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Abstract

Dickson polynomials which are permutations are interesting combinato-
rial objects and well studied. In this paper, we describe Dickson polynomials
of the first kind in F2[x] that are involutions over finite fields of character-
istic 2. Such description is obtained using modular arithmetic’s tools. We
give results related to the cardinality and the number of fixed points (in the
context of cryptographic application) of this corpus. We also present a class
of Dickson involutions with high degree.

Keywords: Dickson polynomials, permutation, involution, fixed point, Jacobi
symbol, quadratic residue.

1 Introduction

We start with the question related to cryptography: can decryption algorithm
be the same as the encryption algorithm? The answer is yes, and in fact, the
classic example of this kind of cryptosystem is Enigma. The advantage of having
the same encryption and decryption algorithm is that the same implementation
of the encryption algorithm works for the decryption also, and hence reduces the
implementation cost. Suppose a uniformly chosen permutation E : X → X is
applied as the encryption, where X is the message space, with the additional
property that E(E(x)) = x for all x ∈ X, i.e., E−1 = E. Then E serves for both
the encryption and decryption.
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Let F2n be the finite field of 2n elements. If the polynomial F (x) defined over
F2n induces a permutation of F2n , then F (x) is called a permutation polynomial.
Permutations are invertible functions, i.e., for a permutation polynomial F (x)
there exists a unique polynomial F ′(x) such that F ′ ◦F (x) = F ◦F ′(x) = x, for all
x. The polynomial F ′(x) is called the compositional inverse of F and is generally
denoted by F−1. Permutation polynomial is well known for its application in
cryptography, coding theory, combinatorial design, etc. For instance, in block
ciphers, a permutation F is used as an S-box to build the confusion layer during
the encryption process, while in the decryption the inverse of F is required.

A permutation polynomial F (x) for which F ◦ F (x) = x is called involution,
and from the above discussions, it is clear that involution property is important
in applications. Dickson polynomials form an important class of permutation
polynomials. We would like to refer to the book of Lidl, Mullen and Turnwald [6],
where the work on Dickson polynomials, and its developments are presented. Our
results are widely derived from those of [6, Chapter 2-3]. Moreover, the Dickson
permutations that decompose in cycles of same length are generally studied in [9].
Our purpose is to describe precisely this corpus in the case of cycles of length 2,
for such permutations over any finite field of characteristic 2. Some proofs are
given for clarity; our aim is to propose a clear understanding in order to use easily
Dickson involutions.

The Dickson polynomials have been extensively investigated in recent years
under different contexts (see for instance [2, 3, 4, 7, 8, 10]). In this paper we treat
Dickson polynomials of the first kind defined on a finite field of order 2n.

Definition 1 The Dickson polynomial of the first kind of degree k in indetermi-
nate x and with parameter a ∈ F∗2n is defined by

Dk(x, a) =

bk/2c∑
i=0

k

k − i

(
k − i
i

)
akxk−2i, k ≥ 2 (1)

where bk/2c denotes the largest integer less than or equal to k/2.

We treat here the polynomials Dk(x, 1) that we will denote by Dk(x) throughout
this paper. The set of k such that Dk is a permutation of a given finite field F2n

is well-known.
Our aim, in this paper, is the study of such polynomials Dk(x) which induce

an involution of any fixed finite field. After some preliminaries, in Section 2, the
characterization of Dickson involutions is presented in Section 3 (see Theorem 3).
Section 4 is devoted to the study of the corpus of involutions. We notably show
that it consists in equivalence classes of size 4 and we compute the number of such
classes. We also exhibit an infinite class of Dickson involutions (Theorem 5). In
Section 5, we study the fixed points of Dickson involutions. Our study reveals that
they have very high number of fixed points, and thus makes it less interesting in
cryptographic use (Remark 6). At the end we give some numerical results.
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2 Basic properties

Here we introduce some useful properties, on the Dickson polynomials of F2[x].
Note that they are known in many different contexts. Dickson polynomial Dk ∈
F2[x] are recursively defined by

D0(x) = 0 and D1(x) = x;
Di+2(x) = xDi+1(x) +Di(x).

(2)

Using this definition it is easy to prove the next properties which we use in the
sequel.

Proposition 1 The polynomials defined by (2) satisfy:

• deg(Di) = i,

• D2i(x) = (Di(x))2,

• Dij(x) = Di(Dj(x)),

• Di(x+ x−1) = xi + x−i,

for all x, for any integer i, j > 0.

In this paper, we identify a polynomial on F2n (for some n) with its corresponding
mapping x 7→ F (x) from F2n to F2n ; F is a permutation when this mapping is
bijective. Concerning the Dickson polynomials, we have the following fundamental
result.

Theorem 1 [6, Theorem 3.2] The Dickson polynomial Dk ∈ F2[x] is a permuta-
tion on F2n if and only if gcd(k, 22n − 1) = 1.

Some permutations are involutive and are then called involutions.

Definition 2 We say that F is an involution on F2n when it satisfies

F ◦ F (x) = x, for all x ∈ F2n .

Note that an involution is equal to its compositional inverse. We will use later the
Jacobi symbols. We now give its definition and some of its basic properties. Recall
that an integer a is a quadratic residue modulo a prime p if and only if there is an
integer u such that a ≡ u2 (mod p).

Definition 3 Let P be an odd integer, P > 2, and P = pa11 p
a2
2 . . . pakk be the

decomposition of P in prime factors. Let a be any integer. The Jacobi symbol of
a is

Jac(a, P ) =
( a
P

)
=

(
a

p1

)a1
. . .

(
a

pk

)ak
.
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where
(
a
pi

)
, called a Legendre symbol, is as follows defined : it is equal to 0 if pi

divides a; otherwise we have:(
a

p i

)
=


1 if a is a quadratic residue modulo pi,

i.e., there is k > 0 such that a ≡ k2 (mod pi);
−1 if a is not a quadratic residue modulo pi.

And we have these well-known formula on the values Jac(a, P ) where a and b are
any integer. (

ab

P

)
=
( a
P

)( b

P

)
. (3)(

−1

P

)
= (−1)

P−1
2 and

(
2

P

)
= (−1)

P2−1
8 . (4)

a ≡ b (mod P ) =⇒
( a
P

)
=

(
b

P

)
. (5)

Note that if Jac(a, P ) = −1 then a is a quadratic nonresidue modulo P .

3 Dickson polynomials which induce involutions

A priori, the Dickson permutations cannot be involutive since they are obtained
recursively. However they are permutations on a specific finite field. Let n = 2m
and k such that gcd(k, 2n − 1) = 1. Then Dk permutes F2m . What happens when
we compute Dk ◦Dk ?

From Proposition 1, we have Dk(Dk(x)) = Dk2(x). Thus Dk is an involution
on F2m if and only if Dk2(x) ≡ x (mod x2

m
+ x). For instance, for m = 2`,

D2` : x 7→ x2
`

is an involution on F2m .

We are going to describe the set of k such that Dk is an involution on F2m , for
any fixed m. The proofs of Theorem 2 and Corollary 1 below are derived from the
results of [6, Chapters 2-3]. We give these proofs for clarity.

Lemma 1 For all x ∈ F2m there is γ ∈ F∗2n, n = 2m, such that x = γ + γ−1.
Moreover such a γ satisfies either γ2

m−1 = 1 or γ2
m+1 = 1.

Proof. We denote by Tr the absolute trace on F2n . For any x ∈ F2m , there is γ
such that x = γ + γ−1 if and only if the equation γ2 + γx + 1 = 0 has a solution
in F∗2n . And this is equivalent to Tr(1/x) = 0 which is satisfied for all x ∈ F2m .

We have γ + γ−1 in F2m if and only if(
γ +

1

γ

)2m

= γ +
1

γ
, or equivalently (γ2

m

+ γ)(γ2
m+1 + 1) = 0,

completing the proof. �
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Theorem 2 Let k, ` be two nonzero integers. Then

Dk(x) ≡ D`(x) (mod x2
m

+ x)

if and only if

k ≡ ` (mod 2m − 1) or k ≡ −` (mod 2m − 1)
and
k ≡ ` (mod 2m + 1) or k ≡ −` (mod 2m + 1).

Proof. Let us suppose that Dk(x) ≡ D`(x) for any x ∈ F2m . From Lemma 1, this
is to say that for any x = γ + γ−1

Dk(x) = γk +

(
1

γ

)k
≡ D`(x) = γ` +

(
1

γ

)`
, (6)

applying Proposition 1, where γ ∈ F∗2n such that γ2
m−1 = 1 or γ2

m+1 = 1. Now
(6) can be written

γ`(γ2k + 1) + γk(γ2` + 1) = 0 ⇔ (γ` + γk)(γ`+k + 1) = 0.

Thus (6) is equivalent to γ`+k = 1 or γk−` = 1. Let α be a primitive root of F2n .
We know that we have to consider two forms for γ: γ = αs(2

m−1) and γ = αt(2
m+1)

for some s, t. Then (6) holds for any γ is if and only if the two following conditions
are satisfied:

• if γ = αs(2
m−1) then k ± ` ≡ 0 (mod 2m + 1) ;

• if γ = αt(2
m+1) then k ± ` ≡ 0 (mod 2m − 1).

�

Now we can describe that cases where Dk(x) ≡ x (mod x2
m

+ x). The next
corollary is an instance of [6, Theorem 3.8].

Corollary 1 Let n = 2m. Let us define

Kn = { k | 1 ≤ k ≤ 2n − 1, Dk(x) ≡ x (mod x2
m

+ x) }.

Then Kn = { 1, 2m, 2n − 2m − 1, 2n − 2 }.

Proof. Applying Theorem 2 to the case ` = 1, k must be a solution of one of the
four systems of congruences modulo 2n − 1:

(i) k ≡ 1 (mod 2m − 1) and k ≡ 1 (mod 2m + 1)
(ii) k ≡ 1 (mod 2m − 1) and k ≡ −1 (mod 2m + 1)
(iii) k ≡ −1 (mod 2m − 1) and k ≡ 1 (mod 2m + 1)
(iv) k ≡ −1 (mod 2m − 1) and k ≡ −1 (mod 2m + 1).
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If k < 2m− 1 then k = 1 (case (i)). Moreover k = 2m is a solution of (ii). We now
assume that 2m < k.

Now (i) implies that (2m − 1) and (2m + 1) divide k − 1. Since (2m − 1) and
(2m + 1) are odd and coprime, only k = 2n is a solution of (i) and 2n ≡ 1 modulo
(2n − 1). Similarly, (iv) implies that 2n − 1 divides k + 1 so that only k = 2n − 2
is a solution of (iv).

The congruence (ii) implies that (2m − 1) divides k − 1 and (2m + 1) divides
k + 1. Thus there is b such that

k = b(2m − 1) + 1 = b(2m + 1)− 2b+ 1, i .e., k + 1 ≡ −2b+ 2 (mod 2m + 1),

implying b ≡ 1 (mod 2m + 1) so that b = 1. Further k = 2m.
The congruence (iii) implies that (2m − 1) divides k + 1 and (2m + 1) divides

k − 1. Thus there is b such that

k = b(2m + 1) + 1 = b(2m − 1) + 2b+ 1, i .e., k + 1 ≡ 2b+ 2 (mod 2m − 1),

implying b ≡ −1 (mod 2m − 1) so that b = 2m − 2. Further

k = (2m − 2)(2m + 1) + 1 = 22m − 2m + 1.

�

Now we are able to describe the set of Dickson involutions. We first need to
eliminate the elements of Kn which are not quadratic residues modulo 2n − 1.

Lemma 2 Let n = 2m. Then

• 2n − 2m − 1 and 2n − 2 are quadratic nonresidues modulo 2n − 1.

• 2m is a quadratic residue modulo 2n − 1 if and only if m is even and the
square roots are 2m/2Sn where Sn are the square roots of 1 modulo 2n − 1.

Proof. Since 2n − 1 ≡ 3 (mod 4), 2n−1 − 1 is an odd integer. Thus we have(
−1

2n − 1

)
= (−1)

(2n−1)−1
2 = (−1)2

n−1−1 = −1.

On the other hand, one has that 2n−1 ≡ 7 (mod 8) for every n ≥ 3 which implies

that (2n−1)2−1
8

is an even integer. Thus(
2

2n − 1

)
= (−1)

(2n−1)2−1
8 = 1.
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by applying (4). Thus 2m − 2 is a quadratic nonresidue modulo 2n − 1, using (5),
since −1 ≡ 2m − 2 (mod 2n − 1). That implies also(

2n − 2m − 1

2n − 1

)
=

(
−2m

2n − 1

)
=

(
−1

2n − 1

)(
2

2n − 1

)m
= −1,

since −2m ≡ 2n−2m−1 (mod 2n−1). Thus 2n−2m−1 is a quadratic nonresidue
modulo 2n − 1.

Secondly, since n is even, 3 divides 2n − 1. Now, 2 is a quadratic nonresidue
modulo 3 that is

(
2
3

)
= −1 which implies that

(
2m

3

)
= (−1)m = 1 if and only if m

is even. Therefore, according to the preceding result, if m is odd, 2m is a quadratic
nonresidue modulo 2n − 1. If m is even, 2m is clearly a quadratic residue since
(2m/2)2 ≡ 2m modulo 2n − 1. Now, set

Sn = { u | 1 ≤ u ≤ 2n − 2, u2 ≡ 1 (mod 2n − 1) }. (7)

Note that the map k 7→ 2m/2k is a one-to-one map from the set Sn of all square
roots of 1 modulo 2n − 1 to the set of all square roots of 2m modulo 2n − 1. �

Theorem 3 Consider the Dickson polynomials Dk, 1 ≤ k ≤ 2n − 1, n = 2m with
m ≥ 2. Let Sn be defined by (7). Then Dk is an involution on F2m if and only if

• k ∈ Sn, when m is odd;

• k ∈ Sn ∪ 2m/2Sn if m is even.

Proof. We will always consider Dk(x) (mod x2
m

+ x). Since gcd(k, 2n − 1) = 1,
Dk is a permutation on F2m . Moreover it is an involution if and only if

Dk ◦Dk(x) = Dk2(x) = x, for all x ∈ F2m .

From Corollary 1, this is to say that k2 ∈ { 1, 2m, 2n− 2m− 1, 2n− 2 } where k2

is computed modulo 2n − 1. According to Lemma 2, that is equivalent to k ∈ Sn
if m is odd and k ∈ Sn ∪ 2m/2Sn if m is even. �

Remark 1 For all u ∈ Sn, u2 ≡ 1 (mod 2n − 1) implies gcd(u, 2n − 1) = 1.
Therefore, we have, for even m, gcd(2m/2u, 2n − 1) = 1. This is to say that the
hypothesis gcd(k, 2n − 1) = 1 is not necessary in the previous theorem.

4 The set of Dickson involutions

We consider involutions of F2m and n = 2m in all this section. There are some
immediate observations. Let Sn be defined by (7) and

Kn = { 1, 2m, 2n − 2m − 1, 2n − 2 } ≡ {±1,±2m} (mod 2n − 1)
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Note that Kn is a multiplicative subgroup of Sn. Define an equivalence relation
over Sn:

s1 ∼ s2 if and only if
s1
s2
∈ Kn. (8)

Lemma 3 Denote by σ(s) the class of s ∈ Sn, according to the relation (8). Then
σ(s) = {s,−s, 2ms,−2ms} and we have

Dt(x) ≡ Ds(x) (mod x2
m

+ x), for any t ∈ σ(s).

Proof. One simply observe that if s and t belong to the same class then Ds and
Dt induce the same permutation on F2m . Indeed, in this case there exists k ∈ Kn

such that t = ks. Therefore, according to Corollary 1 and to Proposition 1, we
have for all x ∈ F2m

Dt(x) = Dsk(x) = Ds ◦Dk(x) = Ds ◦D1(x) = Ds(x) (mod x2
m

+ x).

�

Hence each class different from the class of 1 leads to a different non-trivial in-
volution. We will give the exact number of such classes for a fixed n in the next
subsection. The Dickson polynomials are closed with respect to composition of
polynomials. Moreover the commutativity of integers imply that this composition
is commutative. Thus for two non trivial involutions Ds and Dt of F2m we have

(Ds ◦Dt)
−1 = D−1t ◦D−1s = Dt ◦Ds = Dts = Dst,

proving that Dst is an involution too. Now, if s and t are in the same class then
Dst = Ds2 , from Lemma 3, where s is a square root of 1 so that Dst(x) ≡ x
(mod x2

m
+ x). Now suppose that t 6∈ σ(s). If m is even and t ∈ σ(2m/2s) then

Dst = (Ds2)
2m/2

so that Dst(x) ≡ xm/2 (mod x2
m

+ x). Otherwise, in other cases,
there are more than 4 classes and st (mod 2n−1) = r where r is not in the classes
{s, t, 2m/2, 2m/2s} (see Example 2 later). We summarize these results with the next
lemma.

Lemma 4 If Ds and Dt are two Dickson involutions of F2m then Ds ◦Dt = Dst

is an involution too. Moreover:

• If t ∈ σ(s) then st (mod 2n − 1) ∈ σ(1).

• If t = 2m/2 (m even) then st ∈ σ(2m/2s).

• If t ∈ σ(2m/2s) (m even) then st (mod 2n − 1) ∈ σ(2m/2).

• Otherwise, and assuming that s, t are two representatives of non trivial classes
we get st (mod 2n − 1) = r where r is in another nontrivial class.
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Remark 2 Note that the three first assertions are in fact equivalences since st ∈
σ(u) is equivalent to t ∈ σ(us−1) (mod 2n−1) = σ(us) (s being a quadratic residue
of 1 modulo 2n − 1, its inverse modulo 2n − 1 is itself).

Example 1 n=6, m=3: K6 = {1, 8, 55, 62} = S6. For any k ∈ K6, Dk(x) = x
modulo (x8 + x). For example

D55(x) = x+x33+x9+x41+x49+x5+x37+x53+x7+x39+x55 ≡ x (mod x8+x).

n=8, m=4: K8 = {1, 16, 239, 254} while S8 = {1, 16, 86, 101, 154, 169, 239, 254}.
Note that −86 = 169, 86 ∗ 16 = 101 and 86 ∗ (−16) = 154. Here the non trivial
involutions are the Dk(x) (mod x16 +x) with k in (S8∪4S8)\K8. Thus, according
to (8), we get three such Dk which are the representatives of the three classes:

k ∈ {4, 64, 191, 251} ∪ {86, 101, 154, 169} ∪ {89, 149, 106, 166}

For instance

D4(x) = x4 (mod x16 + x)

D86(x) = x2 + x6 + x10 + x18 + x22 + x34 + x38 + x42 + x86 + x74 + x82 + x66 + x70

= x2 + x3 + x4 + x8 + x12 + x11 + x14 (mod x16 + x).

while, with 89 ≡ 86 ∗ 4 (mod 255)

D89(x) = (D86(x))4 = x2 + x3 + x12 + x8 + x11 + x+ x14 (mod x16 + x).

n=10, m=5: K10 = { 1, 32, 991, 1022}. while

S10 = { 1, 32, 340, 373, 650, 683, 991, 1022}

Here we have a unique non trivial involution over F25: D340.

4.1 The number of Dickson involutions

We now compute the number of Dickson polynomials which induce involutions on
F2m . To this end, we begin with a technical result.

Lemma 5 The number of quadratic residues of 1 modulo 2n − 1 is equal to 2τ

where τ is the number of the prime factors in the prime decomposition of 2n − 1.
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Proof. Given a positive integer p, let us denote ρ(p) the number of square roots
of unity modulo p, that is, the number of solutions of the congruence equation :
x2 ≡ 1 (mod p). Let us show that

ρ(pq) = ρ(p)ρ(q), when p and q are coprime. (9)

To this end, note that according to Chinese’s Theorem, Z/(pq)Z is isomorphic to
Z/pZ× Z/qZ via the isomorphism

ψ : x ∈ Z/(pq)Z 7→ (x (mod p), x (mod q)).

By construction, in Z/pZ×Z/qZ, (a, b)2 = (c, d) is equivalent to a2 = c and b2 = d
so that ψ(x2) = (x2 (mod p), x2 (mod q)), proving (9).

Now, one has ρ(pα) = 2 for any odd prime number p and positive integer α.
Indeed, suppose that x2 ≡ 1 (mod pα). Then

x2 − 1 = (x+ 1)(x− 1) ≡ 0 (mod pα).

and this is equivalent to

x+ 1 ≡ 0 (mod pα) or x− 1 ≡ 0 (mod pα),

that is x ≡ ±1 mod pα. Since 2n − 1 is an odd number, we can write

2n − 1 =
τ∏
i=1

pαi
i , pi is a prime factor,

and the αi’s are positive integers. Then ρ(2n − 1) =
∏τ

i=1 ρ(pαi
i ) = 2τ . �

Then we have the following result on the number of Dickson polynomials that
are involutions. Recall that for any such involution Dk there are four elements
k′ ∈ σ(k) providing the same involution (see Lemma 3). Thus, the number of
Dickson involutions is the number of such classes σ(.). The class of 1 is said trivial
since D1(x) = x.

Theorem 4 Let m be a positive integer such that m > 1 and set n = 2m. Let τ
be the number of prime factors in the decomposition of 2n − 1. Then the number
of (non trivial) Dickson polynomials over F2m which are involutions is equal to

2τ−2 − 1 if m is odd and 2τ−1 − 1 if m is even.

Proof. Suppose that m is odd. According to Theorem 3, Dk is an involution if
and only if k ∈ Sn, that is k is a quadratic residue of 1 modulo 2n−1. The number
of such k is equal to 2τ by Lemma 5 . Now, according to (8) and Lemma 3, the
number of pairwise different Dickson polynomial is equal to 2τ/4 = 2τ−2 since Kn is
of cardinality 4. Suppose that m is even. One can repeat again similar arguments
as those of the odd case except that, in the even case, Dk is an involution if and
only k ∈ S ∪ 2m/2S. It means that we have to replace 2τ by 2τ+1 in the preceding
calculation. We then conclude by excluding the class of 1. �
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Example 2 n = 6, m = 3 , 2n−1 = 63 = 32×7, τ = 2. The number of nontrivial
Dickson polynomials which are involutions is equal to 2τ−2 − 1 = 0, that is,
there is no Dickson polynomials which are involutions except D1(x) = x.

n = 8, m = 4 , 2n − 1 = 255 = 17 × 5 × 3, τ = 2. The number of nontrivial
Dickson polynomials which are involutions is equal to 2τ−1 − 1 = 3.

n = 10, m = 5 , 2n − 1 = 1023 = 31 × 11 × 3, τ = 3. The number of nontrivial
Dickson polynomials which are involutions is equal to 2τ−2 − 1 = 1.

n = 12, m = 6 , 2n − 1 = 4095 = 32 × 5× 7× 13, τ = 4. The number of Dickson
polynomials which are involutions is equal to 2τ−1 = 8 if we include the trivial
class σ(1). A set of representatives of these classes is:

{ 1, 181, 1574, 1756 } ∪ { 8, 1448, 307, 1763} ⊂ S12 ∪ 8 ∗ S12.

Note that 181 ∗ 1574 = −1756 modulo 4095.

4.2 Dickson involutions of very high degree

Our previous results show that it is generally easy to get a Dickson involution on
F2m by computation. However, for a very high m it could be difficult to obtain
such involution which is neither trivial nor equal to xm/2 (m even). To explain
that this is possible, we exhibit below an infinite class of Dickson involutions.

Theorem 5 Let ` be any even integer (` > 0). Set n = `(2` + 1) and m = n/2.
Then the polynomial

Dk(x), where k =
2`∑
i=1

2i`,

is an involution of F2m, such that k 6∈ σ(1); moreover for even m k 6∈ σ(2m/2).

Proof. First, it is easy to prove that k2 = 1 modulo 2n − 1, since

2n − 1 = (2` − 1)(2`2
`

+ 2`(2
`−1) + · · ·+ 2` + 1) = (2` − 1)(k + 1).

Hence we have

k2 − 1 =

(
2n − 1

2` − 1
− 1

)2

− 1 =

(
2n − 1

2` − 1

)2

− 2
2n − 1

2` − 1

= (2n − 1)

(
2n − 1− 2(2` − 1)

(2` − 1)2

)
= (2n − 1)

(
k − 1

2` − 1

)
.

But k =
∑2`

i=1

(
(2` − 1) + 1

)i ≡ 1 (mod 2` − 1). Hence 2n − 1 divides k2 − 1.
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Now, k is given by its binary expansion. With this representation, the weight of
k, say w(k), is the number of terms of this expression, i.e., w(k) = 2` = (n− `)/`.
Recall that the class of 1 is Kn = {±1,±2m}. Clearly the corresponding weights
are {1, n− 1} and this holds for the class of 2m/2 too (for even m). This completes
the proof. �

Remark 3 The first value of n, in the previous theorem, is n = 10, for ` = 2. In
this case we check that k = 340, as explained in Example 1.

5 Fixed points of the Dickson involutions

A fixed point of any polynomial P (x) is an element ρ such that P (ρ) = ρ. In
[11], an empirical study on the number of fixed points of involutions and general
permutations were made. Permutations are important building blocks in block
ciphers, and for a secure design purpose S-boxes are chosen with very good cryp-
tographic properties. The observation in [11] was that the number of fixed points
is correlated to the cryptographic properties like nonlinearity and the maximum
XOR entry table. precisely, lower the number of fixed points better the value of
nonlinearity and the maximum XOR entry table. Thus the authors proposed to
choose permutation S-boxes with a few fixed points.

The number of fixed points of polynomials Dk(x) on F2m is computed in [6] as
a function of m and k. We give this result in our context with a sketch of proof.

Theorem 6 [6, Theorem 3.34] Denote by F(k,m) the set of fixed points of the
Dickson polynomial Dk (over F2m). Then the cardinality of F(k,m) is

|F(k,m)| =
1

2
(gcd(2m + 1, k + 1) + gcd(2m − 1, k + 1)

+ gcd(2m + 1, k − 1) + gcd(2m − 1, k − 1))− 1. (10)

Sketch of Proof. According to Lemma 1, any x ∈ F2m can be written

x = γ +
1

γ
, γ ∈ F∗2n , γ2

m+1 = 1 or γ2
m−1 = 1 (11)

Thus Dk(x) = Dk(γ + γ−1) = γk + γ−k. Further, x is a fixed point of Dk if and
only if

γk + γ−k = γ + γ−1, i.e., (γk+1 − 1)(γk−1 − 1) = 0.

Note that γ and γ−1 provide the same x. �
The proof of Theorem 6 gives explicitly the fixed points of Dk : x is written

as in (11) and either γk−1 = 1 or γk+1 = 1. We can be more precise in the case
where Dk is an involution. Set

r1 = gcd(2m − 1, k − 1), r2 = gcd(2m − 1, k + 1),
s1 = gcd(2m + 1, k − 1), s2 = gcd(2m + 1, k + 1).

(12)
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providing |F(k,m)| = (r1 + r2 + s1 + s2)/2− 1. From Theorem 3 and its proof, we
must distinguish two cases:

• k ∈ Sn where we have k2 ≡ 1 (mod 2n − 1), i.e., 2n − 1 divides k2 − 1;

• for even m, let k ∈ 2m/2Sn ; in this case, we have k2 = 2ms2 where s ∈ Sn.
Hence k2 ≡ 2m (mod 2n − 1) and then

k2 − 1 ≡ (k + 1)(k − 1) ≡ 2m − 1 (mod 2n − 1).

These properties will be used respectively in Corollaries 2 and 3.

Corollary 2 Consider any involution Dk on F2m as described by Theorem 3 with
k ∈ Sn. We assume that Dk is not the identity modulo (x2

m
+ x), i.e., k 6∈

{±1, ± 2m}. Let α be a primitive root of F2n, n = 2m. Then F(k,m) is the set
of γ + γ−1 where

γ ∈
{

αir2s1s2 , 0 ≤ i ≤ (r1 − 1)/2, αjr1s1s2 , 0 ≤ j ≤ (r2 − 1)/2
α`s2r1r2 , 0 ≤ ` ≤ (s1 − 1)/2, αts1r1r2 , 0 ≤ t ≤ (s2 − 1)/2

}
.

Proof. Since 2n − 1 divides k2 − 1, 2m − 1 = r1r2, 2m + 1 = s1s2 and

gcd(2n − 1, k − 1) = r1s1, gcd(2n − 1, k + 1) = r2s2.

Now we have two cases:

• If γ2
m−1 = 1 then γ = αu(2

m+1) = αus1s2 for some u. If γk−1 = 1 then u = ir2,
0 ≤ i ≤ r1 − 1. If γk+1 = 1 then u = jr1, 0 ≤ j ≤ r2 − 1.

• If γ2
m+1 = 1 then γ = αu(2

m−1) = αur1r2 for some u. If γk−1 = 1 then u = `s2,
0 ≤ ` ≤ s1 − 1. If γk+1 = 1 then u = ts1, 0 ≤ t ≤ s2 − 1.

We observe that α(r1−i)r2s1s2 = α−ir2s1s2 and this holds for the three other kinds of
αe above, completing the proof. �

Remark 4 Define Mn, n = 2m, the set of factors of 2n − 1,as follows:

Mn = {peii | i = 1, . . . s} with 2n − 1 =
s∏
i=1

peii , pi is prime.

Clearly, for any i, peii is a factor either of 2m − 1 or of 2m + 1. Such a factor
divides either k− 1 or k+ 1 when 2n− 1 divides k2− 1. Thus, all elements of Mn

are involved in the computation of |F(k,m)| when k ∈ Sn.
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Remark 5 It is to be noted that in Theorem 3.36 of [6], a lower bound on the
number of fixed points of Dickson polynomials which are permutations has been
given. For characteristic 2, this lower bound equals 2. Throughout our results it
appears that such a lower bound is higher for Dickson involutions.

We now include the case where k ∈ 2m/2Sn. We first give a count of the fixed
points of the Dickson involution D

2
m
2

.

Corollary 3 Let n = 2m where m is even. Consider any involution Dk on F2m

such that k ∈ 2m/2Sn. Then 2m − 1 divides k2 − 1 and we have

s1 = s2 = 1 so that F(k,m) =
r1 + r2

2
.

In particular the number of fixed points of D
2
m
2

is 2
m
2 .

Proof. Recall that the number of fixed points of Dk is (r1 + r2 + s1 + s2)/2− 1,
where r1, r2, s1 and s2 are from (12).

As noticed at the beginning of this section, 2m−1 divides k2−1 for k ∈ 2m/2Sn;
more precisely

(k − 1)(k + 1) = `(2n − 1) + 2m − 1, for some ` > 0.

Thus gcd(2m + 1, k2 − 1) = gcd(2m + 1, 2m − 1) = 1, proving that s1 = s2 = 1.
Further F(k,m) = (r1 + r2 + 2)/2− 1 = (r1 + r2)/2.

If k = 2
m
2 then k2 − 1 = 2m − 1. In this case r1 = 2

m
2 − 1 and r2 = 2

m
2 + 1.

Then

|F(2
m
2 ,m)| = 2

m
2 − 1 + 2

m
2 + 1

2
= 2

m
2 .

�

Example 3 Let n = 12 and k = 181. We have

N = 212 − 1 = 63× 65 = (9× 7)× (5× 13) and

180 = 4× 5× 9, 182 = 2× 7× 13.

With notation of Corollary 2, r1 = 9, r2 = 7, s1 = 5 and s2 = 13. Thus the
cardinality of F(181, 12) equals (7 + 13 + 9 + 5)/2 − 1 = 16. and, α being a
primitive root of F212

F(181, 12) =

{
αd + α−d, d ∈

{
0,
N

9
, . . . ,

4N

9
,
N

7
, . . . ,

3N

7
,
N

5
,
2N

5
,
N

13
, . . . ,

6N

13

}}
.

Now we take k = 23 × 181 ≡ 1448 (mod 212 − 1). So we have 26 − 1 = r1r2 with
r1 = 1 and r2 = 63. Moreover s1 = s2 = 1. Then the cardinality of F(1448, 12)
equals 64/2 = 32.
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Below we give the proof that for even m, the minimum value of |F(k,m)| is 2
m
2 .

Theorem 7 Let I be the index set such that for all k ∈ I, Dk is an involution on
F2m. Then for even m,

min
k∈I
|F(k,m)| = |F(2

m
2 ,m)| = 2

m
2 .

Proof. Let n = 2m. Since m is even, k ∈ Sn or k ∈ 2
m
2 Sn. We treat the proof in

two cases.
Case 1: k ∈ 2

m
2 Sn.

Following Corollary 3, the minimum value of |F(k,m)| is the minimum value that
(r1 + r2)/2 can have with the constraint r1r2 = 2m − 1. So now we have to deal
with an optimization problem. To deal with this we consider the following related
optimization problem over positive real numbers.

Minimize f(x, y) = x+ y
Subject to :

xy = 2m − 1,

where x, y are positive real numbers.
Using Lagrange multiplier method [1, Section 3.1.3], we get that the minimum

value of f(x, y) is 2
√

2m − 1 which is obtained at x =
√

2m − 1 and y =
√

2m − 1.
So if r1 and r2 were real numbers then the minimum value of (r1 + r2) would

have been 2
√

2m − 1. Note that the closest integer to
√

2m − 1 is 2
m
2 and 2 · 2m

2 =
(2

m
2 + 1) + (2

m
2 − 1). If k = 2

m
2 , then r1 = 2

m
2 + 1 and r2 = 2

m
2 − 1 for which

r1r2 = 2m − 1, and hence the minimum value of (r1 + r2)/2 is 2
m
2 .

Case 2: k ∈ Sn.
In this case k2 − 1 = 0 mod 2n − 1. Therefore, 2m − 1 = r1r2 and 2m + 1 = s1s2.
Now we have to consider the optimization problem:

Minimize (r1 + r2 + s1 + s2)/2− 1
Subject to :

r1r2 = 2m − 1,

s1s2 = 2m + 1.

More precisely, we need to minimize the value (r1+r2) subject to r1r2 = 2m−1,
and (s1+s2) subject to s1s2 = 2m+1. It is clear that one of s1 and s2 is greater than
1, i.e., (s1 + s2) > 2. We already have seen in the previous case that the minimum
value of r1 + r2 is 2 · 2m

2 . Therefore, the minimum value of (r1 + r2 + s1 + s2)/2− 1
is greater than 2

m
2 .

Thus from the two cases the proof is clear. �

For odd m, the exact minimum value of |F(k,m)| is not clear. However, we
can have a lower bound on the minimum value of |F(k,m)| that we present below.
Note that if m is odd, then 3|(2m + 1).
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Theorem 8 Let I be the index set such that for all k ∈ I, Dk is an involution on
F2m, where m is odd. Then

(i) min
k∈I
|F(k,m)| > 2m−1 + d

√
2m + 1e − 1, when 2m − 1 is prime,

(ii) min
k∈I
|F(k,m)| > d(

√
2m − 1 +

√
2m + 1)e − 1, when 2m − 1 is composite,

Proof. Since m is odd, k ∈ Sn. Consider r1, r2, s1, s2 as they are given in (12).
Since 2n − 1 divides k2 − 1, we have r1r2 = 2m − 1 and s1s2 = 2m + 1. To find the
minimum value of |F(k,m)|, we need to minimize the value of (r1+r2+s1+s2)/2−1
subject to the constraints r1r2 = 2m − 1 and s1s2 = 2m + 1. Note that we can
consider this optimization problem over the set of real numbers, that will give us
a lower bound of the minimum value of (r1 + r2 + s1 + s2)/2 − 1 Therefore we
consider the following optimization problem:

Minimize (r1 + r2 + s1 + s2)/2− 1
Subject to :

r1r2 = 2m − 1,

s1s2 = 2m + 1.

First we prove (i), i.e., when 2m − 1 is prime. In this case, r1 + r2 = 2m. If s1
and s2 were real valued, the minimum of s1 +s2 would have been 2

√
2m + 1 (using

the Lagrange Multiplier method), and the minimum value of (r1+r2+s1+s2)/2−1
would be 2m−1 +

√
2m + 1 − 1. Since r1, r2, s1, s2 are all integers, thus the actual

minimum value is greater than 2m−1 + d
√

2m + 1e − 1.
For (ii), we have that 2m − 1 is composite. Then considering all of r1, r2, s1, s2

as real numbers, and using the Lagrange Multiplier method, we get the minimum
value of (r1 + r2 + s1 + s2)/2− 1 is

√
2m − 1 +

√
2m + 1− 1. Since r1, r2, s1, s2 are

all integers, we have that the actual minimum value is greater than d(
√

2m − 1 +√
2m + 1)e − 1. �

Remark 6 Theorem 7 and 8 clearly says that the Dickson involutions Dk(x) have
very high number of fixed points, and thus following the suggestion of [11] these
involutions should not be used as the S-boxes in block ciphers.

Let us see how good these bounds are. In Table 1, we compare the lower bound
obtained in Theorem 8 and the exact minimum value of |F(k,m)| for some odd
m.
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m Lower bound of |F(k,m)| Exact minimum value of
from Theorem 8 |F(k,m)|

5 21 22
7 75 86
9 45 62
11 90 398

Table 1: Comparison between the lower bound of |F(k,m)| obtained in Theorem
8 and its exact minimum value.

6 Numerical results

In Table 2, we present some numerical results related to number of equivalence
classes of Dickson involutions and the respective number of fixed points. Nota-
tion is as follows: m is the dimension of the field, Nm is the total number of
Dickson involutions over F2m , k is such that Dk is a Dickson involution on F2m ,
where k represents one equivalence class as described in (8), and |F(k,m)| is the
corresponding number of fixed points.

From Table 2, note that for odd m, the minimum value of |F(k,m)| is much
larger than 2

m
2 (consider 2

m
2 as a real value).

m Nm k |F(k,m)| m Nm k |F(k,m)|
4 16 1 16 7 8 1 128

4 4 5333 86
86 12
89 8

5 8 1 32
340 22

6 32 1 64 8 32 1 256
8 8 16 16

181 16 9011 44
307 8 12851 156
1448 32 17749 28
1574 40 21589 172
1756 40 30584 144
1763 32 30599 128

Table 2: The total number of Dickson involutions of 1st kind over F2m , and list of
involutions up to equivalence along with their respective number of fixed points.

Some Dickson involutions. We do not give the polynomials Dk where k is in
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the classes of 1 and of 2m/2. Polynomials are given modulo (x2
m

+ x). Involutions

on F2m for m = 3, 4 are given in Example 1. Recall that D2m/2s(x) = (Ds(x))2
m/2

where we compute only Ds. When m = 5 we have only one non trivial involution:

D340(x) = x4 + x5 + x6 + x8 + x9 + x16 + x17 + x21 + x24 + x28 + x30.

Let m = 6. We have {181, 1574, 1756} from S12 and {1448, 307, 1763} in 23S12,
respectively.

D181(x) = x+ x2 + x4 + x6 + x7 + x9 + x10 + x12 + x13 + x33 + x39

+x41 + x45 + x49 + x55.

D1574(x) = x2 + x8 + x9 + x10 + x12 + x13 + x32 + x33 + x41 + x45

+x48 + x49 + x56 + x60 + x62.

D1756(x) = x4 + x6 + x7 + x8 + x32 + x39 + x48 + x55 + x56 + x60 + x62.

For m = 7 we have only one non trivial involution:

D5333(x) = x+ x2 + x3 + x4 + x8 + x10 + x11 + x16 + x18 + x19 + x20 + x32

+x34 + x35 + x36 + x40 + x42 + x43 + x64 + x67 + x75 + x83 + x96

+x112 + x120 + x124 + x126.

7 Conclusion

In this paper we have characterized Dickson polynomials of the first kind, with
the constant a = 1, that are involutions. We studied some properties of Dickson
involutions over F2m , for a fixed m, trying to have a clear description of this corpus.
In particular, we show that its size increases with the number of prime divisors
of 2n − 1. Is the set of Dickson involutions more interesting in the high degrees?
We noticed that the number of fixed points of a Dickson involution is generally
high, but such fixed points are known. Then removing many of those fixed points
in such a way that keeps the involution property intact will give involution with a
few fixed points.

To conclude, we think that more has to be known about Dickson involutions.
Moreover, it could be interesting to consider other classes of Dickson permutations,
or derived from Dickson polynomials, although the bijectivity is not obtained easily
[5].
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