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Abstract. Side-channel attacks usually apply a divide-and-conquer strat-
egy, separately recovering different parts of the secret. Their efficiency in
practice relies on the adversary ability to precisely assess the success or
unsuccess of each of these recoveries. This makes the study of the attack
success rate a central problem in side channel analysis. In this paper we
tackle this issue in two different settings for the most popular attack,
namely the Correlation Power Analysis (CPA). In the first setting, we
assume that the targeted subkey is known and we compare the state of
the art formulae expressing the success rate as a function of the leak-
age noise and the algebraic properties of the cryptographic primitive.
We also make the link between these formulae and the recent work of
Fei et al. at CHES 2012. In the second setting, the subkey is no longer
assumed to be known and we introduce the notion of confidence level in
an attack result, allowing for the study of different heuristics. Through
experiments, we show that the rank evolution of a subkey hypothesis can
be exploited to compute a better confidence than considering only the
final result.

1 Introduction

Embedded devices performing cryptographic algorithms may leak information
about the processed intermediate values. Side channel attacks (SCA) aim to
exploit this leakage (usually measures of the power consumption or the electro-
magnetic emanations) to deduce a secret manipulated by the device.

SCA against block cipher implementations usually consider the secret as a
tuple of so-called subkeys and apply a divide-and-conquer strategy to recover
them separately. During the conquering phase, a partial attack, limited in time
and space, is run against each subkey. Heuristics are then applied to decide
on the success or unsuccess of each of these attacks. Subkeys corresponding to
attack failures are deduced by exhaustive search. In practice, this last step is
often executed either for efficiency reasons or because it is assumed that there
is no chance to get the missing subkeys directly by side channel analysis. This
description makes apparent that the attack effectiveness greatly depends on the
heuristic applied by the adversary. Indeed, incorrect heuristics leave the subse-
quent exhaustive search little chance to succeed.



Formally, a partial attack is performed on a finite set of measurements L and
aims at the recovery of a correct subkey k0 among a small set K of hypotheses
(usually, |K| = 28 or 216). For such a purpose, a score is computed for every
subkey hypothesis k ∈ K, leading to an ordered scores vector. The position rk of
an hypothesis k in this vector is called its rank. The attack is said to be successful
if rk0 equals 1. Extending this notion, an attack is said o-th order successful if
rk0 is lower than or equal to o.

Under the assumption that the secret k0 is known, the success of a partial
attack can be unambiguously stated. This even allows for the estimation of
its success rate, by simply dividing the number of attack successes (for which
rk0 ≤ o) by the total number of attacks. If this known secret assumption is
relaxed, the adversary chooses a candidate which is the most likely according to
some selection rules. In this case, the success can only be decided a posteriori
and a confidence level must hence be associated a priori to the choice before
the decision is made. Clearly the soundness of the latter process depends on
both the selection and the confidence, which must hence be carefully defined. In
particular, to be effective in a practical setting, the confidence associated to a
decision must be accurately evaluated even for a small number of observations.

This need is illustrated in Figure 1. An usual selection rule is to simply choose
the best ranked key. Using 280 observations, this rule would lead to the choice
of the right subkey, whereas a wrong subkey would have been chosen using 420
observations. An optimal heuristic would then deem the first attack a success,
and the second one a failure.

Fig. 1. Correlation coefficients obtained from a CPA on AES. The correct hypothesis
is plotted in black.



To evaluate the confidence, we follow a similar approach as in [2] and [9], and
we consider the rank of a key and the success rate of an attack as random vari-
ables depending on the number of observations. We therefore study the sampling
distribution of these variables, that is, their distribution when derived from a
random sample of finite size.

As an illustration of the sampling distribution of the rank, we run an exper-
iment where several CPA targeting the output of the AES sbox are performed,
assuming a Hamming weight leakage model with a Gaussian noise of standard
deviation 3. A random subkey k0 is drawn, and N leakage observations are gen-
erated. Then, the rank rk,N of each hypothesis k is computed. This experiment
is repeated several times with new leakage observations, and the mean and vari-
ance of the associated random variables Rk,N are computed. We then perform
the same experiment on a leakage of standard deviation 10. The results can be
seen in Figure 2.
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Fig. 2. Results of CPA experiments on the AES sbox. The averages of the ranks are
plotted, in function of the number of measurements used for each attack (logscaled),
in (a) and (b) for Gaussian noises of standard deviation respectively equal to 3 and 10.
Their respective variances are plotted in (c) and (d).



Interestingly, the repetition of this process using a different correct key k′0
results in the exact same curves, but none of them is associated with the same
hypothesis. In fact, the distribution of Rk,N does not depend on the value of the
hypothesis k, but on its (bit-wise) difference to the correct key k0. As already
mentioned in [9], this can be formally argued by observing that the difference
k⊕k0 can be rewritten as (k⊕k0⊕k′0)⊕k′0. Experiments also show that the rate
of convergence is substantially higher for the correct hypothesis, and that the
variance of the correct key rank decreases faster than the variance of any wrong
key rank. Moreover, the increase of the noise standard deviation only impacts
the number of measurements required to observe these patterns.

Figure 2 also hints that the evolution of the sampling distribution of every
Rk is eventually related to the value of the correct key and hence brings in-
formation about it. In other terms, the full vector of ranks gives information
on the correct key (and not only the hypothesis ranked first). Based on this
observation, it seems natural to use this information to increase the attack effi-
ciency and/or the confidence in the attack results. To be able to precisely assess
both kinds of increase, the distributions of all the variables Rk therefore need to
be understood. Bearing this in mind, we now formalize some information that
an adversary can obtain while performing a side-channel attack on a set L of
N independent observations. Scores are computed using a progressive approach,
i.e. taking an increasing number of traces into account. Namely, the scores are
computed after N1 < N observations, then again after N2 > N1 observations,
and so on until the N observations in L have been considered. This approach
enables the computation of the matrix:

Ms =

 s(1, N1) s(1, N2) · · · s(1, N)
...

...
. . .

...
s(|K|, N1) s(|K|, N2) · · · s(|K|, N)

 ,

where s(k,Ni) denotes the score of the hypothesis k computed using Ni obser-
vations.

According to the Neyman-Pearson lemma [8], an optimal selection rule would
then require the knowledge of the statistical distribution of this matrix when
the correct subkey is known. In a real attack setup however, the latter subkey is
unknown and one then has to proceed with a likelihood-ratio approach in order
to retrieve it. Even optimal from an effectiveness point of view, this approach is
not realistic as it reposes on two major issues: the knowledge of the distribution
of the matrix (which requires a theoretical study over highly dimensional data)
and the computation and storage of every score (which may require a lot of time
and memory). Moreover, one could wonder if all the information contained in
the matrix is relevant, or if there is some redundancy. On the opposite side, the
actual attacks only use small parts of the available information. For example, the
classical selection of the best ranked key simply amounts to choose the maximum
of the last column of scores in Ms. Between those two extrem approaches, one
could wonder if other tractable parts of the matrix can be used to give better
selection rules or better confidence estimators.



Related work The problem of evaluating the success of an attack has already
been tackled in several papers [2,6,9,10]. In [6] and [10], the CPA success rate is
evaluated by using Fisher’s transformation (see for instance [3]): simple formulae
are exhibited to estimate the success rate in terms of both the noise standard
deviation and the correlation corresponding to the correct key. These works were
a first important step towards answering our problem. However, they are con-
ducted under the assumption that wrong hypotheses are uncorrelated to the
leakage. As illustrated in Figure 2 (and as already noticed in several papers),
this assumption, sometimes called wrong key randomization hypothesis [5], does
not fit with the reality: each hypothesis score indeed actually depends on the
bit-wise difference between the hypothesis and the correct key. The error induced
by the assumption is not damaging when one only needs to have an idea about
the general attack trends. It is however not acceptable when the purpose is to
have a precise understanding of the attack success behavior and of the effect of
the sbox properties on it. This observation has been the starting point of the
analyses conducted in [2] and [9], where the wrong key randomization hypothesis
is relaxed. In Rivain’s paper, a new and more accurate success rate evaluation
formula is proposed for the CPA. In [2], Fei et al. introduce the notion of confu-
sion coefficient, and use it to precisely express the success rate of the monobit
DPA. This work can be viewed as a specification of Rivain’s, as monobit DPA
is a particular case of a CPA [1]. This point is formally stated in Section 2.3.

Several criteria indicating the effectiveness of side-channels have also been
studied to compare side-channel attacks (e.g. [11]). Among those, the particular
behavior of the right subkey ranking have been exploited in [7] to propose an
improvement of the attack efficiency when the correct key is unknown. This
approach illustrates the importance of such criteria in practical attacks, but it
is purely empirical.

Contributions In this paper, we focus on the estimation of the success of an
attack in both contexts of known and unknown correct key. In Section 2, state
of the art evaluations of the CPA success rate are compared under the Hamming
weight leakage model. In Section 3, the impact of the evolution of ranks on the
confidence level is studied, and the success rate is used to give a theoretical
ground to these results. Finally, conclusions are drawn and new questions are
opened in Section 4.

2 CPA success rate

2.1 Notations

Vectors (resp. matrices) with coordinates xi (resp. xij) are denoted by (xi)i (resp.
(xij)i,j). Indices bounds are omitted if not needed. For any random variable X,
we denote by E[X] the expectation of X. We denote by X the set of possible
values that can be taken by X. We also denote by Cov[X,Y ] the covariance of
X with the random variable Y . When X follows a normal distribution of mean µ



and variance σ2, we denote it by X ∼ N (µ, σ2). The set of subkey hypotheses is
denoted by K, and k0 ∈ K denotes the correct key, i.e. the subkey actually used
by the algorithm. We assume that K is a group for the bit-wise addition and for
any δ ∈ K, we denote by kδ the element such that kδ = k0 ⊕ δ. Furthermore,
we denote by X a (discrete) random variable whose realizations are known to
the attacker, by Zδ the random variable associated to the output of a function
f such that Zδ = f(X ⊕ kδ), and by L the random variable associated to the
leakage on Z0. For any i, we denote by xi and li the i-th realization of X and
L, and by zδ,i the i-th realization of Zδ. For a fixed number N of observations,
we denote by ρδ the Pearson correlation coefficient between (l1, l2, · · · , lN ) and
(zδ,1, zδ,2, · · · , zδ,N ). Eventually, we denote the rank of kδ by Rδ. By definition, it
is equal to the number of hypotheses kδ′ such that ρδ′ > ρδ. We will sometimes
use the notation ρδ(N) and Rδ(N) to reveal the functional dependency between
ρδ (respectively Rδ) and N .

2.2 Theoretical success rate

In this section we aim to compare the theoretical evaluations of the CPA suc-
cess rate given by [6], [10] and [9]. We recall that, according to the introduced
notations, the success rate SR of an attack satisfies:

SR = P(R0(N) = 1), (1)

or equivalently

SR = P(ρ0(N)− ρ1(N) > 0, · · · , ρ0(N)− ρ|K|−1(N) > 0). (2)

Mangard’s study in [6] is conducted in the particular case where |K| = 2
(i.e. when there are only two subkey candidates to test). It is moreover based
on the three following assumptions:

Assumption 1 [Input uniformity] The input random variable X is uniformly
distributed.

Assumption 2 [Gaussian distribution of the leakage] The i-th leakage satisfies
li = f(xi⊕k0)+βi, where βi is the realization of an independent random variable
B ∼ N (0, σ2), and f is a known function.

Remark 1. Usually, f is of the form ϕ ◦ S, where ϕ is surjective and S is a
balanced function.

Assumption 3 [Nullity of the wrong hypotheses’ correlation coefficients] The
correlation coefficient corresponding to a wrong hypothesis is asymptotically null.

Using Fisher’s Z-transformation, the following approximation of (1) is then
obtained:

SR '

(∫ ∞
0

1
1√
N−3

√
2π

exp−
(x− 1√

1+σ2
)2

2
N−3

dx

)
. (3)



The latter approximation has been further extended to any subkey set of size
|K| by Standaert et al. in [10]:

SR '

(∫ ∞
0

1
1√
N−3

√
2π

exp−
(x− 1√

1+σ2
)2

2
N−3

dx

)|K|−1
. (4)

In subsequent works, Rivain [9] and Fei et al. [2] have argued that Assump-
tion 3 is usually not satisfied, which induces an error (possibly high) in (3) and
(4) approximations. This observation led Rivain to conduct a new theoretical
study of the success rate where the latter assumption is relaxed, and Assump-
tion 1 is replaced by the following one:

Assumption 1 bis [Equality of the inputs occurrences] Every possible value
x ∈ X occurs the same number of times in the sample used for the attack.

Remark 2. This assumption implicitly considers that the study is done by fixing
the values taken by X (which is hence no longer a random variable).

Remark 3. When the plaintexts used in the attack are generated uniformly at
random and if their number is reasonably high, then the occurrences of every
possible value x are very likely to be close to each other.

Under Assumption 1 bis, Rivain has shown that the distribution of the scores
vector (ρ0(N), ρ1(N), · · · , ρ|K|−1(N)) produces the same ranking as a new vector
d(N) called the distinguishing vector and defined such that
d(N) = (Γ0(N), Γ1(N), · · · , Γ|K|−1(N)), where Γδ(N) is the random variable

associated to the sum 1
N

∑N
i=1 zδ,ili. It is also observed that evaluating the rank

Rδ(N) of a key hypothesis kδ (at a difference δ of the correct key k0) amounts
to study the number of positive coordinates in the (|K| − 1)-dimensional com-
parison vector cδ(N) = (Γδ(N)−Γ0(N), · · ·Γδ(N)−Γ|K|−1(N)) (i.e. the vector
obtained by subtracting d(N) to (Γδ(N), · · · , Γδ(N)), followed by the deletion
of the δ-th coordinate). Thanks to this rewriting of the CPA success rate estima-
tion in terms of d(N) and cδ(N), and considering an independent noise, Rivain
proves the two following theorems1:

Theorem 1. [9] In a CPA exploiting N observations leakages, the distinguish-
ing vector d(N) follows a multivariate normal distribution N (µd, Σd(N)), such
that:

µd = (κ0, κ1, · · · , κ|K|−1),

where κδ = 1
|X |
∑
x∈X zx,0zx,δ and

Σd(N) =
σ2

N
(κi⊕j)0≤i,j≤|K|−1

1 respectively corresponding to Corollary 1 and Section 6 in [9].



Theorem 2. [9] In a CPA exploiting N observation leakages, the comparison
vector cδ(N) follows a multivariate normal distribution N (µδ, Σδ(N)), such that:

µδ = (κδ − κi)i 6=δ

and

Σδ(N) =
σ2

N
(κ0 − κi − κj + κi⊕j)i,j 6=δ.

These theorems allow to accurately deduce the distribution of the vectors
d(N) and cδ(N), from the noise variance σ2 and a modeling of ϕ. They therefore
permit the computation of the probability P(Rδ(N) = 1) for any δ (i.e. the
probability that the hypothesis at difference δ of the correct key is ranked first).
According to (1), it may consequently be applied to compute the CPA success
rate, which leads to the following success rate evaluation2:

SR = Φ|K|−1(µ0, Σ0(N)), (5)

where Φ|K|−1 denotes the cdf of the (|K|− 1)-dimensional normal distribution of
parameters µ0 and Σ0. In Section 2.3, this new approximation is compared to
(4) and it is indeed shown to be more precise.

The coefficient κi in Theorems 1 and 2 can be seen as an extension of the
definition of the confusion coefficient introduced by Fei et al. in [2] to estimate
the efficiency of a monobit DPA. By analogy with [2], we hence propose the
following definition:

Definition 1 (CPA confusion coefficient). Let k0 be the correct hypothesis
and kδ be an element of K, for x ∈ X , let zx,0 and zx,δ be defined such that
zx,0 = f(x⊕ k0) and zx,δ = f(x⊕ kδ) for some function f . The CPA confusion
coefficient κδ is then defined by3:

κδ =
1

|X |
∑
x∈X

zx,0zx,δ.

In Figure 3, we illustrate the CPA confusion coefficient in the case where f
is the composition of the Hamming weight with some classical sbox. Moreover,
Definition 1 implies that, similarly to the expression of the success rate of the
DPA proposed in [2], the formula for the CPA success rate can be related to
confusion coefficients capturing the impact of the algebraic properties of the
cryptographic primitive on the attack efficiency.

In the following section, we compare the formulae of [10] and [9] against
experimental simulations of CPA on AES.

2 This estimation supposes that the covariance matrix Σ0(N) is not singular. When
Σ0(N) is singular, other numerical evaluations can be performed (e.g. [4]). In both
cases, empirical evaluations of SR can be performed by simulating random vectors
d(N) or c0(N) following respectively N (µd, Σd(N)) or N (µ0, Σ0(N)).

3 Under Assumption 1, when a large enough number of realizations of X are observed,
κδ is likely to be close to E[Z0Zδ].
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Fig. 3. Values of κδ under the assumption that ϕ is the Hamming weight function, for
different sboxes S, in function of the Hamming weight of δ.

2.3 Comparison on AES

In the following, we suppose that the function S is the AES sbox, and that
the function ϕ is the Hamming weight function. First, we estimate the success
rate of a CPA empirically, by performing several thousands of attacks. Then, we
evaluate Formula (4). Finally, we compute all confusion coefficients, deducing
µ0 and Σ0(N), and we estimate the success rate by evaluating Formula (5). The
results are plotted in Figure 4. Formula (5) matches the empirical results quite
well. This is mainly due to the relaxing of Assumption 3.

3 Confidence in a result

When performing an attack without the knowledge of the correct subkey k0,
the adversary needs to determine how to select the most likely hypothesis, and
when (i.e. after which number of observations). Usually, the how problem is
answered by using a selection rule, such as ”choosing the best ranked subkey”.
To answer the when problem, this rule is conditioned by the observation of some
pattern, like the stabilization of the rank of the best hypothesis. Figure 5 aims
at experimentally validating the latter approach. In the first case, we perform



(a) Noise standard deviation σ = 5 (b) Noise standard deviation σ = 10

Fig. 4. Evaluations of the CPA success rate in function of the number of measurements,
according to either empirical results (plain black), Formula (4) (dashed light grey) and
Formula (5) (dashed dark grey).

several CPA using an increasing number N of observations and we compute
the attack success rate as a function of N . In the second case, we perform the
same CPA but we output a candidate subkey only if it has been ranked first
both with N and N

2 observations. For the latter experiment, we plot the attack
success rate considering either the total number of experiments in dotted light
grey and considering only the experiments where a key candidate was output
(i.e. appeared ranked first with N and N

2 observations) in dashed light grey.
As it can be seen on Figure 5, the attack based on the stabilization criterion

has a better chance (up to 15%) to output a correct result if it outputs anything.
However, its overall success rate is significantly lower than the classical CPA
success rate. The candidate selection rule hence increases the confidence in the
selected subkey but decreases the success rate. In fact, we argue here that the two
notions are important when studying an attack effectiveness. When attacking
several subkeys separately, the assessment of a wrong candidate as a subpart of
the whole secret key will lead to an indubitable failure, whereas a subkey that
is not found (because the corresponding partial attack does not give a satisfying
confidence level) will be bruteforced.

In the following, we give a theoretical justification to this empirical and
natural attack effectiveness improvement. To this end, we introduce the notion
of confidence, which aims at helping the adversary to assess the success or failure
of an attack with a known error margin.

3.1 Confidence in an hypothesis

Applying the notations introduced in Section 1, we assume that a partial attack
is performed on a set of N independent observations and aims at the recovery
of a correct subkey k0 among a set of hypotheses. For our analysis, the score of
each candidate is computed at different steps of the attack (i.e. for an increasing
number of traces). Namely, the scores are computed after N1 < N observations,
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Fig. 5. Evaluations of the correctness of the output of attacks in function of the number
of observations N in different contexts: 1) the best ranked subkey is always returned
(plain dark grey, 2)) the best ranked subkey is returned only when it was also ranked
first with N
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both attacks returned the same result (dashed light grey) 3) the best ranked subkey
is returned only when it was also ranked first with N

2
observations and the success

is computed against the number of times the attack has been launched (dotted light
grey).

then again after N2 > N1 observations, and so on until the N observations are
considered. In the sequel, the attack on Ni observations is called the i-th attack.
All those attacks result in a matrix Ms containing the scores s(k,Ni) for every
hypothesis k and every number Ni of observations. With this construction, the
last column vector (s(k,N))k corresponds to the final attack scores, whereas
(s(k,Ni))k corresponds to intermediate scores (for the i-th attack). In other
terms, the right-column of Ms is the attack result, and the rest of the matrix
corresponds to the attack history. With this formalism in hand, the key candidate
selection may be viewed as the application of some selection rule R to Ms,
returning a subkey candidate KR. The question raised in the preamble of this
section may then be rephrased as: ”For some rule R, what is the confidence one
can have in KR ?”. To answer this question, we introduce hereafter the notion
of confidence in KR.

Definition 2 (Confidence). For an attack aiming at the recovery of a key k0
and applying a selection rule R to output a candidate subkey KR, the confidence
is defined by:

c(KR) =
P(KR = k0)∑
k∈KP(KR = k)

.

Remark 4. The confidence level associated to a rule R merges with the notion
of success rate only when the selection rule always outputs a subkey candidate,
eg. the rule R0 defined in the following.



Let us illustrate the application of the confidence level with the comparison of
the two following rules, corresponding to the criterion described in the preamble
of this section:

– Rule R0: output the candidate ranked first at the end of the N − th attack.
– Rule Rt: output the candidate ranked first at the end of the N − th attack,

only if it was also ranked first for all attacks performed using Nt to N
observations.

By definition of R0, and using the notations of Section 2, the confidence
associated to R0 satisfies:

c(KR0) =
P(R0(N) = 1)∑
δ P(Rδ(N) = 1)

= P(R0(N) = 1),

which can be computed thanks to Theorem 2.
With a similar reasoning, we have:

c(KRt) =
P(R0(Nt) = 1, R0(Nt+1) = 1, · · · , R0(N) = 1)∑

δ P(Rδ(Nt) = 1, , · · · , Rδ(N) = 1)
,

whose evaluation requires more development than that of c(KR0). For such
a purpose, the distribution of the ranks vector (Rδ(Nt), Rδ(Nt+1), · · · , Rδ(N))
needs to be studied4. We thus follow a similar approach as in Section 2, and we
build the progressive comparison vector cδ,t(N) = (cδ(Nt)||cδ(Nt+1)|| · · · ||cδ(N))
where || denotes the vector concatenation operator. We then apply the following
proposition, whose proof is given in Annex A:

Proposition 1. For a CPA exploiting a number N of observations, the pro-
gressive comparison vector cδ,t(N) follows a multivariate normal distribution
N (µδ,t, Σδ,t(N)), where µδ,t is a |K|(N −Nt) vector and Σδ,t is a |K|(N −Nt)×
|K|(N −Nt) matrix, satisfying:

µδ,t = (κδ − κ0, · · · , κδ − κ|K|−1, κδ − κ0, · · · , κδ − κ|K|−1),

and

Σδ,t(N) =

(
N

max(i, j)
Σδ

)
Nt≤i,j≤N

Proposition 1 allows for the evaluation of the distribution of cδ,t(N), and
thus for the evaluation of P(Rδ(Nt) = 1, Rδ(Nt+1) = 1, · · · , Rδ(N) = 1) for all
hypotheses kδ. We are then able to compute the confidence c(KRt).

As an illustration, we study the case where a single intermediate ranking is
taken into account, i.e. we study the probability P(Rδ(

N
2 ) = 1, Rδ(N) = 1), and

we plot in Figure 6 the obtained confidences.
As we can see, the confidence estimation matches the empirical results of

Figure 5. At any number of observations, the rule Rt actually increases the
confidence in the output of an attack compared to the rule R0.

4 It is worth noting at this point that the variable Rδ(Ni) does not verify the Markov
property, and that the whole vector has to be studied.



Fig. 6. Evaluation of confidences in function of the number of measurements for R0

(plain dark grey), and for RN
2

(dashed light grey), with σ = 10.

3.2 Discussion and empirical study of convergence rules

The accurate evaluation of the confidence level allows a side-channel attacker to
assess the success or failure of a partial attack with a known margin of error.
For example, and as illustrated in previous section, applying the selection rule
R0 for a CPA on 800 noisy observations (with noise standard deviation equal
to 10) leads to an attack failure in 18% of the cases. As a consequence, to reach
a 90% confidence level, the attacker has either to perform the attack on more
observations (1000 in our example), or to use an other selection rule. Indeed,
different selection rules lead to different confidence levels, as they are based
on different information. Though a rule based on the whole matrix Ms would
theoretically give the best results, the estimation of the confidence level in such
a case would prove to be difficult. An interesting open problem is to find an
acceptable tradeoff between the computation of the involved probabilities and
the accuracy of the obtained confidence.

In this section, we study a new rule exploiting the convergence of the best
hypothesis’ rank, echoing the observation made in Section 1. To this end, we
consider a rule Rγt (with 1 ≤ γ ≤ |K|) and define it as a slight variation of
Rt. The rule Rγt returns the best ranked key candidate after the N -th attack
only if it was ranked lower than γ for the attack on Nt observations. As in
previous section, we simulate the simple case where only the ranking obtained
with an arbitrary number x of observations is taken into account. We hence
experimentally estimate the confidence given by Rγx for all γ in Figure 7.

For example, when the final best ranked key is ranked lower than 50 using
200 messages, the confidence is around 94% (compared to 92% when using R0).

Eventually, the analysis conducted in this section shows that though a sta-
bilization of the rank brings a strong confidence, its convergence can also bring
some information to an adversary. This confirms the intuition discussed in Sec-
tion 1. We propose in Annex B the study of another selection rule commonly
considered in the literature.
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Fig. 7. Confidence in the key ranked first after a CPA on 1000 observations with
σ = 10, knowing that it was ranked below a given rank γ (in y-axis) on a smaller
number of measurements Nt (in x-axis).

4 Conclusion

Results presented in this paper are twofold. We first compared several state of the
art theoretical evaluations for the success rate of the CPA, and we linked them
with the notion of confusion coefficient, capturing the effect of the cryptographic
primitive on the difference between the correct hypothesis and the wrong ones.
Secondly, we give a rationale for the use of some empirical criteria (such as the
convergence of the best hypothesis’ rank towards 1) as indicators of the attack
success. We hence involve the notion of confidence to allow for the accurate
estimation of this success.

As an avenue for further research, this work opens the new problem of the
exhibition of novel selection rules allowing to efficiently and accurately evaluate
the confidence in a side-channel attack while conserving an acceptable success
rate.
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A Proof of proposition 1

By its construction, the progressive comparison vector cδ,t(N) follows a mul-
tivariate normal law N (µδ,t, Σδ,t(N)). Its mean vector µδ,t is trivially deduced
from the expression of µδ given in Section 2. To compute the expression of
Σδ,t(N), we hence only need to prove the following lemma:

Lemma 1. For any hypotheses (i, j, j′) ∈ [0, |K|− 1]3 and for any sets of obser-
vations of sizes Nt and N (such that Nt < N), Assumptions 2 and 4 imply:

Cov[Γi(N)−Γj(N), Γi(Nt)−Γj′(Nt)] =
Nt
N

Cov[Γi(Nt)−Γj(Nt), Γi(Nt)−Γj′(Nt)].



Proof. By the definitions of Γi(N) and Γj(N), the following equality holds:

Γi(N) − Γj(N) = 1
N (
∑Nt

t=1 lt(zi,t − zj,t) +
∑N
t=Nt+1 lt(zi,t − zj,t)). This can be

rewritten as Γi(N)−Γj(N) = 1
N (Nt(Γi(Nt)−Γj(Nt)) +

∑N
t=Nt+1 lt(zi,t− zj,t)).

The independence of all observations and the bilinearity of the covariance then
suffice to prove the lemma. ut

The coefficients of Σδ,t(N) can hence be easily computed, using this Lemma.

B Confidence gain with the difference of scores

We study a transverse approach to the one described in Section 3, by observing
the last vector of scores (instead of the rank obtained from intermediate attacks).
Namely, we focus on a rule outputting the best ranked candidate when the
difference between its score and the score of every other hypothesis is greater
than a certain value. This criterion is considered for example in [11]. We simulate
this rule, for several bounds, and we plot the results in Figure 8. It is of particular
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Fig. 8. Confidence in the best ranked key after a CPA with σ = 10, on a given number
of observations (in x-axis), knowing that its score is higher by a certain value (in y-axis)
than every other hypothesis score.

interest to note that this rule can bring a huge confidence. Indeed, if the difference
using 500 observations is higher than 0.06, then the obtain confidence is around
96% (while 1000 observations would not suffice to attain this level using R0).


