
R (D) = Advcca

R (qc, qe) ≤
mqe
KM

+ Advcca
R (qc,M). ut

The following corollary can be easily obtained after optimization of M in
Lemma 1 when one has a simple enough upper bound on Advcca

R (qc, qp).
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Fig. 2. The XOR-cascade key-length extension scheme XCE[E].

Corollary 1. Let R be a randomized key-length extension scheme and let R be
its induced sequential cipher. Assume that

Advcca
R (qc, qp) ≤ A+B

qαc q
β
p

Nγ
,

where A,B, α, β, γ do not depend on qp, and B ≥ 1, β ≥ 1. Then

Advcca
R (qc, qe) ≤ A+mB(β + 1)

(
qαc q

β
e

KβNγ

) 1
β+1

.

4 Randomized Key-Length Extension Schemes

In this section, we derive security bounds for various randomized KLE schemes.

4.1 XOR-Cascades: Tight Bounds

As a first application, we complete the picture of the security of the XOR-cascade
key-length extension scheme with independent whitening keys introduced in [12].
We derive a tight security bound for the setting with less than 2n construction
queries. Recall the definition of the r-round XOR-cascade construction XCE given
in Section 3.2, Example 1.

Lemma 1 shows that the security of the r-round XOR-cascade construction
is directly related to the security of the corresponding r-round key-alternating
cipher KAC. It was observed in [12] to be related to the security of the (r − 1)-
round key-alternating cipher, but in hindsight this rather appears as an artifact
of the setting qc = 2n.

Combining the result (6) on the security of KAC (following from [8] and
given in Appendix B) with Lemma 1, we obtain that for any integer M such
that qc +M ≤ N/2,

Advcca
XCE(qc, qe) ≤

rqe
KM

+ 4(r + 2)
(

rqcM
r

(r + 2)Nr

) 1
r+1

.

After the optimization of M (by equating the two summands), we arrive at the
following theorem.
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Theorem 1. Consider the r-round XOR-cascade construction XCE. Then

Advcca
XCE(qc, qe) ≤ Cr

(
qcq

r
e

KrNr

) 1
2r+1

,

where Cr is a constant that depends only on r, namely

Cr =
(
24r+3 · rr+1(r + 2)r

) 1
2r+1 ∈ O(r).

In short, XOR-cascade encryption is secure as long as qcqre is small compared
to 2r(κ+n). We note that this security bound is matched by a generic attack on
sequential constructions given in [12, Theorem 3], since this attack can be easily
generalized for arbitrary qc as observed there.

4.2 2XOR: Tight Bounds
The construction 2XOR was proposed by Gaži and Tessaro [14] to turn a block
cipher E ∈ BC(κ, n) into a new block cipher 2XOR[E] ∈ BC(κ+ n, n) defined as

2XORk,z[E](x) = Eφ(k)(Ek(x⊕ z)⊕ z) ,

where φ is any (fixed) permutation of {0, 1}κ without fixed points. They showed
the following result.

Theorem 2 ([14, Theorem 3]). For any integer qe,

Advcca
2XOR(qc = 2n, qe) ≤ 4 ·

( qe
2κ+n/2

) 2
3
.

We describe how to attack 2XOR for any 1 ≤ c ≤ n/2 using roughly 2c
construction queries and 2κ+n−c block-cipher queries.

Theorem 3. Let 1 ≤ c ≤ n/2 and 1 ≤ t ≤ c be integers such that t is even.
There exists a distinguisher D which makes at most qc = 2c+t/2 (forward) con-
struction queries and qe = 2κ+n−c+t/2+1 ideal cipher queries, and which achieves

Advcca
2XOR(D) ≥ 1− 2κ+n−2t(n−1).

In particular, for c = n/2 and t = blog2(κ/n+1)c+1, its advantage is negligibly
close to 1 (asymptotically in n), and its complexity is qc = O(2n/2) and qe =
O(2κ+n/2) (for κ/n constant).

Proof. Consider the distinguisher D depicted in Figure 3 (we assume n to be
even for simplicity). For its analysis, first note that for any z ∈ {0, 1}n, the size
of the set Vz determined on line 10 is exactly 2t, due to the choice of the sets
X and U . When D interacts with (2XORk,z[E], E), it always outputs 1 since
the check on line 11 succeeds for the real key (k, z). In the ideal world (P,E),
we can upper-bound the probability that the distinguisher outputs 1 as follows:
for each key (k, z), the values ṽ(k, u) and ũ(k, x) for the 2t pairs (x, u) ∈ Vz
are independent, so that the probability that the check on line 11 succeeds is
exactly 1

(2n)2t
≤ 2−2t(n−1). By the union bound over the 2κ+n pairs (k, z), the

probability that D returns 1 is at most 2κ+n−2t(n−1). ut
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Distinguisher DS,E: where S ∈ {2XORk,z[E], P}
1: let X := {x′0n−c−t/2 : x′ ∈ {0, 1}c+t/2} ⊆ {0, 1}n
2: let U := {0c−t/2u′ : u′ ∈ {0, 1}n−c+t/2} ⊆ {0, 1}n
3: for all x ∈ X do
4: query y(x) := S(x)
5: for all (k, x) ∈ {0, 1}κ ×X do
6: query ũ(k, x) := E−1

φ(k)(y(x))
7: for all (k, u) ∈ {0, 1}κ × U do
8: query ṽ(k, u) := Ek(u)
9: for all (k, z) ∈ {0, 1}κ × {0, 1}n do
10: let Vz := {(x, u) ∈ X × U | x⊕ u = z}
11: if ∀(x, u) ∈ Vz : ṽ(k, u)⊕ ũ(k, x) = z then
12: return 1
13: return 0

Fig. 3. Distinguisher D for the proof of Theorem 3, attacking the construction 2XOR
and parametrized by c, t.

To illustrate that the tradeoff qcqe ≤ 2κ+n imposed by the attack above is
tight for 0 ≤ log2(qc) ≤ n/2, consider the sequential cipher 2XOR induced by
2XOR. By a trivial reduction (simulating its last, independent random permuta-
tion), one can show that 2XOR is at least as secure as the Even-Mansour cipher
FX described in Example 2 in Section 3.2. However, it follows from [11] that FX
is secure as long as qcqp ≤ 2n, which, via 2XOR and the application of Lemma 1,
implies that 2XOR is secure roughly as long as qcqe ≤ 2κ+n. This completes the
picture for 2XOR on the interval 0 ≤ log2(qc) ≤ n/2. For any qc ≥ 2n/2, a tight
bound for 2XOR is qe = 2κ+n/2 as follows from Theorems 2 and 3, hence the
security of 2XOR is now understood for the full spectrum of parameters (qc, qe)
(see Figure 5).

4.3 3XOR: Final Whitening Step Helps

It was also argued in [14] that the 2XOR construction has optimal security within
a large class of (so-called sequential) two-query constructions in the following
sense: They give a generic attack on any construction from this class requiring
roughly 2n construction queries and 2κ+n/2 block-cipher queries, hence matching
the security bound from Theorem 2. However, this only shows the optimality of
the 2XOR construction (and in particular, no need to add a final XOR step at its
end) in the setting where qc = 2n is assumed. As we show below, the situation
changes as soon as we also consider lower values of qc. In this general case, adding
a third randomization step actually does improve security for some range of the
parameters (qc, qe).

We define the 3XOR construction similarly to the 2XOR construction, but
with a final whitening step (see Figure 4), i.e.,
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Fig. 4. The 3XOR[E] key-length extension scheme.

3XORk,z[E](x) = Eφ(k)(Ek(x⊕ z)⊕ z)⊕ z .

Note that 3XOR is simply the 2-round XCE construction with identical whitening
keys in-between the block-cipher calls. The induced sequential cipher 3XOR is
hence the 2-round Even-Mansour cipher with independent permutations and
identical round keys:

3XORz[P1, P2](x) = P2(P1(x⊕ z)⊕ z)⊕ z .

The security of this construction was analyzed by Chen et al. [7]. We give their
result as Theorem 8 in Appendix C. Combining it with Corollary 1, we obtain
the following theorem for the security of the 3XOR construction.

Theorem 4. Assume that n ≥ 11, qc ≥ 9n, qe ≥ 9n, and 2qc + 2qe ≤ N . Then
the following upper bounds hold:

(i) When qc ≤ 2n4 , one has

Advcca
3XOR(qc, qe) ≤ 24

( qcqe
KN

) 1
2
.

(ii) When 2n4 ≤ qc ≤ 2 2n
3 , one has

Advcca
3XOR(qc, qe) ≤

6
N

+ 4× (13 + 9
√
n)
(
q

1
5
c qe

KN
4
5

) 1
2

.

(iii) When 2 2n
3 ≤ qc ≤ 2 3n

4 , one has

Advcca
3XOR(qc, qe) ≤

6
N

+ 4× (13 + 9
√
n)
(
q2
cqe

KN2

) 1
2

.

(iv) When qc ≥ 2 3n
4 , one has,

Advcca
3XOR(qc, qe) ≤

1
eN

+ 6n
(

qe

KN
1
2

) 2
3

.

This security bound is qualitatively similar to the one of 2XOR for qc ≤ 2n4
and qc ≥ 2 3n

4 , but strictly better for 2n4 ≤ qc ≤ 2 3n
4 (see Figure 5). Regarding

the tightness of the bound, we note that the general attack against sequential
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Fig. 5. The security of the 3XOR key-length extension scheme. All parameters below
the (red) solid line are secure due to Theorem 4, while all parameters above the (black)
dashed line are insecure due to the attack [12]. The status for parameters between these
two lines remains unknown. The (blue) dotted line (which merges with the red solid
line for qc ≤ 2n4 and qc ≥ 2 3n

4 ) also indicates the (tight) security bound for 2XOR.

constructions given in [12, Theorem 3] applies to 3XOR, so that for any qc, the
construction is insecure for qe ≈ 2κ+n− 1

2 log2 qc . This matches the security bound
for the special cases qc ≈ 1, qc ≈ 2 2n

3 , and qc ≈ 2n (see Figure 5).
In conclusion, our results in Sections 4.2 and 4.3 show that 3XOR is always

at least as secure 2XOR for all possible values of qc, and strictly more secure for
2n/4 < qc < 23n/4.

4.4 3XSK: A 2-Call Construction without Rekeying
A drawback of the 3XOR construction is that the underlying block cipher E is
called under two distinct keys. Since rekeying is typically a costly operation for a
block cipher, it would be appealing to have a key-length extension construction
providing the same level of security as 3XOR, but calling the underlying block
cipher E with a single key. We describe such a construction in this section.

Let π be a linear orthomorphism of Fn2 (a permutation π of {0, 1}n is an
orthomorphism if z 7→ z ⊕ π(z) is also a permutation).8 We define the 3XSK
(3 XOR, single key) construction which turns a block cipher E ∈ BC(κ, n) into
a new block cipher 3XSK[E] ∈ BC(κ+ n, n) as follows (see Figure 6):

3XSKk,z[E](x) = Ek(Ek(x⊕ z)⊕ π(z))⊕ z.

The induced sequential cipher 3XSK is exactly the two-round Even-Mansour
cipher with a single permutation and the sequence of round keys (z, π(z), z),

3XSKz[P ](x) = P (P (x⊕ z)⊕ π(z))⊕ z.
8 For example, assuming n even, π : (zL, zR) 7→ (zR, zL ⊕ zR), where zL and zR are
respectively the left and right halves of z, is an F2-linear orthomorphism.
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Fig. 6. The 3XSK[E] key-length extension scheme.

Again, the security of this construction was studied by Chen et al. [7] and we
restate their findings as Theorem 9 in Section C. Combining it with Corollary 1,
we obtain the following theorem for the security of the 3XSK construction.

Theorem 5. Assume that n ≥ 9, qc ≥ 9n, qe ≥ 9n, and 4qc + 2qe ≤ N . Then
the following upper bounds hold:

(i) When qc ≤ 2n3 , one has

Advcca
3XSK(qc, qp) ≤

23
N

1
3

+ 32
( qcqe
KN

) 1
2
.

(ii) When qc ≥ 2n3 , one has

Advcca
3XSK(qc, qp) ≤

10
N

+ (23 + 6
√
n) qc
N

2
3

+ 2× (39 + 9
√
n)
(

qe

KN
2
3

) 1
2

.

(Note that this bound becomes vacuous for qc ≥ 2 2n
3 .)

This matches the security bound for 2XOR for qc < 2n3 , (and hence the lower
bound proven for 3XOR in Section 4.3 for qc < 2n4 ) while for 2n3 ≤ qc ≤ 2 2n

3 it
caps at qp ≈ 2κ+ 2n

3 (hence it is slightly worse than the security lower bound of
3XOR in that case). The security for qc larger than 2 2n

3 remains unknown. Note
that the attack given in [12] also applies to 3XSK exactly in the same way as to
3XOR, providing an upper bound on its security.

5 Plain Cascade Encryption

In this section, we give another application of Lemma 1, this time to analyze
the security of plain cascade encryption in the setting where the number of
construction queries is smaller than 2n. Recall that the `-round cascade en-
cryption using a (κ, n)-block cipher E, denoted CE[E], takes an `κ-bit key
mk = (k1, . . . , k`) ∈ ({0, 1}κ)` and encrypts a plaintext x ∈ {0, 1}n by com-
puting

y = CEmk[E](x) = Ek` ◦ Ek`−1 ◦ · · · ◦ Ek2 ◦ Ek1(x).
We focus on the security of CE for odd length ` = 2r + 1 and our result is
summarized in the following theorem.
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Theorem 6. Consider the `-round cascade encryption CE where ` = 2r+ 1 for
some r ≥ 1. Then, assuming qc ≤ N/4 and qe ≤ KN/8, one has

Advcca
CE (qc, qe) ≤

`2

K
+ e−n + r2(r + 1)

(
3nqc
K

) 1
2

+

max
{
Ar

(
qcq

r
e

KrNr

) 1
2r+1

, Br

(nqe
K2

) 1
3

}
,

where Ar ∈ O(r2) and Br ∈ O(r 7
3 ) only depend on r, namely

Ar = 6r2(r + 1)
(

2r

rr+1(r + 1)r+1

) 1
2r+1

, Br = 6r2(r + 1)
(

3
4r(r + 1)

) 1
3

.

Proof (sketch). From a high-level perspective, the proof consists of the following
steps. First, we modify the cascade to use two independent ideal ciphers E and
E′ in an interleaving manner and show that this does not introduce a large
distinguishing gap. Second, we need to assume that the block cipher E′ used in
the odd steps of the cascade is good in some well-defined sense and hence we
show that the opposite is unlikely (over the randomness of E′). Third, we publish
the complete function table of E′ (but not the keys being used with it), thus
arriving at a randomized KLE scheme of length r. Then we can apply Lemma 1
to reduce its security to the security of the induced sequential cipher. Finally,
we analyze the latter directly, using an H-coefficient analysis inspired by [8] that
employs the assumption that E′ is good. The full proof discussing each of the
individual steps in greater detail can be found in Appendix D. ut

Discussion. In terms of the number of threshold queries, cascade encryption of
length ` = 2r + 1 is hence secure when qcqre � 2r(κ+n), qc � 2κ, and qe � 22κ

(asymptotically, ignoring constants). Our bound must be compared with the
security result of Dai et al. [9], who considered the full-codebook regime qc = 2n.
They showed that, for κ ≥ n/(r + 1) (which is satisfied for virtually any real
block cipher we know of), cascade encryption of length ` = 2r + 1 is secure
when qe � 2κ+ rn

r+1 (and, obviously, this also holds for any qc < 2n). Hence,
our new bound improves on [9] when qc ≤ 2

rn
r+1 , but only assuming κ ≥ rn

r+1
since otherwise the condition qe � 22κ in our bound becomes more restrictive
than Dai et al.’s one. This is depicted on Figure 7. We remark that our bound
also applies to cascade encryption of length 2r+ 2, since adding a round cannot
decrease security.
Tightness. As observed in [12], the attack against cascades given there can be
adjusted to provide a trade-off between block-cipher and construction queries.
This results in an attack against plain cascade of length ` = 2r+ 1 that achieves
a constant distinguishing advantage as long as qcqre ≈ 2r(κ+n) and qe ≥ 2κqc
(again, ignoring constants). Note that the second condition only comes into play
when qc ≥ 2

rn
r+1 , in which case the attack requires qe ≈ 2κ+ rn

r+1 (instead of
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Fig. 7. The security of plain cascade encryption with 2r+1 or 2r+2 rounds, depending
on κ and n. All parameters below the solid line are secure due either to Theorem 6 or
the results of [9]. All parameters above the dashed line are insecure due to the attack
of [12]. The status for parameters between these lines remains unknown.
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qe ≈ 2κ+n− 1
r log2 qc). Hence, this matches the bound of [9] for qc ≥ 2

rn
r+1 . When

κ ≥ n, this also matches our own new bound for qc ≤ 2
rn
r+1 , yielding a tight

bound for all parameters. When rn
r+1 ≤ κ ≤ n, the attack matches our new

bound only for qc ≥ 2r(n−κ) since otherwise the security bound caps at qe �
22κ < 2κ+n− 1

r log2 qc . When κ ≤ rn
r+1 , there is a provable security gap between

this attack and the bound of [9] for any qc ≤ 2
rn
r+1 . This is also summarized on

Figure 7. Again, all this applies to the case of cascade encryption of length 2r+2
since Gaži’s attack [12] was given for cascades of even length. Note that the case
of 3DES (κ = 56, n = 64, and r = 1) corresponds to the middle graph.

Two-key Triple Encryption. Let TTE denote a variant of triple encryption
where the first and the third keys are identical. So TTE accepts a 2κ-bit key
mk = (k1, k2) ∈ ({0, 1}κ)2 and encrypts a plaintext x ∈ {0, 1}n by computing
y = TTEmk[E](x) = Ek1 ◦ Ek2 ◦ Ek1(x). We prove the following result.

Theorem 7. For the two-key triple encryption TTE, we have, assuming qc ≤
N/4 and qe ≤ KN/8,

Advcca
TTE(qc, qe) ≤ e−n + 2

(
3nqc
K

) 1
2

+ 12 max
{( qcqe

2KN

) 1
3
,

(
3nqe
8K2

) 1
3
}
.

Proof (sketch). Similar to the analysis of cascade encryption in the proof of
Theorem 6, we slightly modify the key-sampling process from A to B:

A: Choose mk ∈ ({0, 1}κ)2 uniformly at random.
B: Randomly partition T1∪T2 = {0, 1}κ so that |T1| = |T2|, choose z1 ∈ T1 and

k2 ∈ T2 uniformly at random, and then define mk = (z1, k2).

It is easy to show that these two processes have the same probability distribution.
The rest of the proof follows exactly the same line of arguments as the proof of
Theorem 6 for cascade encryption of length 3. ut

Acknowledgment. Peter Gaži was partly funded by the European Research
Council under an ERC Starting Grant (259668-PSPC).

Jooyoung Lee was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2013R1A1A2007488).

Yannick Seurin was partially supported by the French National Agency of
Research through the BLOC project (contract ANR-11-INS-011).

John Steinberger was funded by National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation
of China Grant 61033001, 61361136003, and by the China Ministry of Education
grant number 20121088050.

Stefano Tessaro was partially supported by NSF grant CNS-1423566.

21



References

[1] EMV Integrated Circuit Card Specification for Payment Systems, Book 2: Security
and Key Management, v.4.2. June 2008.

[2] Advanced encryption standard (aes). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

[3] W. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan. Security amplifica-
tion by composition: The case of doubly-iterated, ideal ciphers. In CRYPTO’98,
volume 1462 of LNCS, pages 390–407. Springer, Aug. 1998.

[4] E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On the
indifferentiability of key-alternating ciphers. In CRYPTO 2013, Part I, volume
8042 of LNCS, pages 531–550. Springer, Aug. 2013.

[5] M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, May / June 2006.

[6] A. Bogdanov, L. R. Knudsen, G. Leander, F.-X. Standaert, J. P. Steinberger,
and E. Tischhauser. Key-alternating ciphers in a provable setting: Encryption
using a small number of public permutations - (extended abstract). In EURO-
CRYPT 2012, volume 7237 of LNCS, pages 45–62. Springer, Apr. 2012.

[7] S. Chen, R. Lampe, J. Lee, Y. Seurin, and J. P. Steinberger. Minimizing the two-
round Even-Mansour cipher. In CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 39–56. Springer, Aug. 2014.

[8] S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers.
In EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, May
2014.

[9] Y. Dai, J. Lee, B. Mennink, and J. P. Steinberger. The security of multiple
encryption in the ideal cipher model. In CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 20–38. Springer, Aug. 2014.

[10] Data encryption standard. National Bureau of Standards, NBS FIPS PUB 46,
U.S. Department of Commerce, Jan. 1977.

[11] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. Journal of Cryptology, 10(3):151–162, 1997.

[12] P. Gaži. Plain versus randomized cascading-based key-length extension for block
ciphers. In CRYPTO 2013, Part I, volume 8042 of LNCS, pages 551–570. Springer,
Aug. 2013.

[13] P. Gaži and U. M. Maurer. Cascade encryption revisited. In ASIACRYPT 2009,
volume 5912 of LNCS, pages 37–51. Springer, Dec. 2009.

[14] P. Gaži and S. Tessaro. Efficient and optimally secure key-length extension for
block ciphers via randomized cascading. In EUROCRYPT 2012, volume 7237 of
LNCS, pages 63–80. Springer, Apr. 2012.

[15] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001.

[16] R. Lampe, J. Patarin, and Y. Seurin. An asymptotically tight security analysis of
the iterated even-mansour cipher. In ASIACRYPT 2012, volume 7658 of LNCS,
pages 278–295. Springer, Dec. 2012.

[17] R. Lampe and Y. Seurin. How to construct an ideal cipher from a small set of
public permutations. In ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
444–463. Springer, Dec. 2013.

[18] J. Lee. Towards key-length extension with optimal security: Cascade encryption
and xor-cascade encryption. In EUROCRYPT 2013, volume 7881 of LNCS, pages
405–425. Springer, May 2013.

22



[19] M. Luby and C. Rackoff. Pseudo-random Permutation Generators and Crypto-
graphic Composition. In Symposium on Theory of Computing - STOC ’86, pages
356–363. ACM, 1986.

[20] U. M. Maurer, K. Pietrzak, and R. Renner. Indistinguishability amplification. In
CRYPTO 2007, volume 4622 of LNCS, pages 130–149. Springer, Aug. 2007.

[21] U. M. Maurer and S. Tessaro. Computational indistinguishability amplification:
Tight product theorems for system composition. In CRYPTO 2009, volume 5677
of LNCS, pages 355–373. Springer, Aug. 2009.

[22] J. Patarin. The “coefficients H” technique (invited talk). In SAC 2008, volume
5381 of LNCS, pages 328–345. Springer, Aug. 2008.

[23] J. Steinberger. Improved security bounds for key-alternating ciphers via hellinger
distance. Cryptology ePrint Archive, Report 2012/481, 2012. http://eprint.
iacr.org/2012/481.

[24] S. Tessaro. Security amplification for the cascade of arbitrarily weak PRPs: Tight
bounds via the interactive hardcore lemma. In TCC 2011, volume 6597 of LNCS,
pages 37–54. Springer, Mar. 2011.

[25] S. Vaudenay. Adaptive-attack norm for decorrelation and super-pseudorandom-
ness. In SAC 1999, volume 1758 of LNCS, pages 49–61. Springer, Aug. 1999.

A Overview of Previous Results

The following tables summarize the currently known best bounds for the full-
codebook regime where qc = 2n. For a given ` (resp. r), `′ (resp. r′) is the
smallest even integer greater or equal to ` (resp. r).

`-Round Plain Cascades
Ref. Max. value of log(qe) Note
[5] κ+ min{n/2, κ/2} ` = 3
[13] κ+ min{κ(`′ − 2)/`′, n/2}
[18] κ+ min{κ, n} − 8n/`
[9] κ+ min{κ(`′ − 2)/2, n(`′ − 2)/`′}

r-Round Randomized Cascades
Ref. Max. value of log(qe) Note
[15] n+ κ− log(qc) r = 1, FX
[14] κ+ n/2 r = 2, 2XOR
[18] κ+ min{κ, n} − 4n/r
[12] κ+ r′−2

r′ n

B Security Proof for a Sequential Cipher

Here we present an analysis of the security of a sequential cipher S that uses
independent permutations in all steps (i.e., we assume that m = r and σ is
the identity function). The analysis given in this section is an extension of the
result [8] with a slight modification in the definition of bad transcripts. We
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present it here since this modification will turn out to be useful in our analysis
of the security of plain cascades in Section 5.

Under the assumption outlined above, and given keyed permutation families
(ρ0, . . . , ρr), S transforms a tuple of permutations P = (P1, . . . , Pr) into a block
cipher S[P ] ∈ BC(λ, n) specified as follows: for a plaintext x ∈ {0, 1}n and a key
z ∈ {0, 1}λ, the ciphertext is defined as

S[P ](z, x) = ρrz ◦ Pr ◦ ρr−1
z ◦ Pr−1 ◦ · · · ◦ P2 ◦ ρ1

z ◦ P1 ◦ ρ0
z(x).

Fix some deterministic distinguisher D interacting with (P0,P ) where P0
is either the construction Sz[P ] for a uniformly random key z ∈ {0, 1}λ, or
a random permutation independent from P . Following the H-coefficients tech-
nique [22, 8], we summarize all the information gathered by the distinguisher
when interacting with the system (P0,P ) in what we call the raw transcript of
the interaction, which is the ordered list of queries and answers received from the
system (i, b, w,w′), where i ∈ {0, . . . , r} names the permutation being queried, b
is a bit indicating whether this is a forward or backward query, w ∈ {0, 1}n is the
actual value queried and w′ the answer. We say that a transcript is attainable
(with respect to some fixed distinguisher D) if there exists a tuple of permu-
tations (P0, . . . , Pr) ∈ (Pn)r+1 such that the interaction of D with (P0, . . . , Pr)
yields this transcript (said otherwise, the probability to obtain this transcript
in the “ideal” world is non-zero). In fact, an attainable transcript can be repre-
sented in a more convenient way that we will use in all the following. Namely,
from the transcript we can build r + 1 lists of directionless queries

QC = ((x1, y1), . . . , (xqc , yqc))
QP1 = ((u1,1, v1,1), . . . , (u1,qp , v1,qp))

...

QPr = ((ur,1, vr,1), . . . , (ur,qp , vr,qp))

as follows. For j = 1, . . . , qc, let (0, b, w, w′) be the j-th query to P0 in the
transcript: if this was a forward query then we set xj = w and yj = w′, otherwise
we set xj = w′ and yj = w. Similarly, for each i = 1, . . . , r, and j = 1, . . . , qp, let
(i, b, w,w′) be the j-th query to Pi in the transcript: if this was a forward query
then we set ui,j = w and vi,j = w′, otherwise we set ui,j = w′ and vi,j = w.

For attainable transcripts there is a one-to-one mapping between these two
representations since the distinguisher is deterministic. Moreover, though we
defined QC ,QP1 , . . . ,QPr as ordered lists, the order is unimportant (our formal-
ization keeps the natural order induced by the distinguisher).

Moreover, following [8], we will be generous with the distinguisher by provid-
ing it, at the end of its interaction, with the actual key z when it is interacting
in the real world, or with a dummy key z selected uniformly at random when
it is interacting in the ideal world. This cannot harm since the distinguisher
is free to ignore this additional information. Hence, all in all a transcript τ is
a tuple (QC ,QP1 , . . . ,QPr , z). We will say that a transcript τ is attainable if
(QC ,QP1 , . . . ,QPr ) is attainable in the sense defined above.
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Given an attainable transcript τ = (QC ,QP1 , . . . ,QPr , z) ∈ T , we define the
contracted transcript of τ , denoted τ̃ , where

τ̃ = (Q̃0, Q̃1, . . . , Q̃r)

and (x, y) ∈ QC iff (y, ρ0
z(x)) ∈ Q̃0 and (u, v) ∈ QPi iff (u, ρiz(v)) ∈ Q̃i for

i = 1, . . . , r.
For 0 ≤ i, j ≤ r, a path of type (i, j) is a tuple of points (wi, wi+1, . . . , wj)

such that (wα, wα+1) ∈ Q̃α for α = i, . . . , j − 1, where the index increases
cyclically modulo r + 1. Let P(i, j) denote the number of paths of type (i, j) in
τ̃ . Note that P(i, i+ 1) = qp for i = 0, . . . , r− 1, and P(r, 0) = qc. For a constant
C ≥ 2, we will say that an attainable transcript τ is bad if either

P(i, j) >
Cj−i−1qj−ip

N j−i−1

for some i < j, or

P(i, j) >
Cr+j−iqcq

r+j−i
p

Nr+j−i

for some i ≥ j.9 Let Tbad denote the set of bad transcripts. Assuming qc + qp ≤
N/2 and using Lemma 1 in [8], we obtain the following upper bound.

Advcca
S (qc, qp) ≤

r2r+1Crqcq
r
p

Nr
+
∑

τ∈Tbad

Pr[Tid = τ ]. (5)

See Section B.1 for the proof (based on the same computation appearing in the
proof of Theorem 1 in [8]).

Example 3. Consider the r-round key-alternating cipher KAC defined in Exam-
ple 1 in Section 3.2. In the ideal world, the probability that a transcript satisfies
P(i, j) > Cj−i−1qj−ip

Nj−i−1 is upper bounded by 1
Cj−i−1 if 1 ≤ i+1 < j ≤ r, by Markov’s

inequality. With a similar analysis for the case i ≥ j, we obtain∑
τ∈Tbad

Pr[Tid = τ ] =
r∑

h=1

r + 1
Ch

= (r + 1)(Cr − 1)
(C − 1)Cr ≤ r + 1

C − 1 ≤
r + 2
C

(assuming r + 2 ≤ C) and hence

Advcca
KAC(qc, qp) ≤

r2r+1Crqcq
r
p

Nr
+ r + 2

C
.

Optimizing the constant C by solving r2r+1Crqcq
r
p

Nr = r+2
C , we have

Advcca
KAC(qc, qp) ≤ 4(r + 2)

(
rqcq

r
p

(r + 2)Nr

) 1
r+1

. (6)

9 Compared to [8], we weakened the upper bounds on the number of paths of type
(i, j) from Cqj−ip /N j−i−1 (resp. Cqcqr+j−i

p /Nr+j−i) to Cj−i−1qj−ip /N j−i−1 (resp.
Cr+j−iqcq

r+j−i
p /Nr+j−i).
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B.1 Proof of Equation (5)

Fix a transcript τ = (QC ,QP1 , . . . ,QPr , z) that is not bad. Given a construction
query (x`, y`), ` = 1, . . . , qc, let

(wi, wi+1, . . . , wj)

be the longest path containing w0(= ρ0
z(x`)) and wr(= y`) in the contracted

transcript τ̃ , where i ≥ j and the index increases modulo r + 1. So there is no
(wi−1, wi) ∈ Q̃i nor (wj , wj+1) ∈ Q̃j+1 for any wi−1 and wj+1. In this case, we
denote L(y`) = i and R(x`) = j, and define the distance of the query (x`, y`) as
Dist(x`, y`) = L(y`)− R(x`)(= i− j).

Let Pr(`) denote the conditional probability of S[P ](z, x`+1) = y`+1 over
the random choice of P = (P1, . . . , Pr) given that P ` (QP1 , . . . ,QPr ) and
S[P ](z, xi) = yi for i = 1, . . . , `. If Dist(x`+1, y`+1) = h ≥ 1, then by Lemma 1
in [8] and since C ≥ 2 and N ≥ 2(qc + qp), we obtain

Pr(`) ≥ 1
N − `

− 1
N − `

∑
σ

|σ|∏
α=1

|P(iα−1, iα)|
N − `− |P(iα − 1, iα)|

≥ 1
N − `

− 1
N − `

∑
σ

|σ|∏
α=1

Ciα−iα−1−1q
iα−iα−1
p /N iα−iα−1−1

N − `− qp

= 1
N − `

− 1
N − `

∑
σ

(
Cqp
N

)h(
N

C(N − `− qp)

)|σ|

= 1
N − `

− 1
N − `

(
Cqp
N

)h h∑
s=1

(
h− 1
s− 1

)(
N

C(N − `− qp)

)s
= 1
N − `

− 1
N − `

(
Cqp
N

)h(
N

C(N − `− qp)

)(
1 + N

C(N − `− qp)

)h−1

≥ 1
N − `

− 1
N − `

(
Cqp
N

)h(
1 + N

C(N − `− qp)

)h
≥ 1
N − `

− 1
N − `

(
2Cqp
N

)h
where the sum is taken over all sequences σ = (i0, . . . , is) with R`+1 = i0 < . . . <
is = L`+1, and where |σ| = s. For h = 0, . . . , r, let

Lh = {` : Dist(x`, y`) = h} ⊂ {1, . . . , qc}.

Then sets L0, . . . ,Lr would partition the total set of indices {1, . . . , qc}. Since

|Lh| ≤
rqc(Cqp)r−h

Nr−h
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for h ≥ 1, we have

∏
`+1∈Lh

Pr(`)
1/(N − `) ≥

∏
`+1∈Lh

(
1−

(
2Cqp
N

)h)

≥ 1− rqc(Cqp)r−h

Nr−h

(
2Cqp
N

)h
= 1− rqc(Cqp)r2h

Nr
.

For h = 0, if qc(Cqp)r
Nr ≥ 1, then the above inequality trivially holds. Otherwise,

we have L0 = ∅ since τ is not bad. Overall, we have

Pr[Tre = τ ]
Pr[Tid = τ ] =

qc−1∏
`=0

Pr(`)
1/(N − `) ≥ 1−

r∑
h=0

rqc(Cqp)r2h

Nr
= 1− r(2

r+1 − 1)qc(Cqp)r

Nr
.

Therefore, for any distinguisher D making qc construction queries and qp per-
mutation queries to each of the inner permutations, we have

Adv(D) =
∑
τ∈T1

(Pr[Tid = τ ]− Pr[Tre = τ ])

=
∑

τ∈T1\Tbad

(Pr[Tid = τ ]− Pr[Tre = τ ])

+
∑

τ∈T1∩Tbad

(Pr[Tid = τ ]− Pr[Tre = τ ])

≤
∑

τ∈T1\Tbad

(Pr[Tid = τ ]− Pr[Tre = τ ]) +
∑

τ∈Tbad

Pr[Tid = τ ]

≤
∑

τ∈T1\Tbad

Pr[Tid = τ ]
(

1− Pr[Tre = τ ]
Pr[Tid = τ ]

)
+
∑

τ∈Tbad

Pr[Tid = τ ]

≤ r(2r+1 − 1)qc(Cqp)r

Nr

∑
τ∈T1\Tbad

Pr[Tid = τ ] +
∑

τ∈Tbad

Pr[Tid = τ ]

≤ r2r+1qc(Cqp)r

Nr
+
∑

τ∈Tbad

Pr[Tid = τ ].

C Some Previous Results on Sequential Ciphers

The following two results were proven in [7].

Theorem 8. Consider the sequential cipher 3XOR, i.e., the 2-round Even-Man-
sour cipher with independent permutations and identical round keys. Assume that
n ≥ 11, qc ≥ 9n, qp ≥ 9n, and 2qc + 2qp ≤ N . Then the following upper bounds
hold:
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(i) When qc ≤ 2n4 , one has

Advcca
3XOR(qc, qp) ≤

6qcqp
N

.

(ii) When 2n4 ≤ qc ≤ 2 2n
3 , one has

Advcca
3XOR(qc, qp) ≤

6
N

+ (13 + 9
√
n)q

1
5
c qp

N
4
5
.

(iii) When 2 2n
3 ≤ qc ≤ 2 3n

4 , one has

Advcca
3XOR(qc, qp) ≤

6
N

+ (13 + 9
√
n)q

2
cqp
N2 .

(iv) When qc ≥ 2 3n
4 , one has,

Advcca
3XOR(qc, qp) ≤

1
eN

+
nq2
p

N
.

Theorem 9. Consider the sequential cipher 3XSK, i.e., the 2-round Even-Man-
sour cipher with a single permutation and round keys (z, π(z), z). Assume that
n ≥ 9, qc ≥ 9n, qp ≥ 9n, and 4qc + 2qp ≤ N . Then the following upper bounds
hold:

(i) When qc ≤ 2n3 , one has

Advcca
3XSK(qc, qp) ≤

23
N

1
3

+ 16qcqp
N

.

(ii) When qc ≥ 2n3 , one has

Advcca
3XSK(qc, qp) ≤

10
N

+ (23 + 6
√
n) qc
N

2
3

+ (39 + 9
√
n) qp
N

2
3
.

D Proof of Theorem 6

Separating Block Ciphers. We begin by slightly modifying the key sampling
process of CE. Consider the following two key-sampling processes.

A: Choose mk ∈ ({0, 1}κ)` uniformly at random.
B: Randomly partition T1 ∪ T2 = {0, 1}κ so that |T1| = |T2|, choose z =

(z0, . . . , zr) ∈ (T1)r+1 and k = (k1, . . . , kr) ∈ (T2)r uniformly at random,
and then define

mk = (z0, k1, z1, k2, . . . , kr, zr).
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Then one can distinguish sampling processes A and B with advantage at most
`2/2κ. We defer the proof of this claim to Appendix E.

In the ideal cipher model, each partition (T0, T1) produces two independent
sets of block ciphers BC(T0, n) and BC(T1, n), each of which can be considered
as BC(κ − 1, n). Therefore cascade encryption using key sampling processes B
would have the same security as CE′ that encrypts an n-bit message block x as

y = E′zr ◦ Ekr ◦ · · · ◦ E
′
z1
◦ Ek1 ◦ E′z0

(x)

where block ciphers E and E′ are independently chosen from BC(κ− 1, n), and
keys z = (z0, . . . , zr) and k = (k1, . . . , kr) are chosen uniformly at random from(
{0, 1}κ−1)r+1 and

(
{0, 1}κ−1)

r
respectively. Therefore we have

Advcca
CE (qc, qe) ≤

`2

2κ + Advcca
CE′(qc, qe). (7)

Choosing a Good Block Cipher E′. In order to analyze the security of CE′,
we require a certain property for E′. For A, B ⊂ {0, 1}n and a fixed constant
C ≥ 1, let

Bad(A,B,E′) =
{
z ∈ {0, 1}κ−1 : |E′z(A) ∩B| > C|A||B|

N

}
µ(A,B,E′) = |Bad(A,B,E′)| (8)

where E′z(A) = {E′z(a) : a ∈ A}. We also fix a certain “threshold” number
M∗ > 0. We would like the maximum of µ(A,B,E′) over the sets A and B such
that |A|, |B| ≤M∗ to be small (compared to the total number of keys K/2) for
most block ciphers E′ ∈ BC(κ− 1, n).

Lemma 2. Let µ(A,B,E′) be defined as in (8). Then for any ε > 0,

Pr
[
E′ ←$ BC(κ− 1, n) : max

|A|,|B|≤M∗
µ(A,B,E′) >

(
1
C

+ ε

)
K

2

]
≤ e2nM∗−ε2K .

Proof (of Lemma 2). Fix A, B ⊂ {0, 1}n such that |A|, |B| ≤ M∗ and fix a key
z ∈ {0, 1}κ−1. Over a random choice of a block cipher E′ ∈ BC(κ − 1, n), we
define a random variable Xz where Xz = 1 if |E′z(A)∩B| > C|A||B|

N , and Xz = 0
otherwise. Since the expected value of |E′z(A) ∩ B| is |A||B|N , then by Markov’s
inequality, we have

E(Xz) = Pr
[
E′ ←$ BC(κ− 1, n) : |E′z(A) ∩B| > C|A||B|

N

]
≤ 1
C
.

Since random variables Xz, z ∈ {0, 1}κ−1, are independent and µ(A,B,E′) =∑
z∈{0,1}κ−1 Xz, we can use Hoeffding’s inequality to obtain

Pr
[
µ(A,B,E′) >

(
1
C

+ ε

)
K

2

]
≤ e−ε

2K
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for any real value ε > 0. Again, by using union bound over all possible pairs
(A,B) of subsets and inequality(

M∗∑
i=1

(
N

i

))2

≤ (N + 1)2M∗ ≤ e2nM∗

we obtain the lemma. ut

Fix parameters ε, M , qc > 0 and C ≥ 1 and let M∗ = max{M, qc}. We will
call a block cipher E′ good if

max
|A|,|B|≤M∗

µ(A,B,E′) ≤
(

1
C

+ ε

)
K

2 .

Then we slightly modify CE′ by having E′ chosen uniformly at random from the
set of good block ciphers. For the resulting encryption scheme, denoted CE′′, we
have

Advcca
CE′(qc, qe) ≤ e2nM∗−ε2K + Advcca

CE′′(qc, qe) (9)

by Lemma 2.

Publishing the Codebook of E′. In this step, we analyze the security of CE′′
for a distinguisher given more power by allowing to make all possible queries to
E′. This way, the block cipher E′ becomes a permutation family (in the standard
model). In order to analyze the security of CE′′ using Lemma 1, we need to
consider the corresponding sequential cipher CE′′ that accepts a random key
z = (z0, . . . , zr) ∈ ({0, 1}κ−1)r+1 and encrypts an n-bit message block x as

y = E′zr ◦ Pr ◦ · · · ◦ E
′
z1
◦ P1 ◦ E′z0

(x)

where the key z is kept secret, P1, . . . , Pr are modeled as independent random
permutations on {0, 1}n and E′ is a good block cipher for which every evaluation
has been revealed.

Security of the Sequential Cipher CE′′. Consider a distinguisher D for
the induced cipher CE′′ that makes exactly M queries to each of Pi, i = 1, . . . , r,
and qc queries to P0, where we denote P0 the construction/random permuta-
tion oracle. For an attainable transcript τ = (QC ,QP1 , . . . ,QPr , z) ∈ T that D
obtains at the end of the interaction with the system of oracles, we will simply
write Qi = QPi for i = 1, . . . , r and define Q0, where (x, y) ∈ QC if and only if
(y, x) ∈ Q0.

Fix 0 ≤ i, j ≤ r such that j 6≡ i + 1 (mod r + 1). A key z = (z0, . . . , zr) is
said to be good of type (i, j) if

zi+1 /∈ Bad (Rng(Qi+1),Dom(Qi+2))

zi+2 /∈ Bad
(

Rng(Qi+2 ◦ E′zi+1
◦ Qi+1),Dom(Qi+3)

)
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zi+3 /∈ Bad
(

Rng(Qi+3 ◦ E′zi+2
◦ Qi+2 ◦ E′zi+1

◦ Qi+1),Dom(Qi+4)
)

...

zj−1 /∈ Bad
(

Rng(Qj−1 ◦ E′zj−2
◦ Qj−2 ◦ · · · ◦ E′zi+1

◦ Qi+1),Dom(Qj)
)

where the index increases modulo r + 1. Let P(i, j) denote the number of paths
of type (i, j) in the contracted transcript as defined in Appendix B.

First, note that if a key z is good of type (i, j), then we can easily upper-
bound P(i, j). Namely, we have

P(i, j) ≤ Cj−i−1M j−i

N j−i−1

for i < j, and

P(i, j) ≤ Cj−i−1qcM
j−i−1

N j−i−1

for i ≥ j, since when j 6≡ i+ 1 (mod r + 1),

P(i, j) = Rng(Qj ◦ ρj−1
z ◦ Qj−1 ◦ · · · ◦ ρi+1

z ◦ Qi+1).

Second, we establish a lower bound on the probability that a random key
z ∈ ({0, 1}κ−1)r+1 is good of type (i, j). Since E′ is a good block cipher and
|Rng(Qi)|, |Dom(Qi+1)| ≤M∗, we have

|Bad (Rng(Qi),Dom(Qi+1)) | ≤
(

1
C

+ ε

)
K

2 .

So the probability that a random zi ∈ {0, 1}κ−1 is in Bad (Rng(Qi),Dom(Qi+1))
is upper bounded by 1

C + ε. For each α = i + 1, . . . , j − 2 (increasing cyclically
modulo r + 1), suppose that

zi+1 /∈ Bad (Rng(Qi+1),Dom(Qi+2))

zi+2 /∈ Bad
(

Rng(Qi+2 ◦ E′zi+1
◦ Qi+1),Dom(Qi+3)

)
...

zα−1 /∈ Bad
(

Rng(Qα−1 ◦ E′zα−2
◦ Qα−2 ◦ · · · ◦ E′zi+1

◦ Qi+1),Dom(Qj)
)

Given this condition, it follows that∣∣∣Rng(Qα ◦ E′zα−1
◦ Qα−1 ◦ · · · ◦ E′zi+1

◦ Qi+1)
∣∣∣ = P(i, α) ≤ CβMβM∗

Nβ
≤M∗

assuming CM/N ≤ 1, where β = α− i if i < α and β = r+α+1− i otherwise.10

Therefore the conditional probability that

zα ∈ Bad
(

Rng(Qα ◦ E′zα−1
◦ Qα−1 ◦ · · · ◦ E′zi ◦ Qi),Dom(Qα+1)

)
10 If CM/N > 1, then the probability of obtaining bad transcripts in the ideal world

becomes zero. So we don’t need to consider this case.
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for a random zα ∈ {0, 1}κ−1 is upper bounded by 1
C + ε again. Overall, the

probability that a random key z ∈ ({0, 1}κ−1)r+1 is good of type (i, j) is at least(
1−

( 1
C + ε

))r.
We now define a key z ∈ ({0, 1}κ−1)r+1 to be bad if it is not good of type (i, j)

for some pair of (i, j). Accordingly, a transcript τ = (QC ,QP1 , . . . ,QPr , z) ∈ T
is said to be bad if z is a bad key. Then, for the set of bad transcripts Tbad we
have ∑

τ∈Tbad

Pr[Tid = τ ] ≤ r(r + 1)
(

1−
(

1−
(

1
C

+ ε

))r)
≤ r(r + 1)

(
1−

(
1− r

(
1
C

+ ε

)))
≤ r2(r + 1)

(
1
C

+ ε

)
.

Therefore, by the bound (5) for sequential ciphers given in Appendix B, assuming
qc +M ≤ N/2, we have

Advcca
CE′′(qc,M) ≤ r2r+1CrqcM

r

Nr
+ r2(r + 1)

(
1
C

+ ε

)
. (10)

Applying the Main Lemma. Finally, we apply Lemma 1 to CE′′ along with
(7), (9) and (10) to obtain, again assuming qc +M ≤ N/2,

Advcca
CE (qc, qe) ≤

`2

K
+ Advcca

CE′(qc, qe)

≤ `2

K
+ e2nM∗−ε2K + Advcca

CE′′(qc, qe)

≤ `2

K
+ e2nM∗−ε2K + rqe

MK
+ Advcca

CE′′(qc,M)

≤ `2

K
+ e2nM∗−ε2K + rqe

MK
+ r2r+1CrqcM

r

Nr

+ r2(r + 1)
(

1
C

+ ε

)
. (11)

Optimizing Parameters. It remains to optimize parameters ε, M and C in
Eq. (11). First, we set

M = Cqe
r(r + 1)K ,

so that
rqe
MK

= r2(r + 1)
C

.

Next, if we set

ε =
(

3n(M + qc)
K

) 1
2

=
(

3nCqe
r(r + 1)K2 + 3nqc

K

) 1
2

≤
(

3nCqe
r(r + 1)K2

) 1
2

+
(

3nqc
K

) 1
2
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then we have
e2nM∗−ε2K ≤ e−n

and hence

Advcca
CE (qc, qe) ≤

`2

K
+ e−n + 2r2(r + 1)

C
+ 2r+1C2rqcq

r
e

rr−1(r + 1)rKrNr
+

+ r2(r + 1)
(

3nCqe
r(r + 1)K2

) 1
2

+ r2(r + 1)
(

3nqc
K

) 1
2

.

If we set
2r2(r + 1)

C1
= 2r+1C2r

1 qcq
r
e

rr−1(r + 1)rKrNr

then we obtain

C1 =
(
rr+1(r + 1)r+1KrNr

2rqcqre

) 1
2r+1

while by solving

2r2(r + 1)
C2

= r2(r + 1)
(

3nC2qe
r(r + 1)K2

) 1
2

we have

C2 =
(

4r(r + 1)K2

3nqe

) 1
3

.

So we put C := min{C1, C2} and also denote D := `2

K + e−n + r2(r+ 1)
( 3nqc
K

) 1
2

to simplify the expressions. Then it follows that

Advcca
CE (qc, qe) ≤ D + 2r2 (r + 1)

(
max

{
1
C1
,

1
C2

}
+ 1
C1

+ 1
C2

)
≤ D + 6r2 (r + 1) max

{
1
C1
,

1
C2

}
≤ D + 6r2 (r + 1) max

{(
2rqcqre

rr+1(r + 1)r+1KrNr

) 1
2r+1

,

(
3nqe

4r(r + 1)K2

) 1
3
}

as desired.
Finally, we need to verify that M + qc ≤ N/2 as required by (11). For this,

it is sufficient to check that

24rqe
KN

≤ 6r2(r + 1)
C1

, (12)

which will imply
24rqe
KN

≤ 6r2(r + 1)
C

= 6rqe
MK
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and hence M ≤ N/4. Since also qc ≤ N/4 by assumption, we arrive at M + qc ≤
N/2 as needed. To prove (12), note that

(12)⇐⇒ 24rqe
KN

≤ 6r2(r + 1)
(

2rqcqre
rr+1(r + 1)r+1KrNr

) 1
2r+1

⇐⇒ 4qe
KN

≤ r(r + 1)
(

2rqcqre
rr+1(r + 1)r+1KrNr

) 1
2r+1

⇐⇒ 42r+1q2r+1
e

N2r+1K2r+1 ≤ r
2r+1(r + 1)2r+1 · 2rqcqre

rr+1(r + 1)r+1KrNr

⇐⇒ 23r+2qr+1
e

Nr+1Kr+1 ≤ r
r(r + 1)rqc

⇐⇒
(

8qe
NK

)r+1
≤ 2rr(r + 1)rqc.

This last inequality follows from the assumption that qe ≤ KN/8 (and the wlog
assumption that qc ≥ 1).

E Distinguishing Key-Sampling Processes A and B

In order to analyze the distinguishing advantage of the two key-sampling pro-
cesses, we introduce two intermediate processes C1 and C2 as follows.

C1: Choose mk ∈ ({0, 1}κ)` uniformly at random.
C2: Randomly partition T1∪T2 = Iκ so that |T1| = |T2|, choose z = (z0, . . . , zr) ∈

(T1)r+1 and k = (k1, . . . , kr) ∈ (T2)r uniformly at random, and then define

mk = (z0, k1, z1, k2, . . . , kr, zr).

Note that one can distinguish the sampling processes A and C1 with advantage
at most (

`

2

)
1
2κ ≤

`2

2κ+1 , (13)

and the sampling processes C2 and B with advantage at most(
r + 1

2

)
1
2κ ≤

(r + 1)2

2κ+1 ≤ `2

2κ+1 . (14)

On the other hand, the sampling processes C1 and C2 have exactly the same
probability distribution. To see this, fix a key mk = (z0, k1, z1, k2, . . . , kr, zr) ∈
({0, 1}κ)`. Then the number of partitions (T1, T2) such that {z0, z1, . . . , zr} ⊂ T1
and {k1, . . . , kr} ⊂ T2 is (

K − `
K
2 − r

)
.
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For each of such partitions (T1, T2), the key-sampling process C2 chooses z =
(z0, . . . , zr) and k = (k1, . . . , kr) from T1 and T2, respectively, with probability

1(
K
2
)
r
·
(
K
2
)
r+1

.

So the probability that C2 chooses z and k is(
K−`
K
2 −r

)(
K
K
2

) · 1(
K
2
)
r
·
(
K
2
)
r+1

= 1
(K)`

which is the same as the probability that the key-sampling process C1 chooses
mk.

Therefore, (13) and (14) together imply that one can distinguish the sampling
processes A and B with advantage at most `2/2κ.
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