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Abstract. In this paper, we present a new classification of 4-bit optimal S-boxes. All optimal 4-bit S-
boxes can be classified into 183 different categories, among which we specify 3 platinum categories.
Under the design criteria of the PRESENT (or SPONGENT) S-box, there are 8064 different S-boxes
up to adding constants before and after an S-box. The 8064 S-boxes belong to 3 different categories,
we show that the S-box should be chosen from one out of the 3 categories or other categories for better
resistance against linear cryptanalysis. Furthermore, we study in detail how the S-boxes in the 3 platinum
categories influence the security of PRESENT, RECTANGLE and SPONGENT88 against differential
and linear cryptanalysis. Our results show that the S-box selection has a great influence on the secu-
rity of the schemes. For block ciphers or hash functions with 4-bit S-boxes as confusion layers and bit
permutations as diffusion layers, designers can extend the range of S-box selection to the 3 platinum
categories and select their S-box very carefully. For PRESENT, RECTANGLE and SPONGENT88 re-
spectively, we get a set of potentially best/better S-box candidates from the 3 platinum categories. These
potentially best/better S-boxes can be further investigated to see if they can be used to improve the
security-performance tradeoff of the 3 cryptographic algorithms.
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1 Introduction

S-boxes are widely used in modern block ciphers and hash functions. Substitution-Permutation (SP) and
Feistel network are the most common structures. In these structures, S-boxes are usually the only non-linear
part. Therefore, S-boxes have to be chosen carefully to optimize the security-performance tradeoff. The most
common sizes of S-boxes are 8-bit and 4-bit. AES [15] uses an 8-bit S-box, which has influenced many
subsequent ciphers; while Serpent [2] and NOEKEON [14] use 4-bit S-boxes. In the past few years, as the
need for security in RFID and sensor networks is dramatically increasing, many lightweight constructions
have been proposed. Since a 4-bit S-box is usually much more compact in hardware than an 8-bit S-box,
many lightweight block ciphers and hash functions use 4-bit S-boxes, such as LED [18], PHOTON [19],
PRESENT [10], RECTANGLE [32] and SPONGENT [8].

For 4-bit S-boxes, the optimal values are known with respect to differential and linear cryptanalysis, an
S-box attaining these optimal values is called an optimal S-box. In [22], Leander et al. classified all optimal
4-bit S-boxes into 16 affine equivalences; this result can be used to efficiently generate optimal S-boxes
fulfilling additional criteria. However, for many constructions, the design criterion of being an optimal S-box
is not enough, there are other important properties the designers should take into account. For example, the
design criteria of the Serpent S-box require that a 1-bit input difference must cause an output difference of
at least two bits; later, such an criterion is adopted in the S-boxes of PRESENT, SPONGENT, LED and
PHOTON.



Given an S-box S, let CarD1S denote the number of times that a 1-bit input difference causes a 1-bit output
difference, and CarL1S the number of times that a 1-bit input selection pattern causes a 1-bit output selection
pattern. We refer to Section 2.1 for a precise definition of CarD1S and CarL1S. For the PRESENT S-box,
CarD1S = 0 and CarL1S = 8. In [26], linear hulls were used to mount an attack on 25-round PRESENT. Later,
a multidimensional linear attack on 26-round PRESENT was given in [12], which is the best shortcut attack
on PRESENT so far. Both of the above attacks use the fact that the value of CarL1S of the PRESENT S-box
is relatively high, i.e., CarL1S = 8, which leads to a significant clustering of linear trails. For comparison,
the value of CarD1S of the PRESENT S-box is zero, the best shortcut differential attack on PRESENT only
reaches 18 rounds [30]. It can be seen that, with respect to security margin, there is a big gap between differ-
ential cryptanalysis and linear cryptanalysis on PRESENT. More recently, Blondeau and Nyberg [7] showed
that there exists a chosen-plaintext truncated differential attack for any known-plaintext multidimensional
linear attack, hence, they have successfully derived a truncated differential attack on 26-round PRESENT
from the multidimensional linear attack on 26-round PRESENT [12]. From this result, we can learn that a
block cipher had better have almost the same security margin against differential-like attacks and linear-like
attacks. Now, the questions come up. Is there any optimal S-box satisfying CarD1S = 0 and CarL1S = 0? Is
there a better S-box for PRESENT with respect to the security against differential and linear cryptanalysis?
These questions are part of motivation of this paper.

SPONGENT is a family of lightweight hash functions based on PRESENT. As PRESENT, the internal
permutation of each SPONGENT variant uses SP-network with 4-bit S-boxes and a bit permutation. For
the SPONGENT S-box, CarD1S = 0 and CarL1S = 4. RECTANGLE is designed with bit-slice technique.
RECTANGLE also uses SP-network with 4-bit S-boxes and a bit permutation. For the RECTANGLE S-box,
CarD1S = 2 and CarL1S = 2. With respect to security of PRESENT and RECTANGLE, differential and
linear cryptanalysis are the most effective methods. Differential cryptanalysis is also an important method
for the cryptanalysis of SPONGENT. Then, one may wonder if the security margin of PRESENT can be
improved when replacing its S-box by the SPONGENT or RECTANGLE S-box. Moreover, is the S-box
selection of SPONGENT and RECTANGLE optimal with respect to differential and linear cryptanalysis? In
this paper, we will partly answer these questions.

1.1 Contributions

In Section 3 of this paper, we firstly prove that CarL1S ≥ 2 for any optimal S-box. Moreover, if CarL1S = 2,
then the S-box must be in 4 (out of 16) affine equivalent classes; if CarL1S = 3, then the S-box must be in 8
(out of 16) affine equivalent classes. We call the subset of optimal S-boxes with the same values of CarD1S
and CarL1S a Num1-DL category. We show that all optimal 4-bit S-boxes can be classified into 183 different
Num1-DL categories. Among all the 183 Num1-DL categories, there are 3 categories with the minimal
value of CarD1S +CarL1S, we call the 3 categories platinum Num1-DL categories. The SPONGENT and
RECTANGLE S-boxes belong to the 3 platinum Num1-DL categories, while the PRESENT S-box does not
belong to the 3 platinum Num1-DL categories. About hardware area of the 3 platinum Num1-DL categories,
our experimental results show that the difference between different S-boxes is small, which seems to suggest
that designers can focus on security instead of hardware area when selecting an S-box from the 3 platinum
Num1-DL categories.

There are 4 measures to evaluate the security of a cipher against differential and linear cryptanalysis. In
Section 4, we give a brief discussion on the 4 measures, and show why it is appropriate to use the heuristic
measure for the study in this paper.

In Section 5, we consider PRESENT and 5 variants of SPONGENT. There are 8064 S-boxes (up to adding
constants before and after an S-box, similarly hereinafter) satisfying the design criteria of the PRESENT (or
SPONGENT) S-box. The 8064 S-boxes belong to 3 different categories. Fix the PRESENT permutation,
when combining with the 8064 S-boxes, we get 8064 SP-network schemes. Similarly, for each of the 5
SPONGENT variants, fix the permutation layer, we can also get 8064 SP-network schemes. We show that,



for each of the 6 fixed permutation layers, if the S-box comes from 2 out of the 3 categories, then there exists
a linear trail with only one active S-box in each round. Hence, for SP-network schemes with the PRESENT
or SPONGENT permutation layer, to avoid such weak linear trails and get better resistance against linear
cryptanalysis, the S-box should be chosen from 1 out of the 3 categories or other categories.

In Section 6, we investigate how the S-boxes in the 3 platinum Num1-DL categories influence the secu-
rity of PRESENT, RECTANGLE and SPONGENT against differential and linear cryptanalysis. We focus on
64- and 88-bit block length. Consider the following SP-network schemes. For 64-bit block length, the S-box
is chosen from the 3 platinum Num1-DL categories, the diffusion layer is either the PRESENT permutation
or the RECTANGLE permutation. Thus, there are 6 combinations. For 88-bit block length, the S-box is also
chosen from the 3 platinum Num1-DL categories, the diffusion layer is either the SPONGENT88 permutation
layer or the RECTANGLE88 permutation, there are also 6 combinations. For each of these 12 combinations,
we use the heuristic measure to evaluate which are the best possible S-box candidates. Our results show
that the S-box selection has a significant influence on the security of PRESENT, RECTANGLE and SPON-
GENT. For PRESENT, there are 336 potentially best S-boxes, which does not include the PRESENT S-box.
For RECTANGLE, there are 128 potentially best S-boxes, which includes the RECTANGLE S-box. For
SPONGENT88, we present 4 potentially better S-boxes when considering differential cryptanalysis more
important than linear cryptanalysis for hash functions. We want to point out that these results do not mean
any security weakness of PRESENT, RECTANGLE or SPONGENT. However, these results show that there
are potentially better S-box selections for PRESENT and SPONGENT, which means, by choosing another
S-box, it is possible to improve the hardware/software performance of PRESENT and SPONGENT with
a fixed level of security margin. Since any platinum Num1-DL category is not always the best choice, we
suggest that designers can extend the range of the S-box selection to the 3 platinum Num1-DL categories
and select their S-box carefully, when designing a block cipher or a hash function using 4-bit S-boxes as
confusion layer and a bit permutation as diffusion layer.

We want to point out main differences of this work and Saarinen’s work [28]: Saarinen’s work only
considered properties of S-boxes, while we consider not only certain properties of S-boxes but also influence
of S-box selection on the security of PRESENT, RECTANGLE and SPONGENT. In [28], 4 PE classes are
specified as “golden” S-boxes. In the end of Section 6.1, we will explain that none of the golden S-boxes
belong to the 3 platinum Num1-DL categories; moreover, all of the golden S-boxes are not good choices for
PRESENT, RECTANGLE and SPONGENT.

2 Preliminaries

2.1 Optimal S-box, Affine and PE Equivalence, m-resilient Boolean Function

Given an S-box mapping n bits to m bits S : Fn
2 → Fm

2 , we call S an n×m S-box. In this paper, we only
concentrate on 4×4 S-boxes.

Let S denote a 4×4 bijective S-box. Let △I,△O ∈ F4
2 , define NDS(△I,△O) as:

NDS(△I,△O) = ♯{x ∈ F4
2 |S(x)⊕S(x⊕△I) =△O}.

Let Γ I,Γ O ∈ F4
2 , define the imbalance ImbS(Γ I,Γ O) as:

ImbS(Γ I,Γ O) = |♯{x ∈ F4
2 |Γ I · x = Γ O ·S(x)}−8|.

where “·” denotes the inner product on F4
2 .

Define the differential-uniformity of S as:

Di f f (S) = max
△I ̸=0,△O

NDS(△I,△O)



Define the linearity of S as:
Lin(S) = max

Γ I,Γ O̸=0
ImbS(Γ I,Γ O)

The smaller the value of Di f f (S), the more secure the S-box against differential cryptanalysis. Similarly,
the smaller the value of Lin(S), the more secure the S-box against linear cryptanalysis. For any bijective 4×4
S-box, Di f f (S)≥ 4 and Lin(S)≥ 4 [22]. An S-box attaining these minima is called an optimal S-box.

Definition 1 ([22]). Let S be a 4×4 S-box. S is called an optimal S-box if it satisfies the 3 conditions:

1. S is bijective, i.e., S(x) ̸= S(x′) for any x ̸= x′.
2. Di f f (S) = 4.
3. Lin(S) = 4.

Let wt(x) denote the Hamming weight of a binary vector x. Define SetD1S [32] as:

SetD1S = {(△I,△O) ∈ F4
2 ×F4

2 |wt(△I) = wt(△O) = 1 and NDS(△I,△O) ̸= 0}.

Define SetL1S [32] as:

SetL1S = {(Γ I,Γ O) ∈ F4
2 ×F4

2 |wt(Γ I) = wt(Γ O) = 1 and ImbS(Γ I,Γ O) ̸= 0}.

Let CarD1S denote the cardinality of SetD1S, and CarL1S the cardinality of SetL1S.

Definition 2 ([22]). Two S-boxes S and S′ are called affine equivalent if there exist two invertible 4× 4
matrices A,B over F2, and constants a,b ∈ F4

2 such that S′(x) = B(S(A(x)⊕a))⊕b.

Given an S-box S, the values of Di f f (S) and Lin(S) both remain unchanged when applying an affine
transformation in the domain or co-domain of S [11, 25]. Especially, the following theorem holds.

Theorem 1 ([22]). Let S and S′ be two affine equivalent S-boxes. If S is an optimal S-box, then S′ is an
optimal S-box as well.

According to Theorem 1, all optimal S-boxes can be divided into equivalence classes using affine equiva-
lence relation. It is a surprising fact that all 4×4 optimal S-boxes can be split into only 16 affine equivalence
classes [22]. Let {Gi,0 ≤ i ≤ 15} denote the representatives for the 16 equivalence classes, we refer to [22]
for the 16 representatives, which are also listed in Table 1 for clarity.

Table 1. ([22]) Representatives for All 16 Affine Equivalence Classes of Optimal 4×4 S-boxes

G0 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 12, 9, 3, 14, 10, 5

G1 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 5, 9, 10, 12

G2 0, 1, 2, 13, 4, 7, 15, 6, 8, 11, 14, 3, 10, 12, 5, 9

G3 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 5, 3, 10, 14, 11, 9

G4 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 9, 11, 10, 14, 5, 3

G5 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 3, 5

G6 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 11, 9, 10, 14, 5, 3

G7 0, 1, 2, 13, 4, 7, 15, 6, 8, 12, 14, 11, 10, 9, 3, 5

G8 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 9, 5, 10, 11, 3, 12

G9 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 3, 5, 9, 10, 12

G10 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 5, 10, 9, 3, 12

G11 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 5, 9, 12, 3

G12 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 11, 10, 9, 3, 12, 5

G13 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 9, 5, 11, 10, 3

G14 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 3, 9, 5, 10

G15 0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5

Note: In each row, the first integer represents the image of 0, the second the image of 1, and so on.



Table 2. ([22]) Number of b ∈ F4
2 \{0} such that deg(Sb) = 2,3

S-box G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

deg(Sb) = 2 3 3 3 0 0 0 0 0 3 1 1 0 0 0 1 1

deg(Sb) = 3 12 12 12 15 15 15 15 15 12 14 14 15 15 15 14 14

Definition 3 ([22]). Two S-boxes S and S′ are called permutation-then-XOR equivalent if there exist two
4× 4 permutation matrices P0,P1 over F2, and constants a,b ∈ F4

2 such that S′(x) = P1(S(P0(x)⊕ a))⊕ b.
The equivalence is called PE equivalence for short.

Note that if two S-boxes are PE equivalent, then they must be affine equivalent.

Definition 4. Let f be a Boolean function f : Fn
2 → F2, define the Walsh Coefficient of f at a as:

f W (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x.

An n-variable Boolean function f is balanced if its output in the truth table contains equal number of 0
and 1. f is balanced if and only if f W (0) = 0.

Definition 5 ([31]). A Boolean function f is m-resilient if and only if its Walsh Coefficient satisfy fW (a) = 0
for any 0 ≤ wt(a)≤ m.

For any b ∈ F4
2 , define the corresponding component Boolean function Sb of an S-box S as:

Sb : F4
2 → F2, Sb(x) = b ·S(x).

Let deg( f ) denote the algebraic degree of the Boolean function f , the algebraic degree is invariant un-
der affine equivalence. Table 2 [22] gives the number of b ∈ F4

2 \ {0} such that deg(Sb) = 2,3 for the 16
representative optimal S-boxes.

2.2 Differential Trail, Difference Propagation, Linear Trail and Linear Propagation

Differential cryptanalysis (DC) [5] and linear cryptanalysis (LC) [23] are among the most powerful tech-
niques available for block ciphers. Let β be a Boolean transformation operating on n-bit vectors that is a
sequence of r transformations:

β = ρ(r) ◦ρ(r−1) ◦ · · · ◦ρ(2) ◦ρ(1).

In this paper, β refers to a key-alternating block cipher [15] or a permutation of a hash function, the round
keys (or constants) are added to the state by means of an XOR. Thus, a difference in differential cryptanalysis
considered in this paper is referred to as an XOR.

A differential trail [15] Q over an iterative transformation consists of a sequence of r + 1 difference
patterns:

Q = (q(0),q(1),q(2), · · · ,q(r−1),q(r)).

The probability of a differential step is defined as:

Prob(q(i−1),q(i)) = 2−n × ♯{x ∈ Fn
2 |ρ(i)(x)⊕ρ(i)(x⊕q(i−1)) = q(i)}.

The probability of a differential trail is the number of values a(0) for which the difference patterns follow
the differential trail divided by the number of possible values for a(0). Assuming the independence of different
steps, the probability of a differential trail Q can be approximated as:



Prob(Q) = ∏
i

Prob(q(i−1),q(i)).

Note that such an approximation is independent of the values of the round keys. A difference propagation
[15] is composed of a set of differential trails, the probability of a difference propagation (a ′,b ′) is the sum
of the probabilities of all r-round differential trails Q with initial difference a ′ and terminal difference b ′:

Prob(a′,b′) = ∑
q(0)=a ′,q(r)=b ′

Prob(Q) (1)

The correlation C( f ,g) between two binary Boolean functions f (a) and g(a) is defined as:

C( f ,g) = 2×Prob( f (a) = g(a))−1.

A linear trail [15] U over an iterative transformation consists of a sequence of r+ 1 selection patterns
(also known as linear mask):

U = (u(0),u(1),u(2), · · · ,u(r−1),u(r)).

The correlation contribution [15] of a linear trail is the product of the correlation of all its steps:

Cor(U) = ∏
i

C(u(i) ·ρ(i)(a),u(i−1) ·a). (2)

A linear propagation is composed of a set of linear trails, the correlation of a linear propagation (u,w) is
the sum of the correlation contributions of all r-round linear trails U with initial selection pattern w and final
selection pattern u :

Cor(u,w) = ∑
u(0)=w,u(r)=u

Cor(U). (3)

Note that the correlation contribution of the linear trails are signed and their sign depends on the value of
the round keys. The square of a correlation (contribution) is called correlation potential. The following theo-
rem gives the expected value of the correlation potential Cor(u, w)2 over all possible values of the expanded
key.

Theorem 2 ([15]). The average correlation potential between an input and an output selection pattern is the
sum of the correlation potentials of all linear trails between the input and output selection patterns:

E(Cort
2) = ∑

i
(Cori)

2 (4)

where Cort is the overall correlation, and Cori the correlation contribution of a linear trail.

To attack a b-bit block cipher using DC, there must be a predictable difference propagation over all but
a few rounds with a probability significantly larger than 2−b. Similarly, to attack a b-bit block cipher using
LC, there must be a predictable linear propagation over all but a few rounds with a correlation potential
significantly larger than 2−b.

2.3 An Extension of RECTANGLE - RECTANGLE88

Based on the design criteria of RECTANGLE, we present an extension of RECTANGLE to 88-bit block
length, denoted as RECTANGLE88. A 88-bit cipher state is pictured as a 4× 22 rectangular array of bits.
The SubColumn is 22 parallel applications of S-boxes to the 22 columns. The Shi f tRow step is defined as
follows: row 0 is not rotated, row 1 is left rotated over 1 bit, row 2 is left rotated over 8 bits, row 3 is left
rotated over 17 bits. The parameters of Shi f tRow are chosen according to the criterion of full dependency
after a minimal number of rounds. After 5 rounds, each of the 88 input bits influences each of the 88 output
bits, and each of the 88 output bits influences each of the 88 input bits.



3 A New Classification of 4-bit S-boxes

The subset of 4× 4 optimal S-boxes with the same values of CarD1S and CarL1S is called a category, the
following is a formal definition.

Definition 6. An (nd,nl)-Num1-DL category is defined as a subset of all 4×4 optimal S-boxes which satisfy
CarD1S = nd and CarL1S = nl. The category is also called a Num1-DL category for short.

We are especially interested in those categories with low CarD1S and low CarL1S. It can be easily seen
that 0 ≤ CarD1S ≤ 16 and 0 ≤ CarL1S ≤ 16. Obviously, the (0,0)-Num1-DL category is the best case,
however, the following theorem shows that there does not exist such an optimal S-box.

Theorem 3. Let S denote an optimal S-box, then CarL1S ≥ 2. In other words, there does not exist an optimal
S-box with CarL1S = 0 or CarL1S = 1.

Proof: Let x = (x3,x2,x1,x0) and S(x) = ( f3(x), f2(x), f1(x), f0(x)), where xi is the i-th bit of x, and f j(x) the
j-th bit of S(x). Since S is bijective, each Boolean function f j (0 ≤ j ≤ 3)) is balanced.

Firstly, we show that there exist at least 2 Boolean functions f j1 and f j2 (0 ≤ j1, j2 ≤ 3) with algebraic
degree 3, equivalently speaking, there exist at most 2 Boolean functions with algebraic degree less than 3.
Proof by contradiction. Assume that there exist 3 (or 4) out of the 4 Boolean functions f j ( j = 0,1,2,3) with
algebraic degree less than 3. Then, for each of the 7 (or 15) non-zero linear combinations of these 3 (or 4)
functions, the algebraic degree is also less than 3. However, according to Table 1, for any optimal S-box, there
are at most 3 out of the 15 component functions with algebraic degree less than 3, which is a contradiction.

According to Siegenthaler’s inequality [29], an n-variable Boolean function with degree n− 1 is not 1-
resilient. Particularly, if the degree of f j is 3, then there exists 0 ≤ i ≤ 3 such that f j(x)⊕ xi is not balanced,
which means that (2i,2 j) ∈ SetL1S. Since there exist at least 2 functions f j1 and f j2 with algebraic degree 3,
we can get that there are at least 2 elements in SetL1S, i.e., CarL1S ≥ 2. �

Note that it was also reported in [22] that there is no (0,0)-Num1-DL S-box. Similar to the proof of
Theorem 3, we can prove the following 2 theorems.

Theorem 4. Let S denote an optimal S-box. If S is affine equivalent to G9, G10, G14 or G15, then CarL1S ≥ 3.

Proof: If S is affine equivalent to G9, G10, G14 or G15, firstly we show that there exist at least 3 Boolean
functions f j1 , f j2 and f j3 (0 ≤ j1, j2, j3 ≤ 3) with algebraic degree 3. Proof by contradiction. Assume that
there exist w ≥ 2 Boolean functions fk1 , · · · , fkw with algebraic degree less than 3. Then, there exist at least
2w − 1 ≥ 3 non-zero linear combinations of the m functions with algebraic degree less than 3. However,
according to Table 1, for any S-box which is affine equivalent to G9, G10, G14 or G15, there is only 1 out of
the 15 component functions with algebraic degree less than 3, which is a contradiction.

Since there exist at least 3 functions f j1 , f j2 and f j3 with algebraic degree 3, similar to the reasoning in
Theorem 3, we can get that there are at least 3 elements in SetL1S, i.e., CarL1S ≥ 3. �

Theorem 5. Let S denote an optimal S-box. If S is affine equivalent to G3, G4, G5, G6, G7, G11, G12 or G13,
then CarL1S ≥ 4.

Proof: If S is affine equivalent to G3, G4, G5, G6, G7, G11, G12 or G13, then the algebraic degree is 3 for
each of the 15 component functions according to Table 1. Hence the algebraic degree is 3 for each of the 4
Boolean functions f j(x), j = 0,1,2,3. Similar to the reasoning in Theorem 3, we can get that there are at
least 4 elements in SetL1S, i.e., CarL1S ≥ 4. �

According to Theorem 4 and 5, we can get the following corollary.

Corollary 1. If CarL1S = 2, then S is in the 4 affine equivalence classes corresponding to G0, G1, G2 and
G8; if CarL1S = 3, then S is in the 8 affine equivalence classes corresponding to G0, G1, G2, G8, G9,
G10, G14 and G15.



Corollary 1 indicates that we can restrict the search of S-boxes with CarL1S = 2 within the 4 (out of
16) affine equivalence classes, and the search of S-boxes with CarL1S = 3 within the 8 (out of 16) affine
equivalence classes. In the following, we present an efficient way which can experimentally classify all 4×4
optimal S-boxes into different categories.

Given an S-box S, the values of CarD1S and CarL1S are not generally invariant under the affine equiva-
lence relation, but the two values are invariant under the PE equivalence relation.

Theorem 6. Let S and S′ be two PE equivalent S-boxes, then CarD1S =CarD1S′ and CarL1S =CarL1S′ .

Every 4×4 optimal S-box can be written as B(Gi(A(x)⊕a))⊕b, where Gi (0≤ i≤ 15) is a representative
S-box listed in Table 1, A and B are two invertible 4×4 matrices over F2, a and b are two constants over F4

2 .
The number of 4×4 invertible matrices is ∏3

i=0(2
4 −2i) = 20160. At the first sight, up to adding constants,

we need to consider 16× 20160× 20160 ≈ 232.6 S-boxes. However, this number can be decreased greatly
due to the following Lemma.

Lemma 1. Let M denote a 4×4 matrix over F2:

M =

 a03 a02 a01 a00
a13 a12 a11 a10
a23 a22 a21 a20
a33 a32 a31 a30


where ai j ∈ F2, 0 ≤ i, j ≤ 3. Let ri = ai3||ai2||ai1||ai0 denote the nibble consisting of the 4 bits in the i-th row,
ai0 is the least significant bit. There are 840 matrices satisfying the following 2 conditions:

1. invertible.
2. r0 < r1 < r2 < r3.

we call such a matrix a row-increasing matrix.

Proof: Given an 4× 4 invertible matrix, there are 4! = 24 different matrices obtained by permuting the 4
rows. Among the 24 matrices, only one matrix satisfies the condition r0 < r1 < r2 < r3. Therefore, there are
20160/24 = 840 invertible row-increasing matrices. �

According to Lemma 1, every 4×4 optimal S-box is PE equivalent to an S-box with the form M1(Gi(MT
0 (x))),

0 ≤ i ≤ 15, M0 and M1 are two row-increasing matrices. Hence, up to PE equivalence, we only need to con-
sider 16×840×840 = 11289600 ≈ 223.43 S-boxes. By exhaustively checking all the 11289600 S-boxes, we
have the following result.

Result 1 All optimal 4× 4 S-boxes can be split into 183 different Num1-DL categories. Table 3 gives the
details, the symbol “X” at position (i, j) means that there exist optimal S-boxes satisfying CarD1S = i and
CarL1S = j. From Table 3, the following facts are of interest:

1. No Num1-DL category satisfies that CarL1S = 0 or CarL1S = 1.
2. The minimal possible value for CarD1S is 0. When CarD1S = 0, the minimal possible value for CarL1S

is 4, i.e., the (0,4)-Num1-DL category.
3. The minimal possible value for CarL1S is 2. When CarL1S = 2, the minimal possible value for CarD1S

is 2, i.e., the (2,2)-Num1-DL category.

Note that the first fact in Result 1 is in accordance with Theorem 3. The SPONGENT S-box belongs to
the (0,4)-Num1-DL category, the RECTANGLE S-box belongs to the (2,2)-Num1-DL category. Moreover,
we experimentally verify Corollary 1, our results show that there exist S-boxes with CarL1 = 2 in each of the
4 affine equivalence classes corresponding to G0, G1, G2 and G8, and there exist S-boxes with CarL1S = 3
in each of the 8 affine equivalence classes corresponding to G0, G1, G2, G8, G9, G10, G14 and G15.

Next, we wonder how many PE equivalent classes there are in a Num1-DL category. Intuitively, the larger
the value of CarD1S (or CarL1S), the more likely there exists a weak differential (or linear) trail with only



one active S-box in each round, hence we only consider the Num1-DL categories with low values of CarD1S
and CarL1S. For each Num1-DL category satisfying CarD1S +CarL1S ≤ 8, by checking all the S-boxes (out
of 11289600 S-boxes) in this category, we get the following result.

Result 2 There are 24 Num1-DL categories satisfying CarD1S +CarL1S ≤ 8. Table 4 gives the number of
PE classes for each of the 24 Num1-DL categories. Moreover, we have the following facts:

1. Consider the sum of the values in row 0, there are 20 PE classes satisfying CarD1S = 0.
2. Restricting CarD1S +CarL1S ≤ 4, there are 3 Num1-DL categories: (0,4)-, (1,3)-, (2,2)-Num1-DL

category. We call these 3 categories platinum Num1-DL categories. Table 5 lists representative S-boxes for
each PE class in each of the 3 platinum Num1-DL categories.

Generally, the S-boxes in a Num1-DL category belong to many affine equivalence classes. For example,
(0,8)-Num1-DL category includes 8 PE classes, and the 8 PE classes belong to 5 affine equivalence classes.
In Result 2, the first fact is in accordance with Fact 4 in [22]. For the (2,2)-Num1-DL category, the 4
representative S-boxes are respectively PE equivalent to the 4 representative S-boxes given in [32], appearing
in the same order.

In hardware implementation, an S-box is usually realized in combinatorial logic, where area requirement
is a very important aspect. A bit-permutation is realized by wiring, which needs a negligible amount of
area. Hence, for one PE class, up to permutations of input bits and output bits, only 256 S-boxes need to be
investigated with respect to hardware area. There are 10 PE classes in the 3 platinum Num1-DL categories,

Table 3. 183 Num1-DL Categories: marked by X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 X X X X X

1 X X X X X X X X X X

2 X X X X X X X X X X X X X

3 X X X X X X X X X X X X X X

4 X X X X X X X X X X X X X X X

5 X X X X X X X X X X X X X X X

6 X X X X X X X X X X X X X X

7 X X X X X X X X X X X X X X

8 X X X X X X X X X X X X X

9 X X X X X X X X X X X X X

10 X X X X X X X X X X X X X

11 X X X X X X X X X X X X X

12 X X X X X X X X X X X

13 X X X X X X X X X X

14 X X X X X X X X

15 X X

16

Notes: the leftmost column denotes the 17 possible values of CarD1S
the uppermost row denotes the 17 possible values of CarL1S

Table 4. Number of PE Classes in the 24 Num1-DL Categories satisfying CarD1S +CarL1S ≤ 8

0 1 2 3 4 5 6 7 8

0 2 2 6 2 8

1 4 26 50 112 113 –

2 4 54 155 290 648 – –

3 10 116 593 1445 – – –

4 9 168 1141 – – – –

5 5 146 – – – – –

Notes: the leftmost column denotes the possible values of CarD1S
the uppermost row denotes the possible values of CarL1S
“–” denotes the class does not satisfy CarD1S +CarL1S ≤ 8



Table 5. Representative S-boxes for the 3 platinum Num1-DL categories

(0,4)-Num1-DL category 0, 11, 12, 5, 6, 1, 9, 10, 3, 14, 15, 8, 13, 4, 2, 7

0, 12, 13, 10, 5, 11, 14, 7, 15, 6, 2, 1, 3, 8, 9, 4

(1,3)-Num1-DL category 0, 12, 9, 7 ,6, 1, 15, 2, 3, 11, 4, 14, 13, 8, 10, 5

0, 12, 9, 7, 15, 2, 6, 1, 3, 11, 4, 14, 10, 5, 13, 8

0, 11, 8, 5, 15, 12, 3, 6, 14, 4, 7, 9, 2, 1, 13, 10

0, 13, 4, 11, 7, 14, 9, 2, 6, 10, 3, 5, 8, 1, 15, 12

(2,2)-Num1-DL category 0, 13, 8, 2, 14, 11, 7, 5, 15, 6, 3, 12, 4, 1, 9, 10

0, 11, 14, 1, 10, 7, 13, 4, 6, 12, 9, 15, 5, 8, 3, 2

0, 11, 6, 9, 12, 5, 3, 14, 13, 7, 8, 4, 2, 10, 15, 1

0, 14, 9, 5, 15, 8, 10, 7, 3, 11, 6, 12, 4, 1, 13, 2

Note: In each row, the first integer represents the image of 0, the second the image of 1, and so on.

Table 6. Maximal and Minimal GEs for 64 S-boxes from each platinum PE classes

PE Class (0,4)1 (0,4)2 (1,3)1 (1,3)2 (1,3)3 (1,3)4 (2,2)1 (2,2)2 (2,2)3 (2,2)4
Max (GEs) 24.68 25.02 24.02 23.68 24.02 23.35 23.35 23.01 23.02 23.34
Min (GEs) 23.02 23.36 22.35 22.00 23.02 22.35 21.35 21.00 21.01 21.68

Gates(GEs): NAND (1), NOR (1), AND (1.33), OR (1.33), XOR (2.67), NOT (0.67).

we call them platinum PE classes for simplicity. Due to the limitation of computational resources, we only
choose 64 S-boxes from each of the 10 platinum PE classes for study. We use a C program extended from
[17] to calculate the minimum possible area of an S-box. Since the program is a heuristic algorithm, it
can not be guaranteed that the result is the smallest one. Table 6 summarizes our experimental results, where
(nd ,nl)i denote the i-th PE class (corresponding to the i-th representative in Table 5) in the (nd ,nl)-Num1-DL
category, Max and Min respectively denote the maximal and minimal area among the 64 values. According
to Table 6, the difference between different S-boxes in the same PE class is small (not more than 2.01 GE)
, which seems to suggest that designers can focus on security instead of hardware area when selecting an
S-box from a platinum PE class.

4 Measures for Evaluating the Security against DC and LC

Kanda et al. [20] classified 4 measures to evaluate the security of a cipher against DC and LC as follows:

1. Precise measure: The maximum probability of difference propagations, and the maximum average cor-
relation potential of linear propagations.

2. Theoretical measure: The upper bound of the maximum probability of difference propagations, and the
upper bound of the maximum average correlation potential of linear propagations.

3. Heuristic measure: The maximum probability of differential trails, and the maximum correlation poten-
tial of linear trails.

4. Practical measure: The upper bound of the maximum probability of differential trails, and the upper
bound of the maximum correlation potential of linear trails.

For many modern ciphers, such as AES and Serpent, it is almost computationally infeasible to perform
an evaluation using the precise measure or the theoretical measure. For ciphers with good diffusion , such as
Serpent [2], the heuristic measure is only effective for a small number of rounds. On the other hand, many
ciphers evaluated with the practical measure are practically secure against DC and LC, such as AES and
NOEKEON, hence the practical measure is the most common measure.

However, compared with the practical measure, the heuristic measure is more accurate. If the heuristic
measure is feasible for a cipher, then both the cryptanalysts and designers can have a better understanding on
the security of the cipher against DC and LC. Particularly, for PRESENT, RECTANGLE and SPONGENT,
the heuristic measure is feasible, we will discuss this problem in Section 6.2.



Consider the following SP-network schemes. Fix the permutation layer of PRESENT, RECTANGLE or
SPONGENT, the S-box can have many different choices. Then, for each scheme, we wonder which S-boxes
are the best with respect to DC and LC? If an S-box can result in a differential or linear trail with only
one active S-box in each round, then such an S-box is not a good candidate, we will explain in detail in
Section 5 and Section 6. Since the larger the value of CarD1 (CarL1), the more likely that there exists a
differential (linear) trail with only one active S-box in each round (see Section 5). Hence, in this paper, we
mainly concentrate on S-boxes in the 3 platinum Num1-DL categories. In Section 5 and Section 6, we adopt
the heuristic measure for the study. One may say that, for such schemes, the clustering of differential/linear
trails must not be neglected [6, 12, 26, 30, 32], hence it needs to use the precise (or the theoretical) measure
to evaluate the clustering of differential/linear trails. However, we think that it is still appropriate to use the
heuristic measure for the study. The following gives the reasons.

In [32], the designers presented their evaluation on the clustering of differential/linear trails of RECTAN-
GLE, which took them several days. For comparison, by using the heuristic measure, our experiments show
that it only needs several minutes for the evaluation of RECTANGLE, and several seconds for the evaluation
of PRESENT. Note that the total number of schemes investigated in this paper is 4368 (see Table 5), hence it
needs an extremely huge computational effort to evaluate the clustering of differential/linear trails for all the
schemes investigated in this paper.

Let rDp denote the highest number of rounds of an exploitable differential distinguisher by using the
precise measure, and rLp the highest number of rounds of an exploitable linear distinguisher by using the
precise measure, define rp ≡ max{rDp,rLp}. For a fixed permutation, among all the S-box candidates, the
smaller the value of rp, the better the scheme, because schemes with the minimal rp need the least number of
rounds to resist against DC and LC. Let rDh denote the highest number of rounds of an exploitable differential
distinguisher by using the heuristic measure, and rLh the highest number of rounds of an exploitable linear
distinguisher by using the heuristic measure, define rh ≡ max{rDh,rLh}. Based on equations (1) and (4),
we have rDp ≥ rDh and rLp ≥ rLh, thus rp ≥ rh. The smaller the value of rDp − rDh (rLp − rLh), the less
the clustering of differential (linear) trails. Based on the known results on PRESENT, RECTANGLE and
SPONGENT [1, 6, 12, 26, 30, 32], the difference rDp − rDh (or rLp − rLh) between the two measures are as
follows: For PRESENT against DC, the difference is 16−14 = 2; for PRESENT against LC, the difference
is 24−16 = 8. For RECTANGLE against DC, the difference is 14−14 = 0; for RECTANGLE against LC,
the difference is 14− 13 = 1. For SPONGENT88 against LC, the difference is 23− 22 = 1. Based on the
above results, we expect that there exist S-boxes with a small value of both rDp−rDh and rLp−rLh for each
fixed permutation layer. For such schemes, if rh reaches the minimal, we expect that it is very likely that rp
also reaches the minimal. Hence, it is reasonable to make the following assumption:

Assumption 1 For each fixed permutation layer, consider the SP-network schemes investigated in this paper.
Among those with a minimal value of rh, there exist some schemes satisfying rDp−rDh ≤ 2 and rLp−rLh ≤ 2.

Under Assumption 1, for each fixed permutation layer, the best schemes using the precise measure are
the best schemes using the heuristic measure with a great probability.

By using the heuristic measure, for each combination of a fixed permutation layer and a platinum Num1-
DL category, we can discard a large proportion of the S-box candidates and concentrate only on S-boxes with
the minimal value of rh (we will present the results in Section 6). We emphasize that this is the first step. For
such cipher designs, designers must take differential/linear clustering into consideration. Ideally, designers
can make a further selection from the schemes with the minimal value of rh by selecting an S-box which has
the minimal value of rp − rh. Note that the minimal value of rp − rh is not more than 2 under Assumption 1.



Table 7. Representative S-boxes for the 14 PE Classes Satisfying the Design Criteria of PRESENT S-box

(0,4)-Num1-DL category 0, 11, 12, 5, 6, 1, 9, 10, 3, 14, 15, 8, 13, 4, 2, 7

0, 12, 13, 10, 5, 11, 14, 7, 15, 6, 2, 1, 3, 8, 9, 4

(0,6)-Num1-DL category 0, 3, 5, 14, 13, 4, 8, 2, 10, 12, 9, 7, 6, 11, 15, 1

0, 14, 12, 3, 5, 8, 10, 15, 7, 4, 2, 9, 11, 1, 13, 6

0, 10, 15, 3, 7, 1, 4, 13, 14, 5, 8, 6, 9, 12, 2, 11

0, 12, 13, 11, 6, 15, 10, 5, 7, 9, 4, 2, 8, 3, 1, 14

(0,8)-Num1-DL category 0, 5, 7, 10, 3, 12, 13, 6, 11, 2, 14, 1, 4, 9, 8, 15

0, 13, 14, 2, 12, 7, 11, 1, 5, 3, 8, 4, 9, 10, 6, 15

0, 13, 5, 2, 11, 7, 6, 12, 3, 4, 10, 9, 14, 8, 1, 15

0, 10, 7, 9, 12, 5, 2, 15, 6, 13, 1, 4, 11, 8, 14, 3

0, 12, 7, 10, 6, 9, 1, 4, 3, 15, 14, 5, 8, 2, 13, 11

0, 12, 9, 3, 6, 11, 10, 13, 14, 7, 2, 4, 5, 8, 15, 1

0, 3, 5, 12, 6, 13, 10, 7, 14, 8, 2, 11, 9, 4, 15, 1

0, 7, 14, 11, 10, 1, 4, 8, 6, 9, 13, 2, 5, 12, 3, 15

5 A Relation of the S-box Selection, the Value of CarL1S and the Security of
PRESENT and SPONGENT

The block length of PRESENT is 64 bits. For SPONGENT [8], the block length of the internal permutation
has 5 choices: 88, 136, 176, 240 and 272 bits 1, which are denoted as SPONGENTb respectively, b is the
block length. In this section, we focus on these 6 block lengths.

The design criteria of the PRESENT S-box are as follows:

1. Optimal.
2. CarD1S = 0.
3. For Γ I,Γ O ∈ F4

2 such that wt(Γ I) = wt(Γ O) = 1 it holds that ImbS(Γ I,Γ O) = 2.
4. No fixed point, i.e., S(x) ̸= x for any x ∈ F4

2 .

There are 20 PE classes satisfying criteria 1 and 2. Among the 20 PE classes, 14 PE classes satisfy
criterion 3. We list the 14 representative S-boxes in Table 7. The PRESENT S-box belongs to the (0,8)-
Num1-DL category. The SPONGENT S-box fulfills the design criteria of the PRESENT S-box. Moreover,
the designers claim that, for most SPONGENT variants, the best linear propagation based on single-bit
selection patterns has exactly one linear trail [9]. The SPONGENT S-box belongs to the (0,4)-Num1-DL
category.

Up to adding constants before and after an S-box, which does not change any of the design criteria 1-3
of the PRESENT S-box and moreover does not change the probability of the best differential trail and the
correlation potential of the best linear trail , there are 14×4!×4! = 8064 S-boxes. The 8064 S-boxes belong
to 3 different categories. Fix the permutation of PRESENT (or the permutation layer of the SPONGENT
internal permutation), we wonder which are the best choices among the 8064 S-boxes.

For the schemes investigated in this section, if the best r-round linear trail has only one active S-box in
each round, then its correlation potential is 2−4r+4, with the correlation potential 2−2 in the 0-th and (r−1)-th
round, and 2−4 in each of the other r−2 rounds. Thus, when r = b

4 , the correlation potential of such a linear
trail is 2−b+4, which means there exists a b

4 -round exploitable linear distinguisher. For b = 64 and b = 88,
our experiments show that there exist some S-boxes such that the correlation potential of the best b

4 -round
linear trail is less than or equal to 2−b (see Table 10 and Table 12).

Based on the above discussion, we decide to discard the S-boxes which can result in a linear trail with
only one active S-box in each round. Note that a r-round iterative linear trail can be used to construct a
r ′-round linear trail for any r ′ ≥ r. Algorithm 1 is designed to detect if an S-box can result in a r-round

1 The block length of the internal permutation of SPONGENT is extended to 11 different choices in [9]. We do not
consider the other 6 choices in this paper.



Algorithm 1
INPUT:

b: the block length S: an S-box candidate Permb: the b-bit permutation layer of the block cipher or the hash function
OUTPUT:

Check if the S-box can result in a linear trail with only one active S-box in each round. If yes, f lag=1; else f lag=0.

1. Set f lag=0. Declare Init as a global variable.
2. Calculate CarL1S and the CarL1S pairs {(Γ I,Γ O)} of the set SetL1S .
3. for b

4 S-box indexes of i ∈ {0,1, · · · , b
4 −1} do

for CarL1S pairs (Γ I,Γ O) ∈ SetL1S do
{Init = In = i×4+ logΓ I

2 ; Out = i×4+ logΓ O
2 ;

if ( Permb[Out] = Init ), then { f lag=1; return f lag and exit the program}; // a 1-round iterative weak linear trail is found.
else call Function loop(2); }

4. Return f lag and exit the program;

Function loop(r)
{for all pairs (Γ I∗,Γ O∗) ∈ SetL1S satisfying (Permb[Out] mod 4 = Γ I∗) do

{In = Permb[Out]; Out = ⌊ In
4 ⌋×4+ logΓ O∗

2 ;
if ( Permb[Out] = Init ), then { f lag = 1; return f lag and exit the program}; // a r-round iterative weak linear trail is found.
else if (r < 25 ), call loop(r+1); } }

Table 8. Number of the Remaining S-boxes using Algorithm 1 for the 6 Block Lengths

block length (bits) 64 88 136 176 240 272

number of remaining S-boxes 96 112 32 48 64 0

iterative linear trail with only one active S-box in each round, note that such a linear trail is connected by
the elements in SetL1S. We only check up to 25 rounds for practical reasons (nevertheless, we point out
that it can not exclude the possibility that more S-boxes may be discarded if more rounds are checked). For
each fixed block length, the experimental results show that a vast majority of the 8064 S-box candidates are
discarded. Let ei denote the vector with a single one at position i (counting from zero). Since all of the round
input/output selection patterns belong to the set {ei}, for simplicity, we use In (Out) to denote the subscript
of the input (output) selection pattern of the S-box layer. By running Algorithm 1, we get the following result.

Result 3 For each of the 6 block lengths, fix the corresponding permutation layer, when combining with the
8064 S-boxes, there are 8064 SP-network schemes. Discard the S-boxes which can result in a linear trail
with only one active S-box in each round using Algorithm 1, we have the following facts:

1. Table 8 gives the number of the remaining S-boxes, which shows that more than 98.6 percent of the
8064 S-boxes are discarded for each block length.

2. For 64-, 88-, 136-, 176- and 240-bit block length, all of the remaining S-boxes belong to the (0,4)-
Num1-DL category; for 272-bit block length, there is no S-box left.

From the second fact of the above result, it can be seen that the security of the investigated schemes
against LC has a strong relation with the value of CarL1S. For each of the 6 block lengths, among the 8064
S-boxes, every S-box in (0,6)-Num1-DL and (0,8)-Num1-DL categories can result in a linear trail with only
one active S-box in each round. For 272-bit block length, fix the permutation layer of SPONGENT272, for
each of the 8064 S-box candidates, there exists a linear trail with only one active S-box in each round. Hence,
we get a new design criterion for the S-box of PRESENT-like or SPOGNENT-like schemes.

Design Criterion 1 For 64-bit (88-, 136-, 176- and 240-bit respectively) block length, fix the permutation
layer of PRESENT (the corresponding SPONGENT variant). For better resistance against LC, besides the 4
design criteria for the S-box, designers should add CarL1S = 4 as a new design criterion.

For 272-bit block length, fix the permutation layer of SPONGENT272. For better resistance against LC,
designers should change their design criteria CarD1S = 0 and choose an S-box with CarD1S ̸= 0.



Since there are 2 PE classes in the (0,4)-Num1-DL category. Design criterion 1 means that the S-box
should be chosen from 1152 out of the 8064 S-boxes for the 5 block lengths.

6 An Investigation of the S-box Selection of PRESENT, RECTANGLE and
SPONGENT

Due to the huge computational effort required to run the experiments, we only focus on 64- and 88-bit block
lengths in this section. Consider the following SP-network schemes. For 64-bit block length, the S-box is
chosen from the 3 platinum Num1-DL categories: (0,4)-, (1,3)- and (2,2)-Num1-DL category, the diffusion
layer is either the PRESENT or RECTANGLE permutation. Thus, there are 6 combinations. For 88-bit block
length, the S-box is also chosen from the 3 platinum Num1-DL categories, the diffusion layer is either the
SPONGENT88 permutation layer or the RECTANGLE88 permutation, there are also 6 combinations. Hence,
12 combinations in total. In Section 6.3, we consider both DC and LC for the security of the 12 combinations
using the heuristic measure. Since DC is more important than LC for hash functions, in Section 6.4, we only
consider DC for the 12 combinations.

Definition 7. Let b denote the block length. For a b-bit block cipher (or permutation of a hash function), let
Probr denote the probability of the best r-round differential trail, and Corr the correlation of the best r-round
linear trail. Define rmin as

rmin = min
r
{Probr ≤ 2−b and Corr

2 ≤ 2−b}.

If Probr > 2−b (or Corr
2 > 2−b), then there exists a r-round differential (or linear) trail which can be

distinguished with a pseudo-random permutation. According to the above definition, an attacker can not
derive an effective rmin-round differential/linear trail, the highest number of rounds of an effective differential
or linear trail is rmin −1, that is to say, rh = rmin −1. In this section, we use the values of rmin, Probrmin and
Corrmin for a comparative study. Generally speaking, the smaller the value of rmin, the better the scheme
against DC and LC. For schemes with the same value of rmin, the smaller the value of Probrmin (or Corrmin),
the better the scheme against DC (or LC).

6.1 Influence of S-box Selection and Differential/Linear Trails with One Active S-box per Round

The (0,4)-, (1,3)- and (2,2)-Num1-DL category includes 2, 4 and 4 PE classes respectively, see Table 5. Up
to adding constants before and after an S-box, which does not change the probability of the best differential
trail and the correlation potential of the best linear trail, there are 1152 S-boxes in the (0,4)-Num1-DL
category, 2304 S-boxes in the (1,3)-Num1-DL category and 2304 S-boxes in the (2,2)-Num1-DL category.
By checking all the 10 representative S-boxes of the 3 platinum Num1-DL categories, we get the following
result. For any of the investigated schemes, if a r-round linear trail has only one active S-box in each round,
then its correlation potential is 2−4r+4, with the correlation potential 2−2 in the 0-th and (r−1)-th round, and
2−4 in each of the other r−2 rounds; if a r-round differential trail has only one active S-box in each round,
then its differential probability is between 2−3r and 2−3r+2, with the differential probability 2−2 or 2−3 in
the 0-th and (r− 1)-th round, and 2−3 in each of the other r− 2 rounds. Note that, if an S-box comes from
the (0,4)-Num1-DL category, then there does not exist a differential trail with only one active S-box in each
round. Hence, for 64-bit block length, if there exists such a weak linear trail, then rmin ≥ 17; if there exists
such a weak differential trail, then rmin ≥ 22. For 88-bit block length, if there exists such a weak linear trail,
then rmin ≥ 23; if there exists such a weak differential trail, then rmin ≥ 30. We can see later in Section 6.3,
there exist S-boxes satisfying that rmin < 17 for 64-bit block length and rmin < 23 for 88-bit block length.

Therefore, for each of the 12 combinations, we firstly discard the S-boxes which can result in a differen-
tial/linear trail with only one active S-box in each round. For schemes using the PRESENT or SPONGENT88
permutation layer, we use Algorithm 1 to perform the filtering, note that Algorithm 1 can be modified a little



Table 9. Number of the Remaining S-boxes for the 12 Combinations

RECTANGLE64 Perm.

PRESENT Perm. SPONGENT88 Perm. /RECTANGLE88 Perm.

(0,4)-Num1-DL 96 112 96

(1,3)-Num1-DL 384 592 384

(2,2)-Num1-DL 528 640 528

for the differential case. For schemes using the RECTANGLE or RECTANGLE88 permutation, we extend
the idea of Algorithm 2 in [32] to perform the filtering, which uses the fact that the i-th (i = 0,1,2,3) bit of an
S-box output will be the i-th bit of an S-box input in the next round, hence the number of remaining S-boxes
only depends on properties of the S-boxes and not on the block length. Table 9 presents our experimental
results of the number of remaining S-boxes for the 12 combinations.

In [28], 4 PE classes are specified as “golden” S-boxes. For each of the 4 PE classes, CarD1S = 0 and
CarL1S = 8, thus none of the golden S-boxes belong to the 3 platinum Num1-DL categories. Fix the RECT-
ANGLE permutation, when combining with these golden S-boxes, we get 2304 SP-network schemes. For
each of the 2304 schemes, there exists a linear trail with only one active S-box in each round. Thus, together
with Result 3, we get that all of the golden S-boxes are not good choices for PRESENT, RECTANGLE and
SPONGENT.

6.2 Search Algorithm for the Best Differential/Linear Trail

Matsui proposed a branch-and-bound search algorithm [24] for determining the best differential/linear trail of
DES-like cryptosystems in 1994. From the results in [3], it can be deduced that, the weaker the diffusion layer
of a cipher, the more effective the search algorithm. The diffusion layers of DES, PRESENT, RECTANGLE
and SPONGENT are all bit permutations. Hence, Matsui’s work on DES motivates us to adopt the heuristic
measure on PRESENT, RECTANGLE and SPONGENT.

Ohta et al. [27] improved Matsui’s search algorithm by introducing the concept of search pattern to
reduce unnecessary search candidates before the search, and applied their improved algorithm on DES and
FEAL. Later, Aoki et al. [3] further improved Ohta’s search algorithm by discarding more unnecessary search
patterns, and applied their algorithm on FEAL. Based on these 3 previous work, we have written a program
for the search of the best differential/linear trails for PRESENT, RECTANGLE and the internal permutation
of SPONGENT respectively.

Algorithm 2 presents main steps of our programs for search of the best differential trail, which can be
modified accordingly for search of the best linear trail. A search pattern for the r-round best differential trail
is a set of r values, each value is a differential probability for each round. Bestn denote the probability of the
best n-round differential trail, and Bestn the temporary value of Bestn during the search. The search algorithm
requires that Bestn ≥ Bestn.

6.3 Experimental Results

In the following, we present our experimental results by running Algorithm 2. The experiments have been
performed using 4 computers: 3 with Intel Core i7 (or i5) CPU, and 1 with Intel Xeon E7-2820 (16 cores)
CPU. It took us about 4 weeks to do all the experiments.

For each combination, let N denote the number of the remaining S-boxes (see Table 9), the permutation
layer is fixed, thus we have N SP-network schemes. Among the N schemes, generally speaking, the smaller
the value of rmin, the better the scheme against DC and LC. Here are some notations:

– Rm: the minimal value of rmin among the N schemes



Algorithm 2
Goal: Search for the best n-round differential, 1 ≤ n ≤ N.

Initialization phase: Set the initial values of Bestn, 1 ≤ n ≤ N.

Procedure(n) (1 ≤ n ≤ N) {

1. Pattern Generation phase: Generate all of the n-round search patterns with various probabilities. Firstly, for each search pattern (p1, p2, · · · , pn), if
there exist 1 ≤ i ≤ n and 0 ≤ r ≤ n−1 such that i+r−1 ≤ n and pi × pi+1 · · ·× pi+r−1 > Bestr , then discard the search pattern. Next, use the previous
i-round search patterns (1 ≤ i < n) to further discard the non-existent n-round search patterns.

2. Search phase:
For the current value of Bestn, do {

(a) For each remaining candidate for the search pattern (p1, p2, · · · , pn) with p1 × p2 ×·· ·× pn = Bestn, try all the possible differential trails. If
there exist a differential trail satisfying this pattern, then

i. Bestn = Bestn;
ii. if n < N, call Procedure(n+1);

iii. if n = N, return.
(b) Bestn = 2−1 ×Bestn }

}

– NumRm : the number of schemes that the corresponding rmin reach the minimum value Rm

– num: the number of schemes with the values ProbRm and Cor2
Rm

in the same row

Tables 10-13 summarize our experimental results for each fixed permutation. The result in Table 11 is in
accordance with that in [32]. From Table 10-13, we get the following results:

1. With the PRESENT permutation layer, the values of Rm are the same for the 3 combinations. There are
336 S-boxes (up to adding constants before and after an S-box, similarly hereinafter) such that the value
of rmin reach the minimum Rm = 16.

2. With the RECTANGLE permutation layer, the (1,3)- and (2,2)-Num1-DL categories are better. There are
128 S-boxes such that the value of rmin reach the minimum Rm = 15. Note that RECTANGLE uses one
of these 128 S-boxes.

3. With the SPONGENT88 permutation layer, the (1,3)- and (2,2)-Num1-DL categories are better. For the
(1,3)-Num1-DL category, Rm = 19; for the (2,2)-Num1-DL category, Rm ≤ 19.

4. With the RECTANGLE88 permutation layer, the (2,2)-Num1-DL category is the best. There is only one
S-box such that the value of rmin reach the minimum Rm = 17.

In Table 12, for the two combinations marked with “*”, we have not finished the experiments for all of the
corresponding S-boxes. However, we derived the value of Rm for one combination and a good estimate of Rm
for the other, which are enough for us to derive the above results. The 3 main reasons are as follows. Firstly,
the search programs for schemes using the RECTANGLE88 permutation run much faster than those using
the SPONGENT88 permutation layer, due to the rotation equivalence of the RECTANGLE88 permutation
(every trail has 22 rotation-equivalent variants). However, there is no such symmetry for the SPONGENT88
permutation layer. Secondly, it is a trial-and-error process to derive the value of Rm for each combination,
thus the experiments may need to be performed several times for different number of rounds. Thirdly, the
number of remaining S-boxes is big for the 2 combinations, i.e., 592 and 640 respectively.

Table 10. Experimental Results With the PRESENT Permutation

category Rm NumRm ProbRm Cor2
Rm num

(0,4)-Num1-DL 16 96 2−64 2−64 96

(1,3)-Num1-DL 16 192 2−70 2−64 96

2−64 2−64 96

(2,2)-Num1-DL 16 48 2−68 2−64 48



Table 11. Experimental Results With the RECTANGLE Permutation

category Rm NumRm ProbRm Cor2
Rm num

(0,4)-Num1-DL 16 16 2−64 2−80 16

(1,3)-Num1-DL 15 64 2−74 2−66 16

2−71 2−66 16

2−65 2−66 16

2−65 2−64 16

(2,2)-Num1-DL 15 64 2−73 2−64 8

2−72 2−64 8

2−69 2−64 16

2−67 2−66 8

2−66 2−74 4

2−66 2−72 8

2−66 2−70 4

2−66 2−66 8

Table 12. Experimental Results With the SPONGENT88 Permutation Layer

category Rm NumRm ProbRm Cor2
Rm num

(0,4)-Num1-DL 21 8 2−118 2−88 4

2−117 2−88 4

(1,3)-Num1-DL* 19 ? ≤ 2−91 2−90 ?

(2,2)-Num1-DL* ≤ 19 ? ≤ 2−88 2−90 ?

Table 13. Experimental Results With the RECTANGLE88 Permutation

category Rm NumRm ProbRm Cor2
Rm num

(0,4)-Num1-DL 22 96 2−88 2−118 84

2−88 2−116 8

2−88 2−114 4

(1,3)-Num1-DL 18 56 2−93 2−92 8

2−93 2−88 10

2−92 2−88 2

2−91 2−92 4

2−91 2−90 2

2−90 2−88 2

2−88 2−92 8

2−88 2−90 6

2−88 2−88 14

(2,2)-Num1-DL 17 1 2−88 2−88 1

Table 14. Results for the 12 Combinations when only Considering DC

Permutation Layer category RD
m Prob

RDm

PRESENT (0,4)-Num1-DL 16 2−64

Permutation (1,3)-Num1-DL 15 2−64

(2,2)-Num1-DL 16 2−68

RECTANGLE (0,4)-Num1-DL 16 2−64

Permutation (1,3)-Num1-DL 14 2−69

(2,2)-Num1-DL 14 2−68

SPONGENT88 (0,4)-Num1-DL 17 2−94

Permutation Layer (1,3)-Num1-DL* ≤ 18 ≤ 2−89

(2,2)-Num1-DL* ≤ 19 ≤ 2−88

RECTANGLE 88 (0,4)-Num1-DL 22 2−88

Permutation (1,3)-Num1-DL 18 2−93

(2,2)-Num1-DL 17 2−88

6.4 For Hash Functions - When DC is More Important than LC
According to the state-of-art security analysis on hash functions, DC is more important than LC. On the
other hand, the permutation (or the compression function) of a hash function is normally required to be



Table 15. 4 Potentially Better S-boxes for SPONGENT88

0, 6, 12, 1, 5, 9, 11, 14, 3, 13, 15, 8, 10, 7, 4, 2

0, 6, 5, 8, 10, 13, 15, 1, 12, 9, 11, 7, 3, 14, 4, 2

0, 3, 5, 12, 10, 13, 15, 2, 6, 9, 11, 7, 1, 14, 8, 4

0, 12, 10, 5, 3, 15, 13, 2, 6, 11, 9, 14, 8, 1, 7, 4

pseudo-random, which includes the requirement that there is no effective linear distinguisher. Therefore, we
decide to consider the following question: For each of the 12 combinations, when only considering DC for
the remaining S-boxes obtained in Section 6.1 (see Table 9), what results can we get? At first thought, the
(0,4)-Num1-DL category should be the best choice, however, we will show that it is not always the case.

For each scheme, define rD
min = minr{Probr ≤ 2−b }. For each combination, let RD

m denote the minimal
value of rD

min among the N schemes. Table 14 summarizes our experimental results, and we get the following
results:

1. With the PRESENT permutation, the (1,3)-Num1-DL category is the best. The minimal value of rD
min is

RD
m = 15.

2. With the RECTANGLE permutation, the (1,3)- and (2,2)-Num1-DL categories are better. The minimal
value of rD

min is RD
m = 14.

3. With the SPONGENT88 permutation layer. Note that we have not exhausted all the S-box candidates
in the (1,3)- and (2,2)-Num1-DL categories. From the known results, it seems that the (0,4)-Num1-DL
category is the best and the minimal value of rD

min is RD
m = 17.

4. With the RECTANGLE88 permutation, the (2,2)-Num1-DL category is the best. The minimal value of
rD

min is RD
m = 17.

Potentially Better S-boxes for SPONGENT88 For SPONGENT88, there exists a 17-round differential trail
with probability 2−86 [4], which is better than the 17-round differential trail of SPONGENT88 given by its
designers in [9, Table 4]. Moreover, there exists a 22-round linear trail with correlation potential 2−84 for
SPONGENT88 (only one active S-box in each of the 22 rounds).

With the permutation layer of SPONGENT88, we found 4 S-boxes in the (0,4)-Num1-DL category such
that the probability of the best 17-round differential trail is 2−94 and the correlation potential of the best
21-round linear trail is 2−88 for each of the 4 schemes. It can be seen that the 4 S-boxes are potentially better
than the SPONGENT88 S-box with respect to the security against both DC and LC. The 4 S-boxes are listed
in Table 15, which can be used for further investigation.

6.5 A New Design Criterion

For SP-network schemes with the SPONGENT88 permutation layer, when considering both DC and LC,
based on the results in Section 5 and Table 12, it can be deduced that an S-box with CarD1S = 0 is not an
optimal choice, while (1,3)- and (2,2)- Num1-DL categories are better choices. On the other hand, when
considering DC more important than LC, it seems that (0,4)-Num1-DL category is the best choice. For SP-
network schemes with RECTANGLE-like permutations, based on the results in Tables 10-14, it seems that
the (2,2)-Num1-DL category is always an optimal choice. We have the following design criterion.

Design Criterion 2 For block ciphers (or hash functions) using 4× 4 S-boxes as confusion layers and bit
permutations as diffusion layers, designers can extend the range of the S-box selection to the 3 platinum
Num1-DL categories and select their S-box carefully.



7 Summary and Discussion

We presented a new classification of all the 4-bit optimal S-boxes according to the values of CarD1S and
CarL1S. All the optimal 4-bit S-boxes can be classified into 183 different Num1-DL categories, among
which we specify 3 platinum Num1-DL categories with the minimal value of CarD1S +CarL1S = 4. Under
the design criteria of the PRESENT (or SPONGENT) S-box, we showed that the value of CarL1S has a huge
influence on the security of PRESENT and SPONGENT with respect to the security against LC, and we pre-
sented further design criteria of 4-bit S-boxes for SP-network schemes with the PRESENT (or SPONGENT)
permutation layer. We studied in detail how the S-boxes in the 3 platinum Num-1 DL categories influence
the security of PRESENT, RECTANGLE and SPONGENT against DC and LC. Our results showed that,
for block ciphers or hash functions with 4-bit S-boxes as confusion layer and bit permutations as diffusion
layers, designers can extend the range of S-box selection to the 3 platinum Num1-DL categories and select
the S-box carefully.

Based on our experimental results, there are 336 potentially best S-boxes for PRESENT, 128 potentially
best S-boxes for RECTANGLE, and 4 potentially better S-boxes for SPONGENT88. To judge if a potentially
best (better) S-box is a real best (better) S-box, it needs to investigate the clustering of differential/linear
trails. In this respect, the approach used in [1] is of interest, we leave it for further study. The NOEKEON
S-box belongs to the (7,6)-Num1-DL category. Serpent uses 8 S-boxes, among them, 3 S-boxes belong to
the (0,6)-Num1-DL category, and the other 5 S-boxes belong to the (0,8)-Num1-DL category. It is also
interesting to investigate the influence of the 3 platinum Num1-DL categories on the security of NOEKEON
and Serpent against DC and LC.
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