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Abstract. Lattice-based cryptography is considered to be a big challenge to
implement on resource-constraint microcontrollers. In this paper, we focus on
efficient arithmetic that can be used for the ring variant of the Learning with
Errors (ring-LWE) encryption scheme on 8-bit AVR processors. Our contri-
butions include the following optimizations: for the Number Theoretic Trans-
form (NTT) based polynomial multiplication, (1) we propose the MOV-and-
ADD and Shifting-Addition-Multiplication-Subtraction-Subtraction (SAM-
S2) techniques for speeding up the modular coefficient multiplication, (2) we
exploit the incomplete arithmetic for representing the coefficient to reduce
the number of reduction operations, (3) and we reduce the running memory
requirement of NTT multiplication with a refined memory-access scheme,
finally, we propose to perform the Knuth-Yao Gaussian distribute sampler
with a byte-wise scanning strategy to reduce the memory footprint of the
probability matrix. For medium-term security level, our high-speed opti-
mized ring-LWE implementation requires only 590K, 666K and 299K clock
cycles for key-generation, encryption and decryption, respectively. Similarly
for long-term security level, the key-generation, encryption and decryption
take 2.3M , 2.7M and 700K clock cycles, respectively. These achieved results
speed up the previous fastest LWE implementation by a factor of 4.5, while
at least one order of magnitude faster than state of the art RSA and ECC
implementations on the same platform.

Keywords: Ring learning with errors (Ring-LWE), software implementa-
tion, public-key encryption, 8-bit AVR, number theoretic transform, discrete
Gaussian sampling

1 Introduction

Today’s widely used cryptosystems are mainly based on integer factorization and
discrete logarithm problems, which are believed to be intractable with classical com-
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puters. However, these hard problems can be solved by using Shor’s algorithm [33]
and its variant on a quantum computer. Lattice-based cryptography is considered
as a premier candidate for post-quantum cryptosystems. Its security is based on
worst-case computational assumptions in lattices that remain hard even for quan-
tum computers. The Internet is currently in the midst of a transition from a network
that connects commodity computers (e.g. PCs, laptops) to a network of smart ob-
jects (“things”). Even today, there are more “non-traditional” computing devices
connected to the Internet than “conventional” computers [14]. Among the smart
devices that are (or will soon be) populating the Internet are all kinds of sensors,
actuators, meters, consumer electronics, medical monitors, household appliances,
vehicles, and even items of clothing. Many of these devices are very constrained in
terms of computing power and memory resources. For example, a typical wireless
sensor node, such as the widely-used MICAz mote, features an 8-bit AVR ATmega
processor clocked at 8 MHz and a few kB RAM. However, in order to communicate
securely with such devices, they need to be able to execute public-key cryptography
as otherwise end-to-end authentication and end-to-end key establishment would
not be possible. Implementing public-key algorithms on 8-bit processors poses a
big challenge, not only for RSA and ECC, but also post-quantum techniques like
lattice-based cryptography. Therefore, it is necessary to study how well “cryptosys-
tems of the future” are suited for the “Internet of the future.” In other words, it
is necessary to study how well lattice-based cryptography can be implemented on
8-bit processors such as the AVR series processors [3].

The introduction of learning with errors (LWE) problem [29] and its ring variant
(ring-LWE) [23] provide an efficient way to build lattice based public key cryptosys-
tems. The first practical software implementation of an LWE-based cryptosystem
was presented in CHES’12 [15]. Göttert et al. presented both a hardware and a
software implementation of ring-LWE. Oder et al. in [24] presented an efficient
implementation of Bimodal Lattice Signature Schemes (BLISS) on a 32-bit AR-
M Cortex-M4F microcontroller; they achieved execution times of 35.3 and 6 ms
for signature generation and verification, respectively, at a medium-term security
level. Recently, De Clercq et al. in [11] implemented ring-LWE encryption scheme
on the identical ARM processors, their implementation required 121K cycles per
encryption and 43.3K cycles per decryption at medium-term security level while
261K cycles per encryption and roughly 96.5K cycles per decryption for long-term
security level. To the best of our knowledge, the first time that a lattice-based cryp-
tographic scheme was implemented on an 8-bit processor belonged to Boorghany
et al. in [7, 8]. In [7, 8], the authors evaluated four lattice-based authentication pro-
tocols on both 8-bit AVR and 32-bit ARM processors. In particular, for 8-bit AVR
implementation, their implementation needed 754668 cycles and 2207787 cycles for
Fast Fourier Transform (FFT) transform at medium-term and long-term security
level, respectively. Based on efficient implementation of polynomial multiplication
and Gaussian sampler function, their implementation of LWE based encryption
scheme required 2770592 clock cycles for key generation, 3042675 clock cycles for
encryption as well as 1368969 clock cycles for decryption at medium-term security
level.
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1.1 Research Contributions

This paper continues the line of research on the efficient implementation of the
ring-LWE encryption scheme on an 8-bit AVR processor. The core contributions are
several optimizations to reduce the execution time and running RAM requirements
of ring-LWE encryption scheme. More specifically, our contributions are listed as
follows:

1. The efficiency of coefficient modular multiplication is a pre-requisite for high-
speed NTT operation. We propose the MOV-and-ADD technique for coefficien-
t multiplication and Shifting-Addition-Multiplication-Subtraction-Subtraction
(SMAS2) approach for reduction operation. The MOV-and-ADD method aims
at reducing the number of addition operations by rescheduling the order of byte
multiplications, while the SMAS2 approach performs the reduction by using
a sequence of Shifting-Addition-Multiplication-Subtraction-Subtraction opera-
tions. For q = 7681, a coefficient modular multiplication using a combination of
proposed methods can be performed in 53 clock cycles in average. (See Subsec-
tion 3.3 and 3.4 for details)

2. In the NTT computation, the majority of the execution time is spent on com-
puting the modular reduction operation since it is the most frequent operation
in the innermost loop. We exploit the incomplete arithmetic for representing the
coefficients and perform the reduction operation in a lazy fashion. Our practical
results show this approach reduces roughly 6% of the reduction operations in
average.(See Subsection 3.5 for details)

3. The intermediate coefficient during the computation of an NTT requires a large
amount of RAM. We propose a refined memory access scheme by making full
use of the memory space. For q = 7681, we store 16 13-bit coefficients in 26
bytes memory space so that all the memory space is efficiently used for storing
the coefficients. The proposed scheme allows to save roughly 15 ∼ 19% RAM
requirements. (See Subsection 3.6 for details)

4. The Knuth-Yao algorithm requires a large probability matrix to store the prob-
abilities of sampling a random number at a discrete position from the Gaussian
distribution. In order to reduce the memory consumption of storing this matrix,
we propose a byte-scanning technique using sliding window method (of width
8) to check the results in a byte level instead of bit-level in previous work. We
are able to reduce 12.6% of the size of the probability matrix while achieving
fast execution time. The method can be easily exploited to the other sampler
algorithms in signature scheme. (See details in Subsection 4.1)

5. Based on the above optimization techniques, we present two implementations
of ring-LWE encryption scheme for both medium-term and long-term security
levels on an 8-bit AVR processor. The first one is high-speed (HS) oriented,
while the second is memory-efficient (ME) oriented. For medium-term securi-
ty level, the former one only requires 590K, 666K and 299K clock cycles for
key-generation, encryption and decryption, respectively. Similarly for long-term
security level, the key-generation, encryption and decryption of HS implemen-
tation take 2.3M , 2.7M and 700K clock cycles, respectively. Both of the HS
and ME implementations improve the speed records for ring-LWE encryption
scheme on 8-bit AVR processors. (See Table 1 in Subsection 5.2 for details).
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For a comparison with related work, our HS implementations speed up the pre-
vious fastest work on 8-bit AVR processors in [8] by a factor of 4.5, while somewhat
memory efficient (see details in Table 3). It is also worth to note that all of the
proposed optimizations can also be used to speed up LWE signature schemes, for
example [26], on the identical platform.

The rest of this paper is organized as follows. In the next section, we review
the background of ring-LWE encryption schemes including the NTT and Knuth-
Yao sampler. In Section 3, we focus on the optimization techniques for NTT on
8-bit AVR processors. In particular, we propose several optimizations to reduce the
execution time and memory consumption of NTT. In Section 4, we propose the
optimizations for Knuth-Yao sampler. In Section 5, we report the implementation
results and compare with the state-of-the-art public-key cryptography implementa-
tions on same platform, including the LWE, RSA as well as ECC. Finally, we draw
our conclusions in Section 6.

2 Background

In this section, we briefly recap the ring-LWE encryption scheme, polynomial mul-
tiplication and discrete Gaussian distribution used in our implementation.

2.1 The Ring-LWE Encryption Scheme

The encryption schemes we use in this paper are based on the ring version of the
learning with errors (ring-LWE) problem. The more general form of the problem, i.e.
the LWE problem is parameterized by a dimension n ≥ 1, a modulus q, and an error
distribution. The error distribution is generally taken as a discrete Gaussian distri-
bution Xσ with standard deviation σ and mean 0 to achieve best entropy/standard
deviation ratio [12]. In the literature the LWE problem is defined as following:

Two polynomials a and s are chosen uniformly from Znq . The first polynomial is
a global polynomial, whereas the second polynomial is kept as a secret. The LWE
distribution As,X is defined over Znq ×Zq and comprises of the elements (a, t) where
t = 〈a, s〉 + e mod q ∈ Zq for some error polynomial e sampled from the error
distribution Xσ. In the search version of the LWE problem, an attacker is provided
a polynomial number of (a, t) pairs sampled from As,X and he (she) tries to find
the secret polynomial s. Similarly in the decision version of the LWE problem, an
attacker tries to distinguish between a polynomial number of samples from As,X
and the same number of samples from Znq × Zq.

In 2010, Lyubashevshy et al. proposed an encryption scheme based on a more
practical algebraic variant of the LWE problem defined over polynomial rings Rq =
Zq[x]/〈f〉 with an irreducible polynomial f(x) and a modulus q. In the ring-LWE
problem, the elements a, s and t are polynomials in the ring Rq. The ring-LWE
encryption scheme proposed by Lyubashevshy et al. was later optimized in [30]. Roy
et al.’s variant aims at reducing the cost of polynomial arithmetic. In particular,
the polynomial arithmetic during a decryption operation requires only one Number
Theoretic Transform (NTT) operation. Beside this computational optimization, the
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scheme performs sampling from the discrete Gaussian distribution using a Knuth-
Yao sampler. In the next subsection we will first present the mathematical concepts
of the NTT and the Knuth-Yao sampling operations and then we will describe the
steps used in the Roy et al’s version of the encryption scheme.

2.2 Number Theoretic Transform

Algorithm 1 Iterative Number Theoretic Transform

Require: A polynomial a(x) ∈ Zq[x] of degree n− 1 and n-th primitive ω ∈ Zq of unity
Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V

10: ω = ω · ωi

11: return a

Our implementation adopts the Number Theoretic Transform (NTT) for per-
forming the polynomial multiplication. An NTT can be seen as a variant of Fast
Fourier Transform (FFT) but performs in a finite ring Zq. Instead of using the com-

plex roots of unity, NTT evaluates a polynomial multiplication a(x) =
n−1∑
i=0

aix
i ∈ Zq

in the n-th roots of unity ωin for i = 0, . . . , n− 1, where ωn denotes a primitive n-th
root of unity. Algorithm 1 shows the iterative version of NTT algorithm, which is
originally from Cormen et al. in [10].

As shown in Algorithm 1, the iterative NTT algorithm consists of three nested
loops. The outermost loop (i-loop, line 2-11) starts from i = 2 and increases by
doubling i, and the loop stops when i = n, thus it has only log2n iterations. In
each iteration, the value of twiddle factor ωi are computed by executing a power

operation ωi = ω
n/i
n , and the value of ω is initialized by 1. Compared to i-loop, the

j-loop (line 4-10) executes more iterations, the number of iteration can be seen as a
sum of a geometric progression for 2i where i starts from 0 and has a maximum value
of log2(n− 1), thus, the j-loop has n− 1 iterations. In each iteration of j-loop, the
twiddle factor ω is updated by performing a coefficient modular multiplication in
line 10. Apparently, the innermost loop (k-loop, line 5-9) occupies most part of the
execution time of NTT algorithm since it is executed roughly n

2 log2n times. In each
iteration of the innermost loop (line 6-9), two coefficients a[i+ j] and a[i+ j + i/2]
are loaded from memory into registers, and then a[i+ j+ i/2] are multiplied by the
twiddle factor ω, after that, the value of a[k+ j] and a[k+ j+ i/2] are updated and
stored in the memory.
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2.3 The Gaussian Sampler

The ring-LWE cryptosystem needs samples from a discrete Gaussian distribution
to provide the error polynomials during the key generation and encryption opera-
tions. There are several methods for sampling from a discrete Gaussian distribution.
Among them we selected Knuth-Yao algorithm. The Knuth-Yao algorithm stores
probabilities of the sample points and performs a random walk by following a bi-
nary tree, namely the discrete distribution generating (DDG) tree [19, 31, 13]. A
DDG tree efficiently counts the visited non-zero nodes to find the sample based on
probability.

Algorithm 2 Knuth-Yao Sampling

Require: Probability matrix Pmat, random number r, modulus q
Ensure: Sample value s
1: for col from 0 by 1 to MAXCOL do
2: d← 2d + (r&1)
3: r ← r � 1
4: for row from MAXROW by −1 to 0 do
5: d← d− Pmat[row][col]
6: if d = −1 then
7: if (r&1) = 1 then
8: return q − row
9: else

10: return row
11: return 0

As shown in Algorithm 2, the DDG tree is constructed on-the-fly, eliminating
the need for storing the entire tree. A random walk is performed from the root
of the DDG tree. Each random walk checks a random bit to explore from one
level of the tree to the next level. The distance counter d represents the number of
intermediate nodes to the right side of the visited node. Each non-zero node that
is visited, decrements the distance counter by one. When the distance counter is
finally decremented to below zero, the terminal node is found, and the current row
number of the probability matrix represents the sample. As the probability matrix
only contains the positive half of the Gaussian distribution, a random bit is used to
decide the sign of the sample. As our scheme performs all operations modulo q, the
negative number is found by q − row. Algorithm 2 requires consecutive accesses to
elements from different rows in the same column in Pmat. To keep the number of
memory accesses low, Pmat is suggested to be stored in a column-wise form [11].

2.4 The Encryption Scheme

In this section we describe the steps used in the encryption scheme proposed by
Roy et al. [30]. We denote the NTT of a polynomial a by ã.

– The key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
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sampler twice.
r̃1 = NTT (r1), r̃2 = NTT (r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. The public key is
polynomial pair (ã, p̃) and the private key is polynomial r̃2.

– The encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a binary
vector of n bits. This message is first encoded into a polynomial in the ring Rq by
multiplying the bits of message by q/2. Three error polynomials e1, e2, e3 ∈ Rq
are sampled from Xσ. The ciphertext is computed as a set of two polynomials
(C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 +NTT (e3 +M ′))

– The decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT is performed to recover
M ′:

M ′ = INTT (r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

Another optimized variant of the encryption scheme is called YASHE scheme [9].
YASHE scheme makes efforts to reduce the size of ciphertext, which further reduces
the communication cost in the practical usage of ring-LWE.

2.5 Parameter Selection

Our implementation adopts the parameter sets (n, q, σ) with (256, 7681, 11.31/
√

2π)
and (512, 12289, 12.18/

√
2π) for security levels of 128-bit and 256-bit, respectively.

The discrete Gaussian sampler is limited to 12σ to achieve a high precision statistical
difference from the theoretical distribution, which is less than 2−90. These parameter
sets were also used in most of the previous hardware implementations, e.g., [15, 30]
and software implementations, e.g., [7, 8, 11]. This also helps us to compare our work
with previous work.

3 Optimization Techniques for NTT Computation

In this section, we describe several optimization techniques to reduce the execution
time and memory consumption of NTT and inverse NTT on 8-bit AVR processors.
Throughout the paper, we represent the coefficient of the polynomial using lower-
case letters, and each coefficient, for example a, is represented using two bytes aH
for the higher byte, aL for the lower byte.

3.1 Look-Up Table for the Twiddle Factors

In each iteration of the i-loop, a new twiddle factor ω (line 3 of Algorithm 1) is
computed by performing a modular multiplication. The total number of times a
new ω is computed in an NTT operation is n. In each iteration of the j-loop, the
twiddle factor ω is computed as shown in line 10 of Algorithm 1. A straightforward
computation of ω = ω · ωi on-the-fly needs to perform both the memory-access
operations of ω and ωi (including of loading and storing) and its coefficient modular
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multiplication. In total, n−1 times of coefficient modular multiplications and 2(n−1)
times of loading and storing operations are required. On the other hand, storing
all the intermediate twiddle factors ω and ωi into RAM is extremely expensive
considering that the 8-bit AVR processor only have several kilo bytes of RAM.

However, both of the computations of the power of ωn in i-loop and twiddle
factor ω = ω · ωi in j-loop can be considered as fixed costs. Based on this obser-
vation, our solution is to store all the twiddle factors ω into ROM which is similar
to the technique used in [27] for hardware implementation. More specifically, we
pre-computed the twiddle factor “off-line” and store them in a look-up table in
flash ROM instead of RAM. We only need to transfer the twiddle factor that is
required for the current iteration of the j-loop from ROM to RAM. In this way, we
do not require to compute the power of ωn in i-loop and the coefficient modular
multiplication in j-loop. On the other hand, two bytes of RAM are sufficient for
keeping the twiddle factor ω during the whole NTT computation.

3.2 Algorithmic Optimization

We follow the parameter sets from [30] for the ring-LWE encryption scheme where
the modulus q is a prime and is q ≡ 1 mod 2n. In this setting, a polynomial multi-
plication can be performed using only n-point NTTs/INTT. This special technique
is known as the negative wrapped convolution theorem and has been applied in the
hardware implementations [26, 30]. We remark that for a more generic implemen-
tation, such restrictions on the parameter set may not be applicable. Our choice to
use such restricted parameter set is mainly due to the fact that our target platform
(which is an AVR microcontroller) is computationally weak, and hence computa-
tion of 2n-point NTT (or INTT) during a polynomial multiplication costs both time
and dynamic memory requirement. Beside the application of the negative wrapped
convolution, we apply other small computational optimizations that were used to
accelerate hardware architectures. We find these techniques very suitable for the
software implementation too. These optimizations include the interchanging of the
j and k-loops in the NTT algorithm [5], merging the scaling operation by n−1 with
the chain of multiplications during the post processing operation in the inverse NTT
[30].

3.3 Efficient Coefficient Multiplication

The coefficient multiplication is one of the most performance-critical operations of
NTT computation in terms of “computational complexity” since each NTT com-
putation requires n

2 log2n co-efficient multiplications.
In our implementation, the coefficient is at most 13-bit and 14-bit long, which

can each be kept in two 8-bit registers. Inspired by the hybrid technique for multi-
precision multiplication [17], we propose the “MOV-and-ADD” technique to perform
the coefficient multiplication. The MOV-and-ADD multiplication aims at minimiz-
ing the number of adc instructions. As shown in Figure 1, the two coefficients a and
b are each loaded from RAM into two registers. We first multiply the lower byte
of a (i.e. aL) by the lower byte of b (i.e. bL) and move the product to two result
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aH

aL×bL

aL

bH bL

aH×bH

aH×bL

aL×bH

× 

r1 r0r3 r2

Fig. 1: The MOV-and-ADD coefficient multiplication.

registers r1 and r0 with help of the movw instruction. Next, we form the product
aH · bH and move the result to the registers r2 and r3. Thereafter, we multiply aH
by bL, add the resulting 16-bit product aL · bH to r1, r2, and propagate the carry
from the last addition to the register r3. Finally, we perform the byte multiplication
of aL with bH , and then add the product into the register r1 and r2, the carry bit
will be added into r3. In summary, the processing of the MOV-and-ADD coefficient
multiplication in Figure 1 requires four mul, two movw, and a total of 6 add or adc

instructions, respectively.

3.4 Fast Reduction

In the NTT computation, the majority of the execution time is spent on computing
reduction operation since it is performed in the innermost k-loop. Thus, fast reduc-
tion operation is the perquisite for high-speed implementation of NTT algorithm.

We propose an optimized SMAS2 reduction technique for performing the mod
7681 and mod 12289 operations. This main idea is to first estimate the quotient
of t = a

q , and then perform the subtraction a − t · q. Finally, the correct result
can be obtained by a correction process with a final subtraction. Observing that
213 ≡ 29 − 1 mod 7681, it is not difficult to conjecture the approximating value of t
is (a � 13) + (a � 17) + (a � 21). More precisely, the reduction process consists
of four different basic operations, namely, Shifting→ Addition→ Multiplication→
Subtraction → Subtraction (SAMS2). As shown in Figure 2, we keep the product
in four registers (r3, r2, r1, r0), which has been marked by different colors. Each of
r3, r2, r1, r0 is 8-bit long. The colorful parts mean that this bit has been occupied
while the white part means the current bit is empty. The reduction with 7681 using
SAMS2 approach can be performed as follows:

1. Shifting. We first right shift r3, r2, r1 by one bit, and store the intermediate
result of r3, r2 in t0. After that, we right shift by 4-bit to get the results t1 and
t2. As shown in the figure, both t0 and t1 consist of two temporary registers
while t2 is 8-bit long which is stored in one temporary register.

2. Addition. We then perform the addition of t0 + t1 + t2. Apparently, the sum
result is less than 16-bit, which can be kept in two registers.
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3. Multiplication. The third step is to multiply the constant 0x1e (i.e. the higher
byte of 7681) by (t0 + t1 + t2), which is a 16× 8-bit multiplication.

4. Subtraction. Thereafter, we subtract both the sum of t0+t1+t2 and the product
obtained from Step 3 from r.

5. Subtraction. However, the result we get in step 4 may still be larger than p =
7681, thus, we do the correction by subtracting the modulus p at most twice.

(r3,r2,r1) » 1

r3 r2 r1 r0

(r3,r2,r1) » 4

t0

t1

t2

+

+

t0+t1+t2

0x1e× 

(t0+t1+t2)× (0x1E « 8 )

(r3,r2,r1,r0)

-- 

  1

  2

  3

  4

Fig. 2: Fast reduction operation with SMAS2 method for q = 7681. 1©: shifting; 2©: addi-
tion; 3©: multiplication; 4©: subtraction.

Another property of SMAS2 technique is its economic register usage; it occupies
only 14 out of the 32 available registers [3] such that no push/pop instructions are
required at the beginning/end of the function. Similarly, we give the computation
process of modulus q = 12289 using of SMAS2 technique in the Appendix.

3.5 Reduce the Number of Modular Reduction Operations

Besides the coefficient multiplications, addition and subtraction operations are also
performed in the innermost loop of NTT. In general, a coefficient addition r =
a+ b mod p (resp. subtraction) can be performed by an addition (resp. subtraction)
operation followed by a conditional subtraction (resp. addition) with the prime p.
The intermediate result is kept in the range of [0, p].

Inspired by the incomplete modular arithmetic [34], our implementation does not
perform an exact comparison between r and p, but rather tolerate an incompletely
reduced coefficient r ∈ [0, 2dlog2pe]. Taking p = 7681 as an example, the incomplete
coefficient addition works as follows. We first perform a normal coefficient addition,
after that, we compare the higher byte of r with 25, and perform the conditional
subtraction whenever r ≥ 213, at most two subtractions are required for keeping the
intermediate result within [0, 2dlog2pe] [20]. In the very last outermost iteration of
NTT (i.e. in our case, i = 256), a correction process is performed to bring the final
result back into the range [0, p]. The incomplete coefficient technique can be used for
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coefficient addition, subtraction as well as coefficient multiplication. Our practical
results show this approach reduces roughly 6% of the modular reduction operations,
thus resulting in a speed up of the execution time for the NTT computation.

3.6 Reduce the Amount of RAM Consumption

The NTT computation requires the storage of intermediate results of coefficients
into RAM, which is extremely precious for an 8-bit AVR processor. In particular, the
number of coefficients is very large and each coefficient occupies two bytes. Taking
p = 7681 for dimension n = 256 as an example, each coefficient has a length of 13-
bit and is stored in two bytes of memory, in this way, the intermediate result needs
512 bytes. Observing that the higher three bits are empty when storing a 13-bit

a2

a3

a0

a1

a6

a7

a4

a5

a10

a11

a8

a9

a12

a13 a14 a15

Fig. 3: Reducing the RAM consumption with refined memory-access scheme for q = 7681.
Each row represents a memory of two bytes, while each block represents one bit.

long coefficient in two bytes memory, we propose a refined memory-access scheme
for reducing the RAM requirements. The main idea is to store 16 13-bit coefficients
(i.e. ai for 0 ≤ i ≤ 15) in 26 bytes memory space. As shown in Figure 3, each row
represents two bytes and each block represents 1-bit. The first 13 coefficients from a0
to a12 are stored into the rows in a normal way. Instead of allocating more memory
space for the 14th, 15th, and 16th coefficients, we make full use of the remaining
empty space for storing them. More specifically, we divide the 13-bit coefficient into
two parts, the first part contains the lower 12-bit and is stored into the empty space
of the rows of a0, a1 and a2, while the second part, i.e. the most significant bit of
a13, is stored into the 14th bit of the 13th row. We mark the memory space for
storing coefficients a13, a14 and a15 with green, orange and blue colors, respectively.
Loading the coefficients from memory into registers is not a trivial task. a0 ∼ a12
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can be obtained by an AND operation with 0x1fff, while loading a13, a14 and a15
requires to perform more bit rotation operations and memory accesses.

As a result, the refined memory-access scheme requires 18.75% less RAM. Sim-
ilarly, the memory-access scheme of modulus q = 12289 is given in the Appendix.

4 Optimizations of Knuth-Yao Sampler

Both key-generation and encryption require many Gaussian samplers, thus the ef-
ficient implementation of the Knuth-Yao sampler is another important factor for a
high-speed ring-LWE encryption scheme. In this section, we describe optimization
techniques to reduce the memory consumption and execution time of the Knuth-Yao
sampler on 8-bit AVR processors.

4.1 Sliding Window Method

The Knuth-Yao algorithm requires a probability matrix Pmat, which contains the
probabilities of sampling a random number at a discrete position from the Gaussian
distribution. Our Knuth-Yao implementation mainly adopts the optimizations in
[11], however, we propose a sliding window method to further reduce the memory
consumption and execution time.

Probability matrix with small memory consumption. To ensure a precision
of 2−90 for dimension n = 256, the Knuth-Yao algorithm is suggested to have
a probability matrix Pmat of 55 rows and 109 columns [11]. On an 8-bit AVR
processor, we stored each 55-bit column in seven words, where each word is 8-bit
long. In this case, only 1-bit is wasted per column and the probability matrix only
occupies 6,104 bytes in total 4.

Window method with byte-scanning. The bit-scanning operation as shown
in Algorithm 2 (line 4-10) requires to check each bit and decrease the distance
(d) whenever the bit is set. Instead of executing the scanning operation in a bit-
level, we propose a sliding window method to perform the scanning operation in a
byte-level. As shown in Algorithm 3 (line 15 ∼ 16), we choose the window width
(w = 8). In order to scan 8 bits in the probability matrix Pmat, the proposed
window method only requires eight additions, one subtraction and one conditional
branch statements, which saves seven conditional branch statements at the cost of
one subtraction.

Look-up table. We replace the bit counting into single 8-bit look-up table (LUT)
access by using the operands as an index of look-up table. The proposed window

4 The ROM consumption of probability matrix can be further reduced to 4352 bytes with
a sophisticated window method. In order to make a balance between the execution time
and ROM consumption, we decide to use the current version in our implementation.
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method only needs one look-up table access, one subtraction and one branch state-
ments to process eight bits. However, since the byte-scanning computes sampling
by 8 bits, we should conduct post-processing to get correct sampling (line 17 ∼ 32
of Algorithm 3). If the distance d is −1, we need to determine correct results among
eight cases. We trace back from row − 7 to row to find the set bit. On the other
hand, if the distance d is lower than -1, then we trace back the index of row from
row − 7 to row to find the case that the distance d is -1 by adding the probability
matrix Pmat to the distance d.

Efficiently skip the consecutive leading zeros. Another issue on probability
matrix is an occurrence of consecutive leading zeros. In order to skip consecutive
leading zeros, we use simple sliding method by conducting the comparison between
zero and bit counter (line 14 of Algorithm 3). Since the 8-bit is stored in a byte, single
byte comparison can notify that the byte has leading zeros or not. This approach
can skip one byte-scanning at the cost of one conditional branch statement, if the
counter is zero.

Look-up table in DDG tree. We exploit the look-up table (LUT) approaches
proposed in [11] into our window method implementations (shown in lines 1 ∼ 9 of
Algorithm 3). First, we perform sampling with an 8-bit random number as an index
to the LUT in the first 8 levels for a Gaussian distribution with σ = 11.31/

√
2π.

If the most significant bit of the lookup result is reset, then the algorithm returns
the lookup result successfully. Otherwise, the most significant bit of the lookup
result is one, then a lookup failure occurs, and the next level of sampling will
execute. Similarly, a second LUT will be used for level 9 ∼ 13 in the same Gaussian
distribution.

4.2 Pseudo Random Number Generator with AES Accelerator

We choose the PRNG algorithm suggested by [28] that runs the AES block cipher
in counter mode, encrypting successive values of an incrementing counter. In order
to get a true random number from AVR platform, we used the techniques present-
ed by TrueRandom library that sets up a noisy voltage on analog pin and mea-
sures the least significant bit with von Neumann whitening algorithm [2]. Atmel’s
ATxmega128A1 begins to support the AES crypto-accelerator that computes the
encryption with reasonable computation overheads (i.e. 375 clock cycles) and small
memory footprint for AES trigger program. This is significant progress compared to
the software implementation of AES on the ATmega128 processor, which requires
1993 clock cycles and 2K program [25] with pre-computations. Another attractive
feature of the ATxmega128A1 is the build-in AES accelerator can be operated in-
dependently of the microprocessor, which therefore hides almost all latencies for
AES encryption [32]. We exploit this idea into our Knuth-Yao sampler implemen-
tation. More specifically, we trigger the AES operation immediately after obtaining
the output of AES encryption and then conduct other operations. However, AVR
only supports 128-bit AES accelerator. For the case of long-term security level, we
choose to use the software version of 256-bit AES developed by AVR-Crypto-Lib,
where the 256-bit AES encryption takes 3521 clock cycles [4].
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Algorithm 3 Knuth-Yao Sampling with Sliding Window Method (width = 8)

Require: Probability matrix Pmat, random number r, modulus q
Ensure: Sample value s
1: index← r&255
2: r ← r � 8
3: s← LUT1[index]
4: if msb(s) = 0 then
5: if (r&1) = 1 then
6: return q − s
7: else
8: return s
9: d← s&7

10: for col from 8 by 1 to MAXCOL do
11: d← 2d + (r&1)
12: r ← r � 1
13: for row from MAXROW by −8 to 0 do
14: if (Pmat[row][col]‖Pmat[row − 1][col]‖...‖Pmat[row − 7][col]) > 0 then
15: sum =

∑row−7
i=row (Pmat[i][col])

16: d← d− sum
17: if d < 0 then
18: if d = −1 then
19: for j from row − 7 by 1 to row do
20: if Pmat[j][col] = 1 then
21: if (r&1) = 1 then
22: return q − j
23: else
24: return j
25: else
26: for j from row − 7 by 1 to row do
27: d← d + Pmat[j][col]
28: if d = −1 then
29: if (r&1) = 1 then
30: return q − j
31: else
32: return j
33: return 0
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5 Performance Evaluation and Comparison

This section presents the performance results of our implementation. We give the
concrete implementation platform in Subsection 5.1. The required execution time
and memory consumption of our ring-LWE implementation are given in Subsection
5.2. Finally, we show a comparison with the previous fastest implementations in
Subsection 5.3.

5.1 Experimental Platform

Our implementation used ATxmega128A1 processor on an Xplain board as the
target platform. This processor has a maximum frequency of 32 MHz, 128 KB
flash program memory and 8 KB SRAM. It is a powerful and popular processor
with an AES crypto-accelerator and can be used in a wide range of applications,
such as industrial, hand-held battery applications as well as some medical devices.
The implementation is written using a mixed ANSI C and Assembly languages.
In particular, the main structure of ring-LWE scheme and interface are written in
C while the modular operations are implemented in Assembly. We complied our
implementation with speed optimization option -O3 on the latest version of Atmel
Studio. In order to obtain accurate timings, we ran each operation at least 1000
times and calculated the average cycle count for one operation.

5.2 Experimental Results

Table 1 summarizes the execution time of the main components of ring-LWE en-
cryption schemes (including the NTT, the Knuth-Yao sampler, key-generation, en-
cryption as well as decryption operation) for both of medium-term and long-term
security levels. As mentioned before, for each security level, our ring-LWE encryp-
tion scheme contains two implementations for each arithmetic operation, one of
which is optimized for speed and the other optimized for memory (i.e. memory
efficient). The high-speed (HS) oriented implementation makes full use of all the
optimization techniques described in Section 3 (except Subsection 3.6) and Section
4 and the data is kept in RAM. On the other hand, the memory-efficient (ME)
oriented implementation uses the refined memory-access scheme in 3.6 in all basic
operations and store the pre-computed tables into flash ROM.

Table 1: Execution time of main components of the ring-LWE encryption scheme (in clock
cycles)

Implementation NTT KY Gen Enc Dec

HS-256 169,423 26,763 590,774 666,671 299,538

ME-256 351,346 39,027 1,245,934 1,623,876 562,902

HS-512 484,680 321,977 2,303,241 2,721,372 700,999

ME-512 890,294 344,855 3,745,173 4,433,556 1,450,713
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As shown in the Table 1, the NTT operation only requires 169423 clock cycles for
HS-256 implementation, however, the execution time increases sharply to 484680 cy-
cles for HS-512 implementation, which is 2.86 times slower. The Knuth-Yao sampler
for HS-256 requires an average of 26763, while 321,977 cycles are needed for HS-512.
Both of these observations can be explained by the fact that the length of coefficients
for HS-512 is twice as HS-256 and the reduction operation with p = 12889 is much
slower than with p = 7681 on an 8-bit AVR processor and AES accelerator can
boost performance of random number generations. It is also interesting to compare
the performance of HS oriented with ME oriented implementations for ring-LWE
encryption scheme. Taking HS-256 as an example, the key generation, encryption
and decryption require an execution time of roughly 590K, 666K and 300K, re-
spectively, which is twice faster than the ME-256 implementation. Apparently, this
is mainly because the refined memory-access scheme has been applied into all ba-
sic operations, including coefficient addition, subtraction, multiplication up to the
NTT, the Knuth-Yao sampler and each component requires more execution time
to catch the coefficients from memory into registers and store the data back into
memory.

Table 2: Memory requirements of key generation, encryption as well as decryption (in
bytes)

Implementation Gen Enc Dec Total

RAM/ROM (HS-256) 1,585/8,512 2,609/9,284 1,585/5,880 2,609/13,776

RAM/ROM (ME-256) 1,297/8,400 2,129/8,448 1,297/5,840 2,129/13,226

RAM/ROM (HS-512) 3,121/11,348 6,193/14,188 3,121/7,506 6,193/19,198

RAM/ROM (ME-512) 2,737/10,816 4,529/12,316 2,737/8,590 4,529/17,550

Table 2 lists the RAM and ROM requirements of key-generation, encryption
and decryption. For the whole ring-LWE encryption scheme implementation, the
HS-256 requires roughly 2.6K RAM and 13.7K ROM, while the ME-256 needs
2.1K RAM and 13.2K ROM. Both of the RAM requirements increase approximate-
ly 130% when comparing HS-512 and ME-512 with HS-256 and ME-256. Thanks
to the proposed refined memory-access scheme in Subsection 3.6, the ME orient-
ed implementations could save 19% and 21% RAM requirements while consuming
roughly the same ROM as HS oriented implementations for both of medium-term
and long-term security levels [4].

5.3 Comparison with Related Work

Table 3 compares software implementations of lattice-based cryptosystems on d-
ifferent processors. For the 8-bit AVR platform, both the work [7, 8] and our im-
plementation adopt the same parameter sets as we mentioned in Subsection 2.5.
The fastest published ring-LWE implementation belongs to [7]. Compared to [7],
our NTT transform and Gaussian sampler are 4.5 and 1.9 times faster, respective-
ly. For encryption scheme, Boorghany et al. reported execution time of 2.77 · 106,
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Table 3: Performance comparison of software implementation of lattice-based cryptosys-
tems on different processors.

Implementations NTT/FFT Sampling Gen Enc Dec

Implementations on desktop processors, e.g., Core 2 Duo:

Göttert et al. [16] (256) N/A N/A 9,300,000 4,560,000 1,710,000

Göttert et al. [16] (512) N/A N/A 13,590,000 9,180,000 3,540,000

Implementations on 32-bit ARM processors, e.g., Cortex-M4F:

DeClercq et al. [11] (256) 31,583 7,296 117,009 121,166 43,324

DeClercq et al. [11] (512) 71,090 14,592 252,002 261,939 96,520

Oder et al. [24] (512) 122,619 935,936 N/A N/A N/A

Implementations on 8-bit AVR processors, e.g., ATxmega64, ATxmega128:

Boorghany et al. [8] 1,216,000 N/A N/A 5,024,000 2,464,000

Boorghany et al. [7] 754,668 N/A 2,770,592 3,042,675 1,368,969

This work (HS-256) 169,423 26,736 590,774 666,671 299,538

Boorghany et al. [7] 2,207,787 617,600 N/A N/A N/A

This work (HS-512) 484,680 321,977 2,303,241 2,721,372 700,999

3.04 · 106 and 1.37 · 106 clock cycles for key generation, encryption and decryp-
tion with medium-term security level. For a comparison, our HS-256 only requires
0.59 ·106, 0.67 ·106 and 0.30 ·106 cycles, which is more than 4.5 times faster. The sig-
nificant progress achieved is mainly due to the proposed optimizations for speeding
up the NTT multiplication and Gaussian sampling computations.

In order to show a comparison of the ring-LWE based encryption scheme with
some traditional encryption schemes, we compare our ring-LWE implementation
with the state-of-the-art RSA and ECC implementations on 8-bit AVR platform
in Table 4. The fastest published RSA implementation belongs to [21], the authors
reported an execution time of 76.58 ·106 clock cycles for RSA decryption with 80-bit
security level 5. For a comparison, our HS-256 only requires 299538 cycles, which is
more than 2556 times faster even with a higher 128-bit security level. They are a
few software ECC implementations on 8-bit AVR processors. In prime fields, Hut-
ter and Schwabe in their cryptographic library NaCl [18] reported execution time
of 22954657 (HS version) and 28043124 (ME version) clock cycles for single scalar
multiplication using the Curve25519 [6]. Similarly, MoTE-ECC [22] requires roughly
9420788 and 21118778 clock cycles for fixed point and random point scalar multipli-
cations for the same security level. In binary fields, Aranha et al. in [1] achieved an
execution time of 5898240 clock cycles for a full scalar multiplication over F2233 . The
widely used Elliptic Curve Integrated Encryption Scheme (ECIES) is based on s-
calar multiplication, namely, the encryption requires two scalar multiplications, one
with fixed point and the other with random point while the decryption needs one
scalar multiplication with random point. For a comparison, our ring-LWE encryp-
tion scheme (HS oriented) is at least one order of magnitude faster than the ECC

5 To the best of our knowledge, no RSA implementation with 128-bit security level exists
on 8-bit AVR processors, thus, we use 80-bit security for a comparison.
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work in [18, 22, 1]. The detailed comparison can be found in Table 4. These research
results also show that the ring-LWE encryption is advantageous to traditional PKC
for resource-constraint microncontrollers in case of performance.

Table 4: Comparison of Ring-LWE encryption schemes with RSA and ECC on 8-bit AVR
processors (RAM and ROM in bytes, Enc and Dec in clock cycles)

Implementation PKC RAM ROM Enc Dec

[21] RSA-1024 N/A N/A N/A 75.68 · 106

[18] (HS) ECC-255 681 28, 883 45, 909, 314 22, 954, 657

[18] (ME) ECC-255 922 17, 373 56, 086, 248 28, 043, 124

[22] ECC-256 556 14, 700 30, 539, 566 21, 118, 778

[1] ECC-233 3, 700 38, 600 11, 796, 480 5, 898, 240

This work (HS) LWE-256 2, 609 13, 776 666, 671 299, 538

This work (ME) LWE-256 2, 129 13, 226 1, 623, 876 562, 902

6 Conclusion

This paper presented several optimizations for efficiently implementing ring-LWE
encryption scheme on 8-bit AVR platform. In particular, we propose three optimiza-
tions to accelerate the execution time and a refined memory-access scheme to reduce
the RAM requirements of the NTT-based polynomial multiplication. A combina-
tion of these optimizations results in a very efficient NTT computation, which is 4.5
times faster than the previous work on the same platform. We also report high-speed
optimized and memory-efficient optimized encryption scheme implementations for
both medium-term and long-term security levels, the former of which outperforms
the previous best result by a factor of roughly 4.5. Finally, a comparison of our im-
plementation with traditional public-key cryptography (i.e. RSA, ECC) also sheds
some new light on practical application of ring-LWE on resource-constraint 8-bit
AVR processors.
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A SMAS2 method for q = 12289

We propose an optimized SMAS2 reduction technique for performing the mod
12289 operation. This main idea is to first estimate the quotient of t = a

q , and then
perform the subtraction a− t · q, finally, the correct result can be obtained by a cor-
rection process with a final subtraction. Observing that 214 = 212 − 1 mod 12289,
it is not a trivial task to get the approximating value of t is (a � 14) + (a �
16) + (a � 18) + (a � 20) + (a � 22) + (a � 24). More preciously, the reduction
process consists of four different basic operations, namely, Shifting → Addition →
Multiplication → Subtraction → Subtraction (SAMS2). As shown in Figure 4, we
keep the product into four registers (r3, r2, r1, r0), which has been marked by dif-
ferent colors. Each of r3, r2, r1, r0 is 8-bit long. The colorful parts mean that this
bit has been occupied while the white part means the current bit is empty. The
reduction with 12289 using SAMS2 apporach can be performed as follows:

(r3,r2,r1) « 2

r3 r2 r1 r0

(r3,r2) « 2

t0

t1

t2

+

+

t0+t1+t2+t3+t4+t5

0x30× 

(t0+t1+t2+t3+t4+t5)× (0x30 « 8)

(r4,r3,r2,r1)

-- 

  1

  2

  3

  4

(r3,r2) « 2

t3
+

t4
+

t5
+

Fig. 4: Fast reduction operation with SMAS2 method for q = 12289. 1©: shifting; 2©:
addition; 3©: multiplication; 4©: subtraction.

1. Shifting. We firstly store r3, r2 into t0 and t1. The, we left shift r3, r2, r1 by
two bit, and store the intermediate result of r3, r2 into t2 and t3. After that,
we left shift by 2-bit to get the results t4. Lastly we left shift by 2-bit to get
the results t5. As shown in the figure, t0, t2 and t5 consist of two temporary
registers while t1, t3 and t4 8-bit long which is stored in one temporary register.

2. Addition. We then perform the addition of t0+t1+t2+t3+t4+t5. Apparently,
the sum result is less than 16-bit long, which can be kept into two registers.

3. Multiplication. The third step is to multiply the higher byte of 0x30 (i.e. the
higher byte of 12289) by (t0 + t1 + t2 + t3 + t4 + t5), which is a 16 × 8-bit
multiplication.
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4. Subtraction. Thereafter, we subtract t0 + t1 + t2 + t3 + t4 + t5 and the product
obtained from Step 3 from r.

5. Subtraction. However, the result we get in step 4 may still be lager than p =
12289, thus, we do the correction by conducting one additional SMAS2 and
subtracting the modulus p at most twice.

B Refined memory-access scheme for q = 12289

As shown in Figure 5, each row represents two bytes and each block represents
1-bit. The first 7 coefficients from a0 to a6 are stored into the rows in normal way.
Instead of allocating more memory space for 8th coefficients, we make full use of
the remaining empty space for storing them. More specifically, the 14-bit is stored
into the empty space of the rows of a0, a1 ..., a6. We marked the memory space
for storing coefficients a7 with green color. Loading the coefficients from memory
into registers is not a trivial task. a0 ∼ a6 can be obtained by a AND operation with
0x3fff, while a7 requires to perform more bit rotation operations and memory
accesses.
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Fig. 5: Reducing the RAM consumption with refined memory-access scheme for q = 12289


