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Abstract. Public-key cryptography based on the “ring-variant” of the
Learning with Errors (ring-LWE) problem is both efficient and believed
to remain secure in a post-quantum world. In this paper, we introduce
a carefully-optimized implementation of a ring-LWE encryption scheme
for 8-bit AVR processors like the ATxmega128. Our research contribu-
tions include several optimizations for the Number Theoretic Transform
(NTT) used for polynomial multiplication. More concretely, we describe
the Move-and-Add (MA) and the Shift-Add-Multiply-Subtract-Subtract
(SAMS2) technique to speed up the performance-critical multiplication
and modular reduction of coefficients, respectively. We take advantage
of incompletely-reduced intermediate results to minimize the total num-
ber of reduction operations and use a refined memory-access pattern to
decrease the RAM footprint of an NTT multiplication. Furthermore, we
propose a byte-wise scanning strategy to improve the performance of a
discrete Gaussian sampler based on the Knuth-Yao random walk algo-
rithm. For medium-term security, our ring-LWE implementation needs
590 k, 672 k, and 276 k clock cycles for key-generation, encryption, and
decryption, respectively. On the other hand, for long-term security, the
execution time of key-generation, encryption, and decryption amount to
2.2 M, 2.6 M, and 686 k cycles, respectively. These results set new speed
records for ring-LWE encryption on an 8-bit processor and outperform
related RSA and ECC implementations by an order of magnitude.

Keywords: Ring learning with errors (Ring-LWE), public-key encryp-
tion, number-theoretic transform, discrete Gaussian sampling
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1 Introduction

The vast majority of today’s widely-used public-key cryptosystems is based on
integer factorization and discrete logarithm problems, which are believed to be
intractable with current computing technology. However, these hard problems
can be solved by using Shor’s algorithm [32] (or a variant of it) on a quantum
computer. Lattice-based cryptography is often considered a premier candidate
for realizing post-quantum cryptosystems [28]. Its security relies on worst-case
computational assumptions in lattices that will remain hard even for quantum
computers. In the recent past, a large body of research has been devoted to the
efficient implementation of lattice-based cryptosystems, whereby resource-con-
strained environments received particular attention (see e.g. [5, 10, 22]). This is
much owed to the fact that the Internet is currently in the midst of a transition
from a network connecting commodity computers (i.e. PCs and notebooks) to
a network of smart objects (“things”). Even today, there are significantly more
non-traditional computing devices connected to the Internet than conventional
computers [14]. Among the smart devices that are populating the Internet are
various kinds of sensors, actuators, meters, consumer electronics, medical mon-
itors, household appliances, vehicles, and even items of clothing. Many of these
devices are very restricted in terms of computing power, memory capacity, and
energy supply. For example, a typical wireless sensor node, like the widely-used
MICAz mote, features an 8-bit AVR ATmega processor clocked at 8 MHz and
a few kB of RAM. However, in order to enable such devices to communicate in
a secure way, they need to be capable of executing public-key cryptography as
otherwise end-to-end authentication and end-to-end key exchange would not be
possible. Implementing public-key algorithms on an 8-bit processor poses quite
a challenge, not only for RSA and ECC, but also post-quantum techniques like
lattice-based cryptography. This raises the question of how well the “cryptosys-
tems of the future” are suited for the “Internet of the future,” i.e. the so-called
“Internet of Things (IoT),” and one aspect of this question is the performance
of lattice-based cryptosystems on 8-bit platforms such as AVR [2].

The introduction of the Learning With Errors (LWE) problem [28] and its
ring variant (i.e. ring-LWE) [21] opened up a way to build efficient lattice-based
public-key cryptosystems. The first practical evaluations of LWE and ring-LWE
encryption were presented by Göttert et al. at CHES 2012 [15]. According to
their results, the ring-LWE encryption scheme is at least four times faster and
requires less memory than the encryption scheme based on the standard LWE
problem. A large variety of subsequent hardware and software implementations
of ring-LWE-based public-key encryption or digital signature schemes improved
performance and memory footprint [22, 10, 5, 6, 25]. Oder et al. [22] introduced
an efficient implementation of Bimodal Lattice Signature Schemes (BLISS) on
a 32-bit ARM Cortex-M4F processor; the most optimized variant of their soft-
ware needs 6 M cycles for signing, 1 M cycles for verification, and 368 M cycles
for key generation, respectively, at a medium-term security level. Recently, De
Clercq et al. [10] described a ring-LWE encryption scheme on exactly the same
ARM platform and reported an execution time of 121 k cycles per encryption
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and 43.3 k cycles per decryption for medium-term security, which increases to
261 k cycles (encryption) and roughly 96.5 k cycles (decryption) when long-term
security is desired. The first implementation of a lattice-based cryptosystem on
an 8-bit processor was published by Boorghany et al. in 2014 [5, 6]. They eval-
uated four lattice-based authentication protocols on both an 8-bit AVR and a
32-bit ARM processor. On the 8-bit platform (i.e. AVR), their implementation
of the Fast Fourier Transform (FFT) needs 755 k and 2.2 M cycles for medium
and long-term security, respectively. Thanks to the efficiency of the polynomial
multiplication and the Gaussian sampler function, their LWE-based encryption
scheme achieves an execution time of 2.8 M cycles for key generation, 3 M cycles
for encryption, as well as 1.4 M cycles for decryption, all at a medium-term se-
curity level. Very recently, Pöppelmann et al. [25] compared implementations
of ring-LWE encryption and the Bimodal Lattice Signature Scheme (BLISS) on
an 8-bit ATxmega128 processor. For medium-term security, they reported 1.3 M
cycles for ring-LWE encryption and 381 k cycles for decryption, respectively.

1.1 Research Contributions

This paper continues the line of research on the efficient implementation of the
ring-LWE encryption scheme on 8-bit AVR processors. Our core contributions
are several optimizations to reduce the execution time and RAM requirements
of ring-LWE encryption, decryption, and key generation. More specifically, the
contributions of this paper can be summarized as follows.

1. The efficiency of coefficient modular multiplication is crucial for high-speed
NTT operations. We present the Move-and-Add (MA) method to perform
the coefficient multiplication and the Shift-Add-Multiply-Subtract-Subtract
(SAMS2) technique to accelerate the reduction operation. The former aims
at reducing the number of add instructions by rescheduling the order of the
byte multiplications, whereas the latter replaces expensive MUL instructions
by cheaper shifts and additions.

2. In the NTT computations, the vast majority of execution time is spent on
performing modular reduction since it is the most frequent operation in the
innermost loop. We exploit the idea of incomplete modular arithmetic (see
e.g. [34]), which means we allow (i.e. tolerate) incompletely reduced inter-
mediate results for the coefficients and perform the reduction operation in a
“lazy” fashion. Our experimental results show that this approach decreases
the overall number of modular reductions by 6% on average.

3. The intermediate coefficients during the computation of an NTT require a
considerable amount of RAM. We propose a refined memory access scheme
that enables us to make full use of the allocated space. For example, when
the coefficients are 13 bits long, we keep 16 coefficients in 26 bytes, and save
in this way up to 19% RAM compared to the straightforward approach.

4. To increase efficiency of our discrete Gaussian sampler based on the Knuth-
Yao random walk algorithm [17], we propose a byte-scanning technique to
minimize execution time.
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On basis of these optimizations, we present a total of four implementations
of a ring-LWE encryption scheme for the 8-bit AVR platform (e.g. AT(x)mega
microcontrollers); two at the medium-term security level and two for long-term
security. For each of these two security levels, we developed both a High-Speed
(HS) and a Memory-Efficient (ME) variant. For medium-term security, the HS
implementation requires roughly 590 k, 672 k, and 276 k clock cycles to perform
a key-generation, encryption, and decryption, respectively. Alternatively, at the
long-term security level, the speed-optimized key-generation, encryption, and
decryption take 2.2 M, 2.6 M, and 686 k clock cycles, respectively. Both our HS
and ME implementation significantly improve the speed records for ring-LWE
encryption on an 8-bit AVR processor. Furthermore, it should be noted that all
optimizations described in this paper can also be used to speed up LWE-based
signature schemes (e.g. [24]) on the AVR platform.

1.2 Paper Outline

The rest of this paper is organized as follows. In the next section, we recap the
concepts of ring-LWE encryption schemes, including the NTT and Knuth-Yao
sampler. In Section 3, we focus on certain optimization techniques for NTT on
8-bit AVR processors. In particular, we present several optimizations to reduce
the execution time and memory consumption of NTT. In Section 4, we propose
optimizations for the Knuth-Yao sampler. Then, in Section 5, we summarize all
implementation results we obtained and compare them with some state-of-the-
art implementations of public-key cryptosystems, in particular LWE, RSA, and
ECC, on the same platform. Finally, we draw conclusions in Section 6.

2 Background

2.1 The Ring-LWE Encryption Scheme

The encryption schemes used in this paper are based on the ring version of the
Learning With Errors (i.e. ring-LWE) problem. The more general form of this
problem, i.e. the LWE problem, is parameterized by a dimension n ≥ 1, a mod-
ulus q, and an error distribution. This error distribution is generally taken as a
discrete Gaussian distribution Xσ with standard deviation σ and mean 0 so as
to achieve the best entropy/standard deviation ratio [11]. In the literature, the
LWE problem is, in general, defined as follows: Two polynomials a and s are
chosen uniformly from Znq . The first polynomial is a global polynomial, whereas
the second polynomial must be kept as a secret. The LWE distribution As,X is
defined over Znq ×Zq and comprises the elements (a, t) where t = 〈a, s〉+ e mod
q ∈ Zq for some error polynomial e sampled from the error distribution Xσ. In
the search version of the LWE problem, an attacker is provided with a polyno-
mial number of (a, t) pairs sampled from As,X and his task is to try to find the
secret polynomial s. Similarly, in the decision version of the LWE problem, the
attacker attempts to distinguish between a polynomial number of samples from
As,X and the same number of samples from Znq × Zq.
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In 2010, Lyubashevsky et al. [21] proposed an encryption scheme based on
a more practical algebraic variant of the LWE problem defined over polynomial
rings Rq = Zq[x]/〈f〉 with an irreducible polynomial f(x) and a modulus q. As
the name suggests, in the the ring-LWE problem, the elements a, s, and t are
polynomials in the ring Rq. Lyubashevsky et al.’s ring-LWE encryption scheme
was later optimized by Roy et al. [29] with the aim of reducing the cost of the
polynomial arithmetic. In their scheme, the polynomial arithmetic carried out
during a decryption operation requires only one Number Theoretic Transform
(NTT) operation. Besides this computational optimization, Roy et al.’s scheme
performs sampling from the discrete Gaussian distribution using a Knuth-Yao
sampler. In the remainder of this section, we will first describe the major steps
of Roy et al.’s version of the encryption scheme and thereafter we will recap the
mathematical concepts of the NTT and the Knuth-Yao sampling.

2.2 Key Generation, Encryption, and Decryption

In the following, we describe the steps used in the encryption scheme proposed
by Roy et al. [29]. We denote the NTT of a polynomial a by ã.

– Key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
sampler twice:

r̃1 = NTT(r1), r̃2 = NTT(r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. The public key is
the polynomial pair (ã, p̃) and the private key is the polynomial r̃2.

– Encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a bin-
ary vector of n bits. This message is first encoded into a polynomial in the
ring Rq by multiplying the bits of the message M by q/2. Thereafter, three
error polynomials e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext can

be obtained as a set of two polynomials (C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 + NTT(e3 +M ′))

– Decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT has to be performed
to recover M ′:

M ′ = INTT(r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

2.3 Number Theoretic Transform

Our implementation adopts the Number Theoretic Transform (NTT) [8] to per-
form the required polynomial multiplications. An NTT can be seen as a variant
of the Fast Fourier Transform (FFT) that operates in a finite ring Zq. Instead
of using complex roots of unity, an NTT evaluates a polynomial multiplication
a(x) =

∑n−1
i=0 aix

i ∈ Zq in the n-th roots of unity ωin for i = 0, . . . , n− 1, where
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Algorithm 1. Iterative Number Theoretic Transform

Input: Polynomial a(x) ∈ Zq[x] of degree n− 1, primitive n-th root of unity ω ∈ Zq

Output: Polynomial a(x) = NTT(a) ∈ Zq[x]
1: a← BitReverse(a)
2: for i from 2 by 2i to n do
3: ωi ← ω

n/i
n , ω ← 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U ← a[k + j]
7: V ← ω · a[k + j + i/2]
8: a[k + j]← U + V
9: a[k + j + i/2]← U − V

10: end for
11: ω ← ω · ωi

12: end for
13: end for
14: return a

ωn denotes a primitive n-th root of unity. Algorithm 1 shows the iterative form
of the NTT algorithm, which is taken from Cormen et al. [8].

As specified in Algorithm 1, the iterative NTT algorithm consists of three
nested loops. The outermost loop (i-loop, line 2 ∼ 13) starts from i = 2 and
increases i by doubling it in each iteration. When i = n, the loop terminates,
i.e. the overall number of iterations is only log2(n). In each iteration, the value

of the twiddle factor ωi is computed by executing a power operation ωi = ω
n/i
n ,

and the value of ω is initialized by 1. Compared to the i-loop, the j-loop (line 4
∼ 12) executes more iterations, the number of iteration can be seen as a sum of
a geometric progression for 2i where i starts from 0 and has a maximum value of
log2(n− 1), thus, the j-loop has n− 1 iterations. In each iteration of j-loop, the
twiddle factor ω is updated by performing a coefficient modular multiplication in
line 11. Apparently, the innermost loop (k-loop, line 5 ∼ 10) occupies most part
of the execution time of the NTT algorithm since it is executed roughly n

2 log2n
times. In each iteration of the innermost loop (line 6 ∼ 9), two coefficients a[i+j]
and a[i+ j + i/2] are loaded from memory into registers, and then a[i+ j + i/2]
are multiplied by the twiddle factor ω. Thereafter, the value of a[k + j] and
a[k + j + i/2] are updated and stored in memory.

2.4 Gaussian Sampler

The ring-LWE cryptosystem needs samples from a discrete Gaussian distribu-
tion to provide the error polynomials during the key generation and encryption
operations. There are several methods for sampling from a discrete Gaussian
distribution. Among them we selected Knuth-Yao algorithm. The Knuth-Yao
algorithm stores probabilities of the sample points and performs a random walk
by following a binary tree, namely the discrete distribution generating (DDG)
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tree [17, 30, 13]. A DDG tree efficiently counts the visited non-zero nodes to find
the sample based on probability.

Algorithm 2. Low-level implementation of Knuth-Yao sampling [30]

Input: Probability matrix Pmat, random number r, modulus q
Output: Sample value s
1: for col from 0 by 1 to MAXCOL do
2: d← 2d + (r&1)
3: r ← r � 1
4: for row from MAXROW by −1 to 0 do
5: d← d− Pmat [row ][col ]
6: if d = −1 then
7: if (r&1) = 1 then
8: return q − row
9: else

10: return row
11: end if
12: end if
13: end for
14: end for
15: return 0

A low-level implementation of the Knuth-Yao random walk along the DDG
tree was proposed in [30], which is shown in Algorithm 2. The random walk reads
the probability bits of the sample points from a matrix known as the probability
matrix (Pmat). The i-th row of Pmat is the probability of the sample point |i|.
The algorithm uses two loops with counters col and row to read the bits from the
columns and rows of Pmat. The two loop boundaries MAXCOL and MAXROW
represent the number of columns and rows of Pmat . Before starting the random
walk, a counter d is initialized to zero. Whenever a new column of Pmat is to be
read, the counter d is updated using a random bit r. During the random walk,
the visited column of Pmat is scanned bit-by-bit, and each non-zero bit in the
column decrements the value of d. When d becomes negative for the first time,
the random walk stops and the value of the row counter is taken as the magnitude
of the sample. Now another random bit is generated to determine the sign of
the sample. For a more detailed description of the Knuth-Yao random walk,
interested readers may follow [30]. Faster versions of the Knuth-Yao random
walk were presented in [29, 10] using small lookup tables.

2.5 Parameter Selection

Our implementation adopts the parameter sets (n, q, σ) with (256, 7681, 11.31/
√

2π)
and (512, 12289, 12.18/

√
2π) for security levels of 128-bit and 256-bit, respec-

tively. The discrete Gaussian sampler is limited to 12σ to achieve a high pre-
cision statistical difference from the theoretical distribution, which is less than
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2−90. These parameter sets were also used in most of the previous hardware
implementations, e.g., [15, 29] and software implementations, e.g., [5, 6, 10]. This
also helps us to compare our work with previous work.

3 Optimization Techniques for NTT Computation

3.1 Look-Up Table for Twiddle Factors

In each iteration of the j-loop, a new twiddle factor ω (line 11 of Algorithm
1) is computed by performing a modular multiplication. The total number of
times a new ω is computed in an NTT operation is n − 1. A straightforward
computation of ω on-the-fly involves memory-access of ω and ωi and a modular
integer multiplication. Hence for an NTT computation, a significant portion
of the computation time is spent on calculating the twiddle factors. On the
other hand, storing all the intermediate twiddle factors ω and ωi in the RAM is
extremely expensive considering the fact that an 8-bit AVR processor has only
several kilo bytes of RAM.

However, both of the computations of the power of ωn in i-loop and twiddle
factor ω ← ω · ωi in j-loop can be considered as fixed costs. Based on this
observation, our solution is to store all the twiddle factors ω in a ROM. This
is similar to the technique used in [26] for a hardware implementation. More
specifically, we pre-compute the twiddle factor “off-line” and store them in a
look-up table in the flash ROM. We only need to transfer the twiddle factor
that is required for the current iteration of the j-loop from ROM to RAM. This
requires only two bytes of the RAM.

3.2 Algorithmic Optimization

We follow the parameter sets from [29] for the ring-LWE encryption scheme
where the modulus q is a prime and is q ≡ 1 mod 2n. In this setting, a polynomial
multiplication can be performed using only n-point NTTs/INTT. This special
technique is known as the negative wrapped convolution theorem and has been
applied in the hardware implementations [24, 29]. We remark that for a more
generic implementation, such restrictions on the parameter set may not be ap-
plicable. Our choice to use such restricted parameter set is mainly due to the fact
that our target platform (which is an AVR microcontroller) is computationally
weak, and hence computation of 2n-point NTT (or INTT) during a polynomial
multiplication costs both time and dynamic memory requirement. Beside the
application of the negative wrapped convolution, we apply other small compu-
tational optimizations that were used to accelerate hardware architectures. We
find these techniques very suitable for the software implementation too. These
optimizations include the interchanging of the j and k-loops in the NTT algo-
rithm [3], merging the scaling operation by n−1 with the chain of multiplications
during the post processing operation in the inverse NTT [29].
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aH

aL×bL

aL

bH bL

aH×bH

aH×bL

aL×bH

× 

r1 r0r3 r2

Fig. 1. The MOV-and-ADD coefficient multiplication.

3.3 Efficient Coefficient Multiplication

During an NTT computation, n2 log2 n coefficient multiplications are performed
in the nested loops. Hence efficient implementation of the coefficient multipli-
cation operation is essential to achieve fast computation time. In our imple-
mentation the coefficients are 13-bit or 14-bit long, and thus can be accommo-
dated in two 8-bit registers. Inspired by the hybrid technique for multi-precision
multiplication [16], we propose the “MOV-and-ADD” technique for performing
coefficient multiplications. The MOV-and-ADD multiplication technique aims
at minimizing the number of adc instructions. As shown in Figure 1, the two
coefficients a and b are fetched from the RAM and then loaded into two regis-
ters. We first multiply the lower byte of a (i.e. aL) by the lower byte of b (i.e.
bL) and move the product to two result registers r1 and r0 with help of the
movw instruction. Next, we form the product aH · bH and move the result to the
registers r2 and r3. Thereafter, we multiply aH by bL, add the resulting 16-bit
product aL · bH to r1, r2, and propagate the carry from the last addition to the
register r3. Finally, we perform the byte multiplication of aL with bH , and then
add the product into the register r1 and r2, the carry bit will be added into r3.
In summary, the processing of the MOV-and-ADD coefficient multiplication in
Figure 1 requires four mul, two movw, and a total of 6 add or adc instructions,
respectively.

3.4 Fast Reduction

In the NTT computation, the majority of the execution time is spent on com-
puting reduction operation since it is performed in the innermost k-loop. Thus,
fast reduction operation is a perquisite for high-speed implementation of NTT
algorithm.

We propose an optimized SAMS2 reduction technique for performing the
mod7681 and mod12289 operations. This main idea is to first estimate the
quotient of t = a

q , and then perform the subtraction a− t · q. Finally, the correct
result can be obtained by a correction process with a final subtraction. Observing
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that 213 ≡ 29 − 1 mod 7681, it is not difficult to conjecture the approximating
value of t is (a � 13) + (a � 17) + (a � 21). More precisely, the reduction
process consists of four different basic operations, namely, Shifting → Addition
→ Multiplication → Subtraction → Subtraction (SAMS2). As shown in Figure
2, we keep the product in four registers (r3, r2, r1, r0), which have been marked
by different colors. Each of r3, r2, r1, r0 is 8-bit long. The colorful parts mean
that this bit has been occupied while the white part means the current bit is
empty. The reduction with 7681 using SAMS2 approach can be performed as
follows:

1. Shifting. We first right shift r3, r2, r1 by one bit, and store the intermediate
result of r3, r2 in t0. After that, we right shift by 4-bit to get the results
t1 and t2. As shown in the figure, both t0 and t1 consist of two temporary
registers while t2 is 8-bit long which is stored in one temporary register.

2. Addition. We then perform the addition of t0 + t1 + t2. Apparently, the sum
result is less than 16-bit, which can be kept in two registers.

3. Multiplication. The third step is to multiply the constant 0x1e (i.e. the
higher byte of 7681) by (t0 + t1 + t2), which is a 16× 8-bit multiplication.

4. Subtraction. Thereafter, we subtract both the sum of t0 + t1 + t2 and the
product obtained from Step 3 from r.

5. Subtraction. However, the result we get in step 4 may still be larger than
p = 7681, thus, we do the correction by subtracting the modulus p at most
twice.

(r3,r2,r1) » 1

r3 r2 r1 r0

(r3,r2,r1) » 4

t0

t1

t2

+

+

t0+t1+t2

0x1e× 

(t0+t1+t2)× (0x1E « 8 )

(r3,r2,r1,r0)

-- 

  1

  2

  3

  4

Fig. 2. Fast reduction operation with SAMS2 method for q = 7681. 1©: shifting; 2©:
addition; 3©: multiplication; 4©: subtraction.

Another property of SAMS2 technique is its economic register usage; it occu-
pies only 14 out of the 32 available registers [2] such that no push/pop instruc-
tions are required at the beginning/end of the function. SMAS2 method can also
be used for modulus q = 12289.
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3.5 Reducing the Number of Modular Reduction Operations

Besides the coefficient multiplications, addition and subtraction operations are
also performed in the innermost loop of NTT. In general, a coefficient addition
r = a + b mod p (resp. subtraction) can be performed by an addition (resp.
subtraction) operation followed by a conditional subtraction (resp. addition)
with the prime p. The intermediate result is kept in the range of [0, p].

Inspired by the incomplete modular arithmetic [34], our implementation does
not perform an exact comparison between r and p, but rather tolerate an in-
completely reduced coefficient r ∈ [0, 2dlog2pe]. Taking p = 7681 as an example,
the incomplete coefficient addition works as follows. We first perform a normal
coefficient addition, after that, we compare the higher byte of r with 25, and
perform the conditional subtraction whenever r ≥ 213, at most two subtractions
are required for keeping the intermediate result within [0, 2dlog2pe] [18]. In the
very last outermost iteration of NTT (i.e. in our case, i = 256), a correction
process is performed to bring the final result back into the range [0, p]. The in-
complete coefficient technique can be used for coefficient addition, subtraction
as well as coefficient multiplication. Our practical results show this approach re-
duces roughly 6% of the modular reduction operations, thus resulting in a speed
up of the execution time for the NTT computation.

3.6 Reducing the RAM Consumption

The NTT computation requires the storage of intermediate results of coefficients
into RAM, which is extremely precious for an 8-bit AVR processor. In partic-
ular, the number of coefficients is very large and each coefficient occupies two
bytes. Taking p = 7681 for dimension n = 256 as an example, each coefficient
has a length of 13-bit and is stored in two bytes of memory, in this way, the
intermediate result needs 512 bytes.

Observing that the higher three bits are empty when storing a 13-bit long
coefficient in two bytes memory, we propose a refined memory-access scheme for
reducing the RAM requirements. The main idea is to store 16 13-bit coefficients
(i.e. ai for 0 ≤ i ≤ 15) in 26 bytes memory space. As shown in Figure 3, each
row represents two bytes and each block represents 1-bit. The first 13 coefficients
from a0 to a12 are stored into the rows in a normal way. Instead of allocating
more memory space for the 14th, 15th, and 16th coefficients, we make full use
of the remaining empty space for storing them. More specifically, we divide the
13-bit coefficient into two parts, the first part contains the lower 12-bit and is
stored into the empty space of the rows of a0, a1 and a2, while the second part,
i.e. the most significant bit of a13, is stored into the 14th bit of the 13th row.
We mark the memory space for storing coefficients a13, a14 and a15 with green,
orange and blue colors, respectively. Loading the coefficients from memory into
registers is not a trivial task. a0 ∼ a12 can be obtained by an AND operation with
0x1fff, while loading a13, a14 and a15 requires to perform more bit rotation
operations and memory accesses. As a result, the refined memory-access scheme
requires 18.75% less RAM. Similar memory-access scheme can be used for the
modulus q = 12289.
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a2

a3

a0

a1

a6

a7

a4

a5

a10

a11

a8

a9

a12

a13 a14 a15

Fig. 3. Reducing the RAM consumption with refined memory-access scheme for q =
7681. Each row represents a memory of two bytes, while each block represents one bit.

4 Optimizations of the Knuth-Yao Sampler

The Knuth-Yao algorithm requires a probability matrix Pmat, which contains
the probabilities of sampling a random number at a discrete position from the
Gaussian distribution. Our Knuth-Yao implementation mainly adopts the opti-
mizations in [10], however, we propose a byte-wise method to further reduce the
execution time.

Probability Matrix with Small Memory Footprint. To ensure a precision
of 2−90 for dimension n = 256, the Knuth-Yao algorithm is suggested to have
a probability matrix Pmat of 55 rows and 109 columns [10]. On an 8-bit AVR
processor, we stored each 55-bit column in seven words, where each word is 8-bit
long. In this case, only 1-bit is wasted per column and the probability matrix
only occupies 6,104 bytes in total.

Byte-Wise Scanning. The bit-scanning operation as shown in Algorithm 2
(line 7) requires to check each bit and decreases the distance (d) whenever the
bit is set. Instead of executing the scanning operation in a bit-level, we perform
the scanning operation in a byte-wise fashion. As shown in Algorithm 3 (line
15 ∼ 17), the byte-wise method only requires eight additions, one subtraction

The ROM consumption of probability matrix can be further reduced to 4352 bytes
by eliminating consecutive zero bits. In order to make a balance between the ex-
ecution time and ROM consumption, we decide to use the current version in our
implementation.
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Algorithm 3. Knuth-Yao Sampling with byte-wise scanning

Input: Probability matrix Pmat, random number r, modulus q
Output: Sample value s
1: index← r&255
2: r ← r � 8
3: s← LUT1[index]
4: if msb(s) = 0 then
5: if (r&1) = 1 then
6: return q − s
7: else
8: return s
9: end if

10: end if
11: d← s&7
12: for col from 8 by 1 to MAXCOL do
13: d← 2d + (r&1)
14: r ← r � 1
15: for row from MAXROW by −8 to 0 do
16: if (Pmat[row][col]‖Pmat[row − 1][col]‖...‖Pmat[row − 7][col]) > 0 then
17: sum =

∑row−7
i=row (Pmat[i][col])

18: d← d− sum
19: if d < 0 then
20: if d = −1 then
21: for j from row − 7 by 1 to row do
22: if Pmat[j][col] = 1 then
23: if (r&1) = 1 then
24: return q − j
25: else
26: return j
27: end if
28: end if
29: end for
30: else
31: for j from row − 7 by 1 to row do
32: d← d + Pmat[j][col]
33: if d = −1 then
34: if (r&1) = 1 then
35: return q − j
36: else
37: return j
38: end if
39: end if
40: end for
41: end if
42: end if
43: end if
44: end for
45: end for
46: return 0
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and one conditional branch statements, which saves seven conditional branch
statements at the cost of one subtraction.

Efficiently skip the consecutive leading zeros. Another issue on probability
matrix is an occurrence of consecutive leading zeros. In order to skip consecutive
leading zeros, we conduct the simple comparison between zero and bit counter
(line 18 of Algorithm 3). Since the 8-bit is stored in a byte, single byte comparison
can notify that the byte has leading zeros or not. This approach can skip one
byte-scanning at the cost of one conditional branch statement, if the counter is
zero.

Look-up table in DDG tree. We exploit the look-up table (LUT) approaches
proposed in [10] into our byte-wise scanning implementations (shown in lines
2 ∼ 9 of Algorithm 3). First, we perform sampling with an 8-bit random number
as an index to the LUT in the first 8 levels for a Gaussian distribution with
σ = 11.31/

√
2π. If the most significant bit of the lookup result is reset, then the

algorithm returns the lookup result successfully. Otherwise, the most significant
bit of the lookup result is one, then a lookup failure occurs, and the next level
of sampling will execute. Similarly, a second LUT will be used for level 9 ∼ 13
in the same Gaussian distribution.

4.1 Pseudo Random Number Generator with AES Accelerator

We choose the PRNG algorithm suggested by [27] that runs the AES block ci-
pher in counter mode, encrypting successive values of an incrementing counter.
Atmel’s ATxmega128A1 begins to support the AES crypto-accelerator that com-
putes encryptions with reasonable computation overheads (i.e. 375 clock cycles)
and small memory footprint for the AES trigger program. This is a signifi-
cant progress compared to the software implementation of AES on the AT-
mega128 processor, which requires 1993 clock cycles and 2K program [23] with
pre-computations. Another attractive feature of the ATxmega128A1 is the build-
in AES accelerator that can be operated independently of the microprocessor,
which therefore eliminates the latencies due to the AES encryption [31]. We ex-
ploit this idea into our Knuth-Yao sampler implementation. More specifically,
we trigger the AES operation immediately after obtaining the output of the AES
encryption and then conduct other operations. However, the AVR microproces-
sor only supports 128-bit AES accelerator. For the case of long-term security
level, we choose to use the software version of the 256-bit AES developed by
AVR-Crypto-Lib, where the 256-bit AES encryption takes 3521 clock cycles [9].

5 Performance Evaluation and Comparison

5.1 Experimental Platform

Our implementation used ATxmega128A1 processor on an Xplain board as the
target platform. This processor has a maximum frequency of 32 MHz, 128 KB



Efficient Ring-LWE Encryption on 8-bit AVR Processors 15

flash program memory and 8 KB SRAM. It is a powerful and popular processor
with an AES crypto-accelerator and can be used in a wide range of applica-
tions, such as industrial, hand-held battery applications as well as some medical
devices. The implementation is written using a mixed ANSI C and Assembly
languages. In particular, the main structure of ring-LWE scheme and interface
are written in C while the modular operations are implemented in Assembly.
We complied our implementation with speed optimization option -O3 on Atmel
Studio 6.2. In order to obtain accurate timings, we ran each operation at least
1000 times and calculated the average cycle count for one operation.

5.2 Experimental Results

Table 1 summarizes the execution time of the main components of ring-LWE
encryption schemes (including the NTT, the Knuth-Yao sampler, key-generation,
encryption as well as decryption operation) for both of medium-term and long-
term security levels. As mentioned before, for each security level, our ring-LWE
encryption scheme contains two implementations for each arithmetic operation,
one of which is optimized for speed and the other optimized for memory (i.e.
memory efficient). The high-speed (HS) oriented implementation makes full use
of all the optimization techniques described in Section 3 (except Subsection 3.6)
and Section 4 and the data is kept in RAM. On the other hand, the memory-
efficient (ME) oriented implementation uses the refined memory-access scheme
in 3.6 in all basic operations and store the pre-computed tables into flash ROM.

Table 1. Execution time of main components of the ring-LWE encryption scheme (in
clock cycles)

Implementation NTT KY Key-Gen Enc Dec

HS-256 193,731 26,763 589,900 671,628 275,646

ME-256 322,288 39,027 1,310,616 1,532,823 673,489

HS-512 441,572 255,218 2,165,239 2,617,459 686,367

ME-512 917,866 300,780 3,738,052 4,270,671 1,444,786

As shown in the Table 1, the NTT operation only requires 193, 731 clock cy-
cles for HS-256 implementation, however, the execution time increases sharply
to 441, 572 cycles for HS-512 implementation. The Knuth-Yao sampler for HS-
256 requires an average of 26, 763 cycles, while 255, 218 cycles are needed for
HS-512. Both of these observations can be explained by the fact that the length
of coefficients for HS-512 is twice as HS-256 and the reduction operation with
p = 12889 is much slower than with p = 7681 on an 8-bit AVR processor and
AES accelerator can boost performance of random number generations. It is also
interesting to compare the performance of HS oriented with ME oriented imple-
mentations for ring-LWE encryption scheme. Taking HS-256 as an example, the
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key generation, encryption and decryption require an execution time of roughly
590K, 670K and 275K, respectively, which is twice faster than the ME-256
implementation. Apparently, this is mainly because the refined memory-access
scheme has been applied into all basic operations, including coefficient addition,
subtraction, multiplication up to the NTT, the Knuth-Yao sampler and each
component requires more execution time to catch the coefficients from memory
into registers and store the data back into memory.

Table 2. Memory requirements of key generation, encryption as well as decryption (in
bytes)

Implementation Key-Gen Enc Dec Total

RAM/ROM (HS-256) 1,585/8,884 2,609/8,812 1,585/6,026 2,609/13,604

RAM/ROM (ME-256) 1,297/9,260 2,129/8,536 1,297/6,016 2,129/13,756

RAM/ROM (HS-512) 3,121/12,074 6,193/13,486 3,121/8,512 6,193/18,894

RAM/ROM (ME-512) 2,737/12,106 4,529/12,166 2,737/8,614 4,529/18,010

Table 2 lists the RAM and ROM requirements of key-generation, encryption
and decryption. For the whole ring-LWE encryption scheme implementation, the
HS-256 requires roughly 2.6K RAM and 13.6K ROM, while the ME-256 needs
2.1K RAM and 13.7K ROM. Thanks to the proposed refined memory-access
scheme in Subsection 3.6, the ME oriented implementations could save 19% and
21% RAM requirements while consuming roughly the same ROM as HS oriented
implementations for both of medium-term and long-term security levels [9].

5.3 Comparison with Related Work

Table 3 compares software implementations of lattice-based cryptosystems on
different processors. For the 8-bit AVR platform, the previous work [5, 6, 25]
and our implementation adopt the same parameter sets as we mentioned in
Subsection 2.5. Compared to the recent work [25], our HS-256 only requires
670K and 275K cycles for encryptionand decryption, which is roughly 2X and
1.4 faster. The significant progress achieved is mainly due to a combination of
algorithmic optimizations and the proposed practical optimization techniques
for speeding up the NTT multiplication and Gaussian sampling computations.

In order to show a comparison of the ring-LWE based encryption scheme with
some traditional encryption schemes, we compare our ring-LWE implementation
with the state-of-the-art RSA and ECC implementations on 8-bit AVR platform
in Table 4. The fastest published RSA implementation belongs to [19], the au-
thors reported an execution time of 76.58 · 106 clock cycles for RSA decryption
with 80-bit security level. For a comparison, our HS-256 only requires 275, 646
cycles, which is more than 278 times faster even with a higher 128-bit security

To the best of our knowledge, no RSA implementation with 128-bit security level
exists on 8-bit AVR processors, thus, we use 80-bit security for comparison.
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Table 3. Performance comparison of software implementations of lattice-based cryp-
tosystems on different processors.

Implementation NTT/FFT Sampling Key-Gen Enc Dec

Implementations on high-performance processors, e.g. Core 2 Duo:

Göttert [15] (256) n/a n/a 9,300,000 4,560,000 1,710,000

Göttert [15] (512) n/a n/a 13,590,000 9,180,000 3,540,000

Implementations on 32-bit ARM processors, e.g. Cortex-M4F:

De Clercq [10] (256) 31,583 7,296 117,009 121,166 43,324

De Clercq [10] (512) 71,090 14,592 252,002 261,939 96,520

Oder [22] (512) 122,619 935,936 n/a n/a n/a

Implementations on 8-bit AVR processors, e.g. ATxmega64, ATxmega128:

Boorghany [6] (256) 1,216,000 n/a n/a 5,024,000 2,464,000

Boorghany [5] (256) 754,668 n/a 2,770,592 3,042,675 1,368,969

Pöppelmann [25] (256) 334,646 n/a n/a 1,314,977 381,254

This work (HS-256) 193,731 26,763 589,900 671,628 275,646

Boorghany [5] (512) 2,207,787 617,600 n/a n/a n/a

Pöppelmann [25] (512) 855,595 n/a n/a 3,279,142 1,019,350

This work (HS-512) 441,572 255,218 2,165,239 2,617,459 686,367

level. They are a few software ECC implementations on 8-bit AVR processors.
For example, Düll et al. in [12] reported execution time of 13, 900, 397 (HS ver-
sion) and 14, 146, 844 (ME version) clock cycles for single scalar multiplication
using the Curve25519 [4]. The widely used Elliptic Curve Integrated Encryption
Scheme (ECIES) is based on scalar multiplication, namely, the encryption re-
quires two scalar multiplications, one with fixed point and the other with random
point while the decryption needs one scalar multiplication with random point.
For a comparison, our ring-LWE encryption scheme (HS oriented) is at least
one order of magnitude faster than the ECC work in [12, 20, 1]. These research
results also show that the ring-LWE encryption is advantageous to traditional
PKC for resource-constraint microncontrollers in case of performance.

6 Conclusion

This paper presented several optimizations to efficiently implement a ring-LWE
encryption scheme on 8-bit AVR platform. In particular, we proposed three op-
timizations to accelerate the execution time and a refined memory-access tech-
nique to reduce the RAM requirements of the NTT-based polynomial multi-
plication. A combination of these optimizations results in a very efficient NTT
computation, which is twice as fast as the previous best implementation. We also
reported the results we obtained for speed-optimized and a memory-optimized
implementations for both medium-term and long-term security levels. All of
these achieved results set new speed records for an implementation of a ring-
LWE encryption scheme on the 8-bit AVR platform. Finally, a comparison of our



18 Z. Liu et al

Table 4. Comparison of Ring-LWE encryption schemes with RSA and ECC on 8-bit
AVR processors (RAM and ROM in bytes, Enc and Dec in clock cycles)

Implementation PKC RAM ROM Enc Dec

Gura et al. [16] RSA-1024 N/A N/A 3, 440, 000 87, 920, 000

Liu et al. [19] RSA-1024 N/A N/A N/A 75, 680, 000

Düll et al. [12] (ME) ECC-255 510 9, 912 28, 293, 688 14, 146, 844

Düll et al. [12] (HS) ECC-255 494 17, 710 27, 800, 794 13, 900, 397

Liu et al. [20] ECC-256 556 14, 700 30, 539, 566 21, 118, 778

Aranha et al. [1] ECC-233 3, 700 38, 600 11, 796, 480 5, 898, 240

This work (HS) LWE-256 2, 609 13, 604 671,628 275,646

This work (ME) LWE-256 2, 129 13, 756 1,532,823 673,489

implementation with traditional public-key cryptography (i.e. RSA, ECC) sheds
some new light on the practical application of ring-LWE in resource-constraint
environments.
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