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Abstract

Predicate encryption is an advanced form of public-key encryption that yield high flexibility in
terms of access control. In the literature, many predicate encryption schemes have been proposed
such as fuzzy-IBE, KP-ABE, CP-ABE, (doubly) spatial encryption (DSE), and ABE for arithmetic
span programs. In this paper, we study relations among them and show that some of them are in
fact equivalent by giving conversions among them. More specifically, our main contributions are as
follows:

− We show that monotonic, small universe KP-ABE (CP-ABE) with bounds on the size of attribute
sets and span programs (or linear secret sharing matrix) can be converted into DSE. Furthermore,
we show that DSE implies non-monotonic CP-ABE (and KP-ABE) with the same bounds on pa-
rameters. This implies that monotonic/non-monotonic KP/CP-ABE (with the bounds) and DSE are
all equivalent in the sense that one implies another.

− We also show that if we start from KP-ABE without bounds on the size of span programs (but
bounds on the size of attribute sets), we can obtain ABE for arithmetic span programs. The other
direction is also shown: ABE for arithmetic span programs can be converted into KP-ABE. These
results imply, somewhat surprisingly, KP-ABE without bounds on span program sizes is in fact
equivalent to ABE for arithmetic span programs, which was thought to be more expressive or at
least incomparable.

By applying these conversions to existing schemes, we obtain many non-trivial consequences. We
obtain the first non-monotonic, large universe CP-ABE (that supports span programs) with constant-
size ciphertexts, the first KP-ABE with constant-size private keys, the first (adaptively-secure, multi-
use) ABE for arithmetic span programs with constant-size ciphertexts, and more. We also obtain
the first attribute-based signature scheme that supports non-monotone span programs and achieves
constant-size signatures via our techniques.
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1 Introduction

Predicate encryption (PE) is an advanced form of public-key encryption that allows much flexibility. In-
stead of encrypting data to a target recipient, a sender will specify in a more general way about who should
be able to view the message. In predicate encryption for a predicate R, a sender can associate a ciphertext
with a ciphertext attribute Y while a private key is associated with a key attribute X . Such a ciphertext can
then be decrypted by such a key if the predicate evaluation R(X,Y ) holds true.

There exist many classes of PE, each is defined by specifying a corresponding class of predicates. One
notable class is attribute-based encryption (ABE) [40, 25] for span programs (or equivalently, linear secret
sharing schemes), of which predicate is defined over key attributes being a span program and ciphertext
attributes being a set of attributes, and its evaluation holds true if the span program accepts the set. This is
called key-policy ABE (KP-ABE). There is also ciphertext-policy ABE (CP-ABE), where the roles of key
and ciphertext attributes are exchanged. Another important class is doubly spatial encryption (DSE) [26],
of which predicate is defined over both key and ciphertext attributes being affine subspaces, and its eval-
uation holds true if both subspaces intersect. Very recently, a new important class of PE, that is called
attribute encryption for arithmetic span programs is defined in [29]. They showed such a PE scheme is
useful by demonstrating that the scheme can be efficiently converted into ABE for arithmetic branching
programs for both zero-type and non-zero type predicates. If the scheme satisfies a certain requirement for
efficiency (namely, encryption cost is at most linear in ciphertext predicate size), it is also possible to ob-
tain a publicly verifiable delegation scheme for arithmetic branching programs, by exploiting a conversion
shown in [38]. Furthermore, they gave a concrete construction of such scheme.

Compared to specific constructions of predicate encryption [31, 32, 34, 44, 22, 20] (to name just
a few) that focus on achieving more expressive predicates and/or stronger security guarantee, relations
among predicate encryption schemes are much less investigated. The purpose of this paper is to improve
our understanding of relations among them.

1.1 Our Results

Relations among PE. Towards the goal above, we study relations among PE and show that some of them
are in fact equivalent by giving generic conversion among them. We first investigate the relation among
ABE with some bounds on parameters (the size of attribute sets and the size of span programs) and DSE.
We have the following results:

− First, we show a conversion from KP-ABE (or CP-ABE) with the bounds on parameters into DSE
(without key delegation, in Section 3). Such an implication is not straightforward in the first place.
Intuitively, one reason stems from the different nature between both predicates: while DSE can be
considered as an algebraic object that involves affine spaces, ABE can be seen as a somewhat more
combinatorial object that involves sets (of attributes). Our approach involves some new technique for
“programming” a set associated to a ciphertext and a span program associated to a private key in the
KP-ABE scheme so that they can emulate the relation for doubly spatial encryption.

− We then extend the result of [26], which showed that DSE implies CP/KP-ABE with large universes.
We provide a new conversion from DSE (without delegation) to non-monotonic CP/KP-ABE with
large universes (in Section 4). We note that the resulting schemes obtained by the above conversions
have some bounds on parameters. In the conversion, we extensively use a special form of polynomial
introduced in [30] and carefully design a matrix so that DSE can capture a relation for ABE.

Somewhat surprisingly, by combining the above results, we obtain generic conversions that can boost the
functionality of (bounded) ABE: from monotonic to non-monotonic, and from small-universe to large-
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Figure 1: Relations among predicate encryption primitives. In this figure, arrows indicate conversions that trans-
form the primitive of the starting point to that of the end point. The red arrows indicate our results in this paper.
For ABE, ‘mono’ and ‘non-mono’ indicates whether it is monotonic or non-monotonic, while ‘small’ and ‘large’
indicate whether the attribute universes are large (i.e., exponentially large) or small (i.e., polynomially bounded).
(k̄, ¯̀, m̄, ϕ) specify bounds on size of sets of attributes and span programs. See Section 2.1 for details. As a result,
primitives inside each dashed box are all equivalent in the sense there is a conversion between each pair.

universe; moreover, we also obtain conversions which transform ABE to its dual (key-policy to ciphertext-
policy, and vice versa). This implies that they are essentially equivalent in some sense. See Figure 1 for
the details.

So far, we have considered ABE schemes with bounds on parameters, especially on the size of span
programs. We then proceed to investigate relation among ABE schemes without bounds on the size of
span programs (but with a bound on the size of attribute sets) and ABE for arithmetic span programs
recently introduced and studied by Ishai and Wee [29]. We call the latter key-policy ABE for arithmetic
span programs (KASP), since in the latter, a ciphertext is associated with a vector while a private key is
associated with an arithmetic span program which specifies a policy. By exchanging key and ciphertext
attribute, we can also define ciphertext-policy version of ABE for arithmetic span program (CASP). We
have the following results:

− We show that monotonic KP-ABE with small universe (without bound on the size of span programs)
can be converted into KASP (in Section 5). The idea for the conversion is similar to that in Section 3.

− We then proceed to investigate the converse direction. In fact, we can show somewhat stronger result.
That is, we show that KASP can be converted into non-monotonic KP-ABE with large universe, which
trivially implies monotonic KP-ABE with small universe (in Appendix C). The idea for the conversion
is similar to that in Section 4.

Given the above results, we have all of the following are equivalent: monotonic KP-ABE with small
universe, non-monotonic KP-ABE with large universe, and KASP. Similar implications hold for the case
of CP-ABE and CASP. However, we do not have a conversion from KP-ABE to CP-ABE in this case.
Again, see Figure 1 for the details.
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Direct Applications: New Instantiations. By applying our conversions to existing schemes, we obtain
many new instantiations. Most of them have new properties that were not achieved before. These include

− the first DSE with constant-size public key,
− the first DSE with constant-size ciphertexts,
− the first DSE with constant-size private keys,
− the first non-monotonic, large-universe CP-ABE with constant-size ciphertexts,
− the first non-monotonic, large-universe KP-ABE with constant-size keys,
− the first KASP, CASP with constant-size public key,
− the first KASP, CASP with adaptive security and unbounded multi-use,
− the first KASP with constant-size ciphertexts,
− the first CASP with constant-size keys,

which together offer various compactness tradeoffs. Previously, all DSE schemes require linear (or more)
sizes in all parameters [26, 17, 14]. Previous CP-ABE with constant-size ciphertexts [19, 13, 21, 12]
can only deal with threshold or even more limited expressiveness. As for KP-ABE, to the best of our
knowledge, there were no constructions with constant-size keys.1 Previous KASP and CASP [29, 16]
require linear sizes in all parameters. Moreover, the adaptively secure schemes [16] support only attribute
one-use. See Section 6 and tables therein for our instantiations and comparisons. Note also that while our
conversion to DSE does not explicitly support key delegation algorithms, we provide them additionally in
Appendix B.

Application to Attribute-Based Signatures. Our technique is also useful in the settings of attribute-
based signatures (ABS) [35, 36]. We first define a notion that we call predicate signature (PS) which is
a signature analogue of PE. Then, we construct a specific PS scheme with constant-size signatures such
that a signature is associated with a set of attributes while a private key is associated with a policy (or
monotone span programs). This is in some sense a dual notion of ordinary ABS in which a signature is
associated with a policy and a private key with a set. By using the technique developed in the above, we
can convert the PS scheme into an ABS scheme. As a result, we obtain the first ABS scheme with constant-
size signatures. Previous ABS schemes with constant-size signatures [27, 12] only support threshold or
more limited policies.

Finally, we remark that although our conversions are feasible, they often introduce polynomial-size
overheads to some parameters. Thus, in most cases, above schemes obtained by the conversions should be
seen as feasibility results in the sense that they might not be totally efficient.

1.2 Related Works

There are several previous works investigating relations among PE primitives. In [24], a black box sepa-
ration between threshold predicate encryption (fuzzy IBE) and IBE was shown. They also rule out certain
natural constructions of PE for NC1 from PE for AC0. In [15], it was shown that hierarchical inner
product encryption is equivalent to spatial encryption, which is a special case of doubly spatial encryption.

[23] showed a generic conversion from KP-ABE supporting threshold formulae to CP-ABE supporting
threshold formulae. Their result and ours are incomparable. Our KP-ABE to CP-ABE conversion requires
the original KP-ABE to support monotone span programs, which is a stronger requirement than [23]. On
the other hand, the resulting scheme obtained by our conversion supports non-monotone span programs,
which is a wider class than threshold formulae 2. Thus, by applying our conversion, we can obtain new

1KP-ABE with (asymptotically) short keys was also proposed in [9]. Compared to ours, their key size is not constant but they
focus on more expressive ABE, namely ABE for circuits.

2While it is known that monotone span programs contain threshold formulae [25], the converse is not known to be true.
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schemes (such as CP-ABE supporting non-monotone span programs with constant-size ciphertext) that is
not possible to obtain by the conversion by [23].

In recent works [2, 5], it is shown that PE satisfying certain specific template can be converted into
PE for its dual predicate. In particular, it yields KP-ABE-to-CP-ABE conversion. Again, their result
and ours are incomparable. On the one hand, schemes obtained from their conversion are typically more
efficient than ours. On the other hand, their conversion only works for schemes with the template while
our conversion is completely generic. Furthermore, since they essentially exchange key and ciphertext
components in the conversion, the size of keys and ciphertexts are also exchanged. For example, if we
start from KP-ABE with constant-size ciphertexts, they obtain CP-ABE with constant-size private keys
while we obtain CP-ABE with constant-size ciphertexts.

We also remark that in the settings where PE for general circuit is available, we can easily convert
any KP-ABE into CP-ABE by using universal circuits as discussed in [22, 20]. However, in the settings
where only PE for span programs is available, this technique is not known to be applicable. We note that
all existing PE schemes for general circuits [20, 22, 9] are quite inefficient and based on strong assump-
tions (e.g., existence of secure multi-linear map or hardness of certain lattice problems for an exponential
approximation factor). In [7], in the context of quantum computation, Belovs studies a span program that
decides whether two spaces intersect or not. The problem and its solution considered there is very similar
to that in Section 3 of our paper. However, he does not consider application to cryptography and the result
is not applicable to our setting immediately since the syntax of span programs is slightly different.

Concurrent and Independent Work. Concurrently and independently to our work, Aggrawal and Chase
[1] show specific construction of CP-ABE scheme with constant-size ciphertexts. Compared to our CP-
ABE scheme with constant-size ciphertexts, which is obtained by our conversion, their scheme only sup-
ports monotone access structure over large universe, whereas our scheme supports non-monotonic access
structure over large universe. Furthermore, we can obtain adaptively secure scheme whereas their scheme
is only selectively secure. On the other hand, their construction seems to have shorter keys.

2 Preliminaries

Notation. Throughout the paper, p denotes a prime number. We will treat a vector as a column vector,
unless stated otherwise. For a vector a ∈ Znp , a[i] ∈ Zp represents i-th element of the vector. Namely,
a = (a[1], . . . ,a[n])>. For a,b ∈ Znp , we denote their inner product as 〈a,b〉 = a>b =

∑n
i=1 a[i] · b[i].

We denote by ei the i-th unit vector: its i-th component is one, all others are zero. In and 0n×m represent
an identity matrix in Zn×np and zero matrix in Zn×mp respectively. We also define 1n = (1, 1, . . . , 1)> ∈
Znp and 0n = 0n×1. We often omit the subscript if it is clear from the context. We denote by [a, b]

a set {a, a + 1, . . . , b} for a, b ∈ Z such that a ≤ b and [b] denotes [1, b]. For a matrix X ∈ Zn×dp ,
span(X) denotes a linear space {X ·u|u ∈ Zdp} spanned by columns of X. For matrices A ∈ Zn1×m

p and

B ∈ Zn2×m
p , [A;B] ∈ Z(n1+n2)×m

p denotes [A>,B>]> i.e., the vertical concatenation of them.

2.1 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do not consider attribute hiding
in this paper3.

Syntax. LetR = {RN : AN×BN → {0, 1} |N ∈ Nc} be a relation family whereAN andBN denote “ci-
phertext attribute” and “key attribute” spaces and c is some fixed constant. The indexN = (n1, n2, . . . , nc)

3This is called “public-index” predicate encryption, categorized in [11].
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of RN denotes the numbers of bounds for corresponding parameters. A predicate encryption (PE) scheme
for R is defined by the following algorithms:

Setup(λ,N)→ (mpk,msk): The setup algorithm takes as input a security parameter λ and a index N of
the relation RN and outputs a master public key mpk and a master secret key msk.

Encrypt(mpk,M, X)→ C: The encryption algorithm takes as input a master public key mpk, the mes-
sage M, and a ciphertext attribute X ∈ AN . It will output a ciphertext C.

KeyGen(msk,mpk, Y )→ skY : The key generation algorithm takes as input the master secret key msk,
the master public key mpk, and a key attribute Y ∈ BN . It outputs a private key skY .

Decrypt(mpk, C,X, skY , Y )→ M or ⊥: We assume that the decryption algorithm is deterministic. The
decryption algorithm takes as input the public parameters mpk, a ciphertext C, ciphertext attribute
X ∈ AN , a private key skY , and private key attribute Y . It outputs the message M or ⊥ which
represents that the ciphertext is not in a valid form.

We require the standard correctness of decryption: for all λ, N , (mpk,msk) ← Setup(λ,N), X ∈
AN , Y ∈ BN such that R(X,Y ) = 1, and skY ← KeyGen(msk,mpk, Y ), we have Decrypt(mpk,
Encrypt(mpk,M, X), X, skY , Y ) = M.

Security. We now define the security for an PE scheme Π by the following game between a challenger
and an attacker A.

At first, the challenger runs the setup algorithm and gives mpk to A. Then A may adaptively make
key-extraction queries. We denote this phase PHASE1. In this phase, if A submits Y ∈ BN to the
challenger, the challenger returns skY ← KeyGen(msk,mpk, Y ). At some point, A outputs two equal
length messages M0 and M1 and challenge ciphertext attribute X? ∈ AN . X? cannot satisfy R(X?, Y ) =
1 for any attribute Y such that A already queried private key for Y . Then the challenger flips a random
coin β ∈ {0, 1}, runs Encrypt(mpk,Mβ, X

?)→ C? and gives challenge ciphertext C? to A. In PHASE2,
A may adaptively make queries as in PHASE1 with following added restriction: A cannot make a key-
extraction query for Y such that R(X?, Y ) = 1. At last, A outputs a guess β′ for β. We say that A
succeeds if β′ = β and denote the probability of this event by PrPEA,Π. The advantage of an attacker A
is defined as AdvPEA,Π = |PrPEA,Π−1

2 |. We say that Π is adaptively secure if AdvPEA,Π is negligible for all
probabilistic polynomial time (PPT) adversary A.

A weaker notion called selective security can be defined as in the above game with the exception that
the adversary A has to choose the challenge ciphertext index X? before the setup phase but private key
queries Y1, . . . , YQ and choice of (M0,M1) can still be adaptive.

2.2 (Arithmetic) Span Program, ABE, and Doubly Spatial Encryption

Definition of Span Program. Let U = {u1, . . . , ut} be a set of variables. For each ui, denote ¬ui as a
new variable. Intuitively, ui and ¬ui correspond to positive and negative attributes, respectively. Also let
U ′ = {¬u1, . . . ,¬ut}. A span program over Zp is specified by a pair (L, ρ) of a matrix and a labelling
function where

L ∈ Z`×mp ρ : [`]→ U ∪ U ′

for some integer `,m. Intuitively, the map ρ labels row i with attribute ρ(i).
A span program accepts or rejects an input by the following criterion. For an input δ ∈ {0, 1}t, we

define the sub-matrix Lδ of L to consist of the rows whose labels are set to 1 by the input δ. That is, it
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consists of either rows labelled by some ui such that δi = 1 or rows labelled by some ¬ui such that δi = 0.
We say that

(L, ρ) accepts δ iff (1, 0, . . . , 0) is in the row span of Lδ.

We can write this also as e1 ∈ span(L>δ ). A span program is called monotone if the labels of the rows
consist of only the positive literals, in U .

Key-Policy and Ciphertext-Policy Attribute-Based Encryption. Let U be the universe of attributes. We
define a relation RKP on any span programs (L, ρ) over Zp and any sets of attributes S ⊆ U as follows.
For S ⊆ U , we define δ ∈ {0, 1}t as an indicator vector corresponding to S. Namely, δi = 1 if ui ∈ S and
δi = 0 if ui 6∈ S. We define

RKP(S, (L, ρ)) = 1 iff (L, ρ) accepts δ.

Similarly, RCP is defined as RCP((L, ρ), S) = 1 iff (L, ρ) accepts δ.
A KP-ABE scheme may require some bounds on parameters: we denote

k̄ = the maximum size of k (the size of attribute set S),
¯̀= the maximum size of ` (the number of rows of L),

m̄ = the maximum size of m (the number of columns of L),

ϕ = the maximum size of allowed repetition in {ρ(1), . . . , ρ(`)}.

These bounds define the index N = (k̄, ¯̀, m̄, ϕ) for the predicate family. When there is no restriction on
corresponding parameter, we represent it by “−” such as (k,−,−,−). We define AN and BN as the set of
all attribute sets and the set of all span programs whose sizes are restricted by N , respectively. KP-ABE is
a predicate encryption for RKP

N : AN × BN → {0, 1}, where RKP
N is restricted on N in a natural manner.

CP-ABE is defined dually with AN and BN swapped.
Let t := |U|. We say the scheme supports small universe if t is polynomially bounded and large uni-

verse if t is exponentially large. The scheme is monotonic if span programs are restricted to be monotone,
and non-monotonic otherwise.

Attribute-Based Encryption for Arithmetic Span Programs [29]. In this predicate, the index N for the
family is specified by an integer n. We call it the dimension of the scheme. We define AN = Znp . An
arithmetic span program of dimension n is specified by a tuple (Y,Z, ρ) of two matrices Y,Z ∈ Zm×`p

and a map ρ : [`] → [n], for some integers `,m. There is no restriction on ` and m. If ρ is restricted to
injective, we say that the scheme supports only attribute one-use. Otherwise, if there is no restriction on ρ,
we say that it is unbounded multi-use. We let BN be the set of all arithmetic span programs of dimension
n. We then define

RKASP
N (x, (Y,Z, ρ)) = 1 iff e1 ∈ span{x[ρ(j)] · yj + zj}j∈[`] ,

where here e1 = (1, 0, . . . , 0)> ∈ Zmp and x[ρ(j)] is the ρ(j)-th term of x, while yj and zj are the j-
th column of Y and Z respectively. We call predicate encryption for RKASP key-policy attribute-based
encryption for arithmetic span program (KASP). Ciphertext-policy ASP (CASP) can be defined dually
with AN and BN swapped.

Doubly Spatial Encryption. In this predicate, the index N for the family is specified by an integer n (the
dimension of the scheme). We define the domains as AN = BN = Znp × (∪0≤d≤nZn×dp ). We define

RDSE
N

(
(x0,X), (y0,Y)

)
= 1 iff

(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅.
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Doubly spatial encryption is PE for relation RDSE
N equipped with additional key delegation algorithm

defined below.

KeyDel(mpk, sk(y0,Y), (y0,Y), (ŷ0, Ŷ))→ skŶ: The key delegation algorithm takes as input the public
parameters mpk, a private key sk(y0,Y), (y0,Y), and (ŷ0, Ŷ) such that ŷ0 + span(Ŷ) ⊆ y0 +
span(Y). It outputs a private key sk(ŷ0,Ŷ).

We require that delegation is independent of the path taken. That is, for all λ, N , (mpk,msk) ←
Setup(λ,N), y0,Y, ŷ0, Ŷ such that ŷ0 + span(Ŷ) ⊆ y0 + span(Y), we have the following distributions
are identical:

KeyDel(mpk, sk(y0,Y), (y0,Y), (ŷ0, Ŷ)) ≈ KeyGen(mpk,msk, (ŷ0, Ŷ)).

where sk(y0,Y) ← KeyGen(msk,mpk, (y0,Y)).

2.3 Embedding Lemma for PE

The following useful lemma from [10] describes a sufficient criterion for implication from PE for a given
predicate to PE for another predicate. The lemma is applicable to any relation family. We prove the lemma
in Appendix A for self-containment.

We consider two relation families:

RF
N : AN ×BN → {0, 1}, RF′

N ′ : A′N ′ ×B′N ′ → {0, 1},

which is parametrized by N ∈ Nc and N ′ ∈ Nc′ respectively. Suppose that there exists three efficient
mappings

fp : Zc
′ → Zc fe : A′N ′ → Afp(N ′) fk : B′N ′ → Bfp(N ′)

which maps parameters, ciphertext attributes, and key attributes, respectively, such that for all X ′ ∈
A′N ′ , Y

′ ∈ B′N ′ ,

RF′
N ′(X

′, Y ′) = 1⇔ RF
fp(N ′)(fe(X

′), fk(Y
′)) = 1. (1)

We can then construct a PE scheme Π′ = {Setup′,Encrypt′,KeyGen′,Decrypt′} for predicate RF′
N ′ from

a PE scheme Π = {Setup,Encrypt,KeyGen,Decrypt} for predicate RF
N as follows. Let Setup′(λ,N ′) =

Setup(λ, fp(N ′)) and

Encrypt′(mpk,M, X ′) = Encrypt(mpk,M, fe(X
′)),

KeyGen′(msk,mpk, Y ′) = KeyGen(msk,mpk, fk(Y
′)),

and Decrypt′(mpk, C,X ′, skY ′ , Y
′) = Decrypt(mpk, C, fe(X

′), skY ′ , fk(Y
′)).

Lemma 1 (Embedding lemma [10]). If Π is correct and secure, then so is Π′. This holds for selective
security and adaptive security.

Intuitively, the forward and backward direction of Relation (1) ensure that the correctness and the
security are preserving, respectively.
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3 Conversion from ABE to DSE

In this section, we show how to construct DSE for dimension n from monotonic KP-ABE (with bounds
on the size of attribute sets and span programs). We note that by simply swapping key and ciphertext
attributes, we can also obtain CP-ABE-to-DSE conversion. We first describe the conversion, then explain
the intuition behind the conversion later below.

3.1 The Conversion

Mapping Parameters. We map fDSE→KP
p : n 7→ (k̄, ¯̀, m̄, ψ) where

k̄ = n(n+ 1)κ+ 1, ¯̀= 2(nκ+ 1)(n+ 1),

m̄ = (nκ+ 1)(n+ 1) + 1, ψ = 2(n+ 1),

where we define κ := dlog2 pe. Moreover, we set the universe U as follows.

U =
{
Att[i][j][k][b]

∣∣∣ (i, j, k, b) ∈ [0, n]× [1, n]× [1, κ]× {0, 1}
}
∪ {D},

where D is a dummy attribute which will be assigned for all ciphertext. Hence, the universe size is |U| =
2n(n+1)κ+1. Intuitively, Att[i][j][k][b] represents an indicator for the condition“the k-th least significant
bit of the binary representation of the j-th element of the vector xi is b ∈ {0, 1}”.

Mapping Ciphertext Attributes. For x0 ∈ Znp and X = [x1, . . . ,xd1 ] ∈ Zn×d1
p such that d1 ≤ n, we

map fDSE→KP
e : (x0,X) 7→ S where

S =
{
Att[i][j][k][b]

∣∣∣ (i, j, k) ∈ [0, d1]× [1, n]× [1, κ], b = xi[j][k]
}
∪ {D}.

Here, we define xi[j][k] ∈ {0, 1} so that they satisfy

xi[j] =
κ∑
k=1

2k−1 · xi[j][k].

That is, xi[j][k] is the k-th least significant bit of the binary representation of xi[j] ∈ Zp.

Mapping Key Attributes. For y0 ∈ Znp and Y = [y1, . . . ,yd2 ] ∈ Zn×d2
p such that d2 ≤ n, we map

fDSE→KP
k : (y0,Y) 7→ (L, ρ) as follows. Let the numbers of rows and columns of L be

` = (2nκ+ 1)(n+ 1) + d2 + 1, m = (nκ+ 1)(n+ 1) + 1,

respectively. We then define

L =



e1 e1 + ed2+2 y>0
Y>

E J
E J
...

. . .
E J


∈ Z`×mp , (2)
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of which each sub-matrix E and J both appears n+ 1 times, where we define

E =


g

g
. . .

g
0 0 . . . 0

 ∈ Z(2nκ+1)×n
p , J =



−1
−1

−1
−1

. . .
−1
−1

1 1 . . . 1


∈ Z(2nκ+1)×nκ

p (3)

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)> ∈ Z2κ
p .

Next, we define the map ρ : [1, `]→ U as follows.
• If i ≤ d2 + 1, we set ρ(i) := D.
• Else, we have i ∈ [d2 + 2, `]. We then write

i = (d2 + 1) + (2nκ+ 1)i′ + i′′

with a unique i′ ∈ [0, n+ 1] and a unique i′′ ∈ [0, 2nκ].
− If i′′ = 0, we again set ρ(i) = D.
− Else, we have i′′ ∈ [1, 2nκ]. We then write

i′′ = 2κj′ + 2k′ + b′ + 1

with unique j′ ∈ [0, n− 1], k′ ∈ [0, κ− 1], and b′ ∈ {0, 1}. We finally set

ρ(i) = Att[i′][j′ + 1][k′ + 1][b′].

Intuition. We explain the intuition behind the conversion. S can be seen as a binary representation of the
information of (x0,X). In the span program (L, ρ), E is used to reproduce the information of (x0,X)
in the matrix while J is used to constrain the form of linear combination among rows to a certain form.4

In some sense, the roll of the lower part of the matrix L (the last (2nκ + 1)(n + 1) rows) is similar to
universal circuit while the upper part of the matrix contains the information of (y0,Y).

3.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE to DSE would then follow from the
embedding lemma (Lemma 1).

Theorem 1. For n ∈ N, for any x0 ∈ Znp , X ∈ Zn×d1
p , y0 ∈ Znp and Y ∈ Zn×d2

p , it holds that

RKP
N (S, (L, ρ)) = 1⇔ RDSE

n

(
(x0,X), (y0,Y)

)
= 1

with N = fDSE→KP
p (n), S = fDSE→KP

e (x0,X), and (L, ρ) = fDSE→KP
k (y0,Y).

4A somewhat similar technique to ours that restricts the form of linear combination of vectors was used in [8] in a different
context (for constructing a monotone span program that tests co-primality of two numbers).
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Proof. Define I ⊂ [`] as I := { i | ρ(i) ∈ S } and define LI as the sub-matrix of L formed by all the rows
of which index is in I . From the definition of fDSE→KP

e , we have that LI is in the form of

LI =



e1 e1 + ed2+2 y>0
Y>

E0 J′

E1 J′

...
. . .

Ed1 J′

1>nκ
. . .

1>nκ


∈ Z`I×mI

p

where `I := (nκ+ 1)(d1 + 1) + n− d1 + d2 + 1 and mI := (nκ+ 1)(n+ 1) + 1 and

Ei =


gi,1

gi,2
. . .

gi,n
0 0 . . . 0

 ∈ Z(nκ+1)×n
p , J′ =


−1

−1
. . .
−1

1 1 . . . 1

 ∈ Z(nκ+1)×nκ
p .

for i ∈ [0, d1], where

gi,j =
(
xi[j][1], 2xi[j][2], . . . , 2κ−1xi[j][κ]

)>
∈ Zκp .

We remark that it holds that 〈1κ,gi,j〉 = xi[j] by the definition of xi[j][k] and thus E>i · 1nκ+1 = xi
holds. We also remark that if v>J′ = 0 holds for some v ∈ Znκ+1

p , then there exists v ∈ Zp such that
v = v1nκ+1. These properties will be used later.

To prove the theorem statement is now equivalent to prove that

e1 ∈ span(L>I ) ⇔
(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅.

Forward Direction (⇒). Suppose e1 ∈ span(L>I ). Then, there exists u ∈ Z
(

(nκ+1)(d1+1)+n−d1+d2+1
)

p

such that u>LI = e>1 . We write u as

u> =
(
v︸︷︷︸
1

, v>︸︷︷︸
d2

, u>0︸︷︷︸
nκ+1

, u>1︸︷︷︸
nκ+1

, . . . , u>d1︸︷︷︸
nκ+1

, ud1+1︸ ︷︷ ︸
1

, . . . , un︸︷︷︸
1

)
.

We then write

u>LI =

(
v,
(
v + 〈u0, e1〉

)
,
(
vy>0 + v>Y> +

d1∑
i=0

u>i Ei

)
,
(
u>0 · J′

)
, . . . ,

(
u>d1
· J′
)
,
(
ud1+11

>
nκ+1

)
, . . . ,

(
un1

>
nκ+1

))
Since u>LI = e>1 , we have ud1+1 = · · · = un = 0, by comparing each element of the vector. Further-
more, since u>i ·J′ = 0 for i ∈ [0, d1], there exist {ui ∈ Zp}i∈[0,d1] such that ui = ui1nκ+1. By comparing
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the first and the second element of the vector, we obtain v = 1 and v + 〈u0, e1〉 = 1 + u0〈1>, enκ+1〉 =
1 + u0 = 0. Hence, u0 = −1. Finally, we have that

∑d1
i=0 u

>
i Ei + vy>0 + v>Y> = 0 and thus

−
d1∑
i=0

E>i ui = y0 + Y · v.

The left hand side of the equation is

−
d1∑
i=0

E>i ui = −u0E
>
0 · 1nκ+1 −

d1∑
i=1

uiE
>
i · 1nκ+1

= x0 −
d1∑
i=1

ui · xi ∈
(
x0 + span(X)

)
.

while the right hand side is y0 + Y · v ∈ (y0 + span(Y)). This implies that
(
x0 + span(X)

)
∩
(
y0 +

span(Y)
)
6= ∅.

Converse Direction (⇐). Suppose
(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅. Hence, there exist sets

{ui ∈ Zp}i∈[1,d1] and {vi ∈ Zp}i∈[1,d2] such that x0 +
∑d1

i=1 uixi = y0 +
∑d2

i=1 viyi. We set a vector u as

u> =
(
1, v1, . . . , vd2︸ ︷︷ ︸

d2

−1>nκ+1,−u11
>
nκ+1, . . . ,−ud11

>
nκ+1︸ ︷︷ ︸

(nκ+1)(d1+1)

, 0, . . . , 0︸ ︷︷ ︸
n−d1

)
).

Therefore, we have

u>LI =

(
1, 1− 1,

(
y>0 +

d2∑
i=1

viy
>
i − 1>nκ+1(E0 +

d1∑
i=1

uiEi)
)
,

(
− 1>nκ+1J

′
)
,
(
− u11

>
nκ+1J

′
)
, . . . ,

(
− un1>nκ+1J

′
)
, 0 . . . , 0

)
=

(
1, 0,

(
y>0 +

d2∑
i=1

viy
>
i

)
−
(
x>0 +

d1∑
i=1

uix
>
i

)
, 0 . . . , 0

)
= e>1

as desired. This concludes the proof of the theorem.

4 From DSE to Non-Monotonic ABE

In [26], it is shown that DSE can be converted into monotonic CP-ABE with large universe (and bounds
on the size of attribute sets and span programs). In this section, we extend their result to show that non-
monotonic CP-ABE with large universe and the same bounds can be constructed from DSE. We note
that our transformation is very different from that of [26] even if we only consider monotonic CP-ABE
because of expositional reasons. We also note that by simply swapping key and ciphertext attributes, we
immediately obtain DSE-to-non-monotonic-KP-ABE conversion. Again, we first describe the conversion,
provide some intuition later below.
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4.1 The Conversion

Mapping Parameters. We map fCP→DSE
p : (k̄, ¯̀, m̄, ¯̀) 7→ n = 4¯̀ + m̄ + 2k̄ ¯̀. We assume that the

universe of attributes is Zp.This restriction can be easily removed by using collision resistant hash.

Mapping Ciphertext Attributes. For a span program (L, ρ), we map fCP→DSE
e : (L, ρ) 7→ (x0,X) as

follows. Let ` × m̄ be the dimension of L, where ` ≤ ¯̀. (If the number of columns is smaller, we can
adjust the size by padding zeroes.) Let `0, `1 be such that ` = `0 + `1, and without loss of generality, we
assume that the first `0 rows of L are associated with positive attributes and the last `1 rows with negative
attributes by the map ρ. We denote L as L = [L0;L1] using matrices L0 ∈ Z`0×m̄p and L1 ∈ Z`1×m̄p . We
then define fCP→DSE

e (L, ρ) = (x0,X) with

x0 = −e1 ∈ Znp , X> =

 L0

¯̀︷︸︸︷ G0

L1 I`1

¯̀−`1︷︸︸︷
G1

 ∈ Z(`0+2`1)×n
p ,

where Gb ∈ Z`b×
¯̀(k̄+1)

p for each b ∈ {0, 1} is defined as

Gb =


p
(
ρ(b`0 + 1)

)> (¯̀−`b)(k̄+1)︷︸︸︷
p
(
ρ(b`0 + 2)

)>
. . .

p
(
ρ(b`0 + `b)

)>

 (4)

where p() is a function that takes an element of Zp or its negation ({¬x|x ∈ Zp}) as an input and outputs
a vector p(x) = (1, x, x2, . . . , xk̄)> ∈ Zk̄+1

p .

Mapping Key Attributes. For a set S = (S1, . . . , Sk) such that k ≤ k̄, we map fCP→DSE
k : S 7→ (y0,Y)

where

y0 = 0n ∈ Znp , Y> =

(
m̄︷︸︸︷ H I(k̄+1)¯̀

H I(k̄+1)¯̀

)
∈ Z2(k̄+1)¯̀×n

p ,

of which H is defined as

H = I¯̀⊗ qS =


qS

qS
. . .

qS

 ∈ Z
(

(k̄+1)¯̀
)
×¯̀

p ,

where qS = (qS [1], . . . ,qS [k̄ + 1])> ∈ Zk̄+1
p is defined as a coefficient vector from

QS [Z] =

k+1∑
i=1

qS [i] · Zi−1 =

k∏
i=1

(Z − Si).

If k < k̄, the coordinates qS [k + 2], . . . ,qS [k̄ + 1] are all set to 0.

Intuition. The matrices X and Y constructed above can be divided into two parts. The first `0 rows of X>

and the first (k̄ + 1)¯̀ rows of Y> deal with positive attributes.The lower parts of X> and Y> deal with
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negation of attributes. Here, we explain how we handle negated attributes. Positive attributes are handled
by a similar mechanism. I(k̄+1)¯̀ in Y> and G1 in X> restricts the linear combination of the rows of X>

and Y> to a certain form in order to two affine spaces to have a intersection. As a result, we can argue
that the coefficient of the i-th row of L1 in the linear combination should be multiple of QS(ρ(`0 + i))5.
Since we have that QS(x) = 0 iff x ∈ S for any x ∈ Zp, this means that the coefficient of the vector in
the linear combination should be 0 if ρ(`0 + i) = ¬Att and Att ∈ S. This restriction is exactly what we
need to emulate predicate of non-monotonic CP-ABE.

4.2 Correctness of the Conversion

We show the following theorem. The implication from DSE to non-monotonic CP-ABE with large uni-
verse would then follow from the embedding lemma.

Theorem 2. For any span program (L ∈ Z`×mp , ρ) such that ` ≤ ¯̀and m ≤ m̄ and S such that |S| ≤ k̄,
let N = (k̄, ¯̀, m̄, ¯̀), we have that

RDSE
n ((x0,X), (y0,Y)) = 1⇔ RCP

N (S, (L, ρ)) = 1

where n = fCP→DSE
p (N), (x0,X) = fCP→DSE

e (L, ρ), and (y0,Y) = fCP→DSE
k (S).

Proof. Let I ⊂ [1, `] be I = { i | (ρ(i) = Att ∧ Att ∈ S) ∨ (ρ(i) = ¬Att ∧ Att 6∈ S) }. We also let LI
be the sub-matrix of L formed by rows whose index is in I .

To prove the theorem statement is equivalent to prove that(
x0 + span(X)

)
∩
(
y0 + span(Y)

)
6= ∅ ⇔ e1 ∈ span(L>I ).

Forward Direction (⇒). Suppose that there exist u ∈ Z`0+2`1
p and v ∈ Z2(k̄+1)¯̀

p such that x>0 +u>X> =

y>0 + v>Y> = v>Y>. We denote these vectors as

u> = ( u>0︸︷︷︸
`0

, u>1︸︷︷︸
`1

, u>2︸︷︷︸
`1

), v> = ( v>1︸︷︷︸
k̄+1

, . . . , v>¯̀︸︷︷︸
k̄+1

w>1︸︷︷︸
k̄+1

, . . . , w>¯̀︸︷︷︸
k̄+1

.)

Hence, x>0 + u>X and v>Y can be written as

x>0 + u>X =
(
−e>1 + u>0 L0 + u>1 L1︸ ︷︷ ︸

m̄

,0>¯̀ ,u0[1] · p(ρ(1))>, . . . ,u0[`0] · p(ρ(`0))>︸ ︷︷ ︸
(k̄+1)`0

,

0>(¯̀−`0)(k̄+1), u
>
1︸︷︷︸
`1

,0>¯̀−`1 ,

u2[1] · p(ρ(`0 + 1))>, . . . ,u2[`1] · p(ρ(`0 + `1))>︸ ︷︷ ︸
(k̄+1)`1

,0>(¯̀−`1)(k̄+1)

)
(5)

and

v>Y = (0>m̄, 〈v1,qS〉, . . . , , 〈v¯̀,qS〉︸ ︷︷ ︸
¯̀

,v>1 , . . . ,v
>
¯̀︸ ︷︷ ︸

(k̄+1)¯̀

,

〈w1,qS〉, . . . , , 〈w¯̀,qS〉︸ ︷︷ ︸
¯̀

,w>1 , . . . ,w
>
¯̀︸ ︷︷ ︸

(k̄+1)¯̀

). (6)

5 Here, We treat negated attributes ({¬x|x ∈ Zp}) as elements of Zp. Namely, if ρ(`0 + i) = ¬Att for some Att ∈ Zp,
QS(ρ(`0 + i)) := QS(Att).

14



First, by comparing the m̄ + ¯̀ + 1-th to m̄ + (k̄ + 2)¯̀-th elements of the vector, we obtain that
vi = u0[i] ·p(ρ(i)) for i ∈ [1, `0] and vi = 0k̄+1 for i ∈ [`0 + 1, ¯̀]. Furthermore, by comparing m̄+ 1-th
to m̄+ ¯̀-th elements of the vector, we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] ·QS
(
ρ(i)

)
= 0

for i ∈ [1, `0]. The second equation above follows from the definition of p() and qS . Since QS(ρ(i)) =∏
ω∈S(ρ(i)− ω) 6= 0 if ρ(i) 6∈ S, we have that u0[i] = 0 if ρ(i) 6∈ S. That is, u0[i] = 0 for i ∈ [1, `0]\I .

Next, by comparing the last (k̄ + 1)¯̀elements in the vector, we obtain that wi = u2[i] · p(ρ(`0 + i))
for i ∈ [1, `1] and wi = 0k̄+1 for i ∈ [`1 + 1, ¯̀]. By comparing the m̄+ (k̄+ 2)¯̀+ 1-th to m̄+ (k̄+ 3)¯̀-th
elements in the vector, we have that (u>1 ,0

>
¯̀−`1

) = (〈w1,qS〉, . . . , , 〈w¯̀,qS〉) and thus

u1[i] = 〈wi,qS〉 = u2[i] · 〈p(ρ(`0 + i)),qS〉 = u2[i] ·QS(ρ(`0 + i))

holds for i ∈ [1, `1]. From the above, we have that u1[i] = 0 if ρ(`0 + i) = ¬Att and Att ∈ S for some
Att. This implies that u1[i] = 0 if (`0 + i) 6∈ I for i ∈ [1, `1].

Finally, by comparing the first m̄ elements in the vector, we obtain that −e>1 + u>0 L0 + u>1 L1 = 0>.
Let u0,I be a subvector of u0 which is obtained by deleting all elements u0[i] for i 6∈ I . Similarly, we
define u1,I as a vector obtained by deleting all elements u1[i] for i such that (`0 + i) 6∈ I from u1.
Since u0[i] = 0 for i ∈ [1, `0]\I and u1[i] = 0 for i ∈ [1, `1] such that (`0 + i) 6∈ I , it follows that
(u>0,I ,u

>
1,I)LI = u>0 L0 + u>1 L1 = e>1 and thus e1 ∈ span(L>I ) as desired.

Converse Direction (⇐). The converse direction can be shown by repeating the above discussion in
reverse order. Assume that e1 ∈ span(L>I ). Then there exists u′ ∈ Z|I|p such that u′>LI = e>1 . We extend
u′ to define u′′ ∈ Z`0+`1

p so that u′′I = u′ and u′′[i] = 0 for i 6∈ I hold. Here, u′′I ∈ Z|I|p is a subvector of
u′′ which is obtained by deleting all elements u′′[i] for i 6∈ I . These conditions completely determine u′′.
We denote this u′′ as u′′> = (u>0 ,u

>
1 ) using u0 ∈ Z`0p and u1 ∈ Z`1p . We note that u>0 L0 + u>1 L1 = e>1

holds by the definition.
Next we define vi for i ∈ [¯̀] as vi = u0[i] · p(ρ(i)) if i ∈ [`0] and vi = 0k̄+1 if i ∈ [`0 + 1, ¯̀]. We

claim that 〈vi,qS〉 = 0 holds for i ∈ [¯̀]. Here, we prove this. The case for i ∈ [`0 + 1, ¯̀] is trivial. For
the case of i ∈ [1, `0], we have

〈vi,qS〉 = u0[i] · 〈p(ρ(i)),qS〉 = u0[i] ·QS(ρ(i)) = 0.

The last equation above holds because we have QS(ρ(i)) = 0 if i ∈ I and u0[i] = 0 otherwise, by the
definition of u0[i].

We define u2[i] ∈ Zp for i ∈ [1, `1] as u2[i] = u1[i]/QS(ρ(`0 + i)) if u1[i] 6= 0 and u2[i] = 0 if
u1[i] = 0. We have to show that u2[i] are well defined by showing that QS(ρ(`0 + i)) 6= 0 if u1[i] 6= 0
(i.e., division by 0 does not occur). If u1[i] 6= 0, then (`0 + i) ∈ I by the definition of u1. It implies that
(ρ(`0 + i) = ¬Att)∧ (Att 6∈ S) for some Att ∈ Zp and thus QS(ρ(`0 + i)) =

∏
ω∈S(Att− ω) 6= 0 holds

as desired.
We also define wi as wi = u2[i] ·p(ρ(`0 + i)) for i ∈ [1, `1] and wi = 0k̄+1 for i ∈ [`1 + 1, ¯̀]. Then,

we have

〈wi,qS〉 = u2[i] · 〈p(ρ(`0 + i)),qS〉 = u2[i] ·QS(ρ(`0 + i)) = u1[i]

for i ∈ [1, `1] and 〈wi,qS〉 = 0 for i ∈ [`1 + 1, ¯̀].
Finally, we define u and v as u> = (u>0 ,u

>
1 ,u

>
2 ) and v> = (v>1 , . . . ,v

>
¯̀ ,w

>
1 , . . . ,w

>
¯̀ ). Then,

Equation (5) and (6) hold. By the properties of u and v we investigated so far, it is straightforward to see
that x>0 + u>X> = y>0 + v>Y holds. This concludes the proof of the theorem.
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5 From KP(CP)-ABE to KASP(CASP)

In this section, we show that monotonic KP-ABE with small universe (without bounds on the size of span
programs) can be converted into KASP. We note that we can also obtain CP-ABE-to-CASP conversion by
simply swapping key and ciphertext attribute.

5.1 The Conversion

Mapping Parameters. We show how to construct KASP for dimension n from monotonic KP-ABE for
parameter N = (nκ+ 1,−,−,−) and the size of attribute universe is |U| = 2nκ+ 1. Here, κ = dlog2 pe.
That is, we define fKASP→KP

p (n) = N . We set the universe of attributes as

U =
{
Att[i][j][b]

∣∣∣ (i, j, b) ∈ [1, n]× [1, κ]× {0, 1}
}
∪ {D}.

Intuitively, Att[i][j][b] represents an indicator for the condition “the j-th least significant bit of the binary
representation of i-th element of the vector x is b ∈ {0, 1}”. D is a dummy attribute which will be assigned
for all ciphertexts.

Mapping Ciphertext Attributes. For x ∈ Znp , we map fKASP→KP
e : x 7→ S where

S =
{
Att[i][j][b]

∣∣∣ (i, j) ∈ [1, n]× [1, κ], b = x[i][j]
}
∪ {D},

where we define x[i][j] ∈ {0, 1} in such a way that x[i] =
∑κ

j=1 2j−1 · x[i][j]. In other words, x[i][j] is
the j-th least significant bit of the binary representation of x[i] ∈ Zp.
Mapping Key Attributes. For an arithmetic span program (Y = (y1, . . . ,y`) ∈ Zm×`p ,Z = (z1, . . . , z`) ∈
Zm×`p , ρ) such that Y,Z ∈ Zm×`p , we define the map fKASP→KP

k : (Y,Z, ρ) 7→ (L, ρ′) as follows. First,
we define

L =


G1 J
G2 J

...
. . .

G` J

 ∈ Z
(

(2κ+1)`
)
×
(
κ`+m

)
p , (7)

where the matrix J ∈ Z(2κ+1)×κ
p is defined as in Equation (3) (by setting n = 1) while Gi is defined as

Gi = [g · y>i ; z>i ] = (0m,yi,0m, 2yi, · · · ,0m, 2κ−1yi, zi)
> ∈ Z(2κ+1)×m

p

where g = (0, 1, 0, 2, . . . , 0, 2i, . . . , 0, 2κ−1)> ∈ Z2κ
p .

Next, we define the map ρ′ : [(2κ+ 1)`]→ U as follows.
• If i = 0 mod (2κ+ 1), we set ρ(i) := D.
• Else, we write

i = (2κ+ 1)i′ + 2j′ + b′ + 1

with unique i′ ∈ [0, `− 1], j′ ∈ [0, κ− 1], and b′ ∈ {0, 1}. We finally set

ρ′(i) = Att[ρ(i′ + 1)][j′ + 1][b′].

Intuition. S can be seen as a binary representation of the information of x. In the span program (L, ρ′),
J is used to constrain the form of linear combination among rows to a certain form. Gi as well as ρ′,
along with the above restriction, are designed so that linear combination of rows of Gi only can be a
scalar multiple of the vector (x[ρ(i)]yi + zi)

>. Therefore, (L, ρ′) essentially works as an arithmetic span
program.
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5.2 Correctness of the Conversion

We show the following theorem. The implication from KP-ABE with parameter N = (nκ + 1,−,−,−)
to KASP with dimension n would then follow from the embedding lemma.

Theorem 3. For any x ∈ Znp , Y ∈ Zm×`p , Z ∈ Zm×`p , and ρ : [`]→ [n], it holds that

RKP
N (S, (L, ρ′)) = 1⇔ RKASP

n (x, (Y,Z, ρ)) = 1

where N = fKASP→KP
p (n), S = fKASP→KP

e (x), and (L, ρ′) = fKASP→KP
k (Y,Z, ρ).

Proof. Define I ⊂ [1, (2κ+ 1)`] as I = { i | ρ′(i) ∈ S }. We define LI as the sub-matrix of L formed by
rows whose index is in I . From the definition of fKASP→KP

e , we have that LI is in the form of

LI =


G′1 J′

G′2 J′

...
. . .

G′` J′

 ∈ Z
(

(κ+1)`
)
×
(
κ`+m

)
p ,

where

G′i = [gi · y>i ; z>i ] ∈ Z(κ+1)×m
p , J′ =


−1

−1
. . .
−1

1 1 . . . 1

 ∈ Z(κ+1)×κ
p ,

and where

gi = (x[ρ(i)][1], 2x[ρ(i)][2], . . . , 2κ−1x[ρ(i)][κ])> ∈ Zκp .

We note that we have 〈1κ,gi〉 = x[ρ(i)] by the definition of x[ρ(i)][j] and thus G′>i ·1κ+1 = x[ρ(i)]yi+zi
holds. We also remark that if v>J′ = 0 holds for some v ∈ Zκ+1

p , then there exists v ∈ Zp such that
v = v1κ+1. These properties will be used later below.

To prove the theorem statement is equivalent to prove that

e1 ∈ span(L>I ) ⇔ e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]).

Forward Direction (⇒). We assume that e1 ∈ span(L>I ). From this, there exists u ∈ Z(κ+1)`
p such that

u>LI = e>1 . We write this u as

u> =
(
u>1︸︷︷︸
κ+1

, u>2︸︷︷︸
κ+1

, . . . , u>`︸︷︷︸
κ+1

)
.

Therefore, we have that

e>1 = u> · LI =

∑
i∈[`]

u>i G
′
i,u
>
1 J
′, . . . ,u>` J

′

 .
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Since u>i · J′ = 0 for i ∈ [`], there exist {ui ∈ Zp}i∈[`] such that ui = ui1κ+1. Then, we have

e>1 =
∑
i∈[`]

u>i G
′
i =

∑
i∈[`]

ui1
>
κ+1G

′
i =

∑
i∈[`]

ui(x[ρ(i)] · yi + zi)
>.

This implies e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]), as desired.

Converse Direction (⇐). We assume that e1 ∈ span({x[ρ(i)]yi + zi}i∈[`]). Then, there exist {ui ∈
Zp}i∈[`] such that

∑
i∈[`] ui(x[ρ(i)] · yi + zi) = e1. We set a vector u ∈ Z(κ+1)`

p as

u> =
(
u11

>
κ+1, . . . , u`1

>
κ+1

)
Then, we have that

u> · LI =

∑
i∈[`]

ui1
>
κ+1G

′
i, u11

>
κ+1J

′, . . . ,u`1
>
κ+1J

′


=

∑
i∈[`]

ui(x[ρ(i)]yi + zi)
>,0>κ , . . . ,0

>
κ

 = e>1 .

This implies e1 ∈ span(L>I ), as desired. This concludes the proof of the theorem.

6 Implications of Our Result

In this section, we discuss consequences of our results.

Equivalence between (bounded) ABE and DSE. We have shown that monotonic KP/CP-ABE for (k̄, ¯̀,
m̄, ϕ) implies DSE (without delegation) in Section 3 and DSE implies non-monotonic KP/CP-ABE with
large universe for (k̄, ¯̀, m̄, ϕ) in Section 4. Since non-monotonic KP/CP-ABE with large universe for
(k̄, ¯̀, m̄, ϕ) trivially implies monotonic KP/CP-ABE with small universe for (k̄, ¯̀, m̄, ϕ), our results indi-
cate that these PE schemes are essentially equivalent in the sense that they imply each other.

Equivalence between K(C)ASP and KP(CP)-ABE. Next, we consider the case where there is no restric-
tion on the size of span programs. In Section 5, we showed that monotonic KP-ABE for ((k̄+1)κ,−,−,−)
implies KASP for (k̄,−,−,−). In Appendix C, we also show the converse direction. That is, we show
that KASP for (k̄ + 1,−,−,−) implies non-monotonic KP-ABE for (k̄,−,−,−) with large universe.
Since non-monotonic KP-ABE for (k̄,−,−,−) trivially implies monotonic KP-ABE for (k̄,−,−,−),
our results indicate that these PE schemes are essentially equivalent similarly to the above case. Similar
implications hold for CP-ABE. See figure 1 for the overview.

By applying the conversions to existing schemes, we obtain various new schemes. The overviews of
properties of resulting schemes and comparison with existing schemes are provided in Table 1, 2, 3, and
4. All schemes in the tables are constructed in pairing groups. In the tables, we count the number of group
elements to measure the size of master public keys (|mpk|), ciphertexts (|C|), and private keys (|sk|). Note
that our conversions only can be applied to ABE schemes supporting span programs over Zp. Therefore,
for ABE schemes constructed on composite order groups [31, 2], our conversions are not applicable since
they support span programs over ZN where N is a product of several large primes. Similar restrictions
are posed on DSE and K(C)ASP. Though it is quite plausible that our conversions work even in such cases
assuming hardness of factoring N , we do not prove this in this paper.
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Table 1: Comparison among DSE Schemes

Schemes |mpk| |C| |sk| Delegation Security Assumption

Hamburg11 [26] O(n) O(d1) O(d2) X Selective Parameterized
CW14 [17] O(n2) O(nd1) O(n) X Selective Static
CZF12 [14] O(n) O(d1) O(d2) X Adaptive Static

Sec. 3 + RW13 [39] O(1) O(nd1κ) O(n2κ) X Selective Parameterized
Sec. 3 + ALP11 [4] O(n2κ) O(1) O(n4κ2) X Selective Parameterized
Sec. 3 + OT12 [37] O(1) O(n2d1κ) O(n2κ) ? Adaptive Static
Sec. 3 + A15 [3] O(1) O(nd1κ) O(n2κ) ? Adaptive Parameterized
Sec. 3 + A15 [3] O(n2κ) O(1) O(n4κ2) ? Adaptive Parameterized
Sec. 3 + A15 [3] O(n2κ) O(n4κ2) O(1) ? Adaptive Parameterized

† n is the dimension of the scheme; d1 and d2 denote the dimension of the space associated with
the ciphertext and private key, respectively; κ = dlog2 pe.
‡ “Delegation” shows if key delegation is supported. “?” means unknown.

New DSE Schemes. By applying our KP(CP)-ABE-to-DSE conversion to existing KP(CP)-ABE schemes,
we obtain many new DSE schemes. Table 1 shows overview of obtained schemes.6 Specifically,
− From the unbounded KP-ABE schemes [37, 39, 3], we obtain the first DSE scheme with constant-size

master public key (without delegation). Note that all previous schemes [26, 14, 17] require at least
O(n) group elements in master public key where n is the dimension of the scheme.

− From KP-ABE scheme with constant-size ciphertexts [4, 28, 41, 3], we obtain the first DSE scheme
with constant-size ciphertexts. All previous schemes [26, 14, 17] require at least O(d1) group elements
in ciphertexts where d1 is the dimension of the affine space associated to a ciphertext.

− From CP-ABE scheme with constant-size keys [5], we obtain the first DSE scheme with constant-size
private keys. All previous schemes require at least O(d2) group elements in private keys where d2 is
the dimension of the affine space associated to a private key.

The schemes obtained from [37, 3] achieves adaptive security. Furthermore, for schemes obtained from
[39, 4, 28], we can define key delegation algorithm. The details of the key delegation algorithm will be
given in Appendix B.

CP-ABE with Constant-Size Ciphertexts. By applying our DSE-to-non-monotonic-CP-ABE conver-
sion in Section 4 to the DSE scheme with constant-size ciphertexts obtained above, we obtain the first
non-monotonic CP-ABE with constant-size ciphertexts. Previous CP-ABE schemes with constant-size ci-
phertexts [19, 13, 12] only support threshold or more limited predicates7. See Table 2 for comparison (we
list only relevant schemes).

KP-ABE with Constant-Size Keys. By applying our DSE-to-non-monotonic-KP-ABE conversion in
Section 4 to the DSE scheme with constant-size keys obtained above, we obtain the first non-monotonic
KP-ABE with constant-size keys. See Table 3 for comparison (we list only relevant schemes).

New KASP and CASP Schemes. By applying the KP(CP)-ABE-to-K(C)ASP conversion in Section 5,
we obtain many new K(C)ASP schemes. See Table 4 for the overview. Specifically,

6In the table, parameterized assumptions refer to q-type assumptions, which are non-interactive and falsifiable but parameter-
ized by some parameters of the scheme such as k, k̄.

7One would be able to obtain CP-ABE with constant-size ciphertexts supporting threshold formulae by applying the generic
conversion in [23] to a KP-ABE scheme proposed in [4]. However, the resulting scheme supports more limited predicate com-
pared to ours. To the best of our knowledge, this observation has not appeared elsewhere.
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Table 2: Comparison among CP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption
Universe Policy |mpk| |C| |sk|

OT12 [37] Large Non-mono. Span. O(1) O(`) O(kϕ) Adaptive Static
AY15 [5], A15 [3] Large Mono. Span. O(1) O(`) O(k) Adaptive Parametrized
AY15 [5], A15 [3] Large Mono. Span. O(k̄) O(k̄`) O(1) Adaptive Parametrized
EMN+09 [19] Small AND-only O(k̄) O(1) O(k̄) Selective Static
CZF11 [13] Small AND-only O(k̄) O(1) O(k̄2) Selective Static
CCL+13 [12] Small Threshold O(k̄) O(1) O(k̄2) Adaptive Static

Sec. 3,4 + ALP11 [4] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Selective Parametrized
Sec. 3,4 + T14 [41] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Semi-adapt Static
Sec. 3,4 + A15 [3] Large Non-mono. Span. O((k̄ ¯̀)2κ) O(1) O((k̄ ¯̀)4κ2) Adaptive Parametrized
Sec. 5,C + A15 [3] Large Non-mono. Span. O(1) O(k̄κ`) O(k̄κ) Adaptive Parameterized
Sec. 5,C + A15 [3] Large Non-mono. Span. O(k̄κ) O((k̄κ)2`) O(1) Adaptive Parameterized

† k is the size of an attribute set associated with a key, ` is the number of rows of a span program matrix associated with a ciphertext;
k̄, ¯̀are the maximums of k, ` (if bounded); ϕ is the maximum number of allowed attribute multi-use in one policy (if bounded);
κ = dlog2 pe.

Table 3: Comparison among KP-ABE Schemes

Schemes Expressiveness Efficiency Security Assumption
Universe Policy |mpk| |C| |sk|

OT12 [37] Large Non-mono. Span. O(1) O(kϕ) O(`) Adaptive Static
AY15 [5], A15 [3] Large Mono. Span. O(1) O(k) O(`) Adaptive Parameterized
AY15 [5], A15 [3] Large Mono. Span. O(k̄) O(1) O(k̄`) Adaptive Parameterized

Sec. 3,4 + A15 [3] Large Non-mono. Span. O((k̄ ¯̀)2κ) O((k̄ ¯̀)4κ2) O(1) Adaptive Parameterized
Sec. 5,C + A15 [3] Large Non-mono. Span. O(1) O(k̄κ) O(k̄κ`) Adaptive Parameterized
Sec. 5,C + A15 [3] Large Non-mono. Span. O(k̄κ) O(1) O((k̄κ)2`) Adaptive Parameterized

† k is the size of an attribute set associated with a ciphertext, ` is the number of rows of a span program matrix associated with
a key; k̄, ¯̀are the maximums of k, ` (if bounded); ϕ is the maximum number of allowed attribute multi-use in one policy (if
bounded); κ = dlog2 pe.

− From the unbounded KP-ABE, CP-ABE schemes of [39, 3], we obtain the first KASP, CASP schemes
with constant-size master public key.

− From adaptively secure KP-ABE, CP-ABE schemes of [34, 3], we obtain the first adaptively secure
KASP, CASP schemes with unbounded attribute multi-use.

− From KP-ABE schemes with constant-size ciphertexts [4, 28, 41, 3], we obtain the first KASP schemes
with constant-size ciphertexts.

− From CP-ABE schemes with constant-size keys [3], we obtain the first CASP schemes with constant-
size keys.

Until recently, the only (K)ASP scheme in the literature was proposed by [29], which is selectively secure
and the master public key and ciphertext size are linear in the dimension of the scheme. Very recently,
adaptively secure KASP and CASP were given in [16], albeit with the restriction of one-time use (of the
same attribute in one policy).

We remark that the conversion is not applicable for schemes in [36, 37] since these schemes are KP-
ABE for (∗, ∗, ∗, ϕ) where ϕ is polynomially bounded, whereas our conversion requires the last parameter
to be unbounded.
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Table 4: Comparison among KASP and CASP Schemes

Schemes Type |mpk| |C| |sk| Security Attrib. Multi-use Assumption

IW14 [29] KASP O(n) O(n) O(`) Selective yes Static
CGW15 [16] KASP O(n) O(n) O(`) Adaptive no Static
CGW15 [16] CASP O(n) O(`) O(n) Adaptive no Static

Sec. 5 + LW12[34] KASP O(nκ) O(nκ) O(`κ) Adaptive yes Parameterized
Sec. 5 + ALP11[4] KASP O(nκ) O(1) O(`nκ2) Selective yes Parameterized
Sec. 5 + RW13[39] KASP O(1) O(nκ) O(`κ) Selective yes Parameterized
Sec. 5 + A15[3] KASP O(nκ) O(1) O(`nκ2) Adaptive yes Parameterized
Sec. 5 + A15[3] KASP O(1) O(nκ) O(`κ) Adaptive yes Parameterized
Sec. 5 + LW12[34] CASP O(nκ) O(`κ) O(nκ) Adaptive yes Parameterized
Sec. 5 + RW13[39] CASP O(1) O(`κ) O(nκ) Selective yes Parameterized
Sec. 5 + A15[3] CASP O(1) O(`κ) O(nκ) Adaptive yes Parameterized
Sec. 5 + A15[3] CASP O(nκ) O(`nκ2) O(1) Adaptive yes Parameterized

† n is the dimension of the scheme; ` is the number of the columns of the matrices that define an arithmetic span
program (` reflects the size of an arithmetic span program); κ = dlog2 pe.

7 Application to Attribute-Based Signature

Here, we discuss that our techniques developed in previous sections are also applicable to construct
attribute-based signatures (ABS) [35, 36]. ABS is an advanced form of signature and can be consid-
ered as a signature analogue of ABE. In particular, it resembles CP-ABE in the sense that a private key
is associated with a set of attributes while a signature is associated with a policy and a message. A user
can sign on a message with a policy if and only if she has a private key associated with a set satisfying the
policy. Roughly speaking, this property corresponds to the correctness and unforgeability. For ABS, we
also require privacy. That is, we require that one cannot obtain any information about the attribute of the
signer from a signature.

The construction of expressive ABS scheme with constant-size signatures has been open. All previous
ABS schemes with constant-size signatures [27, 12] only supports threshold predicates. The difficulty
of constructing ABS with constant-size signatures seems to be related to the difficulty of construction of
CP-ABE with constant-size ciphertexts. That is, it is hard to set constant number of group elements so that
they include very complex information such as span programs.

To solve the problem, we first define the notion of predicate signature (PS) that is a signature analogue
of PE. Then we construct a PS scheme that is dual of ABS: a private key is associated with a policy and a
signature with a set. The scheme achieves constant-size signatures. This is not difficult to achieve because
the signature is associated with a set which is a simpler object compared to a policy. The scheme is based
on PS scheme for threshold predicate with constant-size signatures by [27]. We change the scheme mainly
in two ways. At first, instead of using Shamir’s secret sharing scheme, we use linear secret sharing scheme
so that they support more general predicate. We also add some modification so that the signature size be
even shorter. The signatures of the resulting scheme only consist of two group elements.

Since signature analogue of Lemma 1 holds (Lemma 2 in Appendix D), we can apply KP-ABE-to-
non-monotonic-CP-ABE conversion (combination of the results in Section 3 and 4) to obtain the first ABS
scheme with constant-size signatures supporting non-monotonic span program. See Appendix D for the
details.
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Benkyou-Kai for their helpful comments.
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A Proof of Lemma 1

Proof. We prove the lemma for the case of adaptive security. The same proof works for other cases.
We construct an adversary B against Π from an adversary A against Π′ so that B has the same advan-
tage as A and the running time of B is only polynomially larger than A. At first, Setup(λ, fp(N ′)) =
Setup′(λ,N ′)→ (mpk,msk) is run and mpk is given to B. B gives mpk toA. In PHASE1, whenAmakes
key query for Y ′ ∈ B′N ′ , B computes Y = fk(Y

′) and makes a key-extraction query for its challenger.
Then, KeyGen(msk,mpk, fk(Y

′)) = KeyGen′(msk,mpk, Y ′)→ skY ′ is run and B is given skY ′ . Then, B
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gives it toA. At some point,A outputs two equal length messages M0 and M1 and challenge ciphertext at-
tributeX ′? ∈ A′N ′ . Then B computesX? = fe(X

′?) and submitsX?, M0, and M1 to its challenger. Then,
Encrypt(mpk,Mβ, fe(X

′?)) = Encrypt′(mpk,Mβ, X
′?) → C? is run and C? is given to B. Here, β is a

random bit. B gives C? to A. In PHASE2, B deals with key-extraction queries made by A as in PHASE1.
Finally, B outputs the same bit as A. We check that B has not made any prohibited key-extraction query.
This holds because we have RF

fp(N ′)(fe(X
′?), fk(Y

′)) = RF′
N ′(X

′?, Y ′) = 0 for all Y ′ queried by A. It is
straightforward to see that the simulation by B is perfect and B has exactly the same advantage as A.

B Key Delegation Algorithm

In Section 3, we showed that KP-ABE scheme can be converted into DSE scheme without delegation. The
conversion is completely generic and can be applicable to many existing schemes. Here, we show that it
is possible to add key delegation algorithm for resulting schemes in some cases. To capture such cases,
we define the following template for monotonic KP-ABE. If the original KP-ABE scheme is an instance
of the template, we can add key delegation algorithm to the DSE scheme obtained by our conversion.

Let G,GT be underlying bilinear groups of order p. The universe of attribute is denoted by U .

Setup(λ,N) : Given a security parameter λ ∈ N and some bounds on parameters N ∈ Z, the algorithm
selects bilinear groups (G,GT ) of prime order p > 2λ and a generator g $← G. It computes e(g, g)α

for a random α
$← Zp and sets parameters pp. We assume that g is included in pp. The master secret

key consists of msk = α while the master public key is mpk = (e(g, g)α, pp).

We assume that pp defines publicly computable functions f0 : U → G`′ , f1 : U → G.

KeyGen(msk,mpk, (L, ρ)) : The input to the algorithm is the master secret key msk, master public key
mpk, and a monotone span program (L, ρ). Let L be an ` × m matrix. First, it picks random
s[2], . . . , s[m], r1, . . . , r`

$← Zp and sets the vector s = (α, s[2], . . . , s[m])>. Then, it computes
shares of α for ρ(i) by λi = Li · s for i ∈ [1, `]. Here, Li is i-th row of L. It then outputs private key

sk(L,ρ) =
{
Di,0 = f0(ρ(i))ri , Di,1 = gλi · f1(ρ(i))ri

}
i∈[1,`]

.

Example. Many existing KP-ABE schemes such as [25, 4, 28, 39] can be captured by the above template.
For example, unbounded monotonic KP-ABE scheme in [39] can be captured by defining pp, f0, f1 as

pp = (g, u, h, w), f0(Att) = (uAtt · h, g), f1(Att) = w.

Monotonic KP-ABE scheme with constant-size ciphertexts in [4] can be captured by defining pp, f0, f1 as

pp = (g, {hi}i∈[0,k̄+1]), f0(Att) = ({h−Att
i−1

1 · hi}i∈[2,k̄+1], g), f1(Att) = h0.

If the setup and key generation algorithm of KP-ABE scheme Π = {Setup,KeyGen,Encrypt,Decrypt}
satisfy the template, one can add key delegation algorithm to a DSE scheme Π′ that is obtained by applying
our conversion in Section 3 to the KP-ABE scheme Π.

Before showing key delegation algorithm, we first define ReRand algorithm for Π that re-randomizes
private key. This will be used as a subroutine in the key delegation algorithm of the DSE scheme Π′.
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ReRand(mpk, sk(L,ρ), (L, ρ)): It takes as input mpk, a private key sk(L,ρ), and a span program (L, ρ) and
outputs re-randomized private key sk′(L,ρ) for the same span program. Let L be `×m matrix. It first

parse the private key as {Di,0, Di,1}i∈[1,`]. Then it picks s′[2], . . . , s′[m], r′1, . . . , r
′
`

$← Zp and sets
λ′i = Li · s′ for each i ∈ [1, `] where s′ = (0, s′[2], . . . , s′[m])> and Li is the i-th row of L. Finally,
it outputs

{D′i,0 = Di,0 · f0(ρ(i))r
′
i , D′i,1 = Di,1 · gλ

′
i · f1(ρ(i))r

′
i}i∈[1,`].

We have following claim.

Claim 1. For all λ, (mpk,msk)← Setup(λ), (L, ρ), and sk(L,ρ) ← KeyGen(msk,mpk, (L, ρ)), we have
the following distributions are identical:

ReRand(mpk, sk(L,ρ), (L, ρ)) ≈ KeyGen(mpk,msk, (L, ρ)). (8)

Proof. We have that sk(L,ρ) is in the form of sk(L,ρ) = {Di,0 = f0(ρ(i))ri , Di,1 = gλi · f1(ρ(i))ri}i∈[1,`]

where λi = Li · s for some s = (α, s[2], . . . , s[m])> ∈ Zmp and {ri}i∈[1,`]. Then, the output of
ReRand(mpk, sk(L,ρ), (L, ρ)) is {D̃i,0 = f0(ρ(i))ri+r

′
i , D̃i,1 = gλi+λ

′
i · f1(ρ(i))ri+r

′
i}i∈[1,`]. We have

that λ′i + λi = Li · (s + s′) and s + s′ = (α, s[2] + s′[2], . . . , s[m] + s′[m])>. Here, s[i] + s′[i] for
i ∈ [2,m] and ri + r′i for i ∈ [1,m] are uniformly distributed over Zp and independent from the ran-
domness used to generate sk(L,ρ) (namely, {s[i]}i∈[2,m] and {ri}i∈[1,m]). Thus the output distribution of
ReRand(mpk, sk(L,ρ), (L, ρ)) is the same as that of KeyGen(mpk,msk, (L, ρ)).

Now we define key delegation algorithm KeyDel′ for Π′. In the following, we let n′ = (2nκ+1)(n+1).

KeyDel′(mpk, sk(y0,Y), (y0,Y), (ŷ0, Ŷ)): It takes as input the master public key mpk, a private key

sk(y0,Y) for (y0,Y) ∈ Znp × Zn×dp , and (ŷ0, Ŷ) ∈ Znp × Zn×d̂p such that ŷ0 + span(Ŷ) ⊆ y0 +
span(Y). Here, sk(y0,Y) is generated by sk(y0,Y) ← KeyGen′(msk,mpk, (y0,Y)) = KeyGen(msk,

mpk, (L, ρ)) such that (L, ρ) = fDSE→KP
k (y0,Y). The key delegation algorithm first parses the

key as sk(y0,Y) = {Di,0, Di,1}i∈[1,n′+d+1] and computes t = (t[1], . . . , t[d])> ∈ Zdp and T =

(Ti,j)(i,j)∈[1,d]×[1,d̂] ∈ Zd×d̂p such that ŷ0 = y0 + Yt and Ŷ = YT. Such t and T exist be-

cause ŷ0 + span(Ŷ) ⊆ y0 + span(Y) and can be computed efficiently. Then it sets D̃j,b for
j ∈ [1, n′ + d̂+ 1] and b ∈ {0, 1} as

D̃j,b =


D1,b ·

∏
i∈[1,d]D

t[i]
1+i,b if j = 1∏

i∈[1,d]D
Ti,j−1

1+i,b if j ∈ [2, d̂+ 1]

Dj−d̂+d,b if j ∈ [d̂+ 2, n′ + d̂+ 1]

It runs ReRand(mpk, {D̃i,0, D̃i,1}i∈[1,n′+d̂+1], (L̂, ρ̂))→ {D′i,0, D′i,1}i∈[1,n′+d̂+1] and outputs sk′
(ŷ0,Ŷ)

= {D′i,0, D′i,1}i∈[1,n′+d̂+1] where (L̂, ρ̂) = fDSE→KP
k (ŷ0, Ŷ).

The following claim indicates that the key delegation algorithm described above correctly works.

Claim 2. For all λ, n, (mpk,msk) ← Setup′(λ, n), y0,Y, ŷ0, Ŷ such that ŷ0 + span(Ŷ) ⊆ y0 +
span(Y), and sk(y0,Y) ← KeyGen′(msk,mpk, (y0,Y)), we have the following distributions are identical:

KeyDel′(mpk, sk(y0,Y), (y0,Y), (ŷ0, Ŷ)) ≈ KeyGen′(mpk,msk, (ŷ0, Ŷ))
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Proof. Let {D̃i,0, D̃i,1}i∈[1,n′+d̂+1] be defined as above which is computed from sk(L,ρ) = {Di,0 =

f0(ρ(i))ri , Di,1 = gλi ·f1(ρ(i))ri}i∈[1,n′+d+1] where λi = Li ·s for some s = (α, s[2], . . . , s[m′])> ∈ Zm′p
and {ri ∈ Zp}i∈[1,`]. Here, m′ = (nκ + 1)(n + 1) + 1. We will show that Pr[{D̃i,0, D̃i,1}i∈[1,n′+d̂+1] =

KeyGen(msk,mpk, (L̂, ρ̂))] > 0. Then, the output of KeyDel defined as above is correctly distributed due
to Equation (8).

For j ∈ [d̂+ 2, n′ + d̂+ 1] and b ∈ {0, 1}, we have

D̃j,b = gb·Lj−d̂+d·s · fb(ρ(j − d̂+ d))rj−d̂+d = gb·L̂j ·s · fb(ρ̂(j))r
′
j

where r′j = rj−d̂+d for j ∈ [d̂+2, n′+ d̂+1]. The second equation above holds by the definition of (L, ρ)

and (L̂, ρ̂). For j ∈ [2, d̂+ 1] and b ∈ {0, 1}, we have that

D̃j,b =
∏
i∈[1,d]

D
Ti,j−1

1+i,b =
∏
i∈[1,d]

(
gb·L1+i·s · fb(ρ(1 + i))r1+i

)Ti,j−1

=
(
g
∑

i∈[1,d] Ti,j−1L1+i·s
)b
· fb(D)

∑
i∈[1,d] r1+iTi,j−1

=
(
g
∑

i∈[1,d] Ti,j−1y
>
i ·s′
)b
· fb(D)r

′
j (By the structure of L.)

=
(
gŷ
>
j−1·s′

)b
· fb(D)r

′
j (By the definition of T.)

=
(
gL̂j ·s

)b
· fb(ρ̂(j))r

′
j (By the structure of L̂.)

In the above, r′j =
∑

i∈[1,d] r1+iTi,j−1 for j ∈ [2, d̂ + 1], s′ = (s[3], . . . , s[n + 2])>, and yi is the i-th
column of Y. We also have

D̃1,b = D1,b ·
∏
i∈[1,d]

D
t[i]
1+i,b = gb·L1·s · fb(ρ(1))r1 ·

∏
i∈[1,d]

(
gb·L1+i·s · fb(ρ(1 + i))r1+i

)t[i]
=

(
g(L1+

∑
i∈[1,d] t[i]L1+i)·s

)b
· fb(D)r1+

∑
i∈[1,d] r1+it[i]

=
(
gα+s[2]+(y>0 +

∑
i∈[1,d] t[i]y

>
i )·s′

)b
· fb(D)r

′
1 (By the structure of L.)

=
(
gα+s[2]+ŷ>0 ·s′

)b
· fb(D)r

′
1 (By the definition of t.)

=
(
gL̂1·s

)b
· fb(ρ̂(1))r

′
1 (By the structure of L̂.)

In the above, r′1 = r1 +
∑

i∈[1,d] r1+it[i].

To sum up, we have (D̃i,0, D̃i,1) = (f0(ρ̂(i))r
′
i , gL̂i·s · f1(ρ̂(i))r

′
i) for i ∈ [1, n′ + d̂+ 1]. This implies

that (D̃i,0, D̃i,1) can be seen as a private key for (L̂, ρ̂) which is generated by randomness {r′i}i∈[n′+d̂+1]

and {s[i]}i∈[2,m′]. Thus we have

Pr
[
{D̃i,0, D̃i,1}i∈[1,n′+d̂+1] = KeyGen(msk,mpk, (L̂, ρ̂))

]
> 0

as desired.
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C From K(C)ASP to KP(CP)-ABE

In Section 5, we showed that monotonic KP(CP)-ABE can be converted into K(C)ASP. In this section,
we also show the converse direction. Namely, we show that KASP can be converted into non-monotonic
KP-ABE with large universe (which trivially implies monotonic KP-ABE for small universe). The result
in this section together with that in Section 5 imply that these two notions are in fact equivalent in the sense
that one implies the other. These results also imply that monotonic KP-ABE for small universe and non-
monotonic KP-ABE with large universe are equivalent. We note that we can obtain similar implications
for the case of CP-ABE and CASP by swapping key and ciphertext attributes in the following.

C.1 The Conversion

We construct non-monotonic KP-ABE with large universe for N = (k̄,−,−,−) from KASP with dimen-
sion k̄ + 1. As in Section 3, we define appropriate maps fKP→KASP

p , fKP→KASP
e , fKP→KASP

k . At first,
we define fKP→KASP

p (N) = k̄ + 1. We assume that the universe of attributes is Zp. This restriction can
be easily removed by using collision resistant hash. The idea for the conversion is very similar to that in
Section 4.

Next we define fKP→KASP
e that takes as input a set of attributes S = (S1, . . . , Sk) ⊂ Zp such that

k ≤ k̄ and outputs a vector qS = (qS [1], . . . ,qS [k̄+ 1])> ∈ Zk̄+1
p which is defined as a coefficient vector

from

QS [Z] =

k+1∑
i=1

qS [i] · Zi−1 =

k∏
i=1

(Z − Si)

where, if k < k̄, the coordinates qS [k + 2], . . . ,qS [k̄ + 1] are all set to 0. We note that for x ∈ Zp,
QS(x) =

∏k
i=1(x− Si) = 0 iff x ∈ S. This property will be used later.

Next we define fKP→KASP
k that takes as input a span program (L ∈ Z`×mp , ρ) and outputs an arithmetic

span program (Y,Z, ρ′). Let the size of L be (`0 + `1)×m where ` = `0 + `1 and let ¯̀ = max{`0, `1}.
Without loss of generality, we assume that the first `0 rows of the matrix are associated with positive
attributes and the last `1 rows with negative attributes by a map ρ. We denote L as L = [L0;L1] using
matrices L0 ∈ Z`0×mp and L1 ∈ Z`1×mp . Y and Z are defined as

Y> =


0

(`0+2`1)×
(

2(k̄+2)`+m
)

m︷︸︸︷ I` ⊗ 1k̄+1

(k̄+1)¯̀︷︸︸︷
I` ⊗ 1k̄+1

(k̄+1)¯̀︷︸︸︷

 ∈ Z
(
`0+2`1+2(k̄+1)¯̀

)
×
(

2(k̄+2)`+m
)

p .

Z> =


L0

¯̀︷︸︸︷ G0

L1 I`1

¯̀−`1︷︸︸︷
G1

I(k̄+1)¯̀

I(k̄+1)¯̀


∈ Z

(
`0+2`1+2(k̄+1)¯̀

)
×
(

2(k̄+2)`+m
)

p .

Here, Gb ∈ Z`b×
¯̀(k̄+1)

p for b ∈ {0, 1} are defined as Equation (4).
We also define ρ′ : [`0 + 2`1 + 2(k̄ + 1)¯̀]→ [1, k̄ + 1] as follows.

27



• If i ∈ [1, `0 + 2`1], we set ρ′(i) = 1.
• Else, we have i ∈ [`0 + 2`1 + 1, `0 + 2`1 + 2(k̄ + 1)¯̀]. We then set ρ′(i) = i′ where i′ ∈ [1, k̄ + 1] is a

unique integer that satisfies

i− (`0 + 2`1) ≡ i′ mod (k̄ + 1).

C.2 Correctness of the Conversion

By combining the following theorem with Lemma 1, we can see that monotonic KP-ABE with large
universe can be constructed from KASP.

Theorem 4. For any span program (L, ρ) and S such that |S| ≤ k̄, we have that

RKASP(x, (Y,Z, ρ′)) = 1⇔ RKP(S, (L, ρ)) = 1

where x = fKP→KASP
e (S) and (Y,Z, ρ′) = fKP→KASP

k (L, ρ).

Proof. Let W be a matrix such that the i-th column is x[ρ′(i)] ·yi+zi where yi and zi are the i-th column
of Y and Z respectively. Then, from the definition of ρ′, we have that

W> =


L0 G0

L1 I`1

¯̀−`1︷︸︸︷
G1

H I(k̄+1)¯̀

H I(k̄+1)¯̀

 ∈ Z
(
`0+2`1+2(k̄+1)¯̀

)
×
(

2(k̄+2)`+m
)

p

where H = I¯̀⊗ qS ∈ Z(k̄+1)¯̀×¯̀
p . We divide the matrix W> into two parts as W =

(
W0,W1

)
where

W0 ∈ Z
(

2(k̄+2)`+m
)
×
(
`0+2`1

)
p and W1 ∈ Z

(
2(k̄+2)`+m

)
×2(k̄+1)¯̀

p . Note that W0 and W1 defined here
have exactly the same structure as X and Y defined in Section 4 respectively. We also let I ⊂ [1, `(=
`0 + `1)] be I = {i|ρ(i) ∈ S}. LI is defined as the sub-matrix of L formed by rows whose index is in I .
Then, we have

e1 ∈ span(L>I ) ⇔ (−e1 + span(W0)) ∩ span(W1) 6= ∅
( By exactly the same analysis as in the proof of Theorem 2. )

⇔ e1 ∈ span(W).

By the definition of RKASP and RKP, this concludes the proof of the theorem.

D Our Attribute-Based Signature Scheme

Here, we define predicate signature (PS) which is a signature analogue of predicate encryption. Attribute-
based signature (ABS) can be captured as a special case of PS in which a private key is associated with a
set of attributes while a signature is associated with a policy. In this section, we construct a PS scheme that
is dual of ABS: a private key is associated with a policy and a signature with a set. By applying our KP-
ABE-to-CP-ABE conversion technique developed in Section 3 and 4 to the PS scheme, we obtain the first
ABS with constant-size signatures that supports non-monotone span programs. Note that previous ABS
schemes with constant-size signatures [27, 12] only support threshold predicate. Our result significantly
improves the expressibility.
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D.1 Predicate Signature

Here, we define predicate signature. Let R = {RN : AN × BN → {0, 1} | N ∈ Nc} be a relation family
where AN and BN denote “verification attribute” and “key attribute” spaces and c is some fixed constant.
The index N = (n1, n2, . . . , nc) of RN denotes the numbers of bounds for corresponding parameters. A
predicate signature (PS) scheme Σ for RN is defined by the following algorithms:

Setup(λ,N)→ (mpk,msk): The setup algorithm is defined as the same as PE.

KeyGen(msk,mpk, Y )→ skY : The key generation algorithm is defined as the same as PE.

Sign(mpk,M, X, skY , Y )→ σ: The input to the signing algorithm is the master public key mpk, a mes-
sage M, verification attribute X , private key skY , and key attribute Y . It outputs a signature σ if
RN (X,Y ) = 1 and otherwise ⊥.

Verify(mpk,M, σ,X)→ 1 or 0: The verification algorithm takes as input a master public key mpk, the
message M, a signature σ, and a verification attribute X ∈ AN . It outputs 1 if the signature is
deemed valid and 0 otherwise. We assume that verification algorithm is deterministic.

We require correctness: that is, for all λ, N , (mpk,msk) ← Setup(λ,N), X ∈ AN , Y ∈ BN such that
R(X,Y ) = 1, M in specified message space, skY ← KeyGen(msk,mpk, Y ), and σ ← Sign(mpk,M, X,
skY , Y ), Verify(mpk,M, σ,X) = 1 holds.

For security of PS, we require privacy and unforgeability.

Privacy. We say that the PS scheme has complete privacy if for all λ, N , (mpk,msk) ← Setup(λ,N),
X ∈ AN , Y0, Y1 ∈ BN satisfying RN (X,Y0) = RN (X,Y1) = 1, M in specified message space, and
skYb ← KeyGen(msk,mpk, Yb) for b ∈ {0, 1}, the following distributions are the same.

{σ0 ← Sign(mpk,M, X, skY0 , Y0)} ≈ {σ1 ← Sign(mpk,M, X, skY1 , Y1)}

Unforgeability. We now define the unforgeability for PS scheme Σ. This security notion is defined by the
following game between a challenger and a forger F .

At first, the challenger runs the setup algorithm and gives mpk toF . ThenF may adaptively make key-
extraction queries. If F submits Y ∈ BN to the challenger, the challenger returns skY ← KeyGen(msk,
mpk, Y ). F may also makes signing queries. IfF submits (M, X, Y ) such thatRN (X,Y ) = 1 to the chal-
lenger, the challenger makes skY ← KeyGen(msk,mpk, Y ) and computes σ ← Sign(mpk,M, X, skY , Y )
which is returned to F . In the case of RN (X,Y ) = 0, the challenger returns ⊥ to F . At last, F outputs
a forgery (M?, X?, σ?). We say that F succeeds if Verify(mpk,M?, σ?, X?) → 1, F never made a key-
extraction query for Y such that R(X?, Y ) = 1, and F never made a signing query for (M?, X?, Y ) such
that R(X?, Y ) = 1. The advantage of a forger AdvPSF ,Σ is defined as the success probability of F in the
above game. We say that Σ satisfies adaptive-predicate and message unforgeability under chosen message
attack if AdvPEA,Π is negligible for all probabilistic polynomial time (PPT) adversary A.

A weaker notion called selective-predicate and adaptive-message unforgeability can be defined as in
the above game with the exception that the adversary A has to choose X? before seeing mpk but key-
extraction queries, signing queries, and choice of M? can still be adaptive.

D.2 Linear Secret Sharing Scheme

We can construct secret sharing scheme for span program (L, ρ) as follows.
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Definition 1 (Linear Secret Sharing Scheme). A secret sharing scheme for span program (L, ρ) consists
of the following two algorithms.
ShareL,ρ The algorithm takes as input s ∈ Zp which is to be shared. Let L be an `×m matrix. It chooses

s[2], . . . , s[m]
$← Zp and let s = (s, s[2], . . . , s[m])>. It outputs L · s as the vector of ` shares. The

share λi = 〈Li, s〉 belongs to party ρ(i) for i ∈ [1, `], where Li denotes the i-th row of L.
ReconL,π The algorithm takes as input a set S ⊆ U . Assume that the indicator vector δ of S is accepted

by (L, ρ). Then it outputs a set of constants {(i, µi)}i∈I which has a linear reconstruction property:∑
i∈I µi · λi = s. Here, I is a set of indices whose labels of corresponding rows are set to 1 by the

input δ.

D.3 Embedding Lemma for PS

As noted in [26], a signature analogue of Lemma 1 holds.

Lemma 2. Consider two relation families RF
N : AN × BN → {0, 1} and RF′

N ′ : A′N ′ × B′N ′ → {0, 1},
which is parametrized by N ∈ Nc and N ′ ∈ Nc′ respectively. Suppose that there exist efficient mappings
fp : Zc′ → Zc, fe : A′N ′ → Afp(N ′), and fk : B′N ′ → Bfp(N ′) such that fe is injective and

RF′
N ′(X

′, Y ′) = 1⇔ RF
fp(N ′)(fe(X

′), fk(Y
′)) = 1.

Then, a PS Σ = {Setup,KeyGen, Sign,Verify} for RF
N can be converted into a PS Σ′ = {Setup′,

KeyGen′, Sign′,Verify′} forRF′
N ′ as Setup′(λ,N ′) = Setup(λ, fp(N ′)), KeyGen′(msk,mpk, Y ′) = KeyGen

(msk,mpk, fk(Y
′)), Sign′(mpk,M, X ′, skY ′ , Y

′) = Sign(mpk,M, fe(X
′), skY ′ , fk(Y

′)), and Verify′(mpk,
M, σ,X ′) = Verify(mpk,M, σ, fe(X

′)). This conversion preserves security. Namely, if Σ is secure, so
is Σ′. This holds for adaptive-predicate and message unforgeability, selective-predicate and adaptive-
message unforgeability, and complete privacy.

Proof. Since we have RF′
N ′(X

′, Y ′0) = RF′
N ′(X

′, Y ′1) = 1 ⇔ RF
fp(N ′)(fe(X

′), fk(Y
′

0)) = RF
fp(N ′)(fe(X

′),

fk(Y
′

1)) = 1 for any X ′ ∈ A′N ′ and Y ′0 , Y
′

1 ∈ B′N ′ , complete privacy of Σ′ is immediately followed
by that of Σ. Next we show that if Σ is selective-attribute and adaptive-message unforgeable, so is Σ′.
Other cases can be dealt similarly. We construct a forger G against Σ from a forger F against Σ′. At
first, F submits its target X ′?. Then, G submits fe(X ′

?) to its challenger. Then, Setup(λ, fp(N ′)) =
Setup′(λ,N ′) → (mpk,msk) is run and mpk is given to G. G gives mpk to F . When F makes
key query for Y ′ ∈ B′N ′ , G computes Y = fk(Y

′) and makes a key-extraction query for its chal-
lenger. Then, KeyGen(msk,mpk, fk(Y

′)) = KeyGen′(msk,mpk, Y ′) → skY ′ is run and B is given
skY ′ . Then, G gives it to F . Since we have RF

fp(N ′)(fe(X
′?), fk(Y

′)) = RF′
N ′(X

′?, Y ′) = 0, the
query is valid. When F makes signing query for (M, X ′, Y ′) such that RN (X ′, Y ′) = 1, G submits
(M, fe(X

′), fk(Y
′)) to its challenger. Then, KeyGen(msk,mpk, fk(Y

′)) = KeyGen′(msk,mpk, Y ′) →
skY ′ and Sign′(mpk,M, X ′, skY ′ , Y

′) = Sign(mpk,M, fe(X
′), skY ′ , fk(Y

′)) → σ′ are run. Then, σ′

is returned to G and G gives it to F . Finally, F outputs its forgery (M?, X ′?, σ?). Then, G outputs
(M?, fe(X

′?), σ?) as its forgery. We claim that G succeeds whenever F succeeds. At first, we have
Verify′(mpk,M?, σ?, X ′?) = Verify(mpk,M?, σ?, fe(X

′?)). Furthermore, all signing key queries made
by G are of the form (M, fe(X

′), fk(Y
′)) where (M, X ′, Y ′) is submitted by F . We have that M =

M?, fe(X ′) = fe(X
′?), and RF

fp(N ′)(fe(X
′), fk(Y

′)) = 1 if and only if M = M?, X ′ = X ′?, and

RF′
N ′(X

′?, Y ′) = 1. Here, we used the fact that fe is an injective map. Therefore, G succeeds whenever F .
This concludes the proof.
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D.4 The Construction

Here, we construct a PS scheme for relationRKP
N whereN = (k̄,−,−,−) with large universe. Namely, in

the following scheme, the size of attribute set that is associated with a signature is bounded by k̄, whereas
other parameters are unbounded. Furthermore, all span programs appearing in the scheme are monotone.
For the sake of brevity, we assume that the message space of the following scheme to be {0, 1}κ. We also
assume that the universe of attributes is U = Z∗p\D where D = {D1, . . . ,Dk̄} ⊂ Zp is a set of dummy
attributes. These restrictions can be easily removed by using collision resistant hash and one can deal with
message and attributes of any length.

Setup(λ, k̄) : It samples h0, h1, . . . , hk̄+1, v0, v1, . . . , vκ
$← G. It also samples α $← Zp and outputs

master public key mpk = {g, h0, h1, . . . , hk̄+1, v0, v1, . . . , vκ, e(g, g)α} and msk = α.

In the following, we denote Wa(M) for v0 ·
∏
i∈{j∈[κ]|M[j]=1} vi where M[j] is the j-th bit of M. Note that

Wa(M) is efficiently computable from mpk.

KeyGen(msk,mpk, (L, ρ)) : The input to the algorithm is the master secret key msk, the master public
key mpk, and a monotone span program (L, ρ). Here, L ∈ Z`×mp and ρ is a map ρ : [`] → U . It

chooses a vector s = (s[1], . . . , s[m])> such that s[1] = α and s[2], . . . , s[m]
$← Zp and calculates

λi = Li · s for each i ∈ [`] where Li is i-th row of L. Finally, it chooses ri
$← Zp for all i ∈ [`] and

outputs private key

sk(L,ρ) =

{
Di,1 = gλi · hri0 , Di,2 = gri ,

{Ki,j = (h
−ρ(i)j

1 hj+1)ri}j∈[1,k̄], {K ′i,j = vrij }j∈[0,κ]

}
i∈[`]

.

Sign(mpk,M, S, sk(L,ρ), (L, ρ)) : Assume that the monotone span program (L, ρ) associated to the pri-
vate key sk(L,ρ) satisfies RKP(S, (L, ρ)) = 1 and otherwise it outputs 0. We let I = {i|ρ(i) ∈
S}. Then the signing algorithm can efficiently compute reconstruction coefficients {(i, µi)}i∈I =
ReconL,ρ(S) such that

∑
i∈I µiλi = α. It also sets Ŝ = S ∪ {D1, . . . ,Dk̄−|S|}. When |S| = k̄,

Ŝ = S. Then it first computes

D′i,1 = Di,1 ·
k̄∏
j=1

K
qŜ [j+1]
i,j ·

∏
j′∈{0}∪{j′′∈[1,κ]|M[j′′]=1}

K ′i,j′

where qŜ = (qŜ [1], . . . ,qŜ [k̄ + 1])> ∈ Zk̄+1
p is defined as a coefficient vector from QŜ [Z] =∑k̄+1

j=1 qŜ [j] · Zj−1 =
∏
ω∈Ŝ(Z − ω). Next it picks random r̃ and outputs the signature

σ =

σ1 =
(∏
i∈I

(D′i,1)µi
)
·
(
h0

k̄+1∏
j=1

h
qŜ [j]
j

)r̃ ·Wa(M)r̃, σ2 =
(∏
i∈I

D−µii,2

)
· g−r̃

 .

Verify(mpk, σ,M, S) : To check that whether σ is a valid signature for a message M with set S, it first
checks that σ ∈ G2. Otherwise it outputs 0. Then it checks

e(g, g)α
?
= e(g, σ1) · e(h0

k̄+1∏
j=1

h
qŜ [j]
j ·Wa(M), σ2)

and outputs 1 if it holds and 0 otherwise.
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ABS with Constant-Size Signatures. The above scheme is PS scheme for relation RKP. By combining
the result in Section 3 and Lemma 2, we obtain a PS scheme for relationRDSE. Furthermore, by combining
the result in Section 4 and Lemma 2, we obtain the first non-monotonic ABS scheme with constant-size
signatures. 8

Here, we show the correctness and security of our PS scheme. Correctness of the scheme is implied
by the following lemma and simple calculation. The lemma also implies privacy of the scheme since it
indicates that the distribution of the signature only depends on M and S. In particular, it is completely
independent from sk(L,ρ).

Lemma 3. For any λ, k̄, κ, M ∈ {0, 1}κ, (L, ρ), S, (mpk,msk) ← Setup(λ, k̄), and a private key
sk(L,ρ) ← KeyGen(msk,mpk, (L, ρ)) where S is accepted by (L, ρ), we have that σ generated by σ ←
Sign(mpk,M, S, sk(L,ρ), (L, ρ)) is distributed as follows:

σ =
(
σ1 = gα ·

(
h0

k̄+1∏
j=1

h
qŜ [j]
j ·Wa(M)

)r
, σ2 = g−r

)

where r $← Zp.

Proof. We first observe that

D′i,1 = gλi · hri0 ·
( ∏
j∈[1,k̄]

h
−ρ(i)jqŜ [j+1]
1 h

qŜ [j+1]
j+1

)ri ·Wa(M)ri

= gλi · hri0 · h
(−ri)·

(∑
j∈[1,k̄] ρ(i)jqŜ [j+1]

)
1 ·

( ∏
j∈[2,k̄+1]

h
qŜ [j]
j

)ri ·Wa(M)ri

= gλi ·
(
h0 ·

∏
j∈[1,k̄+1]

h
qŜ [j]
j

)ri ·Wa(M)ri

where we used the fact that −
∑

j∈[1,k̄] ρ(i)jqŜ [j + 1] = qŜ [1] in the last equation. This holds since if

i ∈ I , we have ρ(i) ∈ S ⊆ Ŝ and
∑

j∈[1,k̄+1] ρ(i)j−1qŜ [j] =
∏
ω∈Ŝ(ρ(i)− ω) = 0.

Next, we can see that

σ1 =
∏
i∈I

(
gλi ·

(
h0 ·

∏
j∈[1,k̄+1]

h
qŜ [j]
j

)ri ·Wa(M)
)µi
·
(
h0 ·

∏
j∈[1,k̄+1]

h
qŜ [j]
j

)r̃ ·Wa(M)r̃

= g
∑

i∈I λiµi ·
(
h0 ·

∏
j∈[1,k̄+1]

h
qŜ [j]
j ·Wa(M)

)r̃+∑
i∈I riµi

= gα ·
(
h0

∏
j∈[1,k̄+1]

h
qŜ [j]
j ·Wa(M)

)r
and σ2 =

(∏
i∈I D

−µi
i,2

)
· g−r̃ = g−r̃−

∑
i∈I riµi = g−r where r = r̃ +

∑
i∈I riµi. Here, r is uniformly

distributed over Zp due to r̃ as desired.

Unforgeability of the scheme is proven under the following assumption.

8To apply Lemma 2, the map fCP→DSE
e should be injective. However, rigorously, it is not the case. This is because we adjust

the number of columns of a matrix associated with a span program by padding zeroes in the computation of the map. This
problem can be easily solved by restricting the size of matrices used in the ABS scheme to always be the same.
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K-Computational Bilinear Diffie-Hellman Exponent (K-CBDHE) Assumption. We say that an ad-
versary A breaks the K-CBDHE assumption on (G,GT ) if

Pr[A(g, {gai}i∈[2K]\{K+1})→ ga
K+1

]

is non-negligible and A runs in polynomial time where g $← G, a $← Zp.
Before going to the security proof, we introduce following lemma proved in [45] which abstracts out

core technique used in the security proof of spatial encryption scheme proposed by Boneh and Hamburg
[10].

Lemma 4. ([10]) Let G be a multiplicative group with prime order p and g be its generator. Let K,L
be some integer bounded by polynomial of λ, a be a = (a, a2, . . . , aK)> ∈ ZKp , {wi}Li=0 be elements in
Zp, and {ui}Li=0 be vectors in ZKp . We also assume that t ∈ ZKp satisfies 〈t,u0〉 6= 0 and 〈t,ui〉 = 0 for
i ∈ [1, L]. Then, there exists an PPT BHSim which takes ({ui}Li=0, {wi}Li=0, t, {ga

i}i∈[1,2K]\{K+1}) as

input and outputs (ga
K+1 · (g〈u0,a〉+w0)r, {(g〈ui,a〉+wi)r}Li=1) where r $← Zp.

Theorem 5. The above scheme is selective-predicate and adaptive-message unforgeable under chosen
message attack if the (k̄ + 2)-CBDHE assumption holds in G.

Proof. To prove the theorem, it suffices to show that there exists a PPT A that solves (k̄ + 2)-CBDHE
problem with non-negligible probability assuming a PPT forger F against our scheme with non-negligible
advantage. We show this by considering the following sequences of the games. In the following, let
Xi denote the probability that F is successful in Game i and the challenger does not abort. We also let
K = k̄ + 2 for the simplicity of the notation.

Game 0. We define Game 0 as an experiment between the challenger and the forger F . Let the success
probability of F in the game be Pr[X0] = ε. By the assumption, we have ε is non-negligible.

Game 1. In this game, we change the way to choose mpk and msk. At the outset of the game, F declares
S? which is the set she wants to be challenged upon. Ŝ? is defined as Ŝ? = S?∪{D1, . . . ,Dk̄−|S?|}.
Then, the challenger picks a, α̃, h̃0, . . . , h̃k̄+1, ṽ0, . . . , ṽκ,

$← Zp, φ0
$← [−2κQ, 2Q−1], φ1, . . . , φκ

$←
[0, 2Q−1] and sets msk = aK+1 + α̃. Here, Q is the upper bound on the number of signing queries.
Next, mpk is set as

mpk =

h0 = gh̃0 ·
k̄+1∏
i=1

(ga
i
)−qŜ? [i], hi = gh̃i · gai for i ∈ [1, k̄ + 1],

e(g, g)α = e(ga, ga
K

) · e(g, g)α̃, vi = (ga
K

)φi · gṽi for i ∈ [0, κ]

 (9)

where qŜ? is defined as a coefficient vector from QŜ? [Z] =
∑k̄+1

j=1 qŜ? [j] ·Zj−1 =
∏
ω∈Ŝ?(Z−ω).

The rest of the game is the same as Game 0. Since the view of F is completely the same as that in
Game 0, we have Pr[X1] = Pr[X0].

Game 2. Here, we define a function Φ : {0, 1}κ → Zp and Ṽ : {0, 1}κ → Zp as

Φ(M) = φ0 +
∑

i∈{j∈[κ]|M[j]=1}

φi, Ṽ (M) = ṽ0 +
∑

i∈{j∈[κ]|M[j]=1}

ṽi.

Note that we have Wa(M) = (ga
K

)Φ(M) · gṼ (M) by this definition. In this game, the challenger
aborts if F makes signing query for (M, S?, (L, ρ)) such that Φ(M) = 0 and RN (S?, (L, ρ)) = 1.
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The challenger also aborts if the final output (M?, σ?) of F satisfies Φ(M?) 6= 0. By the same
argument as the security proof of the Waters’ identity-based encryption scheme [42], we have that
Pr[X2] ≥ Pr[X1]/(32(κ+ 1)Q).

Finally, we replace the challenger in Game 2 with an algorithmA that solves CBDHE problem with prob-
ability Pr[X2] which is non-negligible assuming Pr[X0] is non-negligible. We describe the description of
A in the following.

Set-up of the Public Keys. Given the problem instance (g, {gai}i∈[1,2K]\{K+1}) and S? from F , A
picks α̃, h̃0, . . . , h̃k̄+1, ṽ0, . . . , ṽκ,

$← Zp, φ0
$← [−2κQ, 2Q − 1], φ1, . . . , φκ

$← [0, 2Q − 1], sets mpk as
Equation (9), and gives it to F . This step can be efficiently done only using problem instance, in particular,
without knowing a or ga

K+1
.

Answering Private Key Queries. Throughout the game, F may ask for a private key for (L, ρ). Let L be
an `×mmatrix and I be I = {i ∈ [1, `]|ρ(i) ∈ Ŝ?}. Since L does not accept Ŝ?, we have e1 6∈ span(L>I )
where LI is the sub-matrix of (L, ρ) formed by rows corresponding to index i such that i ∈ I . Hence,
due to the proposition 11 in [25], we have that there must exists an efficiently computable vector z ∈ Zmp
such that 〈e1, z〉 = 1 and LI · z = 0. Now A picks w[2], . . . ,w[m]

$← Zp and implicitly defines
s = (s[1], . . . , s[m])> = αz + w where w = (0,w[2], . . . ,w[m])>. Note that we have that s[1] = α and
that s[2], . . . , s[m] ∈ Zp are uniformly distributed, as required in Definition 1. Then F implicitly defines
λi = Li · s where Li is the i-th row of L. Then A computes (Di,1, Di,2, {Ki,j}j∈[1,k̄], {K ′i,j}j∈[0,κ]) for
i ∈ [1, `] as follows.

• For i ∈ I , we have that λi = Li · s = Li ·w holds since Li · z = 0 and thus λi can be efficiently
computed by A. In this case, A picks ri

$← Zp and computes Di,1 = gλi · hri0 , Di,2 = gri ,

{Ki,j = (h
−ρ(i)j

1 hj+1)ri}j∈[1,k̄], and {K ′i,j = vrij }j∈[0,κ].

• For i 6∈ I , we have that λi = αLi·z+Li·w = µ1a
K+1+µ2 where µ1 = Li·z and µ2 = Li·(α̃z+w).

λi is known to A if µ1 = 0 and such a case can be dealt with as the same as the case of i ∈ I . Thus
we assume that µ1 6= 0 in the following. Since A does not know λi, we have to rely on Lemma 4 in
order to answer the query.

A sets u0 = (−q>
Ŝ?
, 0)> ∈ ZKp , w0 = h̃0, u1 = 0K ∈ ZKp , w1 = 1, uj+1 = −ρ(i)je1 +

ej+1 ∈ ZKp and wj+1 = −ρ(i)j h̃1 + h̃j+1 for j ∈ [1, k̄], and uj′+k̄+2 = φj′eK ∈ ZKp and
wj′+k̄+2 = ṽj′ for j′ ∈ [0, κ]. It also sets t = (1, ρ(i), . . . , ρ(i)K−1, 0) ∈ ZKp . We can see that
〈u0, t〉 = −

∏
ω∈Ŝ?(ρ(i)− ω) 6= 0 since ρ(i) 6∈ Ŝ? and 〈uj , t〉 = 0 for j ∈ [1, k̄ + κ+ 2].

Then A runs BHSim({ui}k̄+κ+2
i=0 , {wi}k̄+κ+2

i=0 , t, {gai}i∈[1,2K]\{K+1}) → (ga
K+1 · (g〈u0,a〉+w0)r̂,

{(g〈ui,a〉+wi)r̂}k̄+κ+2
i=1 ) where r̂ $← Zp due to Lemma 4. We have that D̂i,1 := ga

K+1 ·(g〈u0,a〉+w0)r̂ =

ga
K+1 ·

(
gh̃0 ·

∏k̄+1
i=1 (ga

i
)−qŜ? [i]

)r̂
= ga

K+1 ·hr̂0, D̂i,2 := (g〈u1,a〉+w1)r̂ = gr̂, K̂i,j := (g〈uj+1,a〉+wj+1)r̂

=
(
(ga)−ρ(i)j · gaj+1 · g−ρ(i)j h̃1+h̃j+1

)r̂
= (h

−ρ(i)j

1 hj+1)r̂ for j ∈ [1, k̄], and also we have K̂ ′i,j′ =

(g〈uj′+k̄+2,a〉+wj′+k̄+2)r̂ =
(
(ga

K
)φj′ · gṽj′

)r̂
= vr̂j′ for j′ ∈ [0, κ].

Finally, A sets Di,1 = d̂µ1
i,1 · gµ2 = gα · hri0 , Di,2 = D̂µ1

i,1 = gri , Ki,j = K̂µ1
i,j = (h

−ρ(i)j

1 · hj+1)ri

for j ∈ [1, k̄], and K ′i,j′ = (K̂ ′i,j′)
µi = vrij′ for j′ ∈ [0, κ] where ri = µ1r̂. Since µ1 6= 0 and r̂ is

uniformly distributed over Zp, ri is also uniformly distributed over Zp as desired.

Finally, A gives sk(L,ρ) = {Di,1, Di,2, {Ki,j}j∈[1,k̄], {K ′i,j}j∈[0,κ]}i∈[1,`] to F .

34



Answering Signing Queries. When F makes a signing query to (M, S, (L, ρ)), A checks whether
RKP(S, (L, ρ)) = 0 and returns ⊥ if it holds. Otherwise, it answers the signing query as follows. There
are two cases to consider.

• In case of S 6= S?, we have that Ŝ 6= Ŝ? where Ŝ = S ∪ {D1, . . . ,Dk̄−|S|}. Since Ŝ 6= Ŝ? and
|Ŝ| = |Ŝ?|, there exists U ∈ U ∪ D = Z∗p such that U 6∈ Ŝ? and U ∈ Ŝ. Then A sets a monotone
span program (L′, ρ′) over U ∪ D such that L′ = (1) ∈ Z1×1

p and ρ′(1) = U. The monotone span
program accepts a set iff it includes U. So we have that (L′, ρ′) accepts Ŝ while it does not accept
Ŝ?. ThenA can generates a private key sk(L′,ρ′) = {gα ·hr0, gr, {(h

−Uj

1 hj+1)r}j∈[1,k̄], {vrj′}j′∈[0,κ]}
for (L′, ρ′) such that r $← Zp by the same way as answering private key queries. Note that such
a monotone span program is not considered to be valid one in the real system when U ∈ D. We
consider such a key only in the security proof. ThenA runs σ ← Sign(mpk,M, S, sk(L′,ρ′), (L

′, ρ′))
and returns σ to F . Due to the perfect privacy of the scheme, the distribution of σ is completely the
same as honestly generated one.

• Next we consider the case of S? = S. First assume that Φ(M) 6= 0 since otherwise A aborts. A
picks r̂ $← Zp and implicitly sets r = −a/Φ(M) + r̂. Then σ = (σ1, σ2) is set as

σ1 = gα ·
(
h0

∏
j∈[1,k̄+1]

h
qŜ? [j]
j ·Wa(M)

)r
= ga

K+1+α̃ ·
(
gh̃0+

∑
i∈[1,k̄+1] qŜ? [i]h̃i · (gaK )Φ(M)gṼ (M)

)−a/Φ(M)+r̂

= (ga)−h̃/Φ(M) · (gaK )Φ(M)r̂ · gα̃+r̂h̃ (10)

and σ2 = (ga)−1/Φ(M) · gr̂ where h̃ = h̃0 +
∑

i∈[1,k̄+1] qŜ? [i]h̃i + Ṽ (M). In the Equation (10), a

problematic term ga
K+1

cancels out. Thus A can efficiently compute σ1 and σ2 from the problem
instance. Furthermore, since r is uniformly distributed over Zp, σ is correctly distributed by Lemma
3.

Extracting the Answer to the Problem from Forgery. At the last of the game, F outputs a forgery
(M?, σ? = (σ?1, σ

?
2)) for the set S?. A aborts if Φ(M?) 6= 0 or Verify(mpk, σ?,M?, S?) = 0. Otherwise,

A can extract the answer to the CBDHE assumption as follows. Since Verify(mpk, σ?,M?, S?) = 1, we
have that σ?2 = g−r and

σ?1 = gα ·
(
h0

∏
j∈[1,k̄+1]

h
qŜ? [j]
j ·Wa(M?)

)r
= ga

K+1+α̃ · (gr)h̃0+(
∑

j∈[1,k̄+1] qŜ? [j]·h̃j)+Ṽ (M?)

for some r ∈ Zp. The second equation in the above follows from the fact that Φ(M?) = 0. Thus A can

extract ga
K+1

by computing σ?1 · g−α̃ · (σ?2)h̃0+(
∑

j∈[1,k̄+1] qŜ? [j]·h̃j)+Ṽ (M?) = ga
K+1

.
Since the view of F is completely the same as that in Game 2, the success probability of A is Pr[X2]

which is non-negligible by the assumption.
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