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Abstract

Pair encodings and predicate encodings, recently introduced by Attrapadung (Eurocrypt 2014)
and Wee (TCC 2014) respectively, greatly simplify the process of designing and analyzing pred-
icate and attribute-based encryption schemes. However, they are still somewhat limited in that
they are restricted to composite order groups, and the information theoretic properties are not suf-
ficient to argue about many of the schemes. Here we focus on pair encodings, as the more general
of the two. We first study the structure of these objects, then propose a new relaxed but still infor-
mation theoretic security property. Next we show a generic construction for predicate encryption
in prime order groups from our new property; it results in either selective or full security de-
pending on the encoding, and gives security under SXDH or DLIN. Finally, we demonstrate the
range of our new property by using it to design the first selectively secure CP-ABE scheme with
constant size ciphertexts.

Keywords. Predicate Encryption, Attribute-based Encryption, Pair Encoding Schemes, Dual
System technique, Short Ciphertexts

1 Introduction

In traditional public key encryption systems, a message is encrypted under a particular public key,
with the guarantee that it can only be decrypted by the party holding the corresponding secret key.
Attribute based encryption (ABE), introduced in [SW05] instead allows us to use attributes to de-
termine who has the power to decrypt. In these systems, there is a single entity which publishes
system parameters and distributes the appropriate decryption keys to various parties. In key-policy
ABE (KP-ABE) [GPSW06], a message is encrypted under a set of attributes describing that mes-
sage, and each decryption key is associated with a policy describing which ciphertexts it can de-
crypt. Conversely, in ciphertext-policy ABE (CP-ABE) [BSW07] each user is a given a decryp-
tion key that depends on his attributes, and ciphertexts are encrypted with policies describing what
users can decrypt them. ABE has been proposed for a variety of applications, from social net-
work privacy to pay-per-view broadcasting to health record access-control to cloud security (see e.g.
[PTMW06, TBEM08, BBS+09, APG+11, SRGS12].)

Recently there has been a lot of progress in terms of both security and functionality. Using
the dual system framework introduced by Waters [Wat09], several works [LOS+10, LW12] have
designed ABE schemes that satisfy the natural security definition, avoiding the restrictions of selective
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security. 1 Other works consider extra features like short ciphertexts whose length is independent of
the size of the associated attribute set and policy [ALdP11, YAHK14], or “unbounded” schemes that
place no bounds on the space of possible attributes or the number of attributes that can be tied to a
ciphertext or key [LW11, OT12, RW13]. Predicate encryption [BSW11] generalizes the concept to
require only that the ciphertext and key are associated with values x, y, and decryption succeeds iff
some predicate P (x, y) holds. Note that in this work we assume that x and y are revealed by the
ciphertext and key respectively; we do not consider attribute-hiding [BW07, KSW08] or predicate-
hiding [SSW09, BRS13].

As these schemes have progressed, however, constructions and proofs have become increasingly
complex. Many of the proposed schemes require composite order pairings, in which the order of the
pairing groups is a product of two or more primes; since these schemes require that factoring the
group order is hard, this in practice means that these groups must be at least an order of magnitude
larger than prime order groups of comparable security level, and according to [Gui13] composite
order pairing computations are at least 2 orders of magnitude slower. This has prompted efforts to
design schemes in prime order groups [OT10, OT12, Fre10, Lew12, HHH+14], but many of these
schemes still have fairly high cost as compared to their selectively secure counterparts, and designing
and analyzing security of such schemes can be quite challenging.

Two very recent works, by Wee [Wee14] and Attrapadung [Att14] make significant progress in
simplifying the design and analysis of new constructions. These works introduce simple new objects,
called predicate encodings and pair encodings respectively in the two works, which can be used to
construct ABE and other predicate encryption schemes. Essentially, they consider one decryption
key and one ciphertext, and focus on what happens in the exponent space. Both formalisms introduce
simple information theoretic properties on these objects and show that if these properties are met,
they can be extended into fully secure ABE/predicate encryption schemes. The major advantage of
this approach is that instead of having to design and prove security of a complex scheme, now all one
has to do is design and analyze an appropriate encoding, which is a much simpler task. This vastly
simplifies the design of new schemes, and in fact, both works resulted in both new constructions, and
more efficient variants of previously known schemes.

Currently these works have two primary limitations. First, they both result in ABE schemes that
rely on composite order pairings, which as explained above is very undesirable from an efficiency
standpoint. The second drawback is that the strict information theoretic properties they require from
the underlying objects mean that there are many constructions that they cannot capture in their model.
[Att14] addresses this by introducing a computational security notion, which allows several more
interesting constructions to be captured in the framework. However, this security notion is much
harder to analyze - it involves not only the encodings in the exponent space, but also elements in
the composite order group in which it is embedded, and the proofs that the encodings satisfy this
notion are not only computational (rather than information theoretic) but are based on much stronger
assumptions.

Still these encodings seem extremely promising as a way to simplify the design and analysis of
predicate encryption schemes. In our work we further study these objects, with the aim of under-
standing them better and beginning to address these limitations. In particular we focus on the pair
encodings from [Att14], as they seem able to capture more constructions.

Our Contributions. First, we study the structure of pair encodings. Attrapadung’s pair encodings
have only limited structural requirements. This means that he is able to capture many existing con-

1The original construction of Sahai and Waters [SW05], and much of the following work, considers what is referred to
as the selective security model, in which the adversary must commit to the attributes/policy used in the challenge ciphertext
before requesting any decryption keys.
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structions in his framework, although as mentioned above, in many cases the information theoretic
security property he defines does not hold for these schemes. A better understanding of the natural
structure of these schemes may help to design new schemes, by providing better intuition for what is
important and simply by limiting the search space.

Here we consider two structural properties. First we assume a simple property that describes
where the parameters appear in the key and ciphertext. This seems to reflect some basic structure,
as all the pair encodings in [Att14] have this property. Looking ahead, this property allows us to
instantiate these schemes efficiently in prime order groups. We then show that this implies a second,
seemingly unrelated property involving the use of random variables in the key and ciphertexts. We
can the use this second property to simplify our security definitions and analyses.

Using this understanding, we propose a relaxation of the information theoretic security property
proposed in [Att14]. This property essentially allows us to consider the scheme at smaller granularity
than an an entire key or ciphertext. It is still information theoretic, and it does not depend on the group
in which it will be used; this means it is still easy to analyze whether a given encoding satisfies this
property. We consider two flavors of this property and show that the stronger of the two is implied by
the security properties in [Att14]. However, we will see that our new property is indeed a relaxation
in that it allows us to consider encodings that did not satisfy the original property. Thus, we make
a first step towards addressing the limitations of the strict information theoretic property of previous
work.

Next we present a generic construction of predicate encryption from pair encodings. Here we
make use of the dual system groups introduced by [CW13]; although we must modify their properties
slightly, we show that their instantiations are still sufficient.2 We show that pair encodings which
satisfy the stronger flavor of our new property result in fully secure predicate encryption schemes,
while pair encodings which satisfy the weaker flavor result in schemes which can still be shown to be
selectively secure. While full security is preferable, we will see that this second result allows us to
design schemes in areas in which even selectively secure constructions are hard to construct.

This approach has two advantages. First, this means that we can transform any pair encoding
scheme which satisfies the information theoretic security properties in [Att14] into a fully secure
ABE or predicate encryption scheme in a prime order group based only on the SXDH or DLIN
assumption. The result then is schemes which are of practical efficiency, with strong security guaran-
tees based on mild assumptions. Moreover, the advantage of this approach is that while proof of our
generic construction is fairly involved, analyzing a given pair encoding scheme to verify the necessary
property is still quite straightforward.

Finally, to demonstrate how our relaxed security property allows us to consider additional func-
tionalities, we present a new pair encoding for CP-ABE with constant-size ciphertext. When used in
our generic construction, this results in a CP-ABE with constant size-ciphertext which is selectively
secure and can be instantiated under either SXDH or DLIN. To the best of our knowledge, prior to
our work there were no known schemes for constant-size CP-ABE, not even selectively secure under
very strong assumptions.3 This shows then that our new techniques allow us to consider a strictly
greater range of schemes; we hope that they will continue to prove useful and lead to other interesting
constructions.

Other related work. In a very recent work, Chen, Gay, and Wee [CGW15] use a somewhat differ-
ent approach to go from pair encodings to prime order predicate encryption schemes. They consider

2Since we use these groups in a black box way, any improvement in the underlying instantiation will translate directly
into an improvement in our generic construction. In particular we believe that the simplified new dual system groups
proposed in [CGW15] satisfy our modified definitions as well, so they could be used to simplify our construction.

3Here we discount threshold access policies because when only threshold policies are considered, CP-ABE and KP-ABE
are equivalent.
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strict restrictions on the structure of pair encodings, which are not satisfied by most of the encodings
which had previously been proposed. However, they show that all of the previous encodings which
satisfy the information theoretic property from [Att14] have counterparts which satisfy these stricter
requirements. They then show that given pair encodings which satisfy these strict requirements and
a natural information theoretic security property, they can construct fully secure predicate encryption
schemes. This results in the most efficient known constructions for a number of problems. As men-
tioned above, our generic construction can be applied directly to the original [Att14] pair encodings;
this will yield similar constructions, with slightly different tradeoffs (generally smaller parameters
but slower decryption). Interestingly, our relaxed security property is designed to leverage exactly the
kind of structure they prohibit, so perhaps it suggests another way forward for predicates that cannot
be addressed under their model.

2 Preliminaries

Notation. We formally define probabilistic polynomial time (PPT) algorithms, negligible functions
and different types of indistinguishability in Appendix A. We use ∼=,≡ and ≈ to denote statistical,
perfect and computational indistinguishability respectively. Security parameter is denoted by λ.

In Appendix A, we also discuss our notation for vectors, matrices, dot products and quantities
related to them. We also describe what the symbols← and←R mean (in short, the former denotes
running an algorithm to obtain an output, while the latter denotes sampling uniformly from a set). A
short discussion on bilinear pairings, exponent of a group, and homomorphism is also available.

Predicate family. We consider a predicate family P = {Pκ}κ∈Nc (for some constant c) where
Pκ : Xκ × Yκ → {0, 1} maps a ciphertext attribute x ∈ Xκ and a key attribute y ∈ Yκ to a binary
value. We assume that the first entry of κ is a number N ∈ N, which specifies the size of some
domain, and rest of the entries would be collectively referred to as par, i.e., κ := (N, par)

Predicate Encryption. We briefly discuss predicate encryption schemes, their correctness and secu-
rity; a formal treatment can be found in Appendix A.1. An encryption scheme for a predicate family
Pκ over a message space consists of four PPT algorithms Setup, Encrypt, KeyGen, and Decrypt,
which carry the usual meaning. Setup takes λ and par as inputs, and outputs master public and secret
keys. (The output of Setup defines a number N ∈ N, perhaps implicitly, and κ is set to (N, par).)
Encrypt is used to encrypt a message according to an x ∈ Xκ, and KeyGen produces a key for a
y ∈ Yκ (given the master secret key). If Pκ(x, y) = 1, then Decrypt recovers m.

Informally, a scheme is secure if no PPT adversary can distinguish between encryptions of two
messages under an x of its choice (except with negligible probability), given keys for any number of
y such that Pκ(x, y) = 0. If the adversary is allowed to request keys any time, we get full or adaptive
security. On the other hand, if requests can only be made after declaring x, then we get selective
security. Once again, please refer to Appendix A.1 for a formal definition.

3 Pair encoding schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung [Att14]. Our definition
of this scheme is slightly different from the one given by [Att14] in that we place a restriction on the
structure. Though the latter definition is more general, we believe that our formulation mirrors the
concrete design of such schemes more closely. In particular, all the constructions of pair encoding
schemes given in [Att14] fit into our framework without any changes.
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A pair encoding scheme for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par)
consists of four polynomial-time deterministic algorithms which satisfy a correctness condition as
defined below.

• Param(par) → n. The Param algorithm takes the parameters par as input, and outputs a
positive integer n ∈ N which specifies the number of common variables shared by the following
two algorithms. Let b := (b1, b2, . . . , bn) denote the common variables.

• EncC(x,N)→ (c := (c1, c2, . . . , cw1);w2). The EncC algorithm takes an N ∈ N and an x ∈
X(N,par) as input, and outputs a sequence of w1 polynomials c1, c2, . . . , cw1 with coefficients
in ZN and a w2 ∈ N. Every polynomial c` is a linear combination of monomials of the form
s, si, sbj , sibj in variables s, s1, s2, . . . , sw2 and b1, . . . , bn. More formally, for ` ∈ [1, w1],

c` := ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,

where ζ`, η`,i, θ`,j , ϑ`,i,j ∈ ZN are constants which define c`.

• EncK(y,N)→ (k := (k1, k2, . . . , km1);m2). The EncK algorithm takes an N ∈ N and a y ∈
Y(N,par) as input, and outputs a sequence of m1 polynomials k1, k2, . . . , km1 with coefficients
in ZN and an m2 ∈ N. Every polynomial kt is a linear combination of monomials of the form
α, ri′ , ri′bj in variables α, r1, r2, . . . , rm2 and b1, . . . , bn. More formally, for t ∈ [1,m1],

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

where τt, υt,i′ , φt,i′,j ∈ ZN are constants which define kt.

• Pair(x, y,N) → E. The EncC algorithm takes an N ∈ N, an x ∈ X(N,par) and a y ∈ Y(N,par)

as input, and outputs a matrix E ∈ Zm1×w1
N .

Correctness: A pair encoding scheme is correct if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ such
that Pκ(x, y) = 1 the following holds symbolically

kEc =
∑

t∈[1,m1],
`∈[1,w1]

Et,`ktc` = αs.

Structural restrictions. We impose an additional restriction on the form of E. Essentially this says
that if kt has a monomial of the form ri′bj′ and a c` has a monomial of the form sbj or sibj then Et,`
must be 0. One can easily verify that every pair encoding scheme given in [Att14] (as well as the new
one we propose) satisfies this.

Moreover, we can show that given this restriction, we can assume that the set of polynomials out-
put by EncC and EncK have a fairly restricted structure. In simple words, if a polynomial contains the
monomial sbj (or sibj , ri′bj), then there must exist a polynomial which only contains the monomial
s (resp. si, ri′). More precisely, we show that for any pair encoding which satisfies the restriction on
E, there is a corresponding one in which EncC and EncK have this structure, and this correspondance
preserves all of the security properties defined in [Att14].

For formal statements see Appendix C. For the rest of this work then, we will assume w.l.o.g. that
all pair encodings satisfy both of these properties.
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3.1 Security

Attrapadung provided two security notions for pair encoding schemes: perfect and computational. As
discussed in Section 1, in this paper, we focus on perfect security, which is the information theoretic
property, and for which we propose a relaxation. First, we restate here the original security definition
given by Attrapadung (which is also referred to as perfectly master-key hiding in his paper).

Definition 3.1 (Perfect security [Att14]). A pair encoding scheme (Param, EncC,EncK,Pair) for a
predicate family Pκ is perfectly secure if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 0,

{c(s,b),k(0, r,b)} ≡ {c(s,b),k(α, r,b)}, (1)

where s←R Zw2+1
N , b←R ZnN , r←R Zm2

N and α←R ZN .

We propose a new relaxed notion of perfect security that allows more flexibility in the design
of pair encoding schemes. Very roughly, this property will allow us to add noise gradually to the
parameters used in the key, as long as this noise is not detectable given the relevant part of the key
and the ciphertext. The goal is to eventually add sufficient noise to completely hide the master secret.

Towards this, we define a new randomized sampling algorithm for pair encoding schemes. While
the algorithms above are used in the generic construction, the Samp algorithm described below will
be used in the security proof.

• Samp(d, x, y,N) → (bd := (bd,1, bd,2, . . . , bd,n)). This algorithm takes a d ∈ [1,m2], an
N ∈ N, an x ∈ X(N,par) and a y ∈ Y(N,par) as input, and outputs a sequence of n numbers in
ZN . We require that the probability of this algorithm producing (u · bd,1, u · bd,2, . . . , u · bd,n)
as output is equal to the probability that it produces (bd,1, bd,2, . . . , bd,n) as output, for any
u ∈ Z∗N .

Jumping ahead, the dependence of Samp on its inputs will play a crucial role in the proof of
security of our generic construction. We will see that if Samp doesn’t depend on x, then we can
prove our construction to be fully secure. But in case it does, we can only prove selective security.

Recall that EncK on input y and N produces a sequence of polynomials k(α, r,b) with coeffi-
cients in ZN , where every polynomial is a linear combination of monomials of the form α, ri′ , ri′bj
in variables α, r1, r2, . . . , rm2 and b1, . . . , bn. In the following we use kd(α, rd,b), for d ∈ [1,m2],
to denote the polynomials in k obtained by setting all the variables in {r1, r2, . . . , rm2} except rd to
0. We are now ready to define our new notion of perfect security.

Definition 3.2 (Relaxed perfect security). A pair encoding scheme (Param, EncC,EncK,Pair) for a
predicate family Pκ is relaxed perfectly secure if there exists an algorithm Samp (as defined above)
such that for every par, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, and every d ∈ [1,m2]:

{c(s,b),kd(0, rd,b)} ∼= {c(s,b),kd(0, rd,b + bd)}, (2)

where s←R Zw2+1
N , b←R ZnN , rd ←R ZN ,bd ← Samp(d, x, y,N). Furthermore,{

c(s,b),
∑

d∈[1,m2]

kd(0, rd,b + bd)

}
∼=
{
c(s,b),

∑
d∈[1,m2]

kd(α, rd,b + bd)

}
, (3)

where s ←R Zw2+1
N , b ←R ZnN , r1, r2, . . . , rm2 ←R ZN , α ←R ZN , bd ← Samp(d, x, y,N) for

d ∈ [1,m2], and ∼= denotes statistical indistinguishability. We say Γ satisfies strong relaxed perfect
hiding if Samp does not depend on x.

In Appendix D we show that any pair encoding scheme perfectly secure under the original defi-
nition is also secure under the stronger flavor of the relaxed definition.
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4 Dual System Groups

A dual system group (DSG) [CW14] is parameterized by a security parameter λ and a number n. It
consists of six PPT algorithms as described below.

4.1 Syntax

• SampP(1λ, 1n): On input 1λ and n, SampP outputs public parameters PP and secret parameters
SP, which have the following properties:

– PP contains a triple of groups (G,H,GT ) and a non-degenerate bilinear map e : G×H→
GT , a homomorphism µ from H to GT , along with some additional parameters used
by SampG, SampH. Given PP, we know the exponent of group H and how to sample
uniformly from it. Let N = exp(H) (see Appendix A). We require that N is a product of
distinct primes of Θ(λ) bits.

– SP contains h̃ ∈ H (where h̃ 6= 1H) along with additional parameters used by SampG and
SampH.

• SampGT takes an element in the image of µ and outputs another element from GT .

• SampG and SampH take PP as input and output a vector of n + 1 elements from G and H
respectively.

• SampG and SampH take both PP and SP as inputs and output a vector of n + 1 elements from
G and H respectively.

4.2 Properties

Let the first element of SampG be denoted by SampG0. Analogously, SampH0, SampG0 and SampH0

can be defined. A dual system group is correct if it satisfies the following three properties:

Projective: For all PP, h ∈ H and coin tosses σ, SampGT(µ(h);σ) = e(SampG0 (PP;σ), h).

Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from SampG and SampH respec-
tively, then for all i ∈ [1, n], e(g0, hi) = e(gi, h0).

H-subgroup4: The output distribution of SampH is the uniform distribution over a subgroup of Hn+1.

For security we require the following three properties to hold:

Orthogonality: h̃ ∈ Kernel(µ), i.e., µ(h̃) = 1GT .

Non-degeneracy: The following should hold for every PP and SP (recall that ∼= denotes statistical
indistinguishability):

1. SampH0(PP, SP) ∼= h̃δ, where δ ←R ZN .

2. ∃ g ∈ G such that SampG0(PP, SP) ∼= gα, where α←R ZN .

3. For all ĝ0 ← SampG0(PP, SP), e(ĝ0, h̃)β is uniformly distributed over GT , where β ←R ZN .

4This property is required to construct encryption schemes with key delegation like HIBE. We do not use this property
in our constructions.
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Remark 1. In [CW14], the non-degeneracy property is defined in a slightly different way. First, they
require that for all ĥ0 ← SampH0(PP, SP), h̃ lies in the group generated by ĥ0, instead of the first
point above. And secondly, they do not have any constraint on the output of SampG0(PP, SP) like in
the second point above.

Indistinguishability. For two (positive) polynomials poly1(·) and poly2(·), define G,H, Ĝ, Ĥ, Ĝ′, Ĥ′

as follows:
(PP, SP)← SampP(1λ, 1n); γ1, γ2, . . . , γn ←R ZN ;

g1,g2, . . . ,gpoly1(λ) ← SampG(PP);G := (g1,g2, . . . ,gpoly1(λ));

h1,h2, . . . ,hpoly2(λ) ← SampH(PP);H := (h1,h2, . . . ,hpoly2(λ));

∀i ∈ [1, poly1(λ)], ĝi := (ĝi,0, . . .)← SampG(PP, SP); ĝ′i := (1, ĝγ1i,0, ĝ
γ2
i,0, . . . , ĝ

γn
i,0)

∀j ∈ [1, poly2(λ)], ĥj := (ĥj,0, . . .)← SampH(PP, SP); ĥ′j := (1, ĥγ1j,0, ĥ
γ2
j,0, . . . , ĥ

γn
j,0)

Ĝ := (ĝ1, ĝ2, . . . , ĝpoly1(λ)); Ĥ := (ĥ1, ĥ2, . . . , ĥpoly2(λ));

Ĝ′ := (ĝ′1, ĝ
′
2, . . . , ĝ

′
poly1(λ)); Ĥ

′ := (ĥ′1, ĥ
′
2, . . . , ĥ

′
poly2(λ)).

We call a dual system group Left Subgroup Indistinguishable (LSI), Right Subgroup Indistinguishable
(RSI) and Parameter hiding (PH) if for all polynomials poly1(·) and poly2(·),

{PP,G} ≈ {PP,G · Ĝ}, (4)

{PP, h̃,G · Ĝ,H} ≈ {PP, h̃,G · Ĝ,H · Ĥ}, and (5)

{PP, h̃, Ĝ, Ĥ} ≡ {PP, h̃, Ĝ · Ĝ′, Ĥ · Ĥ′} (6)

hold respectively. Observe that the two distributions in (4) and (5) are computationally indistinguish-
able, while the two distributions in (6) are identical.

Instantiations of DSG. The three indistinguishability properties defined above are generalizations
of the corresponding ones in Chen and Wee. In Appendix B, we show that the two instantiations of
DSG – in composite-order groups under the subgroup decision assumption and in prime-order groups
under the decisional linear assumption (d-LIN) – given by them satisfy our generalized indistinguisha-
bility properties as well as our new definition of non-degeneracy.

Remark 2. We remark that in the prime-order instantiation of dual system groups under the d-LIN
assumption given by [CW14], an element from groups G or H is represented by d+1 elements from a
source prime-order group (an element from GT is mapped to just one element of a target prime-order
group). Now, suppose we have an encryption scheme in dual system groups where the ciphertext/key
consists of elements from G or H (and possibly an element from GT ). Then, a concrete instantiation
in prime-order groups would only double the size of ciphertext/key, if we make the SXDH assumption
(special case of d-LIN with d = 1), and only triple it if we make the DLIN assumption (special case
of d-LIN with d = 2).

5 Generic Construction

In this section, we show how to construct a predicate encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) for any predicate family P = {Pκ}κ∈Nc for which we have a pair encoding scheme
ΓP = (Param,EncC,EncK,Pair), using dual system groups. Recall that κ specifies a numberN ∈ N
and some additional parameters par.
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• Setup(1λ, par): First run Param(par) to obtain n, then run SampP(1λ, n) to obtain PP and SP.
Output

MSK ←R H MPK := (PP, µ(MSK)).

Recall that given PP, we know the exponent of group H and can sample uniformly from it. Set
N = exp(H) and κ = (N, par).

• Encrypt(MPK, x,m): On input an x ∈ Xκ and an m ∈ GT , run EncC(x,N) to obtain a
sequence of w1 polynomials (c1, c2, . . . , cw1) and a w2 ∈ N. Draw w2 + 1 samples from
SampG:

(g0,0, . . . , g0,n)← SampG(PP;σ)

(g1,0, . . . , g1,n)← SampG(PP), . . . , (gw2,0, . . . , gw2,n)← SampG(PP),

where σ denotes the coin tosses used in drawing the first sample from SampG.

Output CT := (CT1, . . . , CTw1 , CTw1+1) as the encryption of m under x where

CT` := gζ`0,0 ·
∏

i∈[1,w2]

g
η`,i
i,0 ·

∏
j∈[1,n]

g
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

g
ϑ`,i,j
i,j

for ` ∈ [1, w1] and CTw1+1 := m · SampGT(µ(MSK);σ).

• KeyGen(MPK,MSK, y): On input a y ∈ Yκ, run EncK(y,N) to obtain a sequence of m1 poly-
nomials (k1, k2, . . . , km1) and an m2 ∈ N. Draw m2 samples from SampH:

(h1,0, . . . , h1,n)← SampH(PP), . . . , (hm2,0, . . . , hm2,n)← SampH(PP).

Output the key as SK := (SK1, SK2, . . . , SKm1) where for t ∈ [1,m1]

SKt := MSKτt ·
∏

i′∈[1,m2]

h
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

h
φt,i′,j
i′,j .

• Decrypt(MPK, SKy, CTx): On input SKy := (SK1, SK2, . . . , SKm1) and CTx := (CT1, CTw1+1),
run Pair(x, y,N) to obtain an m1 × w1 matrix E with entries in ZN . Output

CTw1+1 ·

 ∏
t∈[1,m1],`∈[1,w1]

e(CT`, SK
Et,`
t )

−1

.

Correctness (Sketch). We know that if Pκ(x, y) = 1, then
∑

t∈[1,m1],`∈[1,w1] Et,`ktc` = αs. Con-
sider two polynomials kt and c`. When these polynomials are multiplied together, no two monomials
– one from kt and one from c` – combine to give the same monomial in the product polynomial ktc`,
except when

• s is multiplied with ri′bj and sbj is multiplied with ri′ , or

• si is multiplied with ri′bj and sibj is multiplied with ri′ ,
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because of the restriction on the form of E. Now, recall that s is mapped to g0,0, ri′bj is mapped to
hi′,j , sbj is mapped to g0,j and ri′ is mapped to hi′,0. By the associativity property of dual system
groups, we know that e(g0,0, hi′,j) = e(g0,j , hi′,0). Further, we mapped si to gi,0 and sibj to gi,j , and
associativity guarantees that e(gi,0, hi′,j) = e(gi,j , hi′,0). Therefore, from the observations above, it
follows that ∏

t∈[1,m1],`∈[1,w1]

e(CT`, SK
Et,`
t ) = e(g0,0,MSK).

Finally, by projective property we know that e(g0,0,MSK) = SampGT(µ(MSK);σ).

Remark 3 (Preserving size). Observe that the output of Encrypt consists ofw1 +1 elements, w1 from
G and 1 from GT – only one more than the number of polynomials output by EncC. Further, any
key has the same number of elements from H as the number of polynomials output by EncK. Hence,
in particular, if w1 (resp. m1) is a constant then ciphertexts (resp. keys) are also of constant size, in
terms of dual system group elements. Further, if we instantiate dual system groups in prime-order
groups under SXDH or DLIN assumption, then the ciphertexts (resp. keys) would still be of constant
size (see Remark 2.)

6 Generic proof

In this section, we show that the encryption scheme ΠP constructed for a predicate family P =
{Pκ}κ∈Nc in the previous section is secure using the properties of dual system groups and relaxed
perfect security of pair encoding schemes. More formally, we prove the following theorem.

Theorem 6.1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC, EncK,Pair) is a
relaxed perfectly secure pair encoding scheme, then the encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) constructed in Section 5 (using ΓP ) is selectively secure. Furthermore, if the
algorithm Samp does not depend on input x, then ΠP is fully secure (see Definition A.1).

Using Lemma D.1, a corollary of the above theorem is that:

Corollary 6.2. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC, EncK, Pair, Samp)
is a perfectly secure pair encoding scheme, then the encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) constructed in Section 5 (using ΓP ) is fully secure.

Recall that dual system groups can be instantiated in prime-order groups under the d-LIN assump-
tion. Together with the above corollary, this gives a useful and interesting result:

Corollary 6.3. Every perfectly secure pair encoding scheme proposed by Attrapadung [Att14] has a
fully secure predicate encryption scheme in prime order groups under the d-LIN assumption.

The rest of this section is devoted to the proof of Theorem 6.1. We first define auxiliary algorithms
for encryption and key generation.

• Encrypt(PP, x,m; (g′0,g
′
1, . . . ,g

′
w2

),MSK): This algorithm is same as Encrypt except that it
uses g′i ∈ Gn+1 instead of the samples gi from SampG for i ∈ [0, w2], and sets CTw1+1 :=
m · e(g′0,0,MSK), where g′0,0 if the first element of the vector g′0.

• KeyGen(PP,MSK, y; (h′0,h
′
1, . . . ,h

′
m2

)): This algorithm is same as KeyGen except that it uses
h′i instead of the samples hi from SampH for i ∈ [1,m2].
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Type of key Inputs to KeyGen (besides PP and y)

Normal MSK; (h1, . . . ,hm2)

ρ-Intermediate-1 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2)

ρ-Intermediate-2 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2)

ρ-Intermediate-3 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · h̃zρ ,hρ+1, . . . ,hm2)

Pseudo-normal noisy MSK; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

Pseudo-SF noisy MSK ; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

SF noisy MSK; (h1 · h̃z1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-1 MSK; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-2 MSK; (h1, . . . ,hρ−1, hρ · ĥρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-3 MSK; (h1, . . . ,hρ−1, hρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

SF MSK; (h1, . . . ,hm2)

Table 1: Various types of keys

Using the algorithms described above, we define alternate forms for the ciphertext and master
secret key:

• Semi-functional master secret key is defined to be MSK := MSK · h̃β where β ←R ZN .

• Semi-functional ciphertext is given by Encrypt(PP, x,m;G·Ĝ,MSK) where G := (g1,g2, . . . ,gw2),
Ĝ := (g1,g2, . . . ,gw2), g1,g2, . . . ,gw2 ← SampG(PP), and ĝ1, ĝ2, . . . , ĝw2 ← SampG(PP, SP).
Observe that Encrypt(PP, x,m;G,MSK) is identically distributed to Encrypt(MPK, x,m) – the
normal ciphertext – by the projective property of dual system groups.

Table 1 defines various forms of keys for ρ ∈ [1,m2] and the inputs that need to be passed
to KeyGen (besides PP and y) in order to generate them. In the table, h1, . . . , hm2 ← SampH(PP),
ĥ1, . . . , ĥm2 ← SampH(PP, SP), and zd := (1, zd,1, . . . , zd,n), where (zd,1, . . . , zd,n)← Samp(d, x, y,N)
for all d ∈ [1,m2]. For convenience in the following, we define a slightly modified form of Samp,
called Samp, which just prepends 1 to the output of Samp. Intermediate-3 and SF-intermediate-3
keys are also defined for ρ = 0. Note that 0-Intermediate-3 is distributed identically to a normal
key and 0-SF-intermediate-3 is distributed identically to a SF noisy key. Since we have many forms
of keys, (where appropriate) we use a box to highlight the part of a key which is different from the
previous key.

Proof structure: The novelty in our proof is that instead of working at the level of a key, we work at
the level of samples that form the key. Let ξ denote the number of queries made by the adversary, and
let yϕ denote the ϕth query for ϕ ∈ [1, ξ]. Further, let m2,ϕ be the second output of EncK(yϕ, N).
We define the following hybrids for ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ] (fix any b ∈ {0, 1}).

• Hyb0: This is the real security game Expt
(b)
A,ΠP (λ, par) described in Appendix A.1.

• Hyb1: This game is same as the above except that the ciphertext is semi-functional.
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Indistinguishability Properties needed Proof

Hyb0 ≈ Hyb1 left subgroup indistinguishability Lemma E.1

Hyb2,ϕ,3,ρ−1 ≈ Hyb2,ϕ,1,ρ right subgroup indistinguishability Lemma E.2

Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ non-degeneracy, parameter-hiding, RPS (2) Lemma E.3

Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ right subgroup indistinguishability similar to Lemma E.2

Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4 right subgroup indistinguishability similar to Lemma E.2

Hyb2,ϕ,4
∼= Hyb2,ϕ,5 non-degeneracy, parameter-hiding, RPS (3) Lemma E.4

Hyb2,ϕ,5 ≈ Hyb2,ϕ,6 right subgroup indistinguishability similar to Lemma E.2

Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ right subgroup indistinguishability similar to Lemma E.2

Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ non-degeneracy, parameter-hiding, RPS (2) similar to Lemma E.3

Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ right subgroup indistinguishability similar to Lemma E.2

Hyb2,ξ,9,m2,ξ
∼= Hyb3 projective, orthogonality, non-degeneracy Lemma E.5

Table 2: An outline of the proof structure. After proving a lemma for a certain pair of hybrids, we
discuss how the proof can be modified to show indistinguishability of other related pairs. In the above,
RPS is a shorthand for relaxed perfect security.

• Hyb2,ϕ,i,ρ for i ∈ {1, 2, 3}: This game is same as the above except that the first ϕ− 1 keys are
semi-functional, ϕth key is of the form ρ-intermediate-i, and rest of the keys are normal.

• Hyb2,ϕ,4: This game is same as the above except that the ϕth key is Pseudo-normal noisy.

• Hyb2,ϕ,5: This game is same as the above except that the ϕth key is Pseudo-SF noisy.

• Hyb2,ϕ,6: This game is same as the above except that the ϕth key is SF noisy.

• Hyb2,ϕ,i,ρ for i ∈ {7, 8, 9}: This game is same as the above except that the ϕth key is of the
form ρ-SF-intermediate-(i− 6).

• Hyb3: This game is same as Hyb2,ξ,9,m2,ξ
except that the ciphertext is a semi-functional en-

cryption of a random message in GT .

Our goal is to show that Hyb0 and Hyb3 are computationally indistinguishable from each other,
irrespective of the bit b used by Chl in the security game Expt

(b)
A,ΠP (λ, par). Since Chl encrypts a

random message in Hyb3, there would be no way for a PPT adversary to tell whether m0 or m1 was
encrypted. This would imply that ΠP is a secure encryption scheme.

Our proof proceeds as follows. We first show that Hyb0 and Hyb1 are computationally indistin-
guishable due to the left subgroup indistinguishability (LSI) property of dual system groups in Lemma
E.1; this takes the ciphertext from normal to semi-functional space (the form of the ciphertext doesn’t
change after this step). After that, we take the keys one by one from normal to semi-functional space
by going through a series of hybrids. We show that Hyb2,1,3,0 (or, equivalently, Hyb1) is computa-
tionally indistinguishable from Hyb2,1,9,m2,1

by following the steps shown in Table 2 for ϕ = 1; this
makes the first key semi-functional while keeping the rest of the keys unchanged. Then, we show that
Hyb2,2,3,0 (or, equivalently, Hyb2,1,9,m2,1

) is computationally indistinguishable from Hyb2,1,9,m2,2
by

once again following the steps shown in Table 2, but now for ϕ = 2; as a result, the second key also
moves into the semi-functional space. We continue in the same fashion till all the keys are in the
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semi-functional space, i.e., we are in the hybrid Hyb2,ξ,9,m2,ξ
. The last step of the proof is to show

that Hyb2,ξ,9,m2,ξ
and Hyb3 are statistically close to each other, which we do in Lemma E.5.

We formally state and prove Lemma E.1, E.2, E.3, E.4 and E.5 in Appendix E. Though Lemma
E.2 shows that Hyb2,ϕ,3,ρ−1 and Hyb2,ϕ,1,ρ are computationally indistinguishable, we discuss imme-
diately afterwards how the proof can be modified to show indistinguishability of other related pairs
of hybrids. We do the same with other lemmas too.

Remark 4 (Full vs. selective security.). In transitioning from Hyb2,ϕ,1,ρ to Hyb2,ϕ,2,ρ in Lemma
E.3, we add randomness using the algorithm Samp to the ρ-th sample of the ϕ-th key. Observe that
if Samp depends on input x, then this transition can only take place if x is known before any key
queries are issued. Therefore, in this case, we can prove selective security. On the other hand, if
Samp does not depend on x, then we get full security (like in the case of all perfectly secure pair
encoding schemes of [Att14]).

Remark 5 (Tighter reduction). Recall from the proof of Lemma D.1 that for any perfectly secure
pair encoding scheme, we can define a dummy sampling algorithm that always outputs a vector of 0s.
When this is the case, the security proof can be considerably simplified: we could directly go from
Hyb1 to Hyb2,φ,4 and also from Hyb2,φ,5 to Hyb2,ξ,9,m2,ξ

using right subgroup indistinguishability.

7 Ciphertext-Policy ABE

In this section, we design a relaxed perfectly secure pair encoding scheme for Ciphertext-Policy
Attribute Based Encryption (CP-ABE). The access policy is represented by a linear secret sharing
(LSS) scheme (A, π), where A is a matrix of size n1 × n2 with entries in ZN and π is a mapping
from [1, n1] to a universe of attributes U . Let S ⊆ U be a set of attributes. Let Υ = {i | i ∈
[1, n1], π(i) ∈ S} be the set of rows in A associated with S. We say that the LSS scheme (A, π)
accepts S if e = (1, 0, . . . , 0) lies in the span of rows associated with S (otherwise the scheme
rejects S). In other words, if S is acceptable, there exists constants ε1, . . . , εn1 ∈ ZN such that∑

i∈Υ εiai = e. (This set of constants can be easily computed given S.) An interesting property of
LSS schemes that will be useful to us later in the proofs is that if (A, π) rejects S, then there must
exist a vector w = (w1, . . . , wn2) such that w · ai for all i ∈ Υ but w · e = 1. This, in particular,
implies that w1 = 1. (See [Bei11], Claim 2, for a proof of this and other properties below about secret
sharing schemes.)

Let ai denote the ith row of A for i ∈ [1, n1]. In order to share a secret s ∈ ZN , one picks
v2, v3, . . . , vn1 ←R ZN , and outputs ai·v as the ith share for i ∈ [1, n1], where v = (s, v2, v3, . . . , vn1).
This way of sharing a secret leads to two useful properties:

• Correctness: For every S accepted by (A, π), every secret s ∈ ZN and any v2, v3, . . . , vn1 ∈
ZN ,

∑
i∈Υ εi(ai · v) = v ·

∑
i∈Υ εiai = s.

• Privacy: For every S rejected by (A, π), the distribution of {ai · v}i∈Υ is independent of the
secret s being shared.

The predicate family for CP-ABE is indexed by κ = (N,n1, n2,U , T ). Xκ is the set of all LSS
schemes where the matrix is of size n1 × n2 with entries in ZN and the mapping is from [1, n1] to U .
Yκ is given by the set {S | S ⊆ U , |S| ≤ T}. For all x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and only
if x accepts y. It is clear from the definition of predicate family that there is a bound on the size of
matrices and the number of attributes associated with a key. But there are no other restrictions: the
size of attribute universe U could be arbitrary and π need not be injective.
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We are now ready to design a relaxed perfectly secure pair encoding scheme Φcp-abe = (Param,
EncC,EncK,Pair) for the CP-ABE predicate family.

7.1 Pair Encoding Scheme

• Param(par)→ n1(n2 + T + 1). Let b = ({bi,j}i∈[1,n1],j∈[1,n2], {b′i,t}i∈[1,n1],t∈[0,T ]).

• EncC((A, π), N)→ c(s,b) := (c1, c2) where

c1 = s c2 = s

 ∑
i∈[1,n1]
j∈[1,n2]

ai,jbi,j +
∑

i∈[1,n1]
t∈[0,T ]

π(i)tb′i,t

 ,

and s = (s), and ai,j denotes the entry in the ith row and jth column of A.

• EncK(S,N)→ k(α, r,b) := ({k1,i, k2,i,j k3,i,`,j , k4,i,y k5,i,`,t} i,`∈[1,n1],i 6=`,j∈[1,n2],y∈S,t∈[0,T ])
where

k1,i = ri k2,i,j = ribi,j − vj k3,i,`,j = rib`,j

k4,i,y = ri
∑
t∈[0,T ]

ytb′i,t k5,i,`,t = rib
′
`,t

and r = (r1, r2, . . . , rn1 , v2, . . . , vn2) and v1 = α.

We define Pair algorithm and prove correctness in Appendix F. Here we informally discuss how
we can recover αs by combining the polynomials generated by EncC and EncK, with an intent to
provide some intuition about the scheme. We can think of v2, v3, . . . , vn1 as the randomness picked
in order to share v1 = α according to the scheme (A, π). Hence, if we find ai · v for all i ∈ Υ, we
can recover α (ignore s for now). One could start out by multiplying ai,j by k2,i,j and summing over
j, for an i ∈ Υ. This does give

∑
j ai,jvj but also produces an extra term ri

∑
j ai,jbi,j (ignore ri for

now). We could try to get rid of this term by using c2 but the product ai,jbi,j there is also summed
over i (since we want EncC to produce a constant number of polynomials, we are forced to pack as
much into one polynomial as possible). Fortunately, we have the polynomials k3,i,`,j for ` 6= i. We
can multiply these by a`,j and remove the unwanted ai,jbi,j terms. But we are not done yet: we must
also remove the term

∑
i,t π(i)tb′i,t left in the mix because we used c2. If π(i) ∈ S, then this is easy:

use k4,i,π(i) to remove
∑

t π(i)tb′i,t, and k5,i,`,t · π(`)t to remove the rest. However, if π(i) /∈ S, there
is no way to do this. Indeed, one can show that in this case c2 is uniformly distributed.

7.2 Relaxed Perfect Security

We now prove that the pair encoding scheme Φcp-abe designed above is relaxed perfectly secure
(Definition 3.2). Towards this, we first define a sampling algorithm Samp as follows. On input an
i ∈ [1, n1], (A, π) ∈ Xκ, S ∈ Yκ and N , Samp checks whether π(i) /∈ S. If yes, it picks elements
b̂i,1, b̂i,2, . . . , b̂i,n2 independently and uniformly from ZN ; otherwise it picks them uniformly but with
the constraint that

∑
j∈[1,n2] ai,j b̂i,j = 0. Samp outputs

b̂i := (0, . . . , . . . , . . . , 0︸ ︷︷ ︸
(i− 1)n2

, b̂i,1, b̂i,2, . . . , b̂i,n2 , 0, . . . , . . . , . . . , . . . , 0︸ ︷︷ ︸
(n1 − i)n2 + n1(T + 1)

). (7)
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We consider only those N ∈ N which are a product of distinct primes of Θ(λ) bits. This is suf-
ficient for our purposes because the Setup algorithm of the generic construction in Section 5 outputs
N of exactly this form. We first want to show that for i ∈ [1, n1] Equation (2) holds, i.e.,

{c(s,b),ki(0, ri,b)} ≡ {c(s,b),ki(0, ri,b + b̂i)}, (8)

where s←R Z1
N , b←R ZnN , ri ←R ZN , b̂i ← Samp(i, (A, π), S,N). This equation trivially holds

for i ∈ [n1 + 1, n1 + n2 − 1] irrespective of what Samp outputs because ki does not contain any
term with an element of b in it. (That is why we don’t care about defining Samp’s behavior on such
inputs.)

Let us refer to the left and right distributions in Equation (8) above as ∆L and ∆R respec-
tively. Fix an arbitrary i∗ ∈ [1, n1]. By the definition of ki∗ , we know that in these two distribu-
tions only those components of the key survive which have subscript i∗. Further, in the components
k2,i∗,1, . . . , k2,i∗,n2 , the variables v2, . . . , vn2 are all set to 0. It is also clear from Equation (7) that the
added randomness b̂i∗ affects only k2,i∗,1, . . . , k2,i∗,n2 components. For i ∈ [1, n1] and j ∈ [1, n2],
let δi,j := bi,j if i 6= i∗ and δi∗,j := bi∗,j + b̂i∗,j otherwise. Since bi,j are uniformly and independently
distributed, so are δi,j . Now the second component of ciphertext, c2, can be rewritten as

s

 ∑
i∈[1,n1],i 6=i∗
j∈[1,n2]

ai,jδi,j −
∑

j∈[1,n2]

ai∗,j b̂i∗,j +
∑
t∈[0,T ]

π(i∗)tb′i∗,t +
∑

i∈[1,n1],i 6=i∗
t∈[0,T ]

π(i)tb′i,t

 .

Observe that the only difference between ∆L and ∆R is that in the latter case there is an additional
term rand :=

∑
j∈[1,n2] ai∗,j b̂i∗,j in the c2 component of the ciphertext. If π(i∗) ∈ S, then this term

is 0. On the other hand when π(i∗) /∈ S, we show that
∑

t∈[0,T ] π(i∗)tb′i∗,t is an independent uniform
random variable over ZN , and therefore, the additional term rand does not matter. Towards this,
consider the polynomial f(x) = b′i∗,T · xT + b′i∗,T−1 · xT−1 + . . . + b′i∗,0. Since b′i∗,T , . . . , b

′
i∗,0

are chosen at random, any T + 1 distinct points on f(x) are uniformly distributed over ZT+1
N . The

only components of the key which depend on b′i∗,T , . . . , b
′
i∗,0 are {k4,i∗,y}y∈S , which could also be

rewritten as {ri∗f(y)}y∈S . There could be at most T such components because |S| ≤ T . Therefore,∑
t∈[0,T ] π(i∗)tb′i∗,t = F (π(i∗)) is independently and uniformly distributed.
The second and last step in proving relaxed perfect security is to show that when (A, π) does not

accept S, Equation (3) holds, i.e.,{
c(s,b),

∑
i∈[1,n1+n2−1]

ki(0, ri,b + b̂i)

}
≡
{
c(s,b),

∑
i∈[1,n1+n2−1]

ki(α, ri,b + b̂i)

}
, (9)

where s ←R Z1
N , b ←R ZnN , r ←R Zn1+n2−1

N , α ←R ZN , and b̂i ← Samp(i, (A, π), S,N) for
i ∈ [1, n1 + n2 − 1]. Let us denote the left and right distributions in Equation (9) above by ΓL and
ΓR respectively. The second component of the key in these two distributions is given by

k2,i,j = ribi,j + rib̂i,j − vj

for i ∈ [1, n1] and j ∈ [1, n2]. The only difference between the distributions is in the components
k2,1,1, . . . , k2,n1,1. In the case of ΓL, v1 = α = 0, while in the case of ΓR, it is chosen independently
and uniformly from ZN .

Let us focus on the distribution ΓL. We claim that if we replace the variables b̂i,j by b̂i,j+r−1
i wjα,

where α←R ZN , then ΓL is not affected. (With high probability ri ∈ Z∗N , so r−1
i exists. Also, recall
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that w = (w1, . . . , wn2) is orthogonal to all the rows associated with S and w ·e = 1; see the discus-
sion at the beginning of this section.) If π(i) /∈ S, we know that b̂i,1, b̂i,2, . . . , b̂i,n2 are independently
and uniformly distributed. Hence adding r−1

i wjα has no effect on their joint distribution. On the
other hand when π(i) ∈ S, b̂i,1, b̂i,2, . . . , b̂i,n2 are uniformly chosen but they satisfy the constraint∑

j∈[1,n2] ai,j b̂i,j = 0. Now, when r−1
i wjα is added,∑

j∈[1,n2]

ai,j(b̂i,j + r−1
i wjα) =

∑
j∈[1,n2]

ai,j b̂i,j + r−1
i α

∑
j∈[1,n2]

ai,jwj = 0

because w is orthogonal to every ai such that π(i) ∈ S. Hence, the variables b̂i,1, b̂i,2, . . . , b̂i,n2 still
satisfy the constraint they did before.

The final step in the proof is to replace the variablesw1α, v2+w2α, . . . , vn2+wn2α byα, v2, . . . , vn2 .
This does not affect ΓL because the latter set of variables are picked independently and uniformly
from ZN (and w1 = 1). But now ΓL is exactly the distribution ΓR.

7.3 Instantiation: Constant-size ciphertext

We briefly comment about instantiating the pair encoding scheme Φcp-abe = (Param,EncC,EncK,Pair).
Using the generic method in Section 5, one can construct a predicate encryption Πcp-abe = (Setup,
Encrypt,KeyGen,Decrypt) scheme for CP-ABE using Φcp-abe. Since EncC outputs only two poly-
nomials, Encrypt outputs only two elements from G (and one element from GT ). Now, from Remark
2, it follows that one can design a concrete scheme for CP-ABE in prime-order groups where the ci-
phertext contains only 4 group elements under the SXDH assumption, and only 6 elements under the
DLIN assumption (plus an additional element from the target group). Furthermore, only a constant
number of pairing operations would be required to decrypt a ciphertext.
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A Preliminaries

An algorithm is probabilistic polynomial time (PPT) if its running time is upper-bounded by some
polynomial in the size of its input, and it is allowed to use random coin tosses during its execution. A
function f : N → R+ is negligible if for every positive polynomial poly(·) and all sufficiently large
n, f(n) ≤ 1/poly(n). (A polynomial is positive if every input is mapped to a positive real number.)

We denote the security parameter by λ. We use negl(λ) to denote a negligible function in λ. The
statistical distance between two distributions D and D∗ which take values from the set Ω is given by

∆(D,D∗) :=
1

2

∑
α∈Ω

|Pr[D1 = α]− Pr[D∗ = α]|.

Two families of distributions D := {Dλ}λ∈N and D∗ := {D∗λ}λ∈N indexed by λ are statistically indis-
tinguishable if the function ∆D,D∗(λ) = ∆(Dλ,D∗λ) is negligible. These distributions are perfectly
indistinguishable if ∆D,D∗(λ) is always 0. Furthermore, we say that D is computational indistinguish-
able from D∗ if for every PPT algorithm A:

|Pr[A(Dλ) = 1]− Pr[A(D∗λ) = 1]| ≤ negl(λ).

We use ∼=,≡ and ≈ to denote statistical, perfect and computational indistinguishability respectively.
We normally use lower case letters in bold to denote vectors; but if a vector’s elements are them-

selves vectors, we use upper case. For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we use
u · v to denote the entry-wise product, i.e., (u1v1, . . . , unvn). The same notation extends to vectors
of vectors, i.e., if U = (u1, . . . ,um) and V = (v1, . . . ,vm), then U ·V = (u1 · v1, . . . ,um · um).
gu should be interpreted as the vector (gu1 , . . . , gun). gA, where A is a matrix, should be interpreted
in an analogous way.

We use u1, . . . ,um ← SampAlg(·) to denote that the algorithm SampAlg is run m times with
independent coin tosses to generate samples u1, . . . ,um. Since the output of this algorithm is a
vector, we also use (u1, . . . , un) ← SampAlg(·) to denote that a single sample with co-ordinates
u1, . . . , un is drawn from SampAlg (this should not be confused with the previous notation). Finally,
a←R S denotes drawing an element a uniformly at random from the set S.

Bilinear Pairings: Let G,H and GT be three multiplicative groups. A pairing e : G × H → GT is
bilinear if for all g ∈ G, h ∈ H and a, b ∈ Z, e(ga, hb) = e(g, h)ab. This pairing is non-degenerate if
whenever e(g, h) = 1GT , then either g = 1G or h = 1H (where 1G, for instance, denotes the identity
element of G.) We will only be interested in bilinear pairings that are efficiently computable.

The order of an element g of a group G is the smallest positive integer a such that ga = 1G. The
exponent of a group is defined as the least common multiple of the orders of all elements of the group.
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One can show that if a non-degenerate bilinear pairing e : G × H → GT can be defined over three
groups G,H and GT , then they all have the same exponent. We use exp(G) to denote the exponent
of a group G.

Homomorphism: A homomorphism from a groupG to a groupH is a function ψ : G→ H such that
for all g1, g2 ∈ G, ψ(g1 · g2) = ψ(g1) · ψ(g2). We define two sets with respect to a homomorphism:
Image(ψ) = {ψ(g) | g ∈ G} and Kernel(ψ) = {g ∈ G | ψ(g) = 1H}.

A.1 Predicate Encryption (PE)

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message spaceM = {Mλ}λ∈N
consists of four PPT algorithms which satisfy a correctness condition defined below.

• Setup(1λ, par) → (MPK,MSK). The Setup algorithm takes as input the unary representation
of the security parameter λ and some additional parameters par. It outputs a master public key
MPK and a master secret key MSK. The output of Setup defines a number N ∈ N (perhaps
implicitly), and κ is set to (N, par).

• Encrypt(MPK, x,m)→ CT. The encryption algorithm takes public parameters MPK, an x ∈ Xκ
and an m ∈Mλ as inputs, and outputs a ciphertext CT.

• KeyGen(MPK,MSK, y)→ SK. The key generation algorithm takes as input the public parame-
ters MPK, the master secret key MSK and a y ∈ Yκ, and outputs a secret key SK.

• Decrypt(MPK, SK, CT) → m′. The decryption algorithm takes as input the public parameters
MPK, a secret key SK and a ciphertext CT, and outputs a message m′ ∈Mλ.

Correctness: For all par, MPK and MSK output by Setup(1λ, par), m ∈ Mλ, x ∈ Xκ and y ∈ Yκ
such that Pκ(x, y) = 1, if:

CT ← Encrypt(MPK, x,m) SK ← KeyGen(MPK,MSK, y),

then
Pr[Decrypt(MPK, CT, SK) 6= m] ≤ negl(λ),

where the probability is over the random coin tosses of Encrypt,KeyGen and Decrypt.

Security: Let Π be an encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N. Consider the following experiment Expt(b)A,Π (λ, par) between an adversary A and
a challenger Chl for b ∈ {0, 1} when both are given input 1λ and par:

1. Setup: Chl runs Setup(1λ, par) to obtain MPK and MSK. It gives MPK to A.

2. Query: A issues a key query by sending y ∈ Yκ to Chl, and obtains SK ← KeyGen(MPK,
MSK, y) in response. This step can be repeated any number of times A desires.

3. Challenge: A sends two messages m0,m1 ∈ Mλ and an x ∈ Xκ to Chl, and gets CT ←
Encrypt(MPK, x,mb) as the challenge ciphertext.

4. Query: This step is identical to step 2.

At the end of the experiment,A outputs a bit b′ which is defined to be the output of the experiment.
We call an adversary admissible if for every y ∈ Yκ queried in steps 2 and 4, Pκ(x, y) = 0. This
prevents A from succeeding in the experiment simply by decrypting CT.
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Definition A.1. An encryption scheme Π is adaptively or fully secure for a predicate family P =
{Pκ}κ∈Nc if for every PPT admissible adversary A and every par,

|Pr[Expt(0)
A,Π(λ, par) = 1]− Pr[Expt

(1)
A,Π(λ, par) = 1]| ≤ negl(λ),

where the probabilities are taken over the coin tosses ofA and Chl. On the other hand, Π is selectively
secure if the above condition is satisfied w.r.t. to a modified experiment where A provides x ∈ Xκ to
Chl right after the setup phase (instead of the challenge phase), i.e., before it starts querying.

B Dual System Groups

Chen and Wee instantiate dual system groups under the subgroup decision assumption in composite-
order groups as well as the decisional linear assumption (d-LIN) in prime-order groups. We show
that both these instantiations satisfy the generalized indistinguishability properties and the new non-
degeneracy property we defined (first two conditions) in Section 4.2. (For the rest of the properties,
the proofs given in [CW14] carry over.)

Remark 6 (Sampling algorithms). In the two concrete constructions of dual system groups discussed
below, the running time of the four sampling algorithms (SampG, SampH, SampG, SampH) depends
linearly on the number of elements we require from a sample. This could significantly improve the
efficiency of encryption schemes built on top of dual system groups. For example, if we need only the
first and third elements from a sample of SampG (which consists of n + 1 elements), then we could
just pass 1 and 3 to SampG (after modifying its definition suitably) and get the required elements,
saving a considerable amount of time.

B.1 Composite-order construction

A composite-order bilinear group generator G takes the security parameter λ as input and outputs
(N,GN , GT , g1, g2, g3, e). GN and GT are two multiplicative cyclic groups of order N = p1p2p3,
where p1, p2 and p3 are three distinct primes of Θ(λ) bits each. e is an efficiently computable non-
degenerate bilinear map which maps two elements of GN to an element of GT . g1, g2 and g3 denote
the generators ofGp1 , Gp2 andGp3 respectively, where for every divisor n ofN , we useGn to denote
the subgroup of GN of order n. We require that the following two subgroup decision assumptions
hold with respect to G.

Definition B.1 (Assumption 1). Consider the following distribution:

(N,GN , GT , g1, g2, g3, e)← G(1λ);

h123 ←R GN ;

D := ((N,GN , GT , e); g1, g3, h123);

T0 ←R Gp1 , T1 ←R Gp1p2 .

We assume that for any PPT algorithm A,

AdvSD1
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.
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Definition B.2 (Assumption 2). Consider the following distribution:

(N,GN , GT , g1, g2, g3, e)← G(1λ);

h123 ←R GN , h23 ←R Gp2p3 , g12 ←R Gp1p2 ;

D := ((N,GN , GT , e); g1, g3, h123, h23, g12);

T0 ←R Gp1p3 , T1 ←R GN .

We assume that for any PPT algorithm A,

AdvSD2
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.

We show that the construction given in Section 5.2 of [CW14] satisfies non-degeneracy, LSI, RSI
and parameter-hiding properties.

Non-degeneracy: The statistical distance between h̃δ and (g2 ·g3)r̂, where δ ←R ZN and r̂ ←R Z∗N ,
is at most 1/p2 + 1/p3, which is negligible in λ. Similarly, if we set g := g2, then the statistical
distance between gµ and gŝ2 for µ ∈ ZN and ŝ ∈ Z∗N , is at most 1/p2.

Lemma B.3 (SD1 to LSI). For any PPT adversary A, there exists a PPT adversary B such that

AdvLSIA (λ) ≤ AdvSD1
B (λ) + 2/p1 + 2/p2 + 1/p3.

Proof. The adversary B gets as input ((N,GN , GT , e); g1, g3, h123, T ), where T is chosen uniformly
at random fromGp1 orGp1p2 . Using this input, B simulates the public parameters as follows. It picks
w←R ZnN and gives

PP := ((N,GN , GT , e); g1, g
w
1 , g3, h123)

toA. Note that PP is properly distributed if h123 is a generator ofGN , which happens with probability
at least 1− 1/p1 − 1/p2 − 1/p3.

Consider any (positive) polynomial poly(x), and let ` := poly(λ). B picks ` numbers u1, u2, . . . , u`
←R ZN such that ui mod p2 6= 0 for i ∈ [1, `], and gives

G′ = ((T u1 , T u1w), . . . , (T u` , T u`w))

as the challenge to A. If T ← Gp1 , then G′ is identically distributed to G when T is a generator
of Gp1 , which happens with probability 1 − 1/p1. On the other hand when T ← Gp1p2 , then G′ is
identically distributed to G · Ĝ when T is a generator of Gp1p2 , which happens with probability at
least 1− 1/p1 − 1/p2.

Lemma B.4 (SD2 to RSI). For any PPT adversary A, there exists a PPT adversary B such that

AdvRSIA (λ) ≤ AdvSD2
B (λ) + 3/p1 + 4/p2 + 3/p3.

Proof. The adversary B gets as input ((N,GN , GT , e); g1, g3, h123, h23, g12, T ), where T is chosen
uniformly at random from Gp1p3 or from the whole group. Let poly1 and poly2 be two (positive)
polynomials. Let ` and m denote poly1(λ) and poly2(λ) respectively. B picks w ←R ZnN and `
numbers u1, u2, . . . , u` ←R ZN such that ui mod p2 6= 0 for i ∈ [1, `], and gives

PP := ((N,GN , GT , e); g1, g
w
1 , g3, h123)
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h̃ := h23 and G · Ĝ := ((gu112 , g
u1w
12 ), . . . , (gu`12 , g

u`w
12 )

toA. In order for (PP, h̃,G ·Ĝ) to be properly distributed, we need h123, h23 and g12 to be generators
ofGN ,Gp2p3 andGp1p2 respectively, which happens with probability at least 1−2/p1−3/p2−2/p3.

Now to simulate the challenge, B picksm numbers v1, v2, . . . , vm ←R ZN such that vj mod p2 6=
0 for j ∈ [1,m] and vectors X′1,X

′
2, . . . ,X

′
m ←R G

n
p3 (using g3), and outputs

H′ = ((T v1 , T v1w ·X′1), . . . , (T vm , T vmw ·X′m)).

If T ← Gp1p3 , then H′ is identically distributed to H, except when T is not a generator of Gp1p3 ,
which happens with probability at most 1/p1 + 1/p3. On the other hand when T ← GN , then H′ is
identically distributed to H·Ĥ, except when T is not a generatorGN , which happens with probability
at most 1/p1 + 1/p2 + 1/p3.

Lemma B.5 (Parameter-hiding). For any polynomials poly1(x) and poly2(x), the following distribu-
tions are identical:

{PP, h̃, ((gŝ12 , g
ŝ1w
2 ), . . . , (gŝ`2 , g

ŝ`w
2 )), ((gr̂12 · g

r̂1
3 , g

r̂1w
2 ·X1), . . . , (gr̂m2 · g

r̂m
3 , gr̂mw

2 ·Xm))}

and

{PP, h̃, ((gŝ12 , g
ŝ1(w+w′)
2 ), . . . , (gŝ`2 , g

ŝ`(w+w′)
2 )),

((gr̂12 · g
r̂1
3 , g

r̂1(w+w′)
2 ·X1), . . . , (gr̂m2 · g

r̂m
3 , g

r̂m(w+w′)
2 ·Xm))},

where
` := poly1(λ) and m := poly2(λ);

(PP, SP)← SampP(1λ, 1n);

w,w′ ←R ZnN ;

ŝ1, . . . , ŝ` ←R Z∗N ;

r̂1, . . . , r̂m ←R Z∗N ;

X1, . . . ,Xm ←R G
n
p3 .

Proof. Note that w appears in the public parameters PP in the form gw1 . Hence, w mod p2 is a
uniformly random number in Zp2 given PP (by Chinese remainder theorem), and the lemma follows.

B.2 Prime-order construction

A prime-order bilinear group generator G takes the security parameter λ as input and outputs (p,G1,
G2, GT , g1, g2, e). G1, G2 and GT are three multiplicative groups of order p, where p is a prime of
Θ(λ) bits. e is an efficiently computable non-degenerate bilinear map which maps an element of G1

and an element of G2 to an element of GT . g1 and g2 are generators of G1 and G2 respectively.
We first define the following generalization of d-LIN assumption with respect to G, whose security

follows tightly from d-LIN itself.
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Definition B.6 (gen-d-LIN Assumption). Let poly(x) be a (positive) polynomial in x. Given a group
generator G, we define the following distribution:

(p,G1, G2, GT , g1, g2, e)← G(1λ);

m := poly(λ);

s1,1, . . . , s1,d, . . . , sm,1, . . . , sm,d ←R Zp;

a1, a2, . . . , ad+1, s1,d+1, . . . , sm,d+1 ←R Z∗p;

D := ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1s1,1
1 , . . . , g

ads1,d
1 , . . . , g

a1sm,1
1 , . . . , g

adsm,d
1 );

T0 := (g
ad+1(s1,1+...+s1,d)
1 , . . . , g

ad+1(sm,1+...+sm,d)
1 );

T1 := (g
ad+1(s1,1+...+s1,d)+s1,d+1

1 , . . . , g
ad+1(sm,1+...+sm,d+1)+sm,d+1

1 ).

We assume that for any polynomial p and any PPT algorithm A,

Advgen-d-LIN
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.

The above assumption is defined with respect to the first group G1 output by G. We also as-
sume that this assumption holds with respect to the second group G2. We now show how the d-LIN
assumption (which is a special case of the above with m = 1) can be reduced gen-d-LIN.

Lemma B.7 (d-LIN to gen-d-LIN). If the d-LIN assumption holds for a group generator G, then the
gen-d-LIN assumption stated in Definition B.6 also holds in G.

Proof. Consider any (positive) polynomial poly(x), and letm := poly(λ). LetA be a PPT algorithm
that gets a non-negligible advantage in the gen-d-LIN security game w.r.t. to the polynomial p. We
construct a PPT algorithm B which uses A to break the d-LIN assumption as follows. B obtains

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , ga1r11 , . . . , gadrd1 , T := g
ad+1(r1+...+rd)+rd+1

1 )

as input, where rd+1 is either 0 or uniformly chosen from Z∗p. It picks

s1,1, . . . , s1,d, . . . , sm,1, . . . , sm,d ←R Zp,

a1, a2, . . . , ad+1, s1,d+1, . . . , sm,d+1 ←R Z∗p,

and computes
[ga1r11 · (ga11 )si,1 ]si,d+1 , . . . , [ga1rd1 · (ga11 )si,d ]si,d+1 ,

T ′i :=
[
T · (gad+1

1 )si,1 · (gad+1

1 )si,2 . . . (g
ad+1

1 )si,d
]si,d+1

= g
ad+1{si,d+1(r1+si,1)+...+si,d+1(rd+si,d)}+rd+1si,d+1

1 ,

for every i ∈ [1,m]. B then gives ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 ) along with the
group elements computed above as challenge to A. It is easy to see that the challenge has the right
distribution.
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We are now ready to show how the prime order construction satisfies the security properties we
desire.

Non-degeneracy: We know that h̃ is defined to be gf
∗

2 and SampH0 is distributed as gr̂f
∗

2 for r̂ ←R

Z∗p. Hence, the statistical distance between h̃δ, when δ ←R Zp, and SampH0 can be at most 1/p.
Similarly, if we set g := gf1, we can show that the second condition is satisfied.

Lemma B.8 (gen-d-LIN to LSI). For any PPT adversary A, there exists a PPT adversary B such
that

AdvLSIA (λ) ≤ Advgen-d-LIN
B (λ).

Proof. Consider any (positive) polynomial poly(x), and letm := poly(λ). We first write (PP,g1, . . . ,
gm,g1 · ĝ1, . . . ,gm · ĝm) in terms of the prime order construction.

PP := ((p,G,H,GT , e); g
ρL(B)
1 , g

ρL(BA1)
1 , . . . , g

ρL(BAn)
1 , g

ρL(B∗R)
2 , g

ρL(B∗AT
1 R)

1 , . . . , g
ρL(B∗AT

nR)
1 ),

∀i ∈ [1,m] gi :=

(
g

B

si
0


1 , g

BA1

si
0


1 , . . . , g

BAn

si
0


1

)

∀i ∈ [1,m] gi · ĝi :=

(
g

B

si
ŝi


1 , g

BA1

si
ŝi


1 , . . . , g

BAn

si
ŝi


1

)
In the above, s1, . . . , sm ←R Zdp and ŝ1, . . . , ŝm ←R Z∗p.
B obtains as input

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1s1,1
1 , . . . , g

ads1,d
1 , . . . , g

a1sm,1
1 , . . . , g

adsm,d
1

g
ad+1(s1,1+...+s1,d)+s1,d+1

1 , . . . , g
ad+1(sm,1+...+sm,d+1)+sm,d+1

1 ),

where s1,d+1, . . . , sm,d+1 are all 0 or uniformly chosen from Z∗p.
To begin with, B implicitly sets

si := (si,1, si,2, . . . , si,d),

ŝi := si,d+1,

for all i ∈ [1,m]. It programs B,B∗,A1, . . . ,An,R and simulates the public parameters PP in the
same manner as the proof of Lemma 10 in [CW14]. This involves defining

W :=



a1

a2

. . .

ad

ad+1 ad+1 . . . ad+1 1


,

and sampling B̃←R GLd+1(Zp) along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)
p .
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Now, observe that

W

si

ŝi

 =


a1si,1

...

adsi,d

ad+1(si,1 + . . .+ si,d) + si,d+1

 ,

and hence B can compute

g

W

si
ŝi


1

for all i ∈ [1,m] using its input. Lastly, it outputs the challenge as

g

B

si
ŝi


1 = g

B̃W

si
ŝi


1 and g

BAj

si
ŝi


1 = g

B̃ÃjW

si
ŝi


1

for all j ∈ [1, n] and i ∈ [1,m]. If s1,d+1, . . . , sm,d+1 are all 0, implying that ŝ1, . . . , ŝm are 0 as
well, then the view ofA is identically distributed to (PP,g1, . . . ,gm), otherwise the view is distributed
according to (PP,g1 · ĝ1, . . . ,gm · ĝm).

Lemma B.9 (gen-d-LIN to RSI). For any PPT adversaryA, there exist a PPT adversary B such that

AdvRSIA (λ) ≤ Advgen-d-LIN
B (λ) + poly(λ)/p,

where poly(λ) is independent of Advgen-d-LIN
B (λ).

Proof. Consider two (positive) polynomials poly1(x) and poly2(x). Define ` := poly1(λ) and m :=
poly2(λ). We first write (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`, h1, . . . ,hm,h1 · ĥ1, . . . ,hm · ĥm) in terms of the
prime order construction.

PP := ((p,G,H,GT , e); g
ρL(B)
1 , g

ρL(BA1)
1 , . . . , g

ρL(BAn)
1 , g

ρL(B∗R)
2 , g

ρL(B∗AT
1 R)

1 , . . . , g
ρL(B∗AT

nR)
1 ),

h̃ := g
ρR(B∗R)
2 ,

∀j ∈ [1, `] gj · ĝj :=

(
g

B

sj
ŝj


1 , g

BA1

sj
ŝj


1 , . . . , g

BAn

sj
ŝj


1

)
,

∀i ∈ [1,m] hi :=

(
g

B∗R

ri
0


2 , g

B∗AT
1 R

ri
0


2 , . . . , g

B∗AT
nR

ri
0


2

)
,

∀i ∈ [1,m] hi · ĥi :=

(
g

B∗R

ri
r̂i


2 , g

B∗AT
1 R

ri
r̂i


2 , . . . , g

B∗AT
nR

ri
r̂i


2

)
.
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In the above, s1, . . . , s`, r1, . . . , rm ←R Zdp and ŝ1, . . . , ŝ`, r̂1, . . . , r̂m ←R Z∗p.
B obtains as input

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1r1,1
1 , . . . , g

adr1,d
1 , . . . , g

a1rm,1
1 , . . . , g

adrm,d
1

g
ad+1(r1,1+...+r1,d)+r1,d+1

1 , . . . , g
ad+1(rm,1+...+rm,d+1)+rm,d+1

1 ),

where r1,d+1, . . . , rm,d+1 are all 0 or uniformly chosen from Z∗p.
To begin with, B picks r̃1, r̃2, . . . , r̃d ←R Z∗p and implicitly sets

R :=



a1r̃1

a2r̃2

. . .

adr̃d

1


,

ri := (r̃−1
1 ri,1, r̃

−1
2 ri,2, . . . , r̃

−1
d ri,d),

r̂i := ri,d+1,

for all i ∈ [1,m]. It programs B,B∗,A1, . . . ,An and simulates PP, h̃ along with g1 · ĝ1, . . . ,g` · ĝ`
(there is an error of `/p in simulating this) in the same manner as the proof of Lemma 11 in [CW14].
This involves defining

W∗ :=



1

1

. . .

1

a−1
1 ad+1 a−1

2 ad+1 . . . a−1
d ad+1 1


,

sampling B̃←R GLd+1(Zp) along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)
p , and setting B̃∗ := (B̃−1)T .

Now, observe that

W∗R

ri

r̂i

 =


a1ri,1

...

adri,d

ad+1(ri,1 + . . .+ ri,d) + ri,d+1

 ,

and hence B can compute

g

W∗R

ri
r̂i


2
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for all i ∈ [1,m] using its input. Lastly, it outputs the challenge as

g

B∗R

ri
r̂i


2 = g

B̃∗W∗R

ri
r̂i


2 and g

B∗AT
j R

ri
r̂i


2 = g

B̃∗ÃT
j W∗R

ri
r̂i


2

for all j ∈ [1, n] and i ∈ [1,m]. If r1,d+1, . . . , rm,d+1 are all 0, implying that r̂1, . . . , r̂m are 0 as well,
then the view of A is identically distributed to (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`,h1, . . . ,hm), otherwise the
view is distributed according to (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`,h1 · ĥ1, . . . ,hm · ĥm).

Lemma B.10 (Parameter-hiding). For any (positive) polynomials poly1(x) and poly2(x), the follow-
ing distributions are identical:

{PP, gf
∗

2 , (g
ŝ1f
1 , gŝ1f11 , . . . , gŝ1fn1 ), . . . , (gŝ`f1 , gŝ`f11 , . . . , gŝ`fn1 )

(gr̂1f
∗

2 , g
r̂1f∗1
2 , . . . , g

r̂1f∗n
2 ), . . . , (gr̂mf∗

2 , g
r̂mf∗1
2 , . . . , g

r̂mf∗n
2 )}

and

{PP, gf
∗

2 , (g
ŝ1f
1 , g

ŝ1(f1+γ1f)
1 , . . . , g

ŝ1(fn+γnf)
1 ), . . . , (gŝ`f1 , g

ŝ`(f1+γ1f)
1 , . . . , g

ŝ`(fn+γnf)
1 )

(gr̂1f
∗

2 , g
r̂1(f∗1 +γ1f∗)
2 , . . . , g

r̂1(f∗n+γnf∗)
2 ), . . . , (gr̂mf∗

2 , g
r̂m(f∗1 +γ1f∗)
2 , . . . , g

r̂m(f∗n+γnf∗)
2 )}

where
` := poly1(λ) and m := poly2(λ);

(PP, SP)← SampP(1λ, 1n);

ŝ1, . . . , ŝ`, r̂1, . . . , r̂m ←R Z∗p;

γ1, . . . , γn ←R Zp.

Proof. Our proof closely follows the one given for Lemma 12 in [CW14]. In a manner similar to
their’s, we could define

A′i := Ai + γiV

for i ∈ [1, n], where V is a matrix which is 0 everywhere except the bottom right entry which is 1.
We run SampP with (A′1, . . . ,A

′
n) instead of (A1, . . . ,An) to generate (PP, SP) and

ĝ1, ĝ2, . . . , ĝ` ← SampG(PP, SP);

ĥ1, ĥ2, . . . , ĥm ← SampH(PP, SP).

Since all the samples above share the same γ1, . . . , γn, one can easily verify that rest of the proof in
[CW14] goes through for the present generalized case as well.
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C Pair encoding schemes

Recall that we consider polynomials of the form:

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

c` := ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,

Here we consider two properties. The first property says that in decryption, an sibj term is never
paired with an ri′bj′ term. This property holds for all known pair encodings. The second property says
that if sibj appears as a term in one of the polynomials in c, then the polynomial si also appears in c,
and similarly for s and for ri′ . We will show that w.l.o.g. we can assume that if the first property hold,
then the second holds as well, in that we can always construct an equivalent scheme for which it does
hold. This structure allows us to simplify our relaxed perfect security property for pair encodings.

Definition C.1. We say that a pair encoding is dual-system-group-compatible (DSG-compatible) if
for all x, y,N and for all outputs of EncC(x,N), EncK(y,N), Pair(x, y,N), for all t ∈ [1,m1], i′ ∈
[1,m2], j ∈ [1, n], ` ∈ [1, w1] and i ∈ [1, w2], if φt,i′,j 6= 0 and θ`,j 6= 0 or ϑ`,i,j 6= 0, then Et,` = 0.

Definition C.2. We say that a pair encoding has specified variables if for all x, y,N and for all
outputs of EncC(x,N) and EncK(y,N) it holds that

• if θ`,j 6= 0 then s ∈ c;

• if ϑ`,i,j 6= 0, then si ∈ c; and,

• if φt,i′,j 6= 0, then ri′ ∈ k;

for all ` ∈ [1, w1], j ∈ [1, n], i ∈ [1, w2], i′ ∈ [1,m2] and t ∈ [1,m1].

Lemma C.3. We show that for any pair encoding which is DSG-compatible, we can construct an
equivalent encoding which also has specified variables. Here by equivalent we mean that the number
of polynomials produced by EncK,EncC is increased by at most 1, and that perfect security and the
computation security and co-security properties defined by [Att14] are preserved.

Proof. Let ΓP = (Param, EncC,EncK,Pair) be a DSG-compatible pair encoding scheme, and sup-
pose that it does not have specified variables. We will describe a process which iteratively removes
tuples (`, j), (`, i, j), or (t, i′, j) for which the property does not hold.

For the new EncC′, we first run EncC to generate polynomials c, and then we modify them as
follows:

First, for any `, i, j tuple in the above set, suppose that there exists a polynomial c`′ which contains
si, and which does not contain any sbj or si′bj terms. In this case we will create a variable s′ and
replace c`′ = ζ`′s +

∑
i′ η`′,i′si′ with the polynomial c′` = η`′,is

′. Then for every other occurrence
of si in the encoding, we will replace it with s′ − (ζ`′s +

∑
i′ 6=i η`′,i′si′). We adjust the coefficients

produced by Pair accordingly. Finally, we can rename s′ back to si. (Note that the result will still be
DSG-compatible.) Correctness is clearly preserved. To see that the distributions of k, c are preserved,
note that rather than choose si ←R ZN and then compute c`, it is equivalent to choose the value for
c` at random, and then solve for si, as long as η`′,i 6= 0. Thus, perfect security is preserved. Similarly
this preserves the selective or co-selective security properties defined in [Att14].
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We can repeat this above process until there is no `, i, j satisfying the second condition in Defi-
nition C.2 and for which this process applies. Note that each time we create a polynomial consisting
of a single si. (And there can be at most one such polynomial per si, because we will only apply the
process for i, `, j in tuples in the above set, i.e. i such that there is no polynomial si in c.) Since the
number of si variables does not increase, this process will take at most w2 steps.

Now, if there are remaining `, i, j tuples, it must be the case that any c`′ which contains si also
contains either an sbj′ term or an si′bj′ term. In this case, we claim that we can replace sibj in
all polynomials with an additional variable s′. To see why this works note that DSG-compatability
requires that for every y, any c′` containing si′bj′ is never paired with ri′′bj for any i′′. This means that
for every y, any c′` containing si is never paired with ri′′bj for any i′′. And by correctness we know
that the coefficients of sibj ·ri′′ and si ·ri′′bj must sum to 0. Thus, we conclude that the coefficients of
sibj ·ri′′ sum to 0 for all i′′. This means that correctness is still satisfied after the replacement because
the s′ · ri′′ terms will all vanish in the reconstruction. (Note that this transformation does increase
the total number of variables, however it does not change the number of polynomials in c,k.) To
see that perfect security is preserved, note that replacing sbj with a new variable has essentially the
same result on the distributions in Definition 3.1 as adding a uniform random variable to both sides:
if the original distributions were indistinguishable, the resulting ones will be as well. Similarly, for
Attrapadung’s selective and co-selective security, it can only decrease the adversary’s advantage.

We repeat the above process until there are no `, i, j tuples for which the second condition applies.
For the new EncK′, we first run EncK to generate polynomials k, and then we modify them

by applying a similar process, with one exception. Before we begin the first step, if α occurs in
more than one polynomial, we cancel α from all but one of the polynomials. (E.g. if α appears in
with coefficient τ1 in k1 and τ2 in k2, then we replace k2 with τ1k2 − τ2k1.) Again, we adjust the
coefficients produced by Pair accordingly. (For our example, we would change the pairing coefficient
E1,` with E1,` + τ2/τ1E2,` and E2,` with E2,`/τ1 for all `.) Assume w.l.o.g. that after this process,
α only appears in k1. Now, we apply a similar process to that above with the exception that we never
apply the first step to k1 (i.e., we never replace k1 with a new random k′.) This results in a pair
encoding scheme which has no t, i′, j tuples for which the property in Definition C.2 does not hold.

Finally, we note that in the resulting encoding EncC, for any x there must be a polynomial con-
taining only the term s. This is because α only appears in one polynomial, and we must be able to
reconstruct αs. This means there are no `, j tuples for which the property in Definition C.2 does not
hold. Thus, this encoding has specified variables.

D Perfect vs Relaxed

Lemma D.1. Let Γ = (Param,EncC,EncK,Pair) be a pair encoding scheme. If Γ is prefectly secure
(Definition 3.1), then Γ is also relaxed perfectly secure (Definition 3.2). Moreover, we can define a
Samp algorithm for Γ that does not depend on the input x.

Proof. For any pair encoding scheme Γ, define Samp to output a vector of zeroes on any input. With
this definition, (2) is trivially satisfied for every d ∈ [1,m2], and the two distributions in (3) reduce toc(s,b),

∑
d∈[1,m2]

kd(0, rd,b)

 and

c(s,b),
∑

d∈[1,m2]

kd(α, rd,b)

 . (10)

Since Γ is perfectly secure, we know that if s ←R Zw2+1
N , b ←R ZnN , r ←R Zm2

N and α ←R ZN ,
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then
{c(s,b),k(0, r,b)} ≡ {c(s,b),k(α, r,b)}.

Since m2 ∈ Z∗N , we can replace k(α, r,b) with k(m2α, r,b) in the above without changing the
joint distribution. Now, observe that k(0, r,b) =

∑
d∈[1,m2] kd(0, rd, b) and k(m2α, r,b) =∑

d∈[1,m2] kd(α, rd,b) symbolically. Therefore, the two distributions in (10) are identical.

E Proof of security

We use Advp−qA (λ) to denote the advantage of an adversary A in distinguishing Hybp from Hybq
when the security parameter is λ.

Lemma E.1. For any PPT adversary A, there exists a PPT adversary B such that

Adv0−1
A (λ) ≤ AdvLSIB (λ).

Proof. B gets as input (PP,G′) where G′ is either G or G · Ĝ. While G is an ordered set of
w2 + 1 samples from SampG, Ĝ is an ordered set of the same size with samples from SampG
(recall that LSI property holds for every polynomial, and in particular, for w2 + 1). B first picks
MSK ←R H and outputs (PP, µ(MSK)) as the master public key. When A sends a challenge x∗ and
two messages m0,m1, B responds with Encrypt(PP, x∗,mb;G

′,MSK) as the ciphertext, where b is
uniformly chosen bit. Further, when A issues a key query y (either before or after the challenge), B
responds with KeyGen(PP,MSK, y; (h1, . . . ,hm2)) by sampling h1, . . . ,hm2 from SampH.

When G′ = G, then the view of A is identically distributed as in Hyb0. On the other hand, when
G′ = G · Ĝ, it is easy to see that view of A is identical to Hyb1.

Lemma E.2. For any PPT adversary A, there exists a PPT adversary B such that

Adv
(2,ϕ,3,ρ−1)−(2,ϕ,1,ρ)
A (λ) ≤ AdvRSIB (λ),

for every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ].

Proof. B gets as input (PP, h̃,G · Ĝ,h′) where h′ is either h or h · ĥ (special case of RSI with
poly2(x) = 1). B first picks MSK ←R H and outputs (PP, µ(MSK)) as the master public key. When
A sends a challenge x∗ and two messagesm0,m1, B responds with Encrypt(PP, x∗,mb;G ·Ĝ,MSK)
as the ciphertext, where b is uniformly chosen bit.
B picks a β ←R ZN and sets MSK := MSK · (h̃)β . When A issues ςth key query yς , it responds

with

SKyς :=


KeyGen(PP,MSK, yς ; (h

(ς)
1 , . . . ,h

(ς)
m2,ς )) if ς < ϕ

KeyGen(PP,MSK, yς ; (h
(ς)
1 · h̃z1 , . . . ,h

(ς)
ρ−1 · h̃zρ−1 ,h′,h

(ς)
ρ+1, . . . ,h

(ς)
m2,ς )) if ς = ϕ

KeyGen(PP,MSK, yς ; (h
(ς)
1 , . . . ,h

(ς)
m2,ς )) otherwise,

where for every ς ∈ [1, ξ] and i ∈ [1,m2,ς ] (except when ς = ϕ and i = ρ), h(ς)
i ← SampH(PP), and

for every j ∈ [1, ρ− 1], zj ← Samp(j, x, y,N). It is easy to see that when h′ = h, then the view of
A is identically distributed to Hyb2,ϕ,3,ρ−1, and when h′ = h · ĥ, then it is identically distributed to
Hyb2,ϕ,1,ρ.

We now see how the above proof can be adapted to show indistinguishability between other pairs
of hybrids. Below, we only describe the changes that need to be made; other details can be easily
worked out.
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• Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 · h̃z1 , . . . ,h(ϕ)

ρ−1 · h̃
zρ−1 ,h′ · h̃zρ ,h(ϕ)

ρ+1, . . . ,h
(ϕ)
m2,ϕ

)),

where zρ ← Samp(ρ, x, y,N).

• Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4: Assume that B gets (PP, h̃,G · Ĝ,H′) as input where H′ := (h′1,

. . . ,h′m2,ϕ
) is a vector of m2 + 1 samples (instead of just 1). In order to generate the ϕth key,

it uses
KeyGen(PP,MSK, yϕ; (h′1 · h̃z1 , . . . ,h′m2,ϕ

· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for all j ∈ [1,m2,ϕ].

• Hyb2,ϕ,5 ≈ Hyb2,ϕ,6: Once again assume that B gets (PP, h̃,G · Ĝ,H′) as input where H′ :=
(h′1, . . . ,h

′
m2,ϕ

) is a vector of m2 + 1 samples. In order to generate the ϕth key, it uses

KeyGen(PP,MSK, yϕ; (h′1 · h̃z1 , . . . ,h′m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [1,m2,ϕ].

• Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 , . . . ,h

(ϕ)
ρ−1,h

′ · h̃zρ ,h(ϕ)
ρ+1 · h̃

zρ+1 , . . . ,h(ϕ)
m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [ρ,m2,ϕ].

• Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 , . . . ,h

(ϕ)
ρ−1,h

′,h
(ϕ)
ρ+1 · h̃

zρ+1 , . . . ,h(ϕ)
m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [ρ+ 1,m2,ϕ].

Lemma E.3. For every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ], Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ.

Proof. Given PP,MSK and h̃, one can generate MPK and every key except ϕth (because in order to
generate this key, we need to be able to sample from Ĥ, which means we need secret parameters SP).
Hence, it suffices to show that the following two distributions are statistically close (for clarity, we
omit ϕ in the following):

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))},

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))}.

But observe that:

Encrypt(PP, x,m;G · Ĝ,MSK) = Encrypt(PP, x,m;G,MSK) · Encrypt(PP, x, 1; Ĝ,MSK),
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KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))

= KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(PP, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1)),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))

= KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

because of the way Encrypt and KeyGen are defined and bilinearity of e (see the construction in
Section 5). The first component on the right hand side of each of the above equations can be generated
given PP,MSK and h̃. Hence, we only need to focus on the second components, i.e., it is enough to
show that the following two distributions are statistically close:

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1))}, (11)

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1))}. (12)

Let us focus on the first distribution between the two above. By the parameter-hiding property of
dual system groups we know that {PP, h̃, Ĝ, ĥρ} and {PP, h̃, Ĝ·Ĝ′, ĥρ·ĥ′ρ} are identically distributed.
Hence (11) is identically distributed to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · ĥ′ρ, 1, . . . , 1))}. (13)

Let ĈT := (ĈT1, . . . , ĈTw1+1) and ŜK := (ŜK1, . . . , ŜKm1) denote the output of Encrypt and KeyGen
respectively. We know that for ` ∈ [1, w1],

ĈT` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j · ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j · ĝ
γj
i,0)ϑ`,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(PP, SP) for i ∈ [1, w2 + 1] and γ1, . . . , γn ←R ZN . Using the
non-degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0 as gδ and gδi respectively,
for i ∈ [1, w2], where δ, δ1, . . . , δw2 ←R ZN . Then we consider ĝ0,j (and ĝi,j) for j = 1, . . . , n to be
values sampled from SampG conditioned on the value of ĝ0,0 (resp. ĝi,0). (These values may not be
efficiently sampleable.) Therefore, we have

ĈT` = g
ζ`δ+

∑
i∈[1,w2]

η`,iδi+
∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n]

ϑ`,i,jδiγj ·∏
j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (14)

Shifting our focus to the key, we know that its tth component is given by

ŜKt = ĥ
υt,ρ
ρ,0 ·

∏
j∈[1,n]

(ĥρ,j · ĥ
γj
ρ,0)φt,ρ,j ,

for t ∈ [1,m1], where (ĥρ,0, . . . , ĥρ,n) ← SampH(PP, SP). Using non-degeneracy once again, we
can write ĥρ,0 as h̃ω for an ω ←R ZN , and consider ĥρ,j for j = 1, . . . , n to be sampled from SampH

conditioned on the value of ĥρ,0. Hence,

ŜKt = h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j . (15)
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Now, observe the superscripts of g and h̃ in (14) and (15) respectively (over ` ∈ [1, w1] and
t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and ω are randomly chosen from ZN . Hence,
we can use the first property (2) of relaxed perfect security associated with pair encoding schemes to
add noise to the ρ-th sample used in the key. But the problem is that in any sample drawn from SampG
and SampH, elements of the sample may depend on each other. In particular ĝ0,j may reveal some
information about δ, and similarly for ĝi,j and for ĥρ,j , so we must ensure that (2) applies even given
this information. Note, however, that δ, δ1, . . . , δw2 and ω are an explicit part of the distribution in (2)
(see the discussion on structural restrictions after the definition of pair encoding schemes, and Lemma
C.3 in Appendix C for more details). Therefore, given a sample from either of the distributions in
(2), one can compute the first element of the samples from SampG and SampH, and then draw rest
of the elements conditioned on the first ones. (If δ, for instance, is not explicit, then we know that
θ`,j = 0 for all ` ∈ [1, w1] and j ∈ [1, n]. Hence, we don’t need to worry about ĝ0,j revealing some
information about δ. We can argue about δ1, . . . , δw2 or ω not being explicit in a similar way.)

In a nutshell, we can apply (2) to conclude that the distribution

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (ŜK1, . . . , ŜKm1)}

is statistically close to

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (S̃K1, . . . , S̃Km1)},

where

S̃Kt := h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jω(γj+zj) ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j

= h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

(ĥρ,j · h̃ωzj )φt,ρ,j ,

for t ∈ [1,m1], and zρ = (z1, . . . , zn) ← Samp(ρ, x, y,N). Observe that the only difference
between ŜKt and S̃Kt is that an extra h̃ωzj is multiplied with ĥρ,j in the latter case. Hence, the key
(S̃K1, . . . , S̃Km1) can be generated by giving ĥρ · ĥ′ρ · h̃zρ as the ρ-th sample to KeyGen (zρ has the
same distribution as ω · zρ since ω ∈ Z∗N with high probability). Therefore, (13) is statistically close
to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · ĥ′ρ · h̃zρ , 1, . . . , 1)).

Using parameter-hiding once again, we can show that the above distribution is identical to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

which completes the proof.

The above proof can be easily adapted to show that Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ. In this case, we need

to show that

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 ))},

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1, . . . ,hρ−1,hρ · ĥρ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 ))}.
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Observe that the only difference now is that we have MSK instead of MSK, and noise is present in the
samples ρ+ 1, . . . , n instead of 1, . . . , ρ− 1. So, we can split Encrypt and KeyGen in a way similar
to the above proof, and once again it suffices to show that exactly the distributions in (11) and (12)
are indistinguishable.

Lemma E.4. For every ϕ ∈ [1, ξ], Hyb2,ϕ,4
∼= Hyb2,ϕ,5.

Proof. This proof proceeds in a manner similar to the proof of Lemma E.3. To begin with, we
observe as before that given PP,MSK and h̃, one can generate MPK and every key except ϕth. Hence,
it suffices to show that the following two distributions are statistically close (for clarity, we omit ϕ in
the following):

{PP,MSK, h̃,Encrypt(PP, x,m;G·Ĝ,MSK),KeyGen(PP,MSK, y; (h1·ĥ1·h̃z1 , . . . ,hm2 ·ĥm2 ·h̃zm2 ))},

{PP,MSK, h̃,Encrypt(PP, x,m;G·Ĝ,MSK),KeyGen(PP,MSK, y; (h1·ĥ1·h̃z1 , . . . ,hm2 ·ĥm2 ·h̃zm2 ))}.

Note that the only difference between the two distributions is in the form of the master secret key: in
the first case, we have a normal master key, while in the second case, we have a semi-functional one.
Also,

Encrypt(PP, x,m;G · Ĝ,MSK) = Encrypt(PP, x,m;G,MSK) · Encrypt(PP, x, 1; Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 ))

= KeyGen(PP,MSK, y; (h1, . . . ,hm2)) · KeyGen(PP, 1, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 )),

KeyGen(PP,MSK, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 ))

= KeyGen(PP,MSK, y; (h1, . . . ,hm2)) · KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 )),

where β ←R ZN . The first component on the right hand side of each of the above equations can be
generated given PP,MSK and h̃. Hence, it is enough to show that the following two distributions are
statistically close:

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))}, (16)

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))}. (17)

Let us focus on the first distribution between the two above. By the parameter-hiding property of
dual system groups, it is identically distributed to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ ·Ĝ′,MSK),KeyGen(PP, 1, y; (ĥ1 · ĥ′1 · h̃z1 , . . . , ĥm2 · ĥ′m2
· h̃zm2 ))}.

(18)
Let ĈT := (ĈT1, . . . , ĈTw1+1) and ŜK := (ŜK1, . . . , ŜKm1) denote the output of Encrypt and KeyGen
respectively. We know that for ` ∈ [1, w1],

ĈT` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j · ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j · ĝ
γj
i,0)ϑ`,i,j ,
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where (ĝi,0, . . . , ĝi,n) ← SampG(PP, SP) for i ∈ [1, w2 + 1] and γ1, . . . , γn ←R ZN . Using non-
degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0 as gδ and gδi respectively, for
i ∈ [1, w2], where δ, δ1, . . . , δw2 ←R ZN . Therefore, we have

ĈT` = g
ζ`δ+

∑
i∈[1,w2]

η`,iδi+
∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n]

ϑ`,i,jδiγj ·∏
j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (19)

Shifting our focus to the key, we know that its tth component is given by

ŜKt =
∏

i′∈[1,m2]

ĥ
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

(ĥi′,j · ĥ
γj
i′,0 · h̃

zi′,j )φt,i′,j ,

for t ∈ [1,m1], where (ĥi′,0, . . . , ĥi′,n)← SampH(PP, SP) and (zi′,1, . . . , zi′,n)← Samp(i′, x, y,N)

for i′ ∈ [1,m2]. Using non-degeneracy once again, we can write ĥi′,0 as h̃ωi′ for an ωi′ ←R ZN .
Hence,

ŜKt = h̃
∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′γj+φt,i′,jzi′,j)] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j

= h̃
∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j , (20)

since the distribution of (zi′,1, . . . , zi′,n) is statistically close to (ωi′zi′,1, . . . , ωi′zi′,n) (with high prob-
ability ωi′ ∈ Z∗N ) for all i′ ∈ [1,m2].

Now, observe the superscripts of g and h̃ in (19) and (20) respectively (over ` ∈ [1, w1] and
t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and ω1, . . . , ωm2 are randomly chosen from
ZN . Hence, we can use the second property (3) of relaxed perfect security associated with pair
encoding schemes to add noise to the master secret key. (The dependencies between the elements of
the samples drawn from SampG and SampH can be handled as in the previous proof.) Therefore, we
have that the distribution

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (ŜK1, . . . , ŜKm1)}

is statistically close to

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (S̃K1, . . . , S̃Km1)},

where

S̃Kt := h̃
τtβ+

∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j ,

for t ∈ [1,m1], and β ←R ZN . Observe that the only difference between ŜKt and S̃Kt is that an extra
τtβ is begin added to the exponent of h̃ in the latter case. Hence, the key (S̃K1, . . . , S̃Km1) can be
generated by providing h̃β as master secret key to KeyGen. Therefore, (18) is statistically close to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ·Ĝ′,MSK),KeyGen(PP, h̃β, y; (ĥ1 ·ĥ′1 ·h̃z1 , . . . , ĥm2 ·ĥ′m2
·h̃zm2 ))}.

Using parameter-hiding once again, we can show that the above distribution is identical to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))},

which completes the proof.
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Lemma E.5. Hyb2,ξ,9,m2,ξ
∼= Hyb3.

Proof. The only difference between the hybrids Hyb2,ξ,9,m2,ξ
and Hyb3 is that in the former case the

message mb is encrypted, while in the latter case a random message is encrypted; all the keys as well
as the ciphertext in both the cases are in the semi-functional space. The following line of argument is
very similar to the one in [CW14] for the corresponding lemma.

We can assume that MSK and MSK are sampled as follows: first pick MSK ←R H and then set
MSK := MSK · h̃β , where β ←R ZN . Observe that

µ(MSK) = µ(MSK · h̃β) = µ(MSK) · µ(h̃)β = µ(MSK) (21)

due to the linearity of µ and the orthogonality property (µ(h̃) = 1). Further, for any public parameters
PP and coin tosses σ,

e(SampG0(PP;σ), h̃) = SampGT(µ(h̃);σ) = SampGT(1;σ) = e(SampG0(PP;σ), 1) = 1 (22)

due to the projective and orthogonality properties.
We now show that the view of any adversaryA in both the hybrids can be simulated given PP and

G·Ĝ only. First pick MSK and MSK as described above. Output (PP, µ(MSK)) as the master public key
MPK; using (21), this is identically distributed to (PP, µ(MSK)). WhenA issues a key query y, respond
with KeyGen(PP,MSK, y; (h1, . . . ,hm2)), where h1, . . . ,hm2 ← SampH(PP). When A sends a pair
of messages (m0,m1) and an x, wherem0,m1 ∈ GT , output CT := Encrypt(PP, x,mb;G ·Ĝ,MSK).
It is clear that the view of A in this experiment is identically distributed to its view in Hyb2,ξ,9,m2,ξ

.
In order to prove that this view is also identically distributed to the view in Hyb3, we only need to
show that CT is the encryption of a random message.

We know that CT has w1 + 1 components. The first w1 components depend on PP, x and G · Ĝ,
while the last one, CTw1+1 := mb · e(g0,0 · ĝ0,0,MSK), depends on mb and MSK (see Section 5). Now,

e(g0,0 · ĝ0,0,MSK) = e(g0,0 · ĝ0,0,MSK · h̃β)

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃
β) · e(g0,0, h̃

β)

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃
β) (due to (22))

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃)β.

Observe that MPK, the keys and other parts of the ciphertext do not depend on β, which is chosen
uniformly from ZN . Therefore, e(ĝ0,0, h̃)β is uniformly distributed over GT from the non-degeneracy
property. This implies that CT is identically distributed to the encryption of a random message.

F Ciphertext-Policy ABE

Correctness: If (A, π) accepts S, then we know that there exists constants ε1, . . . , εn1 ∈ ZN such
that

∑
i∈Υ εi

∑
j∈[1,n2] ai,jvj = v1 = α, where Υ = {i | i ∈ [1, n1], π(i) ∈ S}. Below we show how

to combine the polynomials generated by EncC and EncK using {εi}i∈Υ in order to recover αs (this
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implicitly defines the output of Pair((A, π), S,N)):

c2

(∑
i∈Υ

εik1,i

)
− c1

∑
i∈Υ

εi

 ∑
j∈[1,n2]

ai,jk2,i,j +
∑

`∈[1,n1],` 6=i
j∈[1,n2]

a`,jk3,i,`,j

+ k4,i,π(i) +
∑

`∈[1,n1],` 6=i
t∈[0,T ]

π(`)tk5,i,`,t




=
∑
i∈Υ

εi

c2k1,i − c1

 ∑
j∈[1,n2]

ai,jk2,i,j +
∑

`∈[1,n1],`6=i
j∈[1,n2]

a`,jk3,i,`,j

+ k4,i,π(i) +
∑

`∈[1,n1],` 6=i
t∈[0,T ]

π(`)tk5,i,`,t




=
∑
i∈Υ

εi

sri ∑
i∈[1,n1]
j∈[1,n2]

ai,jbi,j + sri
∑

i∈[1,n1]
t∈[0,T ]

π(i)tb′i,t

− sri
∑

j∈[1,n2]

ai,jbi,j + s
∑

j∈[1,n2]

ai,jvj − sri
∑

`∈[1,n1],` 6=i
j∈[1,n2]

a`,jb`,j

− sri
∑
t∈[0,T ]

π(i)tb′i,t − sri
∑

`∈[1,n1],`6=i
t∈[0,T ]

π(`)tb′`,t



= s
∑
i∈Υ

εi
∑

j∈[1,n2]

ai,jvj = αs.
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