
Efficient Server-Aided Secure Two-Party Function Evaluation with

Applications to Genomic Computation

Marina Blanton and Fattaneh Bayatbabolghani
Department of Computer Science and Engineering

University of Notre Dame
mblanton@nd.edu, fbayatba@nd.edu

Abstract

Computation based on genomic data is becoming increasingly popular today, be it for medical
or other purposes such as ancestry or paternity testing. Non-medical uses of genomic data in a
computation often take place in a server-mediated setting where the server offers the ability for
joint genomic testing between the users. Undeniably, genomic data is highly sensitive, which in
contrast to other biometry types, discloses a plethora of information not only about the data
owner, but also about his or her relatives. Thus, there is an urgent need to protect genomic
data, especially when it is used in computation for what we call as recreational non-health-
related purposes. Towards this goal, in this work we put forward a framework for server-aided
secure two-party computation with the security model motivated by genomic applications. One
particular security setting that we treat in this work provides stronger security guarantees with
respect to malicious users than the traditional malicious model. In particular, we incorporate
certified inputs into secure computation based on garbled circuit evaluation to guarantee that a
malicious user is unable to modify her inputs in order to learn unauthorized information about
the other user’s data.

Our solutions are general in the sense that they can be used to securely evaluate arbitrary
functions and offer attractive performance compared to the state of the art. We apply the
general constructions to three specific types of genomic tests: paternity, genetic compatibility,
and ancestry testing and implement the constructions. The results show that all such private
tests can be executed within a matter of seconds or less despite the large size of one’s genomic
data.

1 Introduction

The motivation for this work comes from rapidly expanding availability and use of genomic data in a
variety of applications and the need to protect such highly sensitive data from potential abuse. The
cost of sequencing one’s genome has dramatically decreased in the recent years and is continuing
to decrease, which makes such data more readily available for a number of applications. Examples
of such applications include:
• personalized medicine, where genomic tests are performed prior to prescribing a drug treat-

ment to ensure its effectiveness;
• paternity testing, which use DNA data to determine whether one individual is the father of

another individual;
• genomic compatibility tests, which allow potential or current partners to determine whether

their future children are likely to inherit genetic conditions;
• determining ancestry and building genealogical trees by examining DNA data of many indi-

viduals and finding relationships among specific individuals.

1

Genomic tests are increasingly used for medical purposes to ensure the best treatment. A number
of services for what we call the “leisure” use of DNA data has flourished as well (examples are
[1, 2, 3]) allowing for various forms of comparing DNA data, be it for the purposes of building
ancestry trees, genomic compatibility or other.

It is clear that DNA is highly sensitive and needs to be protected from unintended uses. It can
be viewed as being even more sensitive than other types of biometry associated with an individual,
as not only it allows for unique identification of an individual, but it also allows to learn a plethora
of information about the individual such as predisposition to medical conditions and relatives of
the individual thus exposing information about others as well. Furthermore, our understanding
of genomes is continuously growing and exposure of DNA data now can lead to consequences
which we cannot even anticipate today. For that reason, a number of publications that enable
genomic computation while preserving privacy of DNA data have appeared in the literature (see,
e.g., [14, 12, 26, 9, 11, 10]). Such publications span several types of genomic computation including
medical (such as personalized medicine and disease risk computation) and non-medical applications
(such as paternity testing).

While protecting privacy of genomic data is important regardless of the reason why computation
on such data takes place, in our opinion, it is more difficult for an individual to influence the way
medical procedures are conducted than services in which individuals decide to voluntary participate.
That is, if genetic tests are necessary for a patient to determine the most effective treatment and the
procedures in place are considered law-compliant, the patient has little possibility for influencing
the way the DNA tests are conducted (besides, perhaps, declining to take the test and risking the
possibility that the prescribed generic treatment is ineffective for that patient or has severe side
effects). With what we consider as “leisure” uses of DNA information, the situation is different. An
individual who meets a potential partner through a gene-based matchmaking online service (such
as [3]) might be reluctant to share her DNA data with the service (or the partner) for the purpose
of genetic compatibility tests. However, if the individual is assured that no sensitive information
about her DNA will be revealed to any party throughout the computation other than the intended
outcome, she might revisit the decision to participate in such services. Thus, in the rest of this
work, when we refer to genomic computation, we focus on applications which are not detrimental
to the well-being of an individual and rather consider tests in which individuals might choose to
participate.

The first observation we make about such types of genomic computation is that they are nor-
mally facilitated by some service or third party. For example, both ancestry and gene-based match-
making web sites allow participants to interact with each other through the service provider. Such
service providers serve as a natural point for aiding the individuals with private computation on
their sensitive genomic data. In some prior publications on genomic computation (e.g., [12]), it
is assumed that computation such as paternity testing or genetic compatibility is run between a
client and a server, while we believe that it is more natural to assume that such computation is
carried out by two individuals through some third-party service provider. Thus, in this work we
look at private genomic computation in the light of server-mediated setting and utilize the server
to lower the cost of the computation for the participants. Throughout this work, we will refer to
the participants as Alice (A), Bob (B), and the server (S).

From the security point of view, participants in a protocol that securely evaluates a function
are normally assumed to be either semi-honest (also known as honest-but-curious or passive) or
malicious (also known as active). In our application domain, we may want to distinguish between
different security settings depending on how well Alice and Bob know each other. For example, if
Alice and Bob are relatives and would like to know how closely they are related (i.e., how closely
their genealogical trees overlap), it would be reasonable to assume that they will not deviate from

2

the prescribed computation in the attempt to cheat each other, i.e., they can be assumed to be
semi-honest. On the other hand, if Alice and Bob meet each other through a matchmaking web
site and do know each other well, it is reasonable for them to be cautious and engage in a protocol
that ensures security (i.e., correctness and privacy) even in presence of malicious participants.
The server can typically be expected not to deviate from its prescribed behavior, as it would lose
its reputation and consequently revenue if any attempts at cheating become known. If, however,
adding protection against server’s malicious actions is not very costly, it can also be meaningful to
assume a stronger security model.

Another important consideration from a security point of view is enforcing correct inputs to be
entered in the computation when, for instance, the inputs are certified by some authority. This
requirement is outside the traditional security model for secure multi-party computation (even in
presence of fully malicious actors), and to the best of our knowledge certified inputs were previously
considered only for specific functionalities such as private set intersection [21, 28] or anonymous
credentials and certification [18], but not for general secure function evaluation. We bring this
up in the context of genomic computation because for certain types of genomic computation it is
very easy for one participant to modify his inputs and learn sensitive information about genetic
conditions of the other participant. For example, genetic compatibility tests evaluate the possibility
of two potential or existing partners to determine the possibility of transmitting to their children a
genetic disease. Such possibility is present when both partners are (silent) carriers of that disease
(see section 3.1 for more detail). Then if the partners can each separately evaluate their DNA
for a fingerprint of specific disease, the joint computation can consist of a simple AND of the bits
provided by both parties (for one or more conditions). Now if a malicious participant sets all of his
input bits to 1 and the outcome is positive, the participant learns that the other party is a carrier for
a specific medical condition (or at least one condition from the set of specific conditions). We thus
would like prevent malicious participants from modifying their inputs used in genomic computation
in cases such data can be certified by certification authorities such as medical facilities.

The aspect of secure computation related to security properties that we treat in this work is
fairness. In particular, it is known that full fairness cannot be achieved in the case of two-party
computation in the malicious security model [23], but it becomes possible in the server-aided setting.
Fairness has been considered in the server-aided literature in the past [34, 41] and achieving fairness
only adds minimal overhead to the solutions in the settings we consider.

Contributions. While we draw motivation from genomic computation, several of our results
are general and can be applied to any function. Thus, we categorize our contributions in two
main groups: (i) results applicable to general secure function evaluation and (ii) results specific to
genomic tests, both of which we consequently describe. All constructions rely on garbled circuit
evaluation typically used in the two-party setting (which we consecutively describe in section 3.2),
but which we adopt to the three-party computation between the server and two users.

Based on the motivation given above, we consider different adversarial settings, which we present
from the simplest and enabling most efficient solutions to the most complex with added security
guarantees.

1. Our most efficient solution is designed for the setting where A and B are semi-honest and S
can be malicious (as in the ancestry testing scenario). In this setting, the solution consists of
a single circuit garbling and single evaluation of the garbled circuit and the need for oblivious
transfer is eliminated all together.

2. Our second solution works in the setting where A and B can be malicious, but S is semi-
honest (applicable to the paternity test) and achieves fairness for A and B. In this solution,

3

the combined work for all participants is approximately the same as the combined work of
two participants in a two-party protocol in presence of semi-honest participants only.

3. Our last solution strengthens the model of malicious A and B with input certification (appli-
cable to the genomic compatibility test). In more detail, in addition to being able to behave
arbitrarily, A and B may maliciously modify their true inputs. To combat this, the function
f being evaluated is modified to mark any suitable subset of the inputs as requiring certi-
fication. At the time of secure function evaluation, A and B have to prove that the inputs
that they enter in the protocol are identical to the values signed by a trusted authority (a
medical facility that performs genomic tests in our case). Achieving this involves the use of
additional tools such as a signature scheme and zero-knowledge proofs of knowledge (ZKPKs).
Handling of the remaining inputs and the rest of the computation is not affected by the shift
to a stronger security model.

All of our constructions offer conceptual simplicity and at the same time achieve highly attractive
performance. To the best of our knowledge, the strongest of our models which enforces correctness
of the inputs have not been treated in the context of general secure multi-party computation and
computation based on garbled circuits in particular. Despite the drastic differences in the techniques
for garbled circuit evaluation and data certification, we show how they can be integrated by using
oblivious transfer as the connecting point or even when oblivious transfer is not used.

Based on the solutions described above, we build implementations of three genetic tests, namely,
genetic common ancestry, paternity, and genetic compatibility tests. Each test uses a different
security setting. We show through experimental results that each of the implemented tests is
efficient with the worst runtime being on the order of a couple of seconds. The performance
favorably compares to the state of the art (as detailed in section 7), in some cases achieving orders
of magnitude performance improvement over existing solutions.

2 Related Work

Literature on secure two-party (or multi-party) computation is extensive, and its review is beyond
the scope of this work. In what follows, we concentrate on two lines of related work, namely, secure
server-aided two- or multi-party computation and work that develops privacy-preserving solutions
for genetic tests.

Server-aided computation. The closest to our work is that of Herzberg and Shulman [34, 35]
that considers two-party secure function evaluation based on garbled circuits in presence of weakly
trusted servers that aid in the computation. The solution achieves security and fairness in presence
of malicious A and B. The authors also informally discuss (in [35]) extensions to guarantee security
in presence of malicious servers or collusion. Compared to that work, our solution in presence
of malicious A and B is more efficient in that that [34, 35] require the parties to perform O(κn)
signature verifications and engage in O(κn) oblivious transfers, where κ is the security parameter
and n is the number of (B’s) inputs. The server’s work is also larger than in our solution. The use
of the server, however, is more constrained in [34, 35] compared to our work.

Kamara et al. [41] assumes a different setting, where a number of parties use the help of a
server to reduce computational burden for some of the parties. Using a solution based on garbled
circuits, the work achieves work sublinear in the circuit size for a subset of the parties and work
polynomial in the circuit size for the remaining parties and the server. Security holds when either
the server and another party are malicious or when the server is semi-honest and all but one party
are malicious. The model relies on non-colluding adversaries (termed non-cooperating adversaries

4

in [40, 41]), which even when behave maliciously do not collude with other parties. The work also
addresses fairness. While not directly comparable to our result, the work of [41] uses what can be
viewed as a more challenging security setting because all of our security settings assume a fixed
semi-honest party and thus allow for more efficient constructions.

Carter et al. [22] also uses the aid of a server to reduce the cost of two-party computation based
on garbled circuits in the setting where all participants are malicious. One party is assumed to be
very weak (such as a mobile phone), while the second participant and the server are more powerful.
The solution lifts most of the burden of associated with secure two-party function evaluation in
presence of malicious participants from the weak party, but the overhead of the second party and
the server is still comparable to the overhead of the participants in regular secure two-party function
evaluation based on garbled circuits.

Kolesnikov et al. [44] considers the problem of input consistency in two-party secure function
evaluation in presence of malicious players with the aid of a semi-honest server. The goal is to
ensure that both A and B enter the same input during multiple interactions, which is enforced
with the help of the semi-honest server at low cost. This solution is not suitable for our goal of
guaranteeing input correctness as a malicious participant can consistently provide incorrect inputs
and by doing so violate privacy of possibly multiple users. Furthermore, there may not be multiple
interactions between the same pair of users to enforce input consistency. That work also mentions
the possibility of input certification in secure two-party computation, but we are not aware of
realizations of this idea.

Genomic computation. There are a number of publications in the literature such as [9, 10, 11]
and others that treat the problem of privately computing medical tests for the purposes personalized
medicine (with the goal of choosing an optimal medical treatment or drug prescription). Ayday et
al. [8] also focus on privacy-preserving systems for storing genomic data by means of homomorphic
encryption. Because personalized medicine is outside the scope of this work, we do not further
elaborate on such solutions.

To the best of our knowledge, paternity testing in the context of privacy-preserving computation
was first considered in [14]. The authors propose privacy-preserving protocols for a number of
genetic tests based on Short Tandem Repeats (STRs) representation of genomic data (see section
3.1 for genomic background information). The tests include identity testing, paternity tests with
one and two parents, and common ancestry testing on the Y chromosome. The proposed protocols
for these tests are based on additively homomorphic public key encryption scheme and are secure
in presence of semi-honest participants. Implementation results were not given in [14], but Baldi et
al. [12] estimates that the paternity test in [14] is several times slower than that in [12]. We thus
compare our paternity test to the performance of an equivalent test in [12].

Baldi et al. [12] concentrate on a different representation of genomic data (in the form of
fully-sequenced human genome) and provide solutions for three types of genetic tests: paternity,
drug testing for personalized medicine, and genetic compatibility. The solutions use private set
intersection as the primary cryptographic building block in the two-party server-client setting.
The solutions were implemented and shown to result in attractive runtimes and we compare the
performance of our paternity and compatibility tests to the results reported in [12]. We defer the
comparison to section 7.

Related to that is the work of De Cristofaro et al. [25] that evaluates the possibility of using
smartphones for performing private genetic tests. The tests considered in [25] are paternity and
ancestry testing as well as personalized medicine tests. The protocol for the paternity test is the
same as in [12] with certain optimizations for the smartphone platform (such as performing pre-
processing on a more powerful machine). The ancestry test is performed by sampling genomic data

5

as using inputs of large size deemed infeasible on a smartphone. The implementation also used
private set intersection as the building block. Our implementation, however, can handle inputs of
very large sizes at low cost.

Two very recent articles [33, 36] describe mechanisms for private testing for genetic relatives
and can detect up to fifth degree cousins. The solutions rely on fuzzy extractors. They encode
genomic data in a special form and testing is performed on encoded data. The approach is not
comparable to the solutions we put forward in this work as [33, 36] are based on non-interactive
computation, which is limited to a specific set of functions.

Although not as closely related to our work as publications that implement specific genetic tests,
there are also publications that focus on applications of string matching to DNA testing. Examples
include the work of De Cristofaro et al. [27] that provides a secure and efficient protocol that hides
the size of the pattern to be searched and its position within the genome. Another example is the
work of Katz et al. [42] that applies secure text processing techniques to DNA matching.

3 Preliminaries

3.1 Genomic testing

Genomes represent complete hereditary information of an individual. Information extracted from
one’s genome can take different forms. One type is called Single Nucleotide Polymorphisms (SNPs),
each of which corresponds to a well known variation in a single nucleotide.1 Because SNP mutations
are often associated with how one develops diseases and responds to treatments, they are commonly
used in genetic disease and disorder testing. The same set of SNPs (i.e., nucleotides in the same
positions) would be extracted for each individual, but the values associated with each SNP differ
from one individual to another. Normally each SNP is referenced by a specific index and its value
in a individual is represented as a bit, while representations consisting of 3 values 0, 1, 2 are used
as well.

Another type of data extracted from a genome is based on Short Tandem Repeats (STRs). STRs
occur when a short region consisting of two or more nucleotides is repeated and the occurrences
are adjacent to each other. Unrelated individuals are likely to have a different number of repeats
of a given STR sequence in certain regions in their DNA and thus STRs are often used for identity
testing or testing between close relatives (such as paternity testing).

Paternity test. This test is normally done based on STRs. STR profile of a person consists of an
ordered sequence of N 2-element sets S = 〈{x1,1, x1,2}, {x2,1, x2,2}, . . ., {xN,1, xN,2}〉, where each
value corresponds to the number of repeats of a specific STR sequence at specific locations in the
genome. For each STR i, one of xi,1 and xi,2 is inherited from the mother and the other from the
father.

Thus in the paternity test with a single parent, there are two STR profiles S = 〈{xi,1, xi,2}〉 and
S′ = 〈{x′i,1, x′i,2}〉 corresponding to the child and the contested father, respectively. To determine
whether S′ corresponds to the father’s child, the test computes whether for each i the child’s set
{xi,1, xi,2} contains (at least) one element from the contested father’s set {x′i,1, x′i,2}. In other words,
the test corresponds to the computation

N∧
i=1

[{x1,i, x2,i} ∩ {x′1,i, x′2,i} 6= ∅] = True (1)

1A nucleotide can be viewed as a simple unit represented by a letter A, C, G, or T.

6

When testing with both parents is performed, for each STR i one of xi,1 and xi,2 must appear in
the mother’s set and the other in the father’s set. Using both parents’ profiles in the computation
increases the accuracy of the test, but even the single parent test has high accuracy for a small
number N of well-chosen STRs (e.g., the US CODIS system utilizes N = 13, while the European
SGM Plus identification method uses N = 10).

Genetic compatibility test. While there is a variety of genetic tests that can be used for several
purposes, we concentrate on the genetic compatibility test where potential (or existing) partners
would like to determine the possibility of transmitting to their children a genetic disease with
Mendelian inheritance. In particular, if a specific mutation occurs in one allele2 (called minor), it
often has no impact on one’s quality of life, but when the mutation occurs in both alleles (called
major), the disease manifests itself in severe forms. If both partners silently carry a single mutation,
they have a noticeable chance of conceiving a child carrying the major variety. Thus, a genetic
compatibility test for a given genetic disease would test for the presence of minor mutations in both
partners.

The current practice for screening for most genetic diseases consists of testing one SNP in a
specific gene. It is, however, expected that in the future tests for more complex diseases (that involve
multiple genes and mutations) will become available. Thus, a genetic disease can be characterized
by a set of SNP indices and the corresponding values (i1, b1), . . ., (it, bt), where ij is the SNP index
and bj ∈ {0, 1} is the value it takes. Then if the same values are found in the appropriate SNPs of
an individual, we assume that the individual is tested as positive (i.e., the individual is the disease
carrier). If both partners test as positive, then the outcome of the genetic compatibility test will
be treated as positive and otherwise it is negative.

Ancestry test. There are a number of tests that allow for various forms of ancestry testing, for ex-
ample, tests using Y-chromosome STRs (applicable to males only), mitochondrial DNA (mtDNA)
test on the maternal line, and more general SNP-based tests for common ancestry or one’s geneal-
ogy. Many such tests are not standardized and in addition current ancestry and genealogy service
providers often use proprietary algorithms. The advantage of STR-based tests is that normally only
a relatively small number of STRs are tested, while SNP-based tests often utilize a large number
of (or even all available) SNPs, but more distant ancestry can be learned from SNP-based tests.
For improved accuracy it is also possible to perform one type of testing after the other. In either
case, to determine the most recent common ancestor between two individuals, the markers from the
two individuals are compared and their number determines how closely the individuals are related.
Certain tests such as determining geographical regions of one’s ancestors normally require genetic
data from many individuals.

3.2 Garbled circuit evaluation

The use of garbled circuits allows two parties P1 and P2 to securely evaluate a Boolean circuit of
their choice. That is, given an arbitrary function f(x1, x2) that depends on private inputs x1 and
x2 of P1 and P2, respectively, the parties first represent is as a Boolean circuit. One party, say P1,
acts as a circuit generator and creates a garbled representation of the circuit by associating both
values of each binary wire with random labels. The other party, say P2, acts as a circuit evaluator
and evaluates the circuit in its garbled representation without knowing the meaning of the labels
that it handles during the evaluation. The output labels can be mapped to their meaning and
revealed to either or both parties.

2An allele is one of the alternative versions of a gene at a given location.

7

In more detail, the basic idea is as follows (here we present only an overview of the approach
and refer the reader to, e.g., [47] for technical details and security analysis): For each wire i of the
Boolean circuit corresponding to f , the circuit generator creates a pair of randomly chosen labels
`0i and `1i (of sufficient length that depends on the security parameter) which map to the values of
0 and 1, respectively, of this wire. Let g be a binary gate that takes two input bits and produces a
single bit; also let the input wires to g have indices i and j and let the output wire have index k.
Then to create a garbled representation of the gate, the circuit generator produces a truth table
containing four entries of the form

Enc
`
bi
i ,`

bj
j

(`
g(bi,bj)
k).

Here bi, bj ∈ {0, 1} are input bits into the gate and all entries in the table are randomly permuted.

Possession of two input labels `bii and `
bj
j for any given values of bi and bj will allow for recovery

of the corresponding output label `
g(bi,bj)
k without revealing anything else. Then upon garbling all

gates of the circuit, the circuit generator communicates all garbled gates, to which we collectively
refer as a garbled circuit Gf , to the circuit evaluator together with a single label `bii for each input
wire i according to the input bit bi. The labels corresponding to the input wires of the circuit
generator are simply transmitted to the evaluator, while the labels corresponding to the inputs of
the circuit evaluator are communicated to the evaluator by the means of oblivious transfer (detailed
below). The knowledge of the input labels and garbled gates allows the circuit evaluator to evaluate
the entire circuit in its garbled representation and obtain a label for each output wire representing
the output. Then either the circuit generator sends the label pairs (in order) for all output wires
to the circuit evaluator, which allows the evaluator to interpret the meaning of the labels and learn
the output, or the evaluator sends computed labels to the circuit generator, which in turn allows
the circuit generator to learn the result.

The basic approach is secure in presence of semi-honest circuit generator and a malicious eval-
uator [32] (and the knowledge of valid labels for the output wires implicitly provides a proof that
the computation was performed correctly [31]). However, extending the security to the malicious
setting (when either party can be malicious) requires additional techniques which substantially
degrade performance of the approach.

An important component of garbled circuit evaluation is 1-out-of-2 Oblivious Transfer (OT). It
allows the circuit evaluator to obtain wire labels corresponding to its inputs. In particular, in OT
the sender (i.e., circuit generator in our case) possesses two strings s0 and s1 and the receiver (circuit
evaluator) has a bit σ. OT allows the receiver to obtain string sσ and the sender learns nothing.
An oblivious transfer extension allows any number of OTs to be realized with small additional
overhead per OT after a constant number of regular more costly OT protocols (the number of
which depends on the security parameter). The literature contains many realizations of OT and
its extensions, including very recent proposals, but in this work we primarily are interested in OT
protocols and OT extensions secure in presence of malicious participants (such as [50, 38, 51] and
others).

The fastest currently available approach for circuit generation and evaluation we are aware of
is by Bellare et al. [13]. It is compatible with earlier optimizations, most notably the “free XOR”
gate technique [45] that allows XOR gates to be processed without cryptographic operations or
communication, resulting in virtually no overhead for such gates.

3.3 Signature schemes with protocols and commitment schemes

Our solution that enforces input correctness by means of user input certification relies on ad-
ditional building blocks, which are signature schemes with protocols, commitment schemes, and

8

zero-knowledge proofs of knowledge.
From the available signature schemes such as [15, 16] that provide the ability to prove knowl-

edge of a signature on a message without revealing the message itself, the Camenisch-Lysyanskaya
solution [15] is of interest to us. It uses public key of the form (n, a, b, c), where n is an RSA
modulus and a, b, c are randomly chosen quadratic residues in Z∗n. A signature on a message m
is a tuple (e, s, v) such that ve ≡ abbsc (mod n), where e is prime, e and s are randomly chosen
according to security parameters, and v is computed to satisfy the equation. A signature can also
be issued on a block of messages. To sign a block of t messages m1, . . .,mt, the public key needs to
be of the form (n, a1, . . ., at, b, c) and the signature is (e, s, v), where ve ≡ am1

1 · · · a
mt
t bsc (mod n)

holds.
Given a public verification key (n, a, b, c), to prove knowledge of a signature (e, s, v) on a secret

message m, one forms a commitment c = Com(m) to m and proves that she possesses a signature on
the value committed in c (for the details of which we refer the reader to [15]). The commitment c can
consecutively be used to prove additional statements about m in zero knowledge. Similarly, if one
wants to prove statements about multiple messages included in a signature, multiple commitments
will be formed.

The commitment scheme used in [15] is that of Damg̊ard and Fujisaki [24]. The setup consists
of a public key (n, g, h), where n is an RSA modulus, h is a randomly chosen quadratic residue in
Z∗n, and g is an element in the group generated by h. Here the modulus n can be the same as or
different from the modulus used in the signature scheme. For simplicity, we will assume that the
same modulus is used. To produce a commitment to x using the key (n, g, h), one randomly chooses
r ∈ Zn and sets Com(x, r) = gxhr mod n. In the context where the value of r is not essential, we
may omit it from the notation and use Com(x) instead. This commitment scheme is statistically
hiding and computationally binding. The values x, r are called the opening of the commitment
Com(x, r).

Zero-knowledge proofs of knowledge (ZKPKs) allow one to prove a particular statement about
private values without revealing additional information besides the statement itself. Following [19],
we sometimes use notation PK{(vars) : statement} to denote a ZKPK of the given statement,
where the values appearing in the parentheses are private to the prover and the remaining values
used in the statement are known to both the prover and verifier. If the proof is successful, the verifier
is convinced of the statement of the proof. For example, PK{(α) : y = gα1 ∨ y = gα2 } denotes that
the prover knows the discrete logarithm of y to either the base g1 or g2. Lastly, because a proof of
knowledge of a signature is cumbersome to write in this detailed form, we use abbreviation Sig(x)
and Com(x) in ZKPKs to indicate the knowledge of a signature and commitment, respectively.
For example, PK{(α) : Sig(α) ∧ y = Com(α) ∧ (α = 0 ∨ α = 1)} denotes a proof of knowledge
of a signature on a bit committed to in y. Because proving the knowledge of a signature on x in
[15] requires a commitment to x (which is either computed as part of the proof or may already
be available from prior computation), we explicitly include the commitment into all proofs of a
signature.

4 Security Model

We formulate security using the standard ideal model/real model for secure multi-party computa-
tion, where the view of any adversary in the real protocol execution should be indistinguishable
from its view in the ideal model that uses a trusted party to evaluate the function. Because the
server does not contribute any input to the computation, it is meaningful to consider that either
A or B is honest since the goal is to protect the honest party.

9

As previously mentioned, we are primarily interested in the setting where the server is semi-
honest, but parties A and B may either be semi-honest or fully malicious. Thus, we target security
models where S complies with the computation, with the exception of the first setting of semi-
honest A and B, where we get security in presence of a malicious server for free. We similarly
assume that the server will not collude with users (putting its reputation at risk) or let users affect
its operation.

We obtain security settings where (1) A and B can be corrupted by a semi-honest adversary,
while S can act on behalf of a fully malicious adversary and (2) A and B can be malicious, but the
server is semi-honest. Because we assume that the parties (or the adversaries who corrupt them)
do not collude with each other, at any given point of time there might be multiple adversaries, but
they are independent of each other. This is similar to the setting considered in [40, 41]. We note
that based on the security settings listed above, at most one adversary would be fully malicious.
In other words, if in (2) A is malicious, the goal is to protect B who is assumed to not be malicious
and S is semi-honest, while in (1) S can be malicious, while A and B are semi-honest. Kamara et
al. [41], however, show that in presence of non-cooperating adversaries who corrupt only one party
showing security can be reduced to showing that the protocol is secure in presence of semi-honest
adversaries only followed by proving for each malicious adversary Ai that the solution is secure in
presence of Ai when all other parties are honest. This implies that in setting (2) a solution which
is secure in presence of malicious A or B will also remain secure when A and B are corrupted by
two independent malicious adversaries.

To model fairness, we modify the behavior of the trusted party in the ideal model to send ⊥
to all parties if any party chooses to abort (note that fairness is only applicable to A and B). We
assume that A and B learn the result of evaluation of a predefined function f that takes input x1

from A and input x2 from B, and the server learns nothing. Because our primary motivation is
genomic computation, we consider single-output functions, i.e., both A and B learn f(x1, x2) (but
two of our constructions support functions where A’s and B’s outputs differ and the remaining
construction in the present form loses only fairness).

Execution in the real model. The execution of protocol Π in the real model takes place between
parties A, B, S and a subset of adversaries AA, AB, and AS who can corrupt the corresponding
party. Let A collectively denote the set of adversaries present in a given protocol execution. A and
B receive their respective inputs xi, a set of random coins ri, and auxiliary input zi, while S receives
only a set of random coins r3 and auxiliary input z3. All parties also receive security parameter 1n.
Each adversary receives all information that the party it corrupted has and a malicious adversary
can also instruct the corresponding corrupted party to behave in a certain way. For each AX ∈ A,
let VIEWΠ,AX

denote the view of the adversary AX at the end of an execution of Π. Also let
OUThon

Π,A denote the output of the honest parties (if any) after the same execution of the protocol.
Then for each AX ∈ A, we define the partial output of a real-model execution of Π between A, B,
S in presence of A by

REALΠ,AX
(n, x1, x2, r1, r2, r3)

def
= VIEWΠ,AX

∪OUThon
Π,A.

Execution in the ideal model. In the ideal model, all parties interact with a trusted party who
evaluates f . Similar to the real model, the execution begins with A and B receiving their respective
inputs xi and each party (in A, B, and S) receiving a set of random coins ri, auxiliary input zi,
and security parameter 1n. Each honest (semi-honest) party sends to the trusted party x′i = xi
and each malicious party can send an arbitrary value x′i to the trusted party. If x1 or x2 is equal
to ⊥ (empty) or if the trusted party receives an abort message, the trusted party returns ⊥ to all

10

participants. Otherwise, A and B receive f(x′1, x
′
2). Let OUThon

f,A denote the output returned by
the trusted party to the honest parties and let OUTf,AX

denote the output that corrupted party
AX ∈ A produces based on an arbitrary function of its view. For each AX ∈ A, the partial output
of an ideal-model execution of f between A, B, S in presence of A is denoted by

IDEALf,AX
(n, x1, x2, r1, r2, r3)

def
= OUTf,AX

∪OUThon
f,A .

Definition 1 (Security) A three-party protocol Π between A, B, and S securely computes f if for
all sets of probabilistic polynomial time (PPT) adversaries A in the real model, for all xi, zi, and
n ∈ Z, there exists a PPT transformation SX for each AX ∈ A such that

REALΠ,AX
(n, x1, x2, r1, r2, r3)

c
≈ IDEALf,SX (n, x1, x2, r1, r2, r3)

where each ri is chosen uniformly at random and
c
≈ denotes computational indistinguishability.

To model the setting where some of the inputs of A and/or B are certified, we augment the
function f to be executed with the specification of what inputs are to be certified and two additional
inputs y1 and y2 that provide certification for A and B’s inputs, respectively. Then in the ideal
model execution, the trusted party will be charged with additionally receiving yi’s. If the trusted
party does not receive all inputs or if upon receiving all inputs some inputs requiring certification
did not verify, it sends ⊥ to all parties. In the real model execution, verification of certified inputs
is built into Π and besides using two additional inputs y1 and y2 the specification of the execution
in the real model remains unchanged.

Definition 2 (Security with certified inputs) A three-party protocol Π between A, B, and S
securely computes f if for all sets of PPT adversaries A in the real model, for all xi, yi, zi, and
n ∈ Z, there exists a PPT transformation SX for each AX ∈ A such that

REALΠ,AX
(n, x1, x2, y1, y2, r1, r2, r3)

c
≈ IDEALf,SX (n, x1, x2, y1, y2, r1, r2, r3)

where each ri is chosen uniformly at random.

5 Server-Aided Two-Party Computation

In this section we detail our solutions for server-aided two party computation based on garbled
circuits. The current description is general and can be applied to any function f . In the consecutive
section 6 we describe how the solutions presented in this section can be applied to the computation
of genomic tests to result in fast performance.

5.1 Semi-honest A and B, malicious S

Our first security setting is where A and B are semi-honest and S can be malicious. The main
intuition behind the solution is that when A and B can be assumed to be semi-honest and a
solution based on garbled circuit evaluation is used, we will charge S with the task of evaluating
a garbled circuit. That is, security is maintained in presence of malicious server because garbled
circuit evaluation techniques are secure in presence of a malicious evaluator. Next, we notice that
if A and B jointly form garbled representation of the circuit for the function f they would like to
evaluate, both of them can have access to the pairs of labels (`0i , `

1
i) corresponding to the input wires.

Thus, they can simply send the appropriate label `bi to S for evaluation purposes for their value of

11

the input bit b for each input wire. This eliminates the need for oblivious transfer and results in a
solution that outperforms a two-party protocol in presence of only semi-honest participants.

Modern techniques for garbling circuits rely on the “free XOR” technique, which removes the
need for cryptographic operations and communication for XOR gates resulting substantial savings.
To use the technique, the label pairs for each circuit wire are required to have a certain relationship,
namely that `1i = `0i ⊕∆, where ∆ is a global random value with the last bit set to 1, which is used
for all wires of the circuit. Thus, when generating labels for circuit wires, the circuit generator
chooses `0i at random and computes `1i as `0i ⊕∆. This is of importance to us because in the current
solution the circuit is being garbled jointly by two parties. This means that if one party generates
labels for some, but not all wires, communicating the chosen labels to the other party involves
sending only one label `01 per wire instead of the pair (`0i , `

1
i). This reduces the communication for

that portion of the parties’ interaction by half.
A more detailed description of the solution, which we denote as Protocol 1, is given below. In

what follows, let m denote the total number of wires in a circuit (including input and output wires),
wires 1, . . ., t1 correspond to A’s input, wires t1 + 1, . . ., t1 + t2 correspond to B’s input, and the
last t3 wires m − t3 + 1, . . .,m correspond to the output wires. We also use κ to denote security

parameter (for symmetric key cryptography). Notation a
R← U means that the value of a is chosen

uniformly at random from the set U .

Input: A has private input x1, B has private input x2, and S has no private input.
Output: A and B learn f(x1, x2), S learns nothing.
Protocol 1:

1. A and B jointly choose δ
R← {0, 1}κ−1 and m labels `0i

R← {0, 1}κ, then set ∆ = δ||1 and
`1i = `0i ⊕∆ for each i ∈ [1,m]. A and B jointly garble the gates to produce a garbled circuit
Gf for f and send Gf to S.

2. For each i ∈ [1, t1], A locates the ith bit bi of her input and sends to S the label `bii of the
corresponding wire i in the garbled circuit.

3. Similarly, for each bit j ∈ [1, t2], B locates the jth bit bj of his input and sends to S the label

`
bj
i+t1

of the corresponding wire i+ t1 in the garbled circuit.

4. S evaluates the circuit on the received inputs and returns to B the computed label `bi for each
output wire i ∈ [m− t3 + 1,m]. B forwards all received information to A.

5. For each `bi returned by S (i ∈ [m − t3 + 1,m]), A and B do the following: if `bi = `0i , set
(i − m + t3)th bit of the output to 0, if `bi = `1i , set (i − m + t3)th bit of the output to 1,
otherwise abort.

In this solution, the combined work of A and B is linear in the size of a circuit for f . The work,
however, can be distributed in an arbitrary manner between the parties. Besides equally splitting
the work of circuit garbling between the parties, an alternative possibility is to let the weaker party
(e.g., a mobile phone user) to do work sublinear in the circuit size. Let A be a weak client, who
delegates as much work as possible to B. Then A can create t1 label pairs for her input only and
send them to B who produces the rest of the garbled circuit. Upon completion of the result, A
learns the output from B (i.e., there is not even the need for A to know any labels for the output
wires). Thus, the work and communication of the weaker client is only linear in the input and
output sizes. We note that, as noted above, using the variant of circuit garbling that supports free

12

Figure 1: Illustration of Protocol 1 with weak A (who contributes only garbled labels for her input
wires to the computation).

XOR gates, A needs to send only t1 input labels to B instead of t1 label pairs, which additionally
reduces A’s communication in half.

This version of the protocol (with weak A) is depicted in figure 1. Security of this solution can
be stated as follows:

Theorem 1 Protocol 1 above fairly and securely evaluates a circuit for function f in presence of
semi-honest A and B and malicious S.

The proof can be found in Appendix A.
Before we conclude this section, we would like to comment on the possibility of executing our so-

lution when users A and B are not simultaneously or continuously online (but the server is available)
and analyze the solution with respect of how the computation can proceed asynchronously.

1. One user (A or B) comes online and initiates the protocol (executes steps 1a and 2).
2. The other user comes online and participates in the computation (executes steps 1b and 3–4).

At this point the answer is ready and known to the second user. If the first user is to learn the
answer as well, it will need to either come online or be notified by the second user through a different
private channel (step 5). Thus, we see that interaction is minimal and the solution is suitable for
asynchronous environments.

5.2 Semi-honest S, malicious A and B

In order to maintain efficiency of the previous solution by avoiding the cost of oblivious transfer,
we might want to preserve the high-level structure of the computation in the first solution. Now,
however, because A and B can be malicious, neither of them can rely on the other party in garbling
the circuit correctly. To address this, each of A and B may garble their own circuit for f , send
it to S, and S will be in charge of evaluating both of them and performing consistency check on
the results (without learning the output). With this solution, A would create label pairs for her
input bits/wires for both garbled circuits and communicate one set of pairs to B who uses them
in constructing his circuit. What this accomplishes is that now A can directly send to S the
labels corresponding to her input bits for circuit evaluation for both circuits. B performs identical
operations. There is still no need to perform OT, but two security issues arise: (1) we have to

13

enforce that A and B provide consistent inputs into both of the circuits and (2) regardless of
whether the parties learn the output (e.g., whether the computation is aborted or not), a malicious
party can learn one bit of information about the other party’s input (by constructing a circuit
that does not correspond to f) [37]. While the first issue can be inexpensively addressed using the
solution of [44] (which works in presence of malicious users and semi-honest server), the second
issue will still stand with this structure of the computation.

Instead of allowing for (1-bit) information leakage about private inputs, we change the way the
computation takes place. If we now let the server garble the circuit and each of the remaining
parties evaluate a copy of it, the need for OT (for both A and B’s inputs) arises. We, however,
were able to eliminate the use of OT for one of A and B and construct a solution that has about the
same cost as a single two-party solution in the semi-honest model. At the high-level, it proceeds
as follows: A creates garbled label pairs (`0i , `

1
i) for the wires corresponding to her inputs only and

sends them to S. S uses the pairs to construct a garbled circuit for f and sends it to B. S and B
engage in OT, at the end of which B learns labels corresponding to his input bits. Also, A sends
to B the labels corresponding to her input bits, which allows B to evaluate the circuit. We note
that because A may act maliciously, she might send to B incorrect labels, which will result in the
inability of B to evaluate the circuit. This, however, is equivalent to A aborting the protocol. In
either case, neither A nor B learn any output and the solution achieves fairness. Similarly, if B
does not follow the computation for circuit evaluation, neither party learns the output.

The next issue that needs to addressed is that of fairly learning the output. We note that S
cannot simply send the label pairs for the output wires to A and B as this would allow B to learn
the output and deny A of this knowledge. Instead, upon completion of garbled circuit evaluation,
B sends the computed labels to A. With the help of S, A verifies that the labels A possesses are
indeed valid labels for the output wires without learning the meaning of the output. Once A is
satisfied, she notifies S who sends the label pairs to A and B, both of whom can interpret and learn
the result. We note that malicious A can report failure to S even if verification of the validity of
the output labels received from B was successful. Once again, this is equivalent to A aborting the
protocol, in which case neither party learns the output and fairness is maintained.

Our solution, denoted as Protocol 2, is given in more detail next. As with Protocol 1, we can let
A generate and communicate one random label `0i for her input bits, while the second label `1i can
be computed by A and S using their shared knowledge of ∆. This results in significant reduction
of A’s communication.

14

Figure 2: Illustration of Protocol 2.

Input: A has private input x1, B has private input x2, and S has no private input.
Output: A and B learn f(x1, x2), S learns nothing.
Protocol 2:

1. A generates t1 labels `0i
R← {0, 1}κ for each circuit wire i ∈ [1, t1] corresponding to A’s input

and sends them to S. S chooses ∆ and sends it to A.

2. S checks that each label `0i received from A is of the correct bitlength and computes the
corresponding labels `1i = `0i ⊕ ∆. S then creates random labels for the remaining wires in
the same way and construct garbled gates Gf . S sends Gf to B.

3. S and B engage in t2 instances of 1-out-of-2 OT, where S assumes the role of the sender and
uses t2 label pairs (`0t1+i, `

1
t1+i) for i ∈ [1, t2] corresponding to B’s input wires as its input and

B assumes the role of the receiver and uses his t2 input bits bi as the input into the protocol.
As the result of the interaction, B learns garbled labels `bit1+i for i ∈ [1, t2].

4. A sends the labels `bii corresponding to her input bits bi to B for i ∈ [1, t1], where `1i = `0i ⊕∆
for any bi = 1.

5. Upon the receipt of the labels for his own and A’s input, B evaluates the circuit, learns the
output labels `bii for i ∈ [m− t3 + 1,m] and sends them labels to A.

6. A asks and receives from S output verification information constructed as follows: For each
output wire i, S computes H(`0i), H(`1i), where H : {0, 1}∗ → {0, 1}κ is a collision-resistant
hash function, randomly permutes the tuple, and sends it to A.

7. For each label `i received from B in step 5, A computes H(`i) and checks where the computed
value appear among H(`bi), H(`1−bi) received from S in step 6. If the check succeeds for all
output wires, A notifies S of successful completion of circuit evaluation and aborts otherwise.

8. Upon receiving confirmation of success from A, S sends the pairs (`0i , `
1
i) for all output wires

i to A and B, who interpret the result and learn the output.

The protocol steps are also illustrated in figure 2.
We show security of this solution in a hybrid model where the parties are assumed to be given

15

access to a trusted entity computing oblivious transfer. We obtain:

Theorem 2 Protocol 2 above fairly and securely evaluates a circuit for function f in presence of
malicious A or B and semi-honest S in the hybrid model with ideal implementation of OT and
where H is a collision-resistant hash function.

The proof can be found in Appendix A.
As with the previous solution, we would like to analyze our protocol with respect to the number

of asynchronous interactions needed when A and B are not continously online, which we show
below.

1. One user (A or B) comes online and initiates the protocol (executes steps 1 and 4).
2. The other user comes online and participates in the computation (executes steps 2–3 and

5–6).
3. The first user comes online and performs verification (executes steps 7–8).

At this point the answer is ready and known to the first user. If the second user is to learn the
answer as well, it will need to come online the second time (step 8).

5.3 Semi-honest S, malicious A and B with input certification

We next consider the setting with enhanced security guarantees in which malicious A and B are
enforced to provide correct inputs in the computation. This enforcement is performed by requiring
A and B certify their inputs prior to protocol execution and prove the existence of certification on
the inputs they enter in the computation.

The basic structure of our solution in this stronger security model remains the same as in
Protocol 2, but we extend it with a novel mechanism for obliviously verifying correctness of the
inputs. The intricate part of this problem is that signature schemes use public-key operations, while
garbled circuit evaluation deals with randomly generated labels and symmetric key operations. In
what follows, we describe the intuition behind our solution followed by more detailed explanation.

Suppose that the party whose inputs are to be verified participates in an OT protocol on her
inputs as part of garbled circuit evaluation (i.e., the party is the circuit evaluator and acts as the
receiver in the OT). Then if we use the variant of OT known as committed oblivious transfer (COT)
(which is also called verifiable OT in some literature), the party will submit commitments to the
bits of her input as part of OT computation and these commitments can be naturally tied to the
values signed by a third party authority by means of zero-knowledge proofs (i.e., without revealing
any information other than equality of the signed values and the values used in the commitments).
Several COT schemes that we examined (such as in [39, 43]), however, had disadvantages in their
performance and/or complex setup assumptions (such as requiring the sender and receiver to hold
shares of the decryption key for a homomorphic public-key encryption scheme). We thus integrate
input certification with a specific instantiation of conventional OT protocol by Naor and Pinkas
[50].

Before we proceed with further description, we discuss the choice of the signature scheme and
the way knowledge of a signature is proved. Between the main two candidates of signature schemes
with protocols [15] and [16], we chose the solution from [15] because it uses an RSA modulus. In
application like ours, zero-knowledge statements are to be proved across different groups. This
requires the use of statistically-hiding zero-knowledge proofs that connect two different groups
through a setting in which the Strong RSA assumption (or, more generally, the difficulty of eth
root extraction) holds [17, 24, 30]. Thus, the public key of the third party certification authority
can be conveniently used as the common setup for other interaction between the prover and verifier.

16

Input: Sender S has two strings m0 and m1, receiver R has a bit σ. Common input consists of
prime p, generator ĝ of subgroup of Z∗p of prime order q, and a random element C from the group
generated by ĝ (chosen by S).
Output: R learns mσ and S learns nothing.
OT Protocol:

1. S chooses random r ∈ Zq and computes Cr and ĝr.

2. R chooses k ∈ Z∗q , sets public keys PKσ = ĝk and PK1−σ = C/PKσ, and sends PK0 to S.

3. After receiving PK0, S computes (PK0)r and (PK1)r = Cr/(PK0)r. S sends to R ĝr and two
encryptions H((PK0)r, 0)⊕m0 and H((PK1)r, 1)⊕m1, where H is a hash function (modeled
as a random oracle).

4. R computes H((ĝr)k) = H((PKσ)r) and uses it to recover mσ.

Figure 3: 1-out-of-2 Oblivious Transfer of [50].

This has important implications on the use of such solutions in practice. (If multiple signatures are
issued by multiple authorities, i.e., medical facilities in our application, one of the available public
keys can be used to instantiate the common setup.)

Recall that in Protocol 2 B obtains the labels corresponding to his input from S via oblivious
transfer, while A knows all label pairs corresponding to her input wires and simply sends the
appropriate labels to B. Now both of them will have to prove to S that the inputs they enter in the
protocol have been certified by a certain third party authority. For simplicity, in what follows we
will assume that all of A’s and B’s inputs are to be verified. (If this is not the case and only a subset
of the inputs should be verified, the computation associated with input verification described below
is simply omitted for some of the input bits.) Let us start with the verification mechanism for B,
after which we treat the case of A.

B engages in the Naor-Pinkas OT in the role of the receiver. The details of the OT protocol
are given in Figure 3. As part of OT, B forms two keys PK0 and PK1, where PKσ is the key that
will be used to recover mσ. Thus, if we want to enforce that σ corresponds to the bit for which B
has a signature from a certification authority, B must prove that he knows the discrete logarithm
of PKσ where σ is the signed bit. More formally, the statement B has to prove in zero knowledge
is as follows:

PK{(σ, β) : Sig(σ) ∧ y = Com(σ) ∧ ((σ = 0 ∧ PK0 = ĝβ) ∨ (σ = 1 ∧ PK1 = ĝβ))}.

In other words, B has a signature on 0 and knows the discrete logarithm of PK0 to the base ĝ
(i.e., constructed PK0 as ĝk) or B has a signature on 1 and knows the discrete logarithm of PK1 to
the same base. Using a technically more precise PK statement for showing that σ is 0 or 1 would
result in the PK statement above be re-written as:

PK{(σ, α, β) : Sig(σ)∧ y = Com(σ, α) = gσhα ∧ ((y = hα ∧PK0 = ĝβ)∨ (y/g = hα ∧PK1 = ĝβ))}.

We note that it is known how to realize this statement as a ZKPK as it uses only conjunction
and disjunction of discrete logarithm based sub-statements (see, e.g., [20]). Executing this ZKPK
would allow S to verify B’s input for a particular input wire if B has a signature on a bit. In
practice, however, a signature is expected to be on messages from a larger space than {0, 1} and

17

thus a single signature will need to be used to provide inputs for several input wires in the circuit.
This can be accomplished by, in addition to using a commitment on the signed message, creating
commitments to the individual bits and showing that they correspond to the binary representation
of the signed message. Then the commitments to the individual bits of the message are linked to
the keys generated in each instance of the OT. More formally, the ZKPK statement used in the
protocol would for a t-bit signed value become:

PK{(σ, σ1, . . ., σt, α, α1, . . ., αt) : Sig(σ) ∧ y = gσhα∧

y1 = gσ1hα1 ∧ . . . ∧ yt = gσthαt ∧ σ =
t∑
i=1

2i−1σi} (2)

PK{(σi, αi, βi) : yi = gσihαi ∧ ((yi = hαi ∧ PK(i)
0 = ĝβi) ∨ (yi/g = hαi ∧ PK(i)

1 = ĝβi))}. (3)

Here notation PK
(i)
0 and PK

(i)
1 indicates the public keys used in the ith instance of Naor-Pinkas

OT. Note that it was shown in [20] how to prove that discrete logarithms that satisfy a particular
linear equation.

Furthermore, it is likely that signatures will contain multiple messages (e.g., the name of a
genetic disease and the outcome of testing for it). In those cases, multiple messages from a single
signature can be used as inputs into the garbled circuit or, depending on the function f , there may
need to be other arrangements. For instance, one message can be used to provide inputs into the
circuit and another be opened or partially open (i.e., some statement is proved about it in zero
knowledge). We note that it is not difficult to generalize the statement in equations 2 and 3 to
cover such cases.

We now can proceed with the description of the mechanism for verifying A’s inputs. Recall
that for each bit i of her input, A has label pairs (`0i , `

1
i) and later she sends to B the label `bii

corresponding to her input bit bi. As before, consider first the case when A holds a signature on
a single bit. To prove that the label `bii sent to B corresponds to the bit for which she possesses

a signature, we have A commit to the label `bii and prove to S that either the commitment is to
`0i and she has a signature on 0 or the commitment is to `1i and she has a signature on 1. Let

the commitment be ci = Com(`bii , ri). Then if verification of the ZKPKs for each input bit was
successful, S forwards each ci to B together with the garbled circuit. Now when A is to send her
input label `bii to B, she is also now required to open the commitment ci by sending ri to B. B will

proceed with circuit evaluation only if ci = g
ˆ̀bi
i hr̂i for each bit i of A’s input, where ˆ̀bi

i and r̂i are
the values that he received from A.

More formally, the statement A proves to S in zero knowledge is:

PK{(σ, α, β, γ) : Sig(σ) ∧ y = gσhα ∧ z = gβhγ∧

((y = hα ∧ z/g`0i = hγ) ∨ (y/g = hα ∧ z/g`1i = hγ))}.

Similar to the case of B’s input verification, this ZKPK can be generalized to use a single signature
with multiple bits input into the circuit. More precisely, the statement in equation 2 remains
unchanged, while the second statement becomes:

PK{(σi, αi, βi, γi) : yi = gσihαi ∧ zi = gβihγi∧

((yi = hαi ∧ zi/g`
0
i = hγi) ∨ (yi/g = hαi ∧ zi/g`

1
i = hγi))}. (4)

We summarize the overall solution below, where for simplicity of presentation we assume that
all input bits of A (resp. B) are certified and signed as a single message.

18

Input: A has private input x1 and signature Sig(x1), B has private input x2 and Sig(x2), and S
has no private input.
Output: A and B learn f(x1, x2), S learns nothing.
Protocol 3:

1. S chooses ∆ and sends to A. A chooses t1 labels `0i
R← {0, 1}κ. For each bit bi of her input, A

computes commitments ci = Com(bi, ri) and c′i = Com(`bii , r
′
i) using fresh randomness ri and

r′i, where `1i = `0i⊕∆. A sends to S Sig(x1), labels `0i and commitments ci, c
′
i for each i ∈ [1, t1].

A proves in ZK the statement in equation 2 using private inputs x1, b1, . . ., bt1 , r1, . . ., rt1 .
For each i ∈ [1, t1], A also proves in ZK the statement in equation 4 using private inputs
bi, ri, `

bi
i , r

′
i.

2. S performs the same computation as in Protocol 2 and also sends to B A’s commitments c′i
for i ∈ [1, t1].

3. S and B engage in t2 instances of 1-out-of-2 OT as in Protocol 2 together with verification
of B’s input. Before B can learn labels `bit1+i, B forms t2 commitments c′′i = Com(bi, r

′′
i) using

fresh randomness r′′i and proves in ZK the statements in equations 2 and 3 using private input
x2, b1, . . ., bt2 , r

′′
1 , . . ., r

′′
t2 and bi, r

′′
i , ki, respectively. Here ki denotes the value chosen during

step 2 of the ith instance of the OT protocol.

4. A opens commitments c′i by sending to B pairs (`bii , r
′
i) for i ∈ [1, t1]. B checks whether

Com(`i, r
′
i) = c′i for each i and aborts if at least one check fails.

5. The remaining steps are the same as in Protocol 2.

We state the security of this solution as follows:

Theorem 3 Protocol 3 fairly and securely evaluates a circuit for function f in presence of mali-
cious A or B and semi-honest S in the hybrid model with ideal implementation of OT and where H
is a collision-resistant hash function and inputs of A and B are verified according to definition 2.

Because the structure of the computation in Protocol 3 is the same as in Protocol 2 and primarily
only ZKPKs have been added (that have corresponding simulators for the simulation in the ideal
model), we defer the proof to the full version of this work.

Before we conclude this section, we would like to comment on the possibility of using OT
extensions in combination with certified inputs. The first thing to notice is that when only a subset
of the input bits is to be verified, OT and OT extensions for the remaining input bits can be used as
before. Second, if there is a computational benefit to using an OT extension instead of individual
instances of OT, the benefit of an OT extension is not going to be as pronounced as in the regular
case with no input certification. OT extensions allow the number of public key operations to be
bounded by the security parameter and be independent of the number of input bits, while with
certified inputs the number of public key operations is inevitably linear in the number of input
bits being verified. Furthermore, applicability of each individual OT extension mechanism to the
case of certified inputs will likely need to be considered on a case by case basis and we leave this
problem as a direction for future research.

At the end, we are going to mention users A and B don’t need to be simultaneously online to
perform the computation and the interaction is the same as in protocol 2.

19

6 Private Genomic Computation

For all types of genomic computation that follow we assume that A has information extracted
from her genome, which she privately stores. Similarly, B possesses information associated with
his genome. A and B may enter part or all of their data into the computation and they may
also compute a function of their individual data, which will be used as the input into the joint
computation.

6.1 Ancestry test

This test would often be invoked when A and B already know to be related or have reasons to believe
to be related. Under such circumstances, they are unlikely to try to cheat each other. For that
reason, we use the solution with semi-honest A and B to realize this test. Because SNP-based tests
are most general and can provide information about recent as well as distant ancestry, we build a
circuit that takes a large number of SNPs from two individuals and counts the number of positions
which take the same values for both individuals. The computed value then can be compared to
a number of thresholds to determine the closest generation in which the two individuals have the
same ancestor.

To compute the number of SNPs which are equal (or, equivalently, differ) in the DNA of two
individuals, the circuit first proceeds by XORing two binary input vectors from A and B (recall
that the value of each SNP is a bit) and then counts the number of bits that differ in a hierarchical
manner. That is, in the first round of additions, every two adjacent bits are added and the result
is a 2-bit integer. In the second round of additions, every two adjacent results from the first round
are added resulting in 3-bit sums. This process continues in dlog2 te rounds of additions, where t
is the size of A’s and B’s input, and the last round performs only a single addition. As mentioned
earlier, the result can be interpreted by performing a number of comparisons at the end, but the
cost of final comparisons is insignificant compared to the remaining size of the circuit.

6.2 Paternity test

We assess that the security setting with malicious users A and B is the most suitable for running
paternity tests. That is, the participants may be inclined to tamper with the computation to
influence the result of the computation. It is, however, difficult to learn the other party’s genetic
information by modifying one’s input into the function. In particular, recall from equation 1 that
the output of a paternity test is a single bit, which indicates whether the exact match was found.
Then if a malicious participant engages in the computation with the same victim multiple times
and modifies the input in the attempt to discover the victim’s genomic data, the single bit output
does not help the attacker to learn how his inputs are be modified to be closer to the victim’s
input. The situation is different when the output of the computation reveals information about the
distance between the inputs of A and B, but we do not consider such computation in this work.
Thus, we do not use input certification for paternity tests.

This test would normally be run between an individual and a contested father of that in-
dividual according to the computation in equation 1. We thus implement the computation in
equation 1 using a Boolean circuit. For each i, the circuit XORs the vectors 〈xi,1, xi,2, xi,1, xi,2〉
and 〈x′i,1, x′i,1, x′i,2, x′i,2〉 and compares each of the four value in the resulting vector to 0. The
(in)equality to 0 testing is performed using k − 1 OR gates, where k is the bitlength of all xi,j ’s
and x′i,j ’s. Finally, we compute the AND of the results of the 4 equality tests, OR the resulting
bits across i’s, and output the complement of the computed bit.

20

6.3 Genetic compatibility test

When A and B want to perform a genetic compatibility test, we assume that they want to evaluate
the possibility of their children inheriting at least one recessive genetic disease. Thus, we assume
that A and B agree on a list of genetic diseases that they would like to be included in the test (this
list can be standard, e.g., suggested by S or recommended by a medical association). Note that
performing a test for a specific genetic disease is only meaningful if both parties wish to be tested
for it, and thus we assume that A and B can reconcile the differences in their lists.

To maximize privacy, we construct the function f to be as conservative as possible. In particular,
given a list of genetic diseases L, A and B run a compatibility test for each disease D ∈ L, and if
at least one test resulted in a positive outcome, the function will output 1, and otherwise it will
output 0. That is, the function can be interpreted as producing 1 if A and B’s children have a
chance of inheriting the major variety for at least one of the tested diseases; and producing 0 means
that their children will not inherit the major variety for any of the diseases in L. Evaluating this
function can be viewed as the first step in A and B’s interaction. If the output was 1, they may
jointly decide to run more specific computation to determine the responsible disease or diseases
themselves.

The above means that for each D ∈ L, A can locally run the test to determine whether she is a
carrier of D. Similarly, B performs the same test on his own data. Thus, A’s and B’s input into f
will consist of |L| bits each and the result is 1 iff ∃i such that A’s and B’s ith input bits are both 1.
This computation can be realized as a very simple circuit consisting of |L| AND gates and |L| − 1
OR gates.

The next thing to notice is that it is easy for a malicious A or B to learn sensitive genetic
information about the other party by entering certain inputs into the computation. In particular,
if a malicious participant sets all of his input bits to 1, he will be able to learn whether the
other party is the carrier of least one of the genetic diseases on the list. This poses substantial
privacy concerns, particularly for matchmaking services that routinely run genetic compatibility
tests between many individuals. Thus, we require that A and B certify the results of testing for
each genetic disease on the list (which can be done by a medical facility3) and enter certified inputs
into the computation. This means that the server-aided solution with certified inputs will be used
to securely perform joint computation.

For each disease D ∈ L, the signature will need to include the name of the disease D as well
as the test outcome σ, which we assume is a bit. Then if we want to achieve efficiency of the
computation, the disease names will not be input into the circuit, but instead S will verify that A’s
signature used for a particular input wire includes the same disease name as B’s signature used for
an equivalent input wire. A simple way to achieve this is to reveal list L to S and reveal the name
of the disease including in each signature (without revealing the signature itself). If we assume that
each issued signature is on the tuple (D,σ), i.e., the signature was produced as ve ≡ aD1 a

σ
2b
sc, all

that is needed is to adjust the value used in the ZKPK of the signature by 1
aD2

by both the sender

and the verifier for each D ∈ L (we refer the reader to [15] for details). S will need to check that all
conditions appear in the same order among A’s and B’s inputs (i.e., the sequences of diseases are
identical) before proceeding with the rest of the protocol. Revealing the set of diseases used in the
compatibility test would not constitute violation of privacy if such a set of conditions is standard
or suggested by S itself.

When, however, the parties compose a custom set of genetic diseases for their genetic compati-
bility testing and would like to keep the set private, they may be unwilling reveal the set of diseases

3Note that the medical facility that performs sequencing can also certify the test results; alternatively, the medical
facility performing test certification will require genome certification from the facility that performed sequencing.

21

to S. We propose that the parties instead prove that they are providing results for the same con-
ditions without revealing the conditions themselves to the server. The difficulty in doing so arises
from the fact that S interacts independently with A and B (possibly at non-overlapping times) and
A and B are not proving any joint statements together. Our idea of proving that inputs of A and B
correspond to the same sequence of diseases consists of forming a sequence of commitments to the
diseases in L, the openings of which are known to both A and B. That is, A and B jointly generate
a commitment to each disease using shared randomness and used those commitments at the time
of proving that their inputs have been certified. Then if A supplies commitments Com1, . . . , Comt

and proves that the committed values correspond to the diseases in her signatures, S will check
that B supplies the same sequence of commitments and also proves that the committed values are
equal to the diseases in the signatures he possesses. This will ensure that A and B supply input
bits for the same sequence of diseases. To jointly produce the commitments, we have both A and B
contribute their own randomness and the resulting commitment will be a function of A’s and B’s
contribution. It can proceed as follows (recall that A and B can be malicious):

1. A chooses a random rA and sends to B a commitment to it cA = Com(rA, z).

2. Similarly, B chooses a random rB and sends to A a commitment to it cB = Com(rB, z
′).

3. A and B open their commitments by exchanging (rA, z) and (rB, z
′) and verify that they

match cA and cB, respectively.

4. They form join randomness as r = rA ⊕ rB and use it to construct commitment Com(D, r).

Given that, the common (high-level) statement that A and B will need to prove about their inputs
is:

PK{(α, σ) : Sig(α, σ) ∧ y1 = Com(α) ∧ y2 = Com(σ)}

for the shared value of y1 between A and B, while the remaining portion is specific to A and B as
described in section 5.3.

7 Performance Evaluation

In this section, we report on the results of our implementations for ancestry, paternity and compat-
ibility tests. The implementation was written in C/C++ using Miracl library [5] for large number
arithmetic and JustGarble library [4] for garbled circuit implementation. The tests were imple-
mented as described in section 6, on which we further elaborate below. The security parameters for
symmetric key cryptography and statistical security were set to 128. The security parameter for
public key cryptography (for both RSA modulus and discrete logarithm setting) was set to 1536.
Additionally, the security parameter for the group size in the discrete logarithm setting was set
to 192. All tests (for A, B, and S) were run on a quad-core 3.2GHz machine with Intel i5-3470
processor running Red Hat Linux 2.6.32 in a single core. Note that in practice S is expected to have
more powerful hardware and the runtimes can be significantly reduced by utilizing more cores. All
experiments were run 5 times, and the mean value is reported.

To provide additional insights into which component of each protocol is main performance
bottleneck, we separately report computation times for different parts of each solution (such as
those associated with garbled circuit evaluation, OT, etc.). Furthermore, we separately list the
times for offline and online computation, where, as in other publications, offline computation refers
to all operations that can be performed before the inputs become available. Lastly, because the
speed of communication channels can greatly vary, we separately report the size of communication

22

Party
Garbled circuit

Communication
garble (offline) eval (online)

A 1.8 ms − 4.0 MB
B 19.8 ms − 10.0 MB
S − 13.9 ms 10.0 MB

Table 1: Performance of ancestry test.

Party
Garbled circuit OT Total time

Communication
garble (offline) eval (online) offline online offline online

A 21.6 ms − 198.2 ms 1965.5 ms 219.8 ms 1965.5 ms 12.1 MB
B − 13.9 ms 2186.5 ms 324.3 ms 2186.5 ms 338.2 ms 12.1 MB

Table 2: Performance of ancestry test without server.

for each party and communication time is not included in the runtimes. In several settings, however,
overlaying computation with communication is possible (e.g., S can perform computation for OT
and simultaneously transmit the garbled circuit) and the overall runtime does not need to be the
sum of computation and communication time.

7.1 Ancestry test

Let us first consider the ancestry test. Recall that it is implemented in the setting where A and B
are semi-honest, but S can be malicious. We ran this test using 217 SNPs as the input for A and
B. The resulting circuit used 655,304 XOR gates and 131,072 non-XOR gates. The computation
time and communication size are given in Table 1.

The implementation assumes that A only creates labels for her input wires and communicates
217 labels to B. B performs the rest of the garbling work and interacts with S. As expected, the time
for circuit garbling and evaluation is small, but the size of communication is fairly large because
of the large input size and consecutively circuit size. Nevertheless, we consider the runtimes very
small for the computation of this size.

To provide insights into performance gains of our solution compared to the regular two-party
computation in the semi-honest setting, we additionally implement the garbled circuit-based solu-
tion in presence of semi-honest A and B only. In addition to circuit garbling and evaluation, this
also requires the use of oblivious transfer, which we implement using a recent optimized OT exten-
sion construction from [7] (including optimizations specific to Yao’s garbled circuit evaluation). As
in [7], we use Naor-Pinkas OT for 128 base OTs [50]. The results are given in Table 2. Compared to
the server-aided setting, computation is higher by at least two orders of magnitude for each party
and communication is noticeably increased as well.

7.2 Paternity test

Next, we look at the paternity test. The test was implemented as described in section 6 in presence
of malicious A and B and semi-honest S. The inputs for both A and B consisted of 13 2-element
sets, where each element is 9 bits long. We use OT extension from [7] with 128 Naor-Pinkas based
OTs. The garbled circuit consisted of 468 XOR gates and 467 non-XOR gates. The results of this
experiment are reported in Table 3. The computation for input verification is reported only as part
of total time.

Not surprisingly, the cost of OT dominates the overall runtime, but for A the overhead is
negligible (the cost of generating labels for input wires and verifying the output label returned by

23

Party
Garbled circuit OT Total time

Communication
garble (offline) eval (online) offline online offline online

A 3.5 · 10−3 ms − − − 3.5 · 10−3 ms 3.4 ms 7.4 KB
B − 1.1 · 10−2 ms 515.5 ms 201.7 ms 515.5 ms 201.7 ms 84.9 KB
S 2.4 · 10−2 ms − 196.1 ms 260.9 ms 196.1 ms 260.9 ms 84.9 KB

Table 3: Performance of paternity test.

B). Thus, it is well-suited for settings when one user is very computationally limited.
Compared to two-party computation in presence of malicious participants, our solution reduces

both computation and communication for the participants by at least two orders of magnitude. This
is because more practical constructions rely on cut-and-choose (and other) techniques to ensure that
the party who creates the garbled circuit in unable to learn unauthorized information about the
other participant’s input. Recent results such as [48, 6, 49] require the circuit generator to garble
on the order of 125 circuits for cheating probability of at most 2−40, some of which are checked
(i.e., re-generated) by the circuit evaluator, while the remaining circuits are evaluated. Thus, the
work of each of A and B will have to increase by at least two orders of magnitude just for circuit
garbling and evaluation, not counting other techniques that deter a number of known attacks and
result in increasing the input size and introducing expensive public key operations. A notable
exception to the above is the work of Lindell [46] that reduces the number of circuits to 40 for the
same cheating probability. The construction, however, results in savings only for circuits of large
size as it introduces a large number of additional public key operations. Thus, for paternity tests
using constructions with a larger number of circuits is very likely to be faster in practice, which
results in a drastic difference between our solution and regular two-party protocol with malicious
participants.

Carter et al. [22] treats server-aided secure two-party computation where all parties can behave
maliciously. Thus, the difference in the setting from our work is that we assume that the server is
semi-honest, which is expected to result in a more efficient protocol. The goal of [22] was to decrease
the amount of work for one of the participants, who is assumed to be weak (i.e., a mobile device).
The work showed a drastic reduction in the overhead for one of the parties, but the work of the
second party and the server is still comparable to the work during execution of regular two-party
secure function evaluation in presence of malicious adversaries. We would like to point out that
our solution also imposes uneven work on A and B, where A’s computation and communication
overheads are minimal. This makes it possible to compare performance of our solution to that of
[22]. In our solution, A only creates and sends random labels for her input bits and later performs
a hash function computation. In [22], on the other hand, the weaker party has to participate in
128 base OTs, which is orders of magnitude more computation. Each bit of the party’s input
is also represented using a number of bits linear in a security parameter, which also increases
communication by about two orders of magnitude. The remaining party and the server still need
to engage in garbling, checking, and evaluation of about 125 circuits (in addition to other work),
which likewise requires about two orders of magnitude larger overhead than in our solution for B
and S.

We also would like to mention the solution of [34] that, similar to us, assumes two malicious
users and a semi-honest server. As mentioned earlier, the construction of [34] would require A
and B to verify on the order of O(κt2) signatures and engage in O(κt2) OTs, which translates into
tens of thousands of public key operations and significantly larger volume of communication in the
paternity test. The server’s work in [34] is larger than in our solution as well.

Baldi et al. [12] also provide a private paternity test in the two-party setting (between a client

24

Party
Garbled circuit OT Sign PK Other PK Total time

Comm
garble (offline) eval (online) offline online offline online offline online offline online

A 1.0 · 10−6 ms − − − 1.17 s 42.1 ms 616.8 ms 41.1 ms 1.90 s 77.0 ms 46.5 KB
B − 7.5 · 10−4 ms 15.4 ms 14.6 ms 1.17 s 42.1 ms 282.4 ms 15.7 ms 1.47 s 72.4 ms 51.8 KB
S 2.6 · 10−3 ms − 29.3 ms 15.2 ms 0 2.06 s 0 756 ms 29.3 ms 2.83 s 91.0 KB

Table 4: Performance of compatibility test.

and a server). It uses a different computation based on Restriction Fragment Length Polymorphisms
(RFLPs) and relies on private set intersection as a cryptographic building block. Both offline and
online times for the client and the server are 3.4 ms and the communication size is 3KB for the client
and 3.5KB for the server when the test is performed with 25 markers. All times and communication
sizes double when the test is run with 50 markers. While the runtimes we report are higher, the
implementation of [12] did not consider malicious participants. If protection against malicious A
and B in our solution is removed, the work for all parties reduces to well below 0.1 millisecond and
communication becomes a couple of KBs.

7.3 Genetic compatibility test

Lastly, we report on the implementation results of the compatibility test. Recall that the test is
run in the setting where A and B are malicious and their inputs must be certified. We choose
the variant of the solution that reveals the list of diseases L to the server (i.e., a standard list is
used). We implement the signature scheme, OT, and ZKPKs as described earlier in this work. All
ZKPKs are non-interactive using the Fiat-Shamir heuristic [29]. We used |L| = 10 and thus A and
B provide 10 input bits into the circuit accompanied by 10 signatures. The circuit consisted of only
19 non-XOR gates. The performance of the test is illustrated in Table 4. We divide all ZKPKs
into a proof of signature possession (together with a commitment), which is denoted by “Sign PK”
in the table, and the remaining ZK proofs, denoted by “Other PK” in the table. As it is clear from
the table, input certification contributes most of the solution’s overhead, but it is still on the order
of 1–3 seconds for all parties.

As mentioned earlier, we are not aware of general results that achieve input certification for
comparison. However, the comparison to general two-party computation in presence of malicious
parties or server-aided two-party computation with malicious server from section 7.2 applies here
as well.

Baldi et al. [12] also build a solution and report on the performance of genetic compatibility
test. In [12], testing for presence of a genetic disease that client carries in the server genome consists
of the client providing the disease fingerprint in the form of (nucleotide, location) pairs (which is
equivalent to a SNP) and both parties searching whether the disease fingerprint also appears in
the server’s DNA. This requires scanning over the entire genome, which our solution avoids. As
a result, the solution of [12] incurs substantial offline overhead for the server (67 minutes) and
large communication size (around 4GB) even for semi-honest participants. The solution utilizes
authorized private set intersection, which allows inputs of one party (as opposed to both in our
work) to be verified. Compared to [12], in our framework, testing for a single disease requires a
fraction of a second for each party with malicious A and B, where inputs of both of them are
certified. The computation is greatly simplified because the list of diseases is assumed to be known
by both users. When this is the case, the cost of input certification greatly dominates the overall
performance.

25

8 Conclusions

This work is motivated by the need to protect sensitive genomic data when such data is used in
computation, especially in voluntary non-health related computation. Because computation over
one’s genome often happens in server-facilitated settings, we study server-aided secure two-party
computation in a number of security settings. One of such security settings assumes that users A
and B may act arbitrarily and, in addition to requiring that the solution remains secure in presence
of malicious users, it also enforced that A and B enter their true inputs based on third party’s
certification. We are not aware of any prior work that combines input certification with general
secure multi-party computation based on Yao’s garbled circuits. We develop general solutions in
our server-aided framework. Despite their generality, they lead to efficient implementations of
genetic tests. In particular, we design and implement genetic paternity, compatibility, and common
ancestry tests, all of which run in a matter of seconds or less and favorably compare with the state
of the art.

Acknowledgments

The authors would like to thank Aaron Steele for discussing genomic tests at early stages of this
work. The first author would also like to acknowledge participation in Dagstuhl seminar 13412 on
Genomic Privacy, which motivated this work. This work was supported in part by grants CNS-
1223699 and CNS-1319090 from the National Science Foundation and FA9550-13-1-0066 from the
Air Force Office of Scientific Research. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of
the funding agencies.

References

[1] 23andMe – Genetic Testing for Ancestry; DNA Test. http://www.23andme.com.

[2] Genealogy, Family Trees & Family History Records at Ancestry.com.
http://www.ancestry.com.

[3] GenePartner.com – DNA matching: Love is no coincidence. http://www.genepartner.com.

[4] The JustGarble library. http://cseweb.ucsd.edu/groups/justgarble/.

[5] The Miracl library. http://http://www.certivox.com/miracl/.

[6] a. shelat and C. h. Shen. Two-output secure computation with malicious adversaries. In
EUROCRYPT, 2011.

[7] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and ex-
tensions for faster secure computation. In ACM Conference on Computer and Communications
Security, 2013.

[8] E. Ayday, J. L. Raisaro, and J. Hubaux. Personal use of genomic data: Privacy vs. storage
cost. In IEEE Global Communications Conference, Exhibition and Industry Forum, pages
2723–2729, 2013.

[9] E. Ayday, J. L. Raisaro, and J.-P. Hubaux. Privacy-enhancing technology for medical tests
using genomic data. Technical Report EPFL-REPORT-182897, EPFL, 2012.

26

[10] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont. Protecting and evaluating genomic
privacy in medical tests and personalized medicine. In ACM Workshop on Privacy in the
Electronic Society (WPES), pages 95–106, 2013.

[11] E. Ayday, J. L. Raisaro, P. McLaren, J. Fellay, and J.-P. Hubaux. Privacy-preserving computa-
tion of disease risk by using genomic, clinical, and environmental data. In USENIX Workshop
on Health Information Technologies (HealthTech), 2013.

[12] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering GATTACA: Effi-
cient and secure testing of fully-sequenced human genomes. In ACM Conference on Computer
and Communications Security (CCS), pages 691–702, 2011.

[13] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In IEEE Symposium of Security and Privacy, pages 478–492, 2013.

[14] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls. Privacy-preserving matching of DNA
profiles. IACR Cryptology ePrint Archive Report 2008/203, 2008.

[15] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In Conference
on Security and Cryptography for Networks (SCN), pages 268–289, 2002.

[16] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In CRYPTO, pages 56–72, 2004.

[17] J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes.
In CRYPTO, pages 413–430, 1999.

[18] J. Camenisch, D. Sommer, and R. Zimmermann. A general certification framework with appli-
cations to privacy-enhancing certificate infrastructures. In Security and Privacy in Dynamic
Environments, pages 25–37, 2006.

[19] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In CRYPTO,
pages 410–424, 1997.

[20] J. Camenisch and M. Stadler. Proof systems for general statements about discrete logarithms.
Technical report, Institute for Theoretical Computer Science, ETH Zurich, 1997.

[21] J. Camenisch and G. Zaverucha. Private intersection of certified sets. In Financial Cryptogra-
phy and Data Security (FC), pages 108–127, 2009.

[22] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure outsourced garbled circuit evaluation
for mobile devices. In USENIX Security Symposium, 2013.

[23] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In ACM
Symposium on Theory of Computing (STOC), pages 573–588, 1986.

[24] I. Damgard and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In ASIACRYPT, pages 125–142, 2002.

[25] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik. GenoDroid: Are privacy-preserving
genomic tests ready for prime time? In ACM Workshop on Privacy in the Electronic Society
(WPES), pages 97–107, 2012.

27

[26] E. De Cristofaro, S. Faber, and G. Tsudik. Secure genomic testing with size- and position-
hiding private substring matching. In ACM Workshop on Privacy in the Electronic Society
(WPES), pages 107–118, 2012.

[27] E. De Cristofaro, S. Faber, and G. Tsudik. Secure genomic testing with size- and position-
hiding private substring matching. In ACM Workshop on Privacy in the Electronic Society
(WPES), pages 107–118, 2013.

[28] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear com-
plexity. In Financial Cryptography and Data Security (FC), pages 143–159, 2010.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature scheme. In CRYPTO, pages 186–194, 1986.

[30] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In CRYPTO, pages 16–30, 1997.

[31] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[32] S. Goldwasser, Y. Kalai, and G. Rothblum. One-time programs. In CRYPTO, pages 39–56,
2008.

[33] D. He, N. Furlotte, F. Hormozdiari, J. Joo, A. Wadia, R. Ostrovsky, A. Sahai, and E. Eskin.
Identifying genetic relatives without compromising privacy. Genome Research, 24:664–672,
2014.

[34] A. Herzberg and H. Shulman. Oblivious and fair server-aided two-party computation. In
International Conference on Availability, Reliability and Security (ARES), pages 75–84, 2012.

[35] A. Herzberg and H. Shulman. Oblivious and fair server-aided two-party computation. Infor-
mation Security Technical Report, (17):210–226, 2013.

[36] F. Hormozdiari, J. Joo, A. Wadia, F. Guan, R. Ostrovsky, A. Sahai, and E. Eskin. Privacy
preserving protocol for detecting genetic relatives using rare variants. In ISMB, pages 204–
2011, 2014.

[37] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols
with dual execution. In IEEE Symposium of Security and Privacy, pages 272–284, 2012.

[38] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO, pages 145–161, 2003.

[39] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. In
EUROCRYPT, pages 97–114, 2007.

[40] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. IACR
Cryptology ePrint Archive Report 2011/272, 2011.

[41] S. Kamara, P. Mohassel, and B. Riva. Salus: A system for server-aided secure function
evaluation. In ACM Conference on Computer and Communications Security (CCS), pages
797–808, 2012.

28

[42] J. Katz and L. Malka. Secure text processing with applications to private DNA matching. In
ACM Conference on Computer and Communications Security (CCS), pages 485–492, 2010.

[43] M. Kiraz, T. Schoenmakers, and J. Villegas. Efficient committed oblivious transfer of bit
strings. In Information Security Conference (ISC), pages 130–144, 2007.

[44] V. Kolesnikov, R. Kumaresan, and A. Shikfa. Efficient verification of input consistency in
server-assisted secure function evaluation. In Cryptology and Network Security (CANS), pages
201–217, 2012.

[45] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In International Colloquium on Automata, Languages and Programming (ICALP), pages 486–
498, 2008.

[46] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
CRYPTO, 2013.

[47] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[48] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In Theory of Cryptography Conference (TCC), 2011.

[49] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient and secure
two-party computation. In CRYPTO, 2013.

[50] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 448–457, 2001.

[51] J. Nielsen, P. Nordholt, C. Orlandi, and S. Burra. A new approach to practical active-secure
two-party computation. In CRYPTO, pages 681–700, 2012.

A Security Proofs

Proof of Theorem 1 Fairness is achieved based on the fact that A and B are semi-honest. This
means that if B ever learns any output, he will share (the part of) the output he receives with the
other party. Thus, either both of them learn the (possibly partial) output or neither party learns
the output.

To show simulation-based security, we build three independent simulators SS , SB, and SA for
three independent adversaries AS , AB, and AA, respectively. Note that AS can act in an arbitrary
way while AB and AA are semi-honest.

We first consider a simulator SS that communicates with malicious AS pretending to be A and
B (without access to their private inputs) in such a way that SS is unable to distinguish it from an
execution in the real model. SS proceeds by garbling a circuit corresponding to f and sending it
to AS . For each wire i ∈ [1, t1 + t2], SS sends label `bii for a randomly chosen bit bi. If AS does not
abort, SS obtains from AS a set of labels corresponding to the output wires. It is easy to see that
the view simulated by SS is indistinguishable from the view of AS in the real model execution (since
the view of garbled circuit evaluator is independent of the input on which the circuit is evaluated).
Note that the simulator can safely use random inputs because S is not entitled to receiving any
information about the result of function evaluation.

29

We next consider a simulator SB for semi-honest AB. Note that AB’s advantage is maximized
when B constructs the entire garbled circuit (or simply knows the random label pairs for all wires of
the circuit), which we assume is the case. After AB constructs the circuit and forms the input labels
according to x2, SB queries the trusted party and obtains B’s output f(x1, x2). SB then extracts
from AB’s view the output labels corresponding to the received output f(x1, x2) from the set of
the label pairs for the output wires and sends them to AB. SB also receives assembled f(x1, x2)
from AB destined to A. This view is the same as the view of AB in the real model execution given
the same set of random coins.

A simulator for AA is built analogously with the exception that AA receives (from SA) f(x1, x2)
directly instead of learning labels for the output wires. �

Proof of Theorem 2 As before, we start by showing fairness and then proceed with security. The
only way for A or B to learn any output is when A is satisfied with the verification of the output
labels she received from B. Recall that each received label `i is checked against H(`bi), H(`1−bi) for
some bit b, where H is a collision-resistant hash function. The probability that this check succeeds
for some `i that is not equal to `0i or `1i is negligible. Thus, A is guaranteed to possess the result of
garbled circuit evaluation, at which point both parties are given access to the output.

We next construct simulators for all of the (independent) adversaries AA, AB, and AS . We
start with a simulator SA for malicious AA. SA runs AA and simulates the remaining parties. AA
produces t1 random labels `0i and sends them to SA, while SA chooses ∆ and sends it to AA. If at
least one label is of an incorrect bitlength, SA aborts. If SA did not abort, AA sends t1 labels to
SA. If the ith label sent by AA does not correspond to one of the labels in the ith pair of labels
(`0i , `

0
i ⊕∆) corresponding to AA’s inputs, SA aborts. If SA did not abort, it interprets the meaning

of the input labels received from AA and stores the input as x′1. At some point SA creates a random
label `i for each bit of the output and sends them to AA. Upon AA’s request, SA also chooses
another random label `′i for each bit of the output. For each bit i of the output, SA sends to AA
the pair H(`i), H(`′i) in a randomly permuted order. If AA notifies SA of successful verification of
the output labels, SA queries the trusted party for the output f(x′1, x2). For each ith bit bi of the
output, if bi = 0, SA sends to AA the pair (`i, `

′
i), otherwise, SA sends the pair (`′i, `i).

Now we examine the view of AA in the real and ideal model executions and correctness of the
output. After receiving the label pairs from AA, SA performs the same checks on them as S would
and thus both would abort in the same circumstances. Similarly, if AA provides malformed labels
for circuit evaluation, SA will immediately detect this in the ideal model and abort, while B in
the real world will be unable to evaluate the circuit and also abort. Otherwise, in both cases the
function will be correctly evaluated on the input provided by AA and B’s input. In the remaining
interaction, AA sees only random values, which in the ideal world are constructed consistently with
AA’s view in the real model execution. Thus, AA’s view is indistinguishable in the two executions.

Let us now consider malicious AB, for which we construct simulator SB in the ideal model
execution who simulates correct behavior of A and S. First, SB simulates the OT. It records the
input bits used by AB during the simulation, which it stores as x′2 and returns t2 random labels
to AB. SB also sends another set of t1 random labels to SB. SB queries the trusted party for
AB’s output f(x1, x

′
2) and chooses a pair of random labels (`0i , `

1
i) for each bit i of the output. SB

gives to AB a simulated garbled circuit (as described in [47]) so that the ith computed output label
corresponds to the ith bit of f(x1, x

′
2). If after circuit evaluation, AB does not send the correct

output labels to SB, SB aborts the execution. Otherwise, SB sends the pairs (`0i , `
1
i) to AB.

The only difference between the view of AB during real model execution and the view simulated
by SB in the ideal model is that AB evaluates a simulated circuit in the ideal model. Computational
indistinguishability of the simulated circuit follows from the security proofs of Yao’s garbled circuit

30

construction [47]. Thus, AB is unable to tell the two worlds apart.
It is also straightforward to simulate the view of semi-honest AS because it contributes no input

and receives no output. �

31

