
Non-Repudiable Proofs of Storage in Cloud

Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

School of Computer, Being Institute of Technology,
Beijing, China, 100081

{wanghongyuan, liehuangz, lilongyijia, xuchang }@bit.edu.cn

Abstract. With the widespread use of cloud computing and cloud s-
torage, how to ensure the authenticity of data in remote storage has
become a severe problem. Provable data possession (PDP) and Proof
of Retrievability (POR) are techniques for a client to verify whether an
untrusted server possesses the original data entirely, and many PDP and
POR schemes have been proposed to resolve above issue so far. But driv-
en by profits, a malicious client may accuse an honest server and deny
the correct verification in many circumstances.
In this paper, we give a method to reform any private verification PDP/POR
scheme into a non-repudiable PDP/POR scheme. And then we propose
an instantiation, the Non-repudiable PDP (NRPDP) scheme of private
verification, which can provide mutual proof to protect both the client
and server. Based on homomorphic verifiable tags and commitment func-
tion, our solution allows both the client and the server to prove them-
selves and verify the other side respectively. To achieve better perfor-
mance, we improve the NRPDP scheme to obtain an E-NRPDP scheme,
which can save the storage cost of the server and reduce the I/O costs
to raise efficiency.
We prove the security of NRPDP scheme in the random oracle model,
and implement a prototype based on our NRPDP scheme. Then we uti-
lize data size as much as 10G to evaluate the performance in a realistic
cloud platform. The experiments show our scheme can be executed effi-
ciently as the original PDP/POR scheme and guarantee non-repudiation
efficaciously. Our method is universal and practical, which means that
it can be applied in any private PDP/POR schemes to guarantee non-
repudiation.

Keywords: Non-repudiation, Provable Data Possession, Cloud storage,
Commitment function

1 Introduction

Cloud computing is getting increasingly popular as it provides a low-cost, scal-
able, location-independent service and infrastructure. Cloud storage has become
one of the most popular applications of cloud computing, for instance, the well-
known Google Drive and Amazon S3. But whether the cloud storage providers
(we also call them servers in the following sections) and the clients are all trusted
is still a problem.

2 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

An honest client gives his data to a cloud storage provider. But the data may be
corrupted because of internal or external reasons. Even in normal circumstances,
the data may be damaged or lost by administration errors such as the physical
implementation of storage evolves, updating system or equipment replacement.
But taking reputation and money into consideration, the server doesn’t want to
take the responsibility. After that, the client cannot know the condition of data
in time, and consequently it leads to loss. How to effectively and timely detect
the integrity of data has been a popular problem.
Many PDP and POR schemes have been proposed to offer data possession guar-
antee for cloud storage applications, such as the best-known S-PDP scheme
proposed by G. Ateniese et al.[4, 5] and Proofs of Retrievability (POR) defined
and proposed by Juels and Kalisky[14, 15]. The previous schemes[21, 20, 7, 12,
31, 30, 19, 18, 11, 26] are all unidirectional proof and verification, which protec-
t a client from a dishonest server. In the meantime, several public verification
schemes[5, 13, 18, 25, 24, 23, 22]were proposed to achieve zero-storage on client.
Private keys are not needed in a public verification scheme, so that anyone can
verify a proof generated by the server, and it doesn’t have the problem of repu-
diation. However, some public verification schemes need more time to generate
and verify a proof, and ordinarily require more communication bandwidth, and
some schemes[25, 24, 23, 22] based on Trusted Third Party (TTP) are based on
stronger assumption. In addition, it may reveal the privacy of client since anyone
can compute the proof and verification.
But in another case, driven by interests, a client may deny the valid proof and
falsely accuse an honest server of modifying his data secretly. For instance, a
cloud storage provider gives the promise that he can provide a low-cost storage
which guarantees privacy and integrality, and he would pay a huge compensa-
tion to the victims if he breaks his promise, just as the cloud service provided
by Beijing New Web, who has paid real compensation to the victims. In that
case, some malicious clients who want to get the compensation may accuse that
the data stored in the cloud has been corrupted, even though the data is intact.
Towards the schemes which are not based on the third party and only can guar-
antee private verification, the server cannot merely make the client’s information
public, which becomes an issue.
There already exist many optimistic approaches to keep non-repudiation or re-
solve disputation in other areas, such as Optimistic Fair Exchange protocols [2,
3] and Non-repudiation protocols [27, 28]. These protocols all require a TTP in-
volve in the execution. When a disputation occurs, the TTP can translate the
commutative messages into a public message which can be recognized by all
participants. The audit schemes based on third party can be used in public ver-
ification, though this approach can reduce the burden of clients, only encrypted
files can be applied and the TTP must maintain a long-term information state.
In a PDP/POR system, this approach undoubtedly will increase the cost of com-
putation and storage services.
To sum up, we aim to construct a storage system to obtain the following guar-
antees:

Non-Repudiable Proofs of Storage in Cloud 3

Authenticated and retrievable storage: The client wishes to verify that the
data stored on the server is correct and integrated. The server should keep the
client’s data well-preserved, if the data has been changed, the client could be
aware of it timely and easily.
Mutual proof not based on the third party: In the absence of a third party,
both the clients and servers must demonstrate by themselves that they are all
trusted.
Non-repudiation: If the server keeps the client’s data well-preserved and gives
the client the correct proof of data possession, the client cannot repudiate it. If
the client falsely accuses an honest server, the server could expose some informa-
tion to generate a proof to overturn the false accusation and prove his innocence.
Efficient and practical scheme: We need a scheme that can achieve above
goals without having the client retrieve the data from the server or having the
server access the entire file. In the case of big data, we need the scheme perform
efficiently, which means that we need to minimize the computing cost, commu-
nication cost and local storage cost.

1.1 Contributions

In this paper, we give a method to reform any private verification PDP/POR
scheme into a non-repudiable PDP/POR scheme and propose the first NRPDP
scheme, which requires mutual proofs between a server and a client to protect
both of them. We use RSA scheme and homomorphic verifiable tags to con-
struct the PDP scheme, and the commitment function (COM) to achieve non-
repudiation. To achieve better performance, we improve the NRPDP scheme to
abtain an E-NRPDP scheme, which can save the storage cost of the server and
reduce the I/O costs, and consequently raise efficiency of the whole scheme.
We analyze the security of the NRPDP scheme and implement a prototype
to evaluate the performance in a realistic cloud platform. We utilize big data
as much as 10G to measure the performance of both PDP schemes and POR
schemes .The experiments show that the improved PDP and POR schemes can
be executed efficiently and guarantee non-repudiation efficaciously. In addition,
we take S-PDP scheme as an instance and test the optimal parameter of NRPDP
scheme. From these experiments, we can see that the NRPDP scheme is efficient
and practical by the method of commitment functions.

1.2 Paper Organization

We give an overview of our idea in section 2. In section 3, we describe the
preliminaries that will be used in our scheme. Then, we introduce the definition
and concrete scheme of NRPDP which is our main construction in section 4,
followed by the formal proof of security of our scheme in section 5. Then we
support our theoretical claims by implementing and evaluating the NRPDP
scheme in section 6. Finally, we roughly view the related work in section 7 and
the conclusion in section 8.

4 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

2 Overview of Our Idea

A NRPDP scheme requires mutual proofs between a server and a client so that it
can protect both of them. Our construction is based on homomorphic verifiable
tags (which construct from RSA scheme) and commitment function, which is a
tool to prove the validity of a value at specific times.

(a) Pre-process

(b) Challenge and verification

(c) Public COM verification
Figure 1: the NRPDP scheme.

Non-Repudiable Proofs of Storage in Cloud 5

As Figure 1 shows, in the phase of pre-process, the client preprocesses the file
and generates the metadata, commitment functions (COMs) and the processed
data. Then the client sends the COMs and data to the server and keeps the
metadata locally.
In the phase of challenge, the client gives a challenge chal to the server, and the
server generates a proof based on the chal and sends it to the client. The client
verifies whether the proof is valid based on the local metadata.
There are two cases:
Case 1: if the client accepts the proof generated by the server, it means that
the server can guarantee the possession of the client’s data of the time.
Case 2: if the client does not accept the proof, there are two possibilities, the
dishonest client or the incompetent server. On this occasion, the server has two
choices, opening the commitment functions or being responsible for dereliction
of duty. If the client is dishonest and repudiates the valid proof, the server can
open the commitment functions which can prove that the data is well-preserved.
The detailed construction is presented in section 4.

3 PRELIMINARIES

3.1 The Commitment Function

We shall use the Pedersen commitment function [17] as follows.
Let Gq be a group of prime order q in which computing the discrete logarithm
function is intractable, and let g and h be elements of Gq where it is hard to
compute logg h mod q.
Pedersen commitment function: Let s ∈ Zq, the commitment COM(s, t)
to s, using the help value t which is random selected from Zq, is COM(s, t) =
gsht mod q.
It has been proved that the committer COM(s, t) reveals no information about
s.[17]
The commitment function has two properties: information-theoretically hiding
and computationally binding.
Information-theoretically hiding:
Note that with the help value t which is a random choice, the committer COM(s, t)
is a random element of Gq. In view of this circumstance, it is hard to distinguish
COM(s, t) from a random element of Gq.
Computationally binding:
Since it is hard to compute the value of logg h mod q, it is impossible to find a
pair (s′, t′) 6= (s, t) such that COM(s′, t′) 6= COM(s, t). Consequently, the com-
mitter COM(s, t) can be opened only in one way to demonstrate the original
value s.
But Pedersen commitment function is only a one time effort, because that s is
revealed when the commitment is opened. Therefore Pedersen function is not
suit for a system which is repetitively used.
Based on Pedersen commitment function, we can construct a reusable commit-
ment function as follows.

6 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

Let p1 = 2p′1 + 1 and q1 = 2q′1 + 1 be safe primes and let N1 = p1q1 be the mod-
ulus of an RSA scheme. Let g1 be the generator of the unique cyclic subgroup
whose order is p′1q

′
1 .

Let e1 and d1 be secret primes such that e1d1 = 1 mod p′1q
′
1.

Then a construction of reusable commitment function is COM(M) = (gM1 hH1(ID))e1 mod
N1, d1 .
Intuitively, it is a ramification of the Pedersen commitment function [17]. ID is
the unique identifier of message M .
This commitment can later be opened only in one way by revealing M and ID,
so it is computationally binding.
When the verifier starts a challenge, the committer reveals d1 which can be
viewed as a trapdoor of the commitment to the verifier. Notice that d1 does
not reveal the information of e1 which keeps the privacy of the commitment,
therefore it is information-theoretically hiding.
Then the committer discloses the value of M and ID, the verifier computes
whether s = t , where s = gM1 hH1(ID) mod N1 and t = (COM(M))d1 =
(gM1 hH1(ID))e1d1 mod N1 = gM1 hH1(ID) mod N1.
Notice that above commitment function not only has the properties of information-
theoretically hiding and computationally binding, but also has the property of
reusability by the reason of privacy of e1.

3.2 Homomorphic Verifiable Tags (HVTs)

The concept of Homomorphic Verifiable Tags is mentioned by G. Ateniese et
al.[5], and we will use them to generate proof of possession in our scheme.
A homomorphism is a map f : G1 → G2 such that f(g◦g′) = f(g)•f(g′) between
two groups G1, G2 , where ◦ is the operation in G1 and • is the operation in G2.
Given a file block m, let Tm be its homomorphic verifiable tag. Given two tags
Tmi and Tmj of messages mi and mj , anyone can combine them into a tag
Tmi+mj

, which is corresponding to the sum of messages mi + mj . These tags
will be stored together with the file F on the server, and act as verification
metadata for the file blocks. They have the properties consist of unforgeability,
homomorphism and blockless verification.
A construction of homomorphic verifiable tags is as follows.
Let g be the generator of a group whose order is N .
Let Tmi

= gmi mod N and Tmj
= gmj mod N .

Then Tmi+mj
= Tmi

· Tmj
= gmi · gmj mod N = gmi+mj mod N .

We will utilize this homomorphic property in the following section.

4 MAIN CONSTRUCTION

4.1 Definitions

We begin with the definition of NRPDP as follows.

Non-Repudiable Proofs of Storage in Cloud 7

Definition 1: (Non-repudiation PDP scheme) A NRPDP scheme is a col-
lection of five polynomial-time algorithms (KeyGen, PreGen, ProofGen,
VerifProof, VerifCOM) as follows:

KeyGen(1λ) → (pk, sk) is a probabilistic algorithm run by the client to
generate the public key and private key. It takes a security parameter λ as
input, and returns a pair of keys (pk, sk).

PreGen(pk, sk,m) → (Tm, COMm) is an algorithm run by the client to
generate the metadata which used to verify the proof. It takes the public key pk,
the private key sk and a file block m as input, and returns the corresponding
verification tags Tm and commitment function COMm.

ProofGen(pk, F, chal,Σ)→ ρ is an algorithm run by the server to generate
a proof of possession. The input consists of a public key pk, an ordered collection
F of blocks, a challenge chal and an ordered collection Σ of tags which generated
in PreGen to verify the possession proof. It returns a proof ρ for the blocks that
determined by the challenge chal.

VerifProof(pk, F, chal, ρ)→ {1, 0} is an algorithm run by client to verify a
proof of possession. It takes the public key pk, the private key sk, a challenge
chal and a proof of possession ρ as input, and returns whether ρ is a correct
proof for the blocks determined by chal.

VerifCOM({M}, {I}, c, {COM}) → {1, 0} is an algorithm run by anyone
to verify that the server exactly possesses the data of client. It takes the indices
of the chosen blocks {I} and corresponding commitment functions {COM} as
input, and returns whether the {COM} passes validation.

A NRPDP system is constructed from a NRPDP scheme in three phases:
Pre-process: the client C runs KeyGen and PreGen, and stores (pk, sk)locally.
Then C sends pk, F , COM and Σ to the server S to store and deletes F , COM
and Σ from its local storage.
Challenge and verification: C generates a challenge chal and sends it to S.
Then S runs ProofGen and sends the proof ρ to C. Finally, C checks the va-
lidity of the proof ρ by running VerifProof.
Public COM verification: if C denies that S does possess the data fully in-
tact, S can open the commitment functions to the public, and let anyone verify
the possession guarantee of data.
The second phase can be executed many times in order to insure whether S still
possesses the file blocks. To prove that the client is dishonest, the third phase
can be executed many times as well.

4.2 A construction of NRPDP

Intuitively, we improve the S-PDP scheme (which is proposed by G. Ateniese et
al. and is regarded as a notable landmark in this field.) to generate a NRPDP
scheme.
We start by introducing some notations used in our schemes. Let p = 2p′+1 and
q = 2q′ + 1 be safe primes and let N = pq be the modulus of an RSA scheme.
Let g be the generator of the unique cyclic subgroup QRN of Z∗N whose order
is p′q′.

8 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

Analogously, we choose another RSA scheme for the commitment function. Let
p1 = 2p′1 + 1 and q1 = 2q′1 + 1 be safe primes and let N1 = p1q1 be the modulus.
Let g1 be the generator of the unique cyclic subgroup whose order is p′1q

′
1.

Break a file into n blocks m1, ...,mn. Then the tag of each file block mi is Ti,
i ∈ {1, 2, ..., n}.

NRPDP overview:

In the phase of pre-process, the client computes the tag of each block. Each
tag has a parameter i, which is a unique identifier of each block mi. This binds
a tag on a block, and prevents to utilize a tag to generate a proof for a differ-
ent block which covers same information. To obtain non-repudiation, the client
computes commitment function COMi of each block mi. The secret key e1 is
used to prevent these COMs from modification of the server. These tags and
COMs are stored on the server together with the original file, while the client
only stores a small, constant amount of data, which is irrelevant to the file size.
In the phase of challenge, the client requests the proof of possession of c blocks,
which are randomly chosen using a pseudo-random permutation with a fresh
key by server. To ensure that the server cannot reuse values from previous chal-
lenges, the client uses the value gx = gx mod N . According to the chal sent by
client, the server generates and sends to the client a proof ρ which consists two
portions: T and u. The value T contains the information of requested tags, while
u is obtained by the requested file blocks. When receives the proof, the client
can remove some auxiliary parameters such as Haz

khash
(iz) by using the public

and private keys, and then verify the validity of the proof by checking whether
a certain relation holds between T and u.
In the phase of COM verification, if the client denies a valid proof generated by
an honest server, the server can request the indices of the error blocks (or all the
challenged blocks), and reveal the blocks and related COMs to the public. No-
tice that e1 is a secret key so that the server cannot modify or forge these COMs
at all. Anyone can compute the values s, t based on the public information and
check whether the certain relation holds between them.

NRPDP in detail:

Let λ, ∂, δ be security parameters. Let H and H1 be a full-domain hash
function and f be a pseudo-random function, and let π be a pseudo-random
permutation:
H : {0, 1}λ × {0, 1}∗ → QRN
H1 : {0, 1}log2 (n) → {0, 1}log2 (n)

f : {0, 1}λ × {0, 1}log2 (n) → {0, 1}∂
π : {0, 1}λ × {0, 1}log2 (n) → {0, 1}log2 (n)

KeyGen(1λ)→ (pk, sk) :

Choose a random number x
R←− Zp and compute gx ← gx mod N . Let e and d

be secret primes such that ed = 1 mod p′q′, and let e1 and d1 be secret primes

such that e1d1 = 1 mod p′1q
′
1.Then choose a hash key khash

R←− κhash.
Then let sk = (e, e1, d, x, khash) and pk = (N,N1, d1, g, g1, gx, h).

PreGen(pk, sk,mi, i)→ (Ti, COMi) :
For each i, 0 < i ≤ n, compute the tag of mi :

Non-Repudiable Proofs of Storage in Cloud 9

Ti = (Hkhash
(i) · gmi)

d
mod N .

For each i, 0 < i ≤ n, compute commitment function: COMi = COM(mi) =
(gmi

1 hH1(i))e1 mod N1 for each block.
Output (F, {Ti, COMi}ni=1).

ProofGen(pk, F, chal,Σ)→ ρ :
The challenge is chal = (c, k1, k2, gx).
For 0 < z ≤ c :
Compute the index of each sampled block: iz = πk1(z).
Compute the relevant coefficient: az = fk2(z).
Compute T = T a1i1 · ... · T

ac
ic

=

(ha1khash
(i1) · ... · hackhash

(ic) · ga1mi1
+...+acmic)

d
mod N

Compute u = (g
∑c

z=1 azmiz
x) mod N .

Output ρ = (T, u).
VerifProof(pk, sk, chal, ρ)→ {1, 0} :

Let sk = (e, x, khash) and chal = (c, k1, k2, gx).
For 0 < z ≤ c:
Compute the index of each sampled block: iz = πk1(z).
Compute the relevant coefficient: az = fk2(z).
Parse the response of server to obtain u and T .
Compute: τ = T e∏c

z=1H
az
khash

(iz)
mod N .

If τx = u, then output 1. Otherwise output 0.
VerifCOM({mi}, {i}, c, {COMi})→ {1, 0} :

Let pk = (N1, d1, g1, h).
For each i ∈ {i1, ..., ic} given in advance (the indices of challenged blocks or
appointed blocks by the client), reveal the related commitment functions and
file blocks to the public as follows.
COMi = COM(mi) = (gmi

1 hH1(i))
e1

mod N1, d1 and mi.
Then the verifier can check the validity of arbitrary block and its commitment.
For i ∈ {i1, ..., ic}, the verifier compute:
si = gmi

1 hH1(i) mod N1,
ti = (COMi)

d1 = (gmi
1 hH1(i))e1d1 mod N1 = gmi

1 hH1(i) mod N1.
If si = ti, the block mi and its commitment are matching.
If all the pair of blocks and COMs are completely matching, output 1, otherwise
output 0.

Remark:
1. Notice that revealing of d1 cannot expose e1 or COMs, which means anyone
who owns d1 cannot compute a valid COM of any block mi ; therefore our
scheme can be used infinite number of times theoretically.
2. The index i is a global variable, therefore we can record the unified index in
the case of multiple files. For instance, the indices of file blocks are 1 to 100 in
file 1, and then in file 2, the indices of blocks are beginning with 101. From the
view of a server, all the files constitute one big file for a server to sample and
compute; while for a client, there are various files in cloud storage.
3. The phase of COM verification can be applied in any PDP and POR schemes
to guarantee the property of non-repudiation, because the security of the com-

10 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

mitment scheme is proved independently. To achieve better performance and
minimize the storage cost and communication cost, we adjust the parameter of
some PDP and POR schemes. The detailed description is in section 6.

4.3 A more efficient scheme of NRPDP

In this chapter, we propose a more efficient variant of NRPDP, which is named
E-NRPDP.
Obviously, NRPDP scheme increases storage cost than original scheme for the
reason of commitment functions. For instance, if we denote the file block size
as 4KB and the size of modulus N as 1024 bits, then each file block of 4KB
corresponds with a verification tag of 1024 bits and a commitment function of
1024 bits. Thus the increased storage on the server is about 3.125% of original
file size in the original PDP scheme, and 6.25% in the NRPDP scheme. It caused
more storage burden on the server and additional cost of the client. On the other
hand, the increased storage also influences the I/O costs, and as a consequence,
the efficiency becomes blow.
Intuitively, the simplest method of improving efficiency and reducing the extra
storage is increasing the size of file block. But this method could increase the

computational cost of server because the server must compute u = (g
∑c

z=1 azmiz
x)

mod N without awaring of φ(N). More importantly than that, with the increas-
ing of block size, the granularity of positioning error is becoming larger. In other
words, a good PDP scheme should ensure that the client can know which file
block has been corrupted or lost. Errors can be positioning timely and losses can
be avoided effectually. If the file block is in large size, the client only know that
there are errors in this block but can not point out the precise location of errors.
This becomes troubles of clients in a real world application.
In conclusion, we need an efficient NRPDP scheme with small granularity.
In E-NRPDP, we combine l small file blocks into a file chunks. In order to dis-
tinguish each block, we need l random coefficients. The detailed improvement is
as follows:
1. In the phase of KeyGen, choose a PRF key kv

R←− κprf .
Then sk = (e, e1, d, x, kv, khash) and pk = (N,N1, d1, g, g1, gx, h).
2. In the phase of PreGen, notice that each file chunk m<i> has l blocks
{mi,j}0<j≤l. Then all the file blocks can be presented as a matrix: {mi,j}0<i≤n

0<j≤l
.

For each j, 0 < j ≤ l, compute the value of random: vj = fkv (j).
For each i, 0 < i ≤ n, compute the tag of {mi,j}0<j≤l:

Ti = (Hkhash
(i) · g

∑l
j=1 vjmi,j)

d
mod N .

For each i, 0 < i ≤ n, compute commitment function COMi = COM(m<i>) =
(gm<i>

1 hi)e1 mod N1 for each chunk.
Output (F, {Ti, COMi}ni=1).
3. In the phase of ProofGen, compute T = T a1i1 · ... · T

ac
ic

=

(Ha1
khash

(i1) · ... ·Hac
khash

(ic) · ga1
∑l

j=1 vjmi1,j+...+ac
∑l

j=1 vjmic,j)
d

mod N .

Non-Repudiable Proofs of Storage in Cloud 11

For each i ∈ {i1, i2, ..., ic}, compute uj = (g
∑c

z=1 azmiz ,j
x) mod N for 0 < j ≤ l.

Output ρ = (T, {uj}lj=1).
4. In the phase of VerifProof, for each j, 0 < j ≤ l , compute the value of
random: vj = fkv (j).
Parse the response of server to obtain u1, ..., ul and T .
Compute: σ =

∏l
j=1 uj

vj mod N .

Compute: τ = T e∏c
z=1H

az
khash

(iz)
mod N .

5. In the phase of VerifCOM, the file block mi is replaced by file chunk m<i>.
Except the improved portion, the rest of the scheme executes as same as the

NRPDP scheme.
The E-NRPDP scheme reduces the storage cost of the server, such that it saves
the I/O costs and achieves better performance with security guarantee of smal-
l granularity. E-NRPDP scheme can give possession guarantees of each block
{mi,j}0<i≤n

0<j≤l
, and pinpoints which block is corrupted efficiently.

The E-NRPDP scheme is a simple deformation of NRPDP scheme, so the se-
curity analysis is analogous to NRPDP. In section 6, we will give the detailed
security analysis of NRPDP and omit that of E-NRPDP.
Therefore, E-NRPDP is efficient and practical in a real world application.

5 SECURITY

5.1 Security model

We state the security model with two games which capture the data possession
property and non-repudiation property respectively.
Data possession game and Commitment game are used to state the security of
the NRPDP system and certify the data possession and commitment property
respectively. Intuitively, the data commitment game means that the adversary
cannot forge or modify a generated commitment function even though it has
the corresponding files with related identity of possessor.At the same time,the
data possession game means that an adversary can successfully construct a valid
proof if and only if it can access all the file blocks corresponding to the challenge.
Game 1: Non-repudiation Game
Setup: The adversary is given input 1n, and outputs a pair of data m0,m1 of
the same length.
Challenge: The challenger runs PreGen(pk, sk,m)→
{COM} and outputs b0, b1 where {COM(m0)} = b0 and {COM(m1)} = b1.
A random bit r ← {1, 0} is chosen, and br and pk are given to the adversary.
Decision: The adversary runs VerifCOM(c, {COM}) → {1, 0} and output 1
if br is the correct commitment of m1, otherwise output 0.
The commitment function is valid if and only if
Pr[PrivKCOM

A (n, b0) = 1] ≤ negl(n) and
|Pr[PrivKCOM

A (n, b1) = 1] − 1| ≤ negl(n). The probability that the adversary
guesses the right chosen is

12 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

Pr[PrivKCOM
A (n, br) = r] = 1

2 ·Pr[PrivKCOM
A (n, b1) = 1]+ 1

2 ·Pr[PrivKCOM
A (n, b0) =

0].

Remark: A data commitment game guarantees that a commitment function
is computationally binding, which means that the commitment COM(s, t) can
be opened only in one way to demonstrate the original value s, which means
|Pr[PrivKCOM

A (n, b0) = 1] + Pr[PrivKCOM
A (n, b1) = 0]| ≤ negl(n), and the

probability that the adversary wins the game is negligible.
Game 2: Data Possession Game
Setup: The challenger runs KeyGen(1λ)→ (pk, sk), sends pk to the adversary
and keeps sk secret.
Query: The adversary queries adaptively: it selects a file block m and sends
it to the challenger, and then the challenger runs PreGen(pk, sk,mi) → Ti to
compute the tag and sends it to the adversary. These queries can be carried out
many times. Then the adversary stores all the blocks F = (m1, ...,mn) together
with the tags Σ = (T1, ..., Tn).
Challenge: The challenger generates a challenge chal and requests the adversary
a proof of possession for the blocks m1, ...,mc, where 1 ≤ c ≤ n.
Forge: The adversary computes a proof ρ determined by chal and returns ρ.
If VerifProof(pk, sk, chal, ρ)→ ”1”, then the adversary wins the game.

Remark: A NRPDP system guarantees data possession if for any proba-
bilistic polynomial-time adversary A and arbitrary set of files, the probability
that A wins the game is negligibly close to the probability that the challenger
can extract those file blocks by an extractor ε.
It means that if the adversary could win the game, then ε could extract the
sampled file blocks by executing GenProof repeatedly.

5.2 Security analysis

Our scheme is based on the DHK assumption which was introduced by Dent A.
W. [10] and derived from the DLP [16]. Analogously, the KEA1-r assumption
which is used in many PDP schemes (especially in S-PDP scheme of G. Ateniese
et al. [5]) is a ramification of KEA1 introduced by Damgard[9].
DLP (Discrete Logarithm Problem): Let G be a group and g ∈ G, let 〈g〉
be the cyclic subgroup generated by g. The discrete logarithm problem for the
group G can be stated as:
Give g ∈ G and a ∈ 〈g〉, determine if there exists an integer x such that gx = a,
and if so, find such an x.
Notice that the formulation of problem is hard to solve.
Afterwards, KEA1 has been shown to hold in generic groups by Dent A. W. [25].
Their assumption, named DHK, is used in our scheme.
DHK (Diffie-Hellman Knowledge): The DHK assumption states that for
each polynomial-time attacker A, there exists a polynomial-time extractor A∗

that takes the group elements (g, gx, B,C) and the random coins R[A] used by A
as input, and outputs an element r ∈ {1, 2, ..., n} such that B = gx and C = gxr

(if such an r exists).

Non-Repudiable Proofs of Storage in Cloud 13

As previously mentioned, we needn’t have to restrict g to be a generator of some
specific groups.

Theorem 1: under the RSA and DHK assumptions, the NRPDP scheme
guarantees dada possession and non-repudiation in the random oracle model.

Proof:
We respectively prove the non-repudiation property and data possession prop-
erty by utilizing two games before-mentioned.
1) Proof of non-repudiation
As mentioned earlier, we utilize reduction method to prove non-repudiation of
NRPDP.
We assume there exists an adversary A∗ that wins the Data Commitment Game
of the NRPDP scheme, and then we can construct an adversary A to break the
Pedersen commitment function.
Setup:
A∗ is given input 1n, and outputs a pair of data m0,m1 of the same length.
Then A∗ gives m0 and m1 to A.
Challenge:
A runs PreGen(pk, sk,m)→ {COMm} and outputs b0, b1 where {COM(m0)} =
b0 and {COM(m1)} = b1.
Then A chooses a random bit r ← {1, 0}, and gives br and pk to A∗.
Forge:
A∗ runs VerifCOM(c, {COM})→ {1, 0} and outputs 1 or 0.
If the probability |Pr[PrivKCOM

A (n, b0) = 1]− 1| ≤ negl(n) or
|Pr[PrivKCOM

A (n, b1) = 0] − 1| ≤ negl(n), then the adversary wins, in other
words, A∗ can forge a data m0 that can commit another data m1.
By Pedersen commitment function, A can find m1,m2 ∈ Zq satisfies m1 6= m2

and COM(m1, ID1) = COM(m2, ID2). Obviously, ID1 6= ID2 mod q and
logg1 h = m1−m2

ID1−ID2
mod N1.

By the assumption of DLP, logg h cannot be found except with negligible prob-
ability in |N1|. Thus, it fulfills the property of non-repudiation.
2) Proof of data possession
We assume there exists an adversary A∗ that wins the Data Possession Game of
the NRPDP scheme, then we can construct an adversary to break RSA or inter
factoring problem by using A∗.Denote the hash function H(∗) as random oracle.
Under the DHK assumption, it is easy to reduce the security of NRPDP scheme
to the security of the RSA problem (i.e. inter factoring problem) and the discrete
logarithm problem.
The reduction of proof is analogous to the security analysis of S-PDP [5], so the
detailed process of proof will not be reiterated here.
Notice that the interaction between A and A∗ are indistinguishable from inter-
action between A∗ and an honest challenger in the Data Possession Game.

14 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

6 IMPLEMENTATION AND EVALUATION

All experiments were conducted on an Intel 2.3GHz Corei7 3610QM system with
an 8MB DDR3 1333MHz Cache. Algorithms use the crypto library of OpenSSL
version 0.9.8b with a modulus N of size 1024 bits. Experiments measure disk
I/O performance with storing files on an hdfs on a Samsung 840 Pro (MZ-
7PD128BW) 120GB SSD. All experimental results represent the mean of 20
trials because those results varied little across each attempt.
In essence, NRPDP is an improved version of S-PDP [3], which is regarded as
”state-of-the-art” in this field. Therefore, we adopt sampling method as S-PDP,
which achieves detecting misbehavior with high probability.
Denote n as the total number of file blocks on the server S, t as the number of
the modified or deleted blocks and c as the number of challenged blocks chosen
by client C.
Let X be the number of file blocks which are chosen by C and match the file
blocks modified or deleted. Then PX is the probability that at least one modified
or deleted file blocks are chosen by C, i.e. the probability that C detects the
misbehavior of S.
Then we have that: PX = P{X ≥ 1} = 1−P{X = 0} = 1− n−t

n ·
n−1−t
n−1 ·

n−2−t
n−2 ·

... · n−c+1−t
n−c+1 .

Finally, we can get:1−
(
n−t
n

)c ≤ PX ≤ 1−
(
n−c+1−t
n−c+1

)c
.

Data shows that the client can detect the misbehavior of server by asking proof
of constant number of blocks with a high probability. Denote t = 1% of n, and
PX is at least 99%, then the number of challenged blocks is 460.

6.1 The performance of COM generation and verification

In NRPDP scheme, each block is corresponding to a COM . In the phase of
pre-process, the client exponentiates data which has been reduced modulo φ(N)
to generate the COM for each file block. The calculation of generating an inde-
pendent COM is relatively small and has nothing to do with the file block size
because the existence of φ(N).
Figure 2 shows the time of generating COMs. As we can see, the time of gen-
eration is linearly related to the file size. With the increasing of file size, the
number of file blocks and corresponding COMs is increasing, therefore the time
of generating COMs is linearly increased. On the other hand, for a same size
of file, with the increasing of block size, the number of file blocks is decreased
linearly, and consequently the time of generating COMs is reduced.
Though the time of generation is growing linearly related to the file size, it is
one-time calculation and reusable.
On the other side, we randomly choose 460 blocks to generate proof in each chal-
lenge, and then if the client denies the proof and gives the indices of the error
blocks, the server will reveal COMs of these blocks. In experiments, we adopt
the worst-case performance to verify COMs each time, this means we measure
the time of verification of 460 blocks and COMs.

Non-Repudiable Proofs of Storage in Cloud 15

Figure 2: Performance of generating COM .
Figure 3 shows the time of verifying COMs. As we can see, the time of verifica-
tion is almost constant with the same block size.

Figure 3: Performance of COM verification.
In the phase of the verification of COMs, the server doesn’t have φ(N), and thus
it has to exponentiate the whole data block which can be quite time consuming.
With the increasing of block size, the augment of calculation is unavoidable, and
therefore the time cost is increasing. For the case of same block size, the time
of each verification is constant because that the calculation is steadfast (i.e. the
calculation of verification of 460 COMs) and has no connection with the file
size.
On the whole, it is efficient and practical enough for public verification in the
case of chosen appropriate parameters.

16 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

6.2 The comparation of various PDP and POR schemes

The comparation of the performance of various PDP and POR schemes is as
table 1.

Table 1. the comparation of the performance of various PDP and POR schemes

Scheme name E-/S-PDP[5] POR[14] CPOR[18] CPDP[30] OPOR[1] NRPDP E-NRPDP

Data possession Yes Yes Yes Yes Yes Yes Yes

Support sampling Yes Yes Yes Yes Yes Yes Yes

Pre-processing O(n) O(n) O(t logn) O(t logn) 2O(n) O(n) O(t logn)

Generating a proof O(c) O(c) O(c) O(c) 2O(c) O(c) O(c)

Verifying O(1) O(c) O(1) O(1) O(1) 1 O(1) O(1)

Communication O(1) O(c) O(l) O(l) 2O(l) O(1) O(l)

Client storage O(1) O(1) O(1) O(1) O(1) O(1) O(1)

Mutual proof No No No No No Yes Yes

Non-repudiation No No No No Yes Yes Yes
Note: n is the total number of file blocks or chunks, l is the number of blocks in each
chunk (i.e. the number of sectors of each block in [30] and [18]), c is the number of

sampling blocks or chunks, t is a parameter determined by l.

We transform both a PDP scheme and a POR scheme into non-repudiable
schemes, and then measure and compare the performance of the original schemes
and the improved schemes.
We choose to improve, implement and evaluate two representative schemes which
are S-PDP scheme (which is regarded as a notable landmark in this field.), and
CPOR scheme (compact proof of retrievability, which is the first compact and
provable secure proof of Retrievability scheme.).

(1) the comparation of PDP schemes
In the phase of pre-process, the client generates the metadata for generating
and verifying proof of possession. In this experiment, we measure the time of the
pre-process of S-PDP scheme and NRPDP scheme, i.e. the time of generating
keys and verification tags.
Notice that we only measure the time of keys and tags generation, which include
the time of I/O and storing data to disk, but except transferring data to the
server.
Figure 4 shows the comparation of performance of original PDP scheme and
NRPDP scheme.
As shown in Figure 4(a), with the increase of file size, the time of pre-process is
growing linearly. That is because both the original PDP and NRPDP performs
an exponentiation on each block, which increases with file size.
On the other hand, the time cost of pre-process is incremental than the original
PDP scheme with same parameters. This is because that generating COMs can

1 In some particular cases, for instance, the verification cannot be passed or the auditor
is dishonest, the complexity value is 2O(c · n)[1].

Non-Repudiable Proofs of Storage in Cloud 17

be slightly time consuming. Despite all this, the time cost of generating COMs is
smaller than that of generating Tags. And further more, all these computations
in the pre-process are one-time calculation and can be reusable infinitely in
the theory. Therefore, the improvement of NRPDP scheme is acceptable and
practical in a real world application.

(a) The pre-process of original PDP scheme and NRPDP scheme

(b) The challenge and verification of PDP schemes with I/O

18 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

(c) The challenge and verification of PDP schemes without I/O
Figure 4: Performance of original PDP scheme and NRPDP scheme.

Contrast with the time of generating verification tags, the time of generating
keys is relatively little. In the process of generating tags and COMs, the expo-
nent calculation is the most time-consuming. In addition, the client has access to
φ(N), so it can reduce the file blocks modulo φ(N) before exponent calculation.
Furthermore, the security of the scheme depends on the privacy of φ(N) which is
unavailable to the server. Therefore each performance cost comprises a modulus
and an exponentiation.
In the phase of challenge and verification, the client generates a challenge chal
and sends it to the server, and then the server generates a proof of possessing file
blocks determined by the chal. Then the client verifies the proof of possession
given by the server. In this experiment, we compare the time of challenge and
verification with a same proof of possession of both two schemes. Exactly speak-
ing, both these PDP schemes have selfsame phase of data possession challenge
and verification.
As Figure 4(b) shows, the time cost is linear increased with the increasing of file
size. This is due to the increased time of retrieval, read and load data, which can
be collectively called I/O cost. Apparently, the I/O cost is increased when the
number of file blocks is increased. When we abandon the I/O cost as Figure 4(c),
we can see that the time of generating and verifying proof is close to a constant
time, this is because that both the original PDP scheme and NRPDP scheme
utilize the sampling method which is efficient and secure with high probability.

(2) the comparation of POR schemes
Similar with the PDP scheme, the original POR scheme generates Tags in the
phase of pre-process, and generates and verifies a proof in the phase of challenge
and verification. Intuitively, the NRPOR scheme combines the original POR
scheme and the commitment functions. The performance of both original scheme
and improved NRPOR scheme is as figure 5.
In the phase of pre-process of original CPOR scheme, generating Tags is using

Non-Repudiable Proofs of Storage in Cloud 19

the multiplication and addition operations. Therefore, with the augment of the
block size, the time of calculation is becoming longer. But on the other hand, for
a same file, the bigger the block size is, the smaller the number of blocks is, and
the number of Tags need to compute is smaller, which leads to the smaller I/O
costs, as a consequence, the calculation time is smaller. Both of the two cases
will trade off an optimal value of block size. Therefore, as we can see from the
figure 5 (a), the time cost of different block size is alike, while that of bigger block
size or smaller block size is fairly big. We only consider the influence resulted by
commitment functions, and don’t discuss the optimal value of block size in this
chapter.

(a) The pre-process of CPOR scheme and NRCPOR scheme

(b) The challenge and verification of POR schemes with I/O

20 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

(c) The challenge and verification of POR schemes without I/O
Figure 5: Performance of pre-process of CPOR scheme and NRCPOR scheme.

The CPOR scheme utilizes multiplication operation and addition operation
to generate tags, therefore, the calculation cost can be saved greatly than expo-
nent operation. As a consequence, we can see from figure 5 (a), the time cost
of pre-process will increase after adding commitment functions. But the phase
of pre-process is one-time calculation and reusable; as a result, the time cost is
acceptable.
Analogically, figure 5(b) and 5(c) show the performance of data possession chal-
lenge and verification, which has nothing to do with non-repudiation, i.e. com-
mitment functions do not influence the property of data possession or retriev-
ability. In figure 5(b), the time cost is linear increased with the increasing of file
size which is due to the I/O cost.And in Figure 4(c), the time of generating and
verifying proof is close to a constant time without the I/O cost.

6.3 The storage cost and bandwidth

1) Storage cost:
NRPDP needs more storage cost than S-PDP scheme. In S-PDP, each file block
of 4KB corresponds with a verification tag of 1024 bits; this means there are
additional 3.125% of the whole data on the server, i.e. the total storage in cloud
increased by 3.125%. Though in NRPDP, the increased data capacity is double,
but E-NRPDP has settled this problem well. In E-NRPDP, each file chuck of
corresponds with a tag of 1024 bits and a commitment function of 1024 bits. Let
l = 9, and then the total storage in cloud increased by 0.694%.
The storage cost on client is O(1), which is connected with the security param-
eters.

2) Client-server bandwidth:
Both in NRPDP and E-NRPDP, the required bandwidth is also O(1), this be-
cause the chal and the proof are all constant (almost 1KB). In the phase of

Non-Repudiable Proofs of Storage in Cloud 21

verifying COMs, though the server needs a larger bandwidth (about 1.8MB) to
reveal the file chunks and related COMs, this rarely happens in a normal cloud
storage system. Above all, the bandwidth is entirely reasonable and acceptable
to a practical PDP system.

6.4 The parameter optimization of NRPDP

In this chapter, we implement the NRPDP scheme of this paper and compare
the performance of them.

Figure 6: the trade-off of block size with 1GB file
First of all, we should determine the value of the block size. In pre-process,

NRPDP exponentiates data which has been reduced modulo φ(N) to generate
both the Tag and the COM , but in the phase of challenge and the verification
of COMs, the server doesn’t have φ(N) so that it has to exponentiate the whole
data block which can be quite time consuming. In addition, when file size is
fairly large, we have to take the I/O costs into consideration.
All these reasons cause a natural tradeoff time between pre-process, challenge
and COM verification by varying the value of block size.
Figure 6 shows the trade-off caused by block size, and indicates that the best
balance occurs at block size of 8-128KB.
Obviously, in the phase of pre-process, with the increasing of block size, the
number of file blocks is decreasing, and result in the reduction of time cost
(because that the client has the modulo φ(N)). In the meanwhile, the time of
COM verification is increasing because that the increased exponent leads to
large amount of calculation.
We also can see from the figure, the time of challenge and verification of PDP is
fairly small when compared with other phases, and even so, the optimal block
size is also between 10KB and 100KB. With the increase of the block size, the
consuming time is increasing because that the server doesn’t have φ(N), but at
the same time, the I/O costs are decreased for the reduction of the number of
file blocks (i.e. for a same file, if the block size is bigger, then the number of file

22 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

blocks is smaller). Therefore, the phase of challenge and verification of PDP can
be much time consuming when the block size is too big or too small.
Above all, we choose a block size of 32KB to get a better result for NRPDP.
As we can see from figure 7, the time of pre-process is linear increased and as
previously mentioned, this phase is one-time calculation and reusable. Therefore,
the result is acceptable. On the other hand, the time of both PDP verification
and COM verification are constant time cost without I/O cost.
In the actual NRPDP system, the server guarantees the data possession in most
instances, which needs fairly little time. Only when the dishonest client denies
a valid proof, then server can reveal the COMs and the public will verify these
COMs. We adopt the worst case, i.e. we reveal and verify 460 blocks and COMs
each time. And as we see from figure 7, the time of COMs verification is less than
100 seconds, i.e. the verification of COMs is efficient and practical in real-world
applications.

Figure 7: the performance of NRPDP with block size of 32KB

7 RELATED WORK

In 2007, G. Ateniese et al.[5, 4] defined the first sampling model for PDP without
having the server retrieving and accessing the entire file. In their schemes, the
server provides probabilistic proof with different levels of PDP guarantees. They
utilized exponent structure to construct the homomorphic verification tags and
used the RSA scheme to keep the tags privacy. After generating a proof, they
verified it with the secret key of RSA.
The RSA method has the property of homomorphism, and can be used to con-
struct the detection mechanism of integrity. The simplified algorithm is as fol-

Non-Repudiable Proofs of Storage in Cloud 23

lows:
Pre-process:
1.Choose two large prime p and q, and computeN = pq. Generate key pair:
pk = (N, g) and sk = (e, d).

2.Let mi be the file block, and compute Tag: Ti = (gmi)d mod N where g is
the generator of QRN .

3.Send mi and Ti to the server.
Challenge and Verification:
1.The client gives a challenge to the server.
2.The server chooses file blocks mik(1 ≤ k ≤ c) and Tags Tikbased on the

challenge.

3.The server compute T =
∏c
k=1 Tik and ρ = g

∑c
k=1mik mod N , and sends

them to the client.
4.The client computes τ = T e and verify whether τ = ρ.

This method is regarded as one of the notable landmarks in this filed, and
many subsequent schemes utilize the RSA method, which has the drawback of
exponential calculation.

Juels and Kaliski[14, 15]introduced the notion of proof of retrievability (POR)
in 2007, which allows a client to retrieve a file that was previously stored on
a server. The POR scheme uses sentinels hidden among regular file blocks to
detect data modification so that it can only be applied to encrypted files and
only perform a limited number of queries, which equal to the number of sentinels.
The simplified processes are as follows:

Pre-process:
1.The client encodes the file with error correction code, and then inserts the

sentinels into the encoded file.
2.Record the sentinels and send the file to the server.
Challenge and Verification:
1.The client gives the challenge which includes positions of sentinels to the

server.
2.The server returns the sentinels of the corresponding position based on the

challenge.
3.The client compares the sentinels with local records.

This approach can only perform a limited number of detections because of
the finite number of sentinels. Therefore, majority of later POR schemes aban-
doned this approach.
In 2008, H. Shacham and B. Waters[18] proposed a new notion of Compact
POR (CPOR), which utilize symmetric cryptography and homomorphic prop-
erties to combine multiple authenticator values into a small one and minimize
the communication cost. It utilizes exponential calculation for verification tags
so that it increases computation cost. In the meantime, G. Ateniese et al. con-
structed a scalable and efficient PDP [6] based on symmetric cryptography which
supports dynamic operations. But the fatal drawback of this scheme is limited
number of verifications. Then In 2009, Y. Dodis et al. [11]formally proved the
security of a variant of scheme proposed by Juels and Kaliski, and built the

24 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

first unbounded-use POR scheme which doesn’t rely on Random Oracles and
the first bounded-use scheme with information-theoretic security. It is a theo-
retical scheme and has not been actually implemented. In the same year, C.C.
Erway et al.[12] proposed a dynamic PDP (DPDP) model which is based on the
above model to support provable updates to stored data. To meet requirements
of both static and dynamic storage. Q. Zheng et al.[26]introduced a notion of
fair and dynamic POR (FDPOR), which assures that a server cannot illegally
manipulate the data of clients in a dynamic POR scheme. It based on range-
based 2-3 trees and an incremental signature scheme. They mentioned the issue
of dishonest client, but didn’t take effective measures to solve it. B. Chen et al.
[8] proposed an efficient RDC model that relies on spot checking. In 2013, Shi E.
et al.[19] proposed a practical dynamic POR scheme, which is efficient and uses
less bandwidth than the constructions of Stefanov E. et al. [21, 20]and Cash D.
et al.[7].

there are also many approaches based on bilinear pairing for public verifica-
tion which can achieve zero-storage on client. Though the public verification can
guarantee the non-repudiation property, The drawback of this methods is that
the operation of bilinear pairing is very time-consuming, so that the schemes
of public public verification are always not efficient enough. In addition, public
verification cannot guarantee privacy because anyone can obtain and verify the
data of other clients.
C. Hanser et al. [13] proposed the first simultaneous privately and publicly ver-
ifiable PDP protocol based on bilinear pairing and elliptic curve (EC), which
uses the same pre-process and metadata to achieve two kinds of verifiability.
The drawback is still the extra storage cost and exponential calculation on both
server and client. Y. Zhu et al. [31, 30, 29]presented a cooperative PDP (CPDP)
scheme based on bilinear pairing, homomorphic verifiable response and hash
index hierarchy to support scalability of service and data migration in hybrid
cloud.
Another approach for public verification is utilizing TTP to represent the cloud
client to verify the possession of data stored in the cloud. It supports the public
verification and usually applies on encrypted data. Cong Wang et al. present-
ed some public auditing schemes[25, 24, 23, 22] based on TTP to achieve public
verification. Though it could avoid the repudiation issue, it needs the stronger
assumption of TTP and usually causes extra cost of client.
Recently, a new notion of Outsourced Proofs of Retrievability (OPOR) [1]is pro-
posed in CCS’2014. The OPOR scheme, which is named Fortress, utilizes an
external party to conduct a POR scheme and interact with the server on behalf
of the client. Unlike other public verification schemes which are based on TTP,
the auditor of Fortress is untrusted. Therefore, the Fortress scheme can protect
all these three parties synchronously. But the drawbacks are obviously. On one
hand, the Fortress conducts two POR scheme in parallel, so that all the com-
putation costs and communication costs are double. On the other hand, once
the verification is unacceptable, the client has to inspect both the auditor and

Non-Repudiable Proofs of Storage in Cloud 25

server, which is very costly. In addition, in the process of verifying auditor, a
”forensic” analysis is needed, which is also a strong assumption.

8 Conclusions

In this work, we present the first NRPDP scheme based on homomorphic veri-
fiable tags and commitment function, which focuses on the problem of mutual
proof and verification in the circumstance that both the server and client are
dishonest. The NRPDP scheme has the properties of non-repudiation and allows
both the client and the server prove themselves and verify the other side respec-
tively to protect both of them. In addition, we also propose an efficient NRPDP
scheme to achieve better performance.
The performance measurement indicates that our schemes can guarantee data
possession with non-repudiation.The method of commitment function we used to
achieve non-repudiation is universal and practical, and can be used in many PDP
and POR schemes to guarantee the property of non-repudiation. We take S-PDP
scheme as an instance and test the optimal parameter of NRPDP scheme. From
these experiments, we can see that the NRPDP scheme is efficient and practical
by the method of commitment functions.
Under the RSA and DHK assumptions, The NRPDP scheme is secure in the
random oracle model. Experiments show that our scheme is efficient and practi-
cal, and offers an efficient probabilistic possession guarantee and effective non-
repudiation and verification.

9 Acknowledgments

The authors would like to thank Dr. Yuan Zhang and Professor Rui Xue for their
comments on improving this paper. The paper is supported National Science
Foundation of China under Grant No. 61100172 and No. 61272512, National
863 Plans Projects No. 2013AA01A214, Program for New Century Excellent
Talents in University (NCET-12-0046), and Beijing Natural Science Foundation
No. 4121001.

References

1. F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter. Outsourced
proofs of retrievability. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 831–843. ACM, 2014.

2. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair
exchange. In Security and Privacy, 1998. Proceedings. 1998 IEEE Symposium on,
pages 86–99. IEEE, 1998.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital sig-
natures. In Advances in CryptologyEUROCRYPT’98, pages 591–606. Springer,
1998.

26 Hongyuan Wang, Liehuang Zhu, Yijia Lilong, and Chang Xu

4. G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peter-
son, and D. Song. Remote data checking using provable data possession. ACM
Transactions on Information and System Security (TISSEC), 14(1):12, 2011.

5. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song. Provable data possession at untrusted stores. In Proceedings of the 14th
ACM conference on Computer and communications security, pages 598–609. ACM,
2007.

6. G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient
provable data possession. In Proceedings of the 4th international conference on
Security and privacy in communication netowrks, page 9. ACM, 2008.

7. D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious
ram. In Advances in Cryptology–EUROCRYPT 2013, pages 279–295. Springer,
2013.

8. B. Chen and R. Curtmola. Robust dynamic provable data possession. In Distributed
Computing Systems Workshops (ICDCSW), 2012 32nd International Conference
on, pages 515–525. IEEE, 2012.

9. I. Damgard. Towards practical public key systems secure against chosen ciphertext
attacks. In Advances in Cryptology - Crypto91, pages 445–456, 1992.

10. A. W. Dent. The hardness of the dhk problem in the generic group model. IACR
Cryptology ePrint Archive, 2006:156, 2006.

11. Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplifi-
cation. In Theory of Cryptography, pages 109–127. Springer, 2009.

12. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data
possession. In Proceedings of the 16th ACM conference on Computer and commu-
nications security, pages 213–222. ACM, 2009.

13. C. Hanser and D. Slamanig. Efficient simultaneous privately and publicly verifiable
robust provable data possession from elliptic curves. IACR Cryptology ePrint
Archive, 2013:392, 2013.

14. A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large files. In Pro-
ceedings of the 14th ACM conference on Computer and communications security,
pages 584–597. ACM, 2007.

15. A. Juels, B. S. Kaliski Jr, K. D. Bowers, and A. M. Oprea. Proof of retrievability
for archived files, Feb. 19 2013. US Patent 8,381,062.

16. K. S. McCurley. The discrete logarithm problem. In Proc. of Symp. in Applied
Math, volume 42, pages 49–74, 1990.

17. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in CryptologyCRYPTO91, pages 129–140. Springer, 1992.

18. H. Shacham and B. Waters. Compact proofs of retrievability. In Advances in
Cryptology-ASIACRYPT 2008, pages 90–107. Springer, 2008.

19. E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retriev-
ability. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 325–336. ACM, 2013.

20. E. Stefanov, E. Shi, and D. Song. Towards practical oblivious ram. arXiv preprint
arXiv:1106.3652, 2011.

21. E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: A scalable cloud file system
with efficient integrity checks. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 229–238. ACM, 2012.

22. C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public
auditing for secure cloud storage. Computers, IEEE Transactions on, 62(2):362–
375, 2013.

Non-Repudiable Proofs of Storage in Cloud 27

23. C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou. Toward secure and dependable
storage services in cloud computing. Services Computing, IEEE Transactions on,
5(2):220–232, 2012.

24. C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for
data storage security in cloud computing. In INFOCOM, 2010 Proceedings IEEE,
pages 1–9. Ieee, 2010.

25. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and
data dynamics for storage security in cloud computing. In Computer Security–
ESORICS 2009, pages 355–370. Springer, 2009.

26. Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In Proceedings
of the first ACM conference on Data and application security and privacy, pages
237–248. ACM, 2011.

27. J. Zhou and D. Gollman. A fair non-repudiation protocol. In 2012 IEEE Sympo-
sium on Security and Privacy, pages 0055–0055. IEEE Computer Society, 1996.

28. J. Zhou and D. Gollmann. Observations on non-repudiation. In Advances in
CryptologyASIACRYPT’96, pages 133–144. Springer, 1996.

29. Y. Zhu, G.-J. Ahn, H. Hu, S. S. Yau, H. G. An, and C.-J. Hu. Dynamic audit
services for outsourced storages in clouds. Services Computing, IEEE Transactions
on, 6(2):227–238, 2013.

30. Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu. Cooperative provable data possession for
integrity verification in multicloud storage. Parallel and Distributed Systems, IEEE
Transactions on, 23(12):2231–2244, 2012.

31. Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau. Efficient provable
data possession for hybrid clouds. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 756–758. ACM, 2010.

