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Abstract Boolean functions used in stream ciphers should have many cryptographic properties in order to

help resist different kinds of cryptanalytic attacks. The resistance of Boolean functions against fast algebraic

attacks is an important cryptographic property. Deciding the resistance of an n-variable Boolean function

against fast algebraic attacks needs to determine the rank of a square matrix of order
∑e

i=0

(n
i

)
over binary

field F2, where 1 6 e < dn
2
e. In this paper, for rotation symmetric Boolean functions in prime n variables,

exploiting the properties of partitioned matrices and circulant matrices, we show that the rank of such a matrix

can be obtained by determining the rank of a reduced square matrix of order (
∑e

i=0

(n
i

)
)/n over F2, so that the

computational complexity decreases by a factor of nω for large n, where ω ≈ 2.38 is known as the exponent of

the problem of computing the rank of matrices.
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1 Introduction

Boolean functions play a vital role in coding theory and in symmetric cryptography [1]. Various criteria related

to cryptographically desirable Boolean functions have been proposed. Boolean functions used in stream ciphers,

especially in the filer and combination generators of stream ciphers based on linear feedback shift registers,

should have large algebraic immunity (AI), in order to help resist algebraic attacks [2, 3, 4]. Moreover, Boolean

functions should also have the resistance against fast algebraic attacks (FAA’s) [5, 6, 7]. To a certain degree

the algebraic immunity can be contained in the resistance of Boolean functions against FAA’s [8, 9, 10], and

the resistance against FAA’s has been considered as an important cryptographic property.

Many problems on Boolean functions give rise to matrices. The study shows that an n-variable Boolean

function f has the optimal resistance against FAA’s if and only if there does not exist a nonzero n-variable

Boolean function g of degree lower than n
2 such that fg = h and deg(g) + deg(h) < n [5, 11]. Usually, when

considering the resistance of f against FAA’s, we need to determine whether

deg(fg) > n− e

holds for any nonzero n-variable Boolean function g with deg(g) 6 e [12, 8, 10]. Clearly, if it is ture for every

e = 1, 2, · · · , dn2 e − 1 then f has the optimal resistance. This problem can be converted into determining the

rank of a
∑e
i=0

(
n
i

)
×
∑e
i=0

(
n
i

)
matrix over binary field F2.

As a matter of fact, there does not exist an n-variable Boolean function with optimal resistance against FAA’s

for most values of n. By investigating the determinant of such a
∑e
i=0

(
n
i

)
×
∑e
i=0

(
n
i

)
matrix, one can see that

an n-variable Boolean function has the optimal resistance only if n = 2s or n = 2s+1 with positive integer s [13].

Therefore, an n-variable Boolean function f with almost optimal resistance against FAA’s is also interesting,

i.e., there does not exist a nonzero n-variable Boolean function g of degree lower than n
2 such that fg = h and

deg(g) + deg(h) < n − 1. This means that we need to determine whether deg(fg) > n − e − 1 holds for any

nonzero n-variable Boolean function g with deg(g) 6 e and this problem is then converted into determining the

rank of a
∑n
i=n−e−1

(
n
i

)
×
∑e
i=0

(
n
i

)
matrix over F2. A class of n-variable balanced Boolean functions [11], called
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Carlet-Feng functions, was proved to have almost optimal resistance and even optimal resistance if n = 2s + 1

exactly [13]. Another class of even n-variable balanced Boolean functions [14], called Tang-Carlet functions,

was also proved to have almost optimal resistance [15]. But for Booelan functions that are neither Carlet-Feng

nor Tang-Carlet we want to know if it is possible to decide their resistance against FAA’s more efficiently.

The main contribution of this paper is to decide the resistance of a special class of Boolean functions,

called rotation symmetric Boolean functions. We study the resistance of n-variable rotation symmetric Boolean

functions against FAA’s where n is prime. We show that (a small variant of) the
∑e
i=0

(
n
i

)
×
∑e
i=0

(
n
i

)
square

matrix mentioned above for a prime n-variable rotation symmetric Boolean function can be represented as a

partitioned matrix with circulant blocks, which is equivalent to a square matrix of order (
∑e
i=0

(
n
i

)
)/n with

circulant polynomial entries. Then, by the properties of partitioned matrices and circulant matrices, we prove

that the determinant of the partitioned matrix over F2 can be obtained by computing the constant term of the

determinant of such a polynomial matrix over F2[x]/(xn− 1). Finally, the problem on the polynomial matrix is

converted into a reduced square matrix of order (
∑e
i=0

(
n
i

)
)/n over integers.

2 Preliminaries

Let n be a positive integer. An n-variable Boolean function f is viewed as a mapping from vector space Fn2 to

binary field F2 and has a unique n-variable polynomial representation over

F2[x1, x2, · · · , xn]/(x2
1 − x1, x

2
2 − x2, · · · , x2

n − xn),

called the algebraic normal form (ANF) of f ,

f(x1, x2, · · · , xn) = a0 +
∑

16i6n

aixi +
∑

16i<j6n

aijxixj + · · ·+ a12···nx1x2 · · ·xn,

where a0, ai, aij , . . . , a12···n belong to F2. For simplicity, an n-variable Boolean function f(x) sometimes is

written as f(x) =
∑
c∈Fn2

fcx
c, where xc = xc11 x

c2
2 · · ·xcnn and fc ∈ F2. We denote by Bn the set of all the

n-variable Boolean functions.

For f ∈ Bn, the set of x = (x1, x2, · · · , xn) ∈ Fn2 for which f(x) = 1 is called the support of the function,

denoted by supp(f). The Hamming weight of f is the cardinality of supp(f), denoted by wt(f). Boolean

function f is called balanced if wt(f) = 2n−1. The algebraic degree of Boolean function f , denoted by deg(f),

is the degree of its ANF. It is well-known that the algebraic degree of a balanced n-variable Boolean function

is less than n, i.e., the coefficient of term x1x2 · · ·x2 in its ANF must be zero.

An important class of Boolean functions are called rotation symmetric Boolean functions (RSBF’s). For

x = (x1, x2, · · · , xn) ∈ Fn2 , let

ρ(x1, x2, · · · , xn) = (x2, x3, · · · , xn, x1),

and

ρk(x) = ρ(ρk−1(x)).

Definition 1. An n-variable Boolean function is called rotation symmetric if for any x ∈ Fn2 , f(ρ(x)) = f(x).

A rotation symmetric Boolean function is unchanged by any cyclic permutation ρk of the varaibles x1, x2, · · · , xn.

The set of all n-variable rotation symmetric Boolean functions is denoted by RSBn.

For c ∈ Fn2 , we define

Gn(c) = {ρk(c) | 0 6 k 6 n− 1}.

2



We denote ν(c) by the number of elements in Gn(c), i.e., ν(c) = |Gn(c)|, and select the representative element

of Gn(c) as the lexicographically first element. Let Γ(n) be the set of all the representative element of Gn(c).

In particular, ν(c) = n if c ∈ Fn2 \ {0n} and n is prime.

With above notations, an n-variable rotation symmetric Boolean function f can be written as

f(x) =
∑

c∈Γ(n)

fc
∑

u∈Gn(c)

xu,

where fc ∈ F2 and xu = xu1
1 xu2

2 · · ·xunn . This also means that the existence of a representative term xc implies

the existence of all the term xu (u ∈ Gn(c)) in the ANF of f .

3 Deciding the Resistance of Boolean Functions against Fast Algebraic Attacks

When studying the resistance against FAA’s, the following two sets of vectors and a matrix over F2 are useful.

DenoteWe by the set {x ∈ Fn2 |wt2(x) 6 e} in lexicographic order andWd by the set {x ∈ Fn2 |wt2(x) > d+1}
in reverse lexicographic order where 1 6 e < dn2 e and d < n. For x ∈ Fn2 , let x̄ = (x1 + 1, x2 + 1, · · · , xn + 1).

It is clear that if x is the j-th element in We and x̄ ∈ Wd then x̄ is the j the element in Wd. In particular,

1n = (1, 1, · · · , 1) and 0n = (0, 0, · · · , 0) are the first elements in Wd and We respectively.

For y, z ∈ Fn2 , let z ⊂ y be an abbreviation for supp(z) ⊂ supp(y), where supp(x) = {i |xi = 1}; and let

y∩ z = (y1∧ z1, y2∧ z2, · · · , yn∧ zn), where ∧ is the AND operation. Recall the cyclic permutation ρ mentioned

in Section 2, it is easy to see that ρ(y ∩ z) = ρ(y) ∩ ρ(z). Denote W (f ; e, d) by a matrix over F2 related to

function f ∈ Bn, which is a
∑n
i=d+1

(
n
i

)
×
∑e
i=0

(
n
i

)
matrix with ij-th element equal to

wij = wyz = fy∩z̄,

where y is the i-th element in Wd and z is j-th element in We.

It was proved in [13] that there exists no nonzero function g of degree at most e such that the product gh

has degree at most d, which means that deg(fg) > d + 1 holds for any nonzero n-variable Boolean function g

with deg(g) 6 e, if and only if the matrix W (f ; e, d) has full column rank. Therefore, if W (f ; e, n− e− 1) has

full column rank then deg(fg) > n − e holds for any nonzero n-variable Boolean function g with deg(g) 6 e,

and if W (f ; e, n − e − 2) has full column rank then deg(fg) > n − e − 1 holds for those g. That is to say,

one can determine the optimal or almost optimal resistance by computing the rank of W (f ; e, n − e − 1) or

W (f ; e, n− e− 2) for all the possible e.

It is easy to see that W (f ; e, n − e − 1) a symmetric
∑e
i=0

(
n
i

)
×
∑e
i=0

(
n
i

)
, denoted by W (f ; e), and the

resistance against FAA’s is related to the problem whether matrix W (f ; e) has nonzero determinant over F2. It

was also noted in [13] that W (f ; e) has an interesting property about its determinant.

Lemma 1. If w11 =
∑e
i=0

(
n
i

)
+ 1 mod 2 then det(W (f ; e)) = 0, and if w11 =

∑e
i=0

(
n
i

)
mod 2 then

det(W (f ; e)) = det(W (f ; e)(1,1)), where W (f ; e)(1,1) is the matrix that results from W (f ; e) by removing the
first row and the first column. In particular, when w11 = 0, det(W (f ; e)) = 1 only if

∑e
i=0

(
n
i

)
is even.

Generally and for simplicity, we define V (f ; e, d) = W (f ; e, d)(1,1), which is the matrix that results from

W (f ; e, d) by removing the first row and the first column. In particular, we have V (f ; e) = W (f ; e)(1,1).

Usually, balanced Boolean functions are more interesting for cryptography. For balanced Boolean functions,

entry w11 in Lemma 1 is always zero. When considering the resistance of balanced Boolean functions against

FAA’s, we have a definition of an n-variable balanced Boolean function having the (almost) optimal resistance

against FAA’s.
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Definition 2. An n-variable balanced Boolean function has (almost) optimal resistance against FAA’s if both
of following two conditions hold for 1 6 e < dn2 e:

1. det(V (f ; e)) = 1 when
∑e
i=0

(
n
i

)
is even;

2. W (f ; e, n− e− 2) has full column rank when
∑e
i=0

(
n
i

)
is odd. 2

For balanced Boolean functions in odd number of variables, we give a simplified sufficient condition, compared

with Definition 2, such that they have (almost) optimal resistance against FAA’s. With this simplified condition,

in Section 5, we can focus on the problem about the determinant of V (f ; e). This condition is mainly based on

the following combinatoric property.

Lemma 2. Let n be odd and e < n. If
∑e
i=0

(
n
i

)
is odd, then both e and

∑e+1
i=0

(
n
i

)
are even.

Proof. Denote by IntExp2(N) the exponent of the highest power of 2 that divides integer N . Let IntExp2(n−
1) = k. We show that

(
n
2

)
,
(
n
3

)
,
(
n
4

)
, · · · ,

(
n

2k−1

)
are all even, but

(
n
2k

)
is odd. Let 2 6 t 6 2k. When t is even the

parity of
(
n
t

)
is determined by

IntExp2

[∏ t−2
2

i=0
(n− 1− 2i)

]
− IntExp2

[∏ t
2

i=1
2i

]
.

Since k = IntExp2(n−1) we have n ≡ 1 mod 2k and IntExp2(n−1−2i) = IntExp2(2i) for every i = 1, 2, · · · , t−2
2 .

Then when t is even,
(
n
t

)
is also even if and only if

IntExp2(n− 1)− IntExp2(t) > 0.

For t = 2, 4, · · · , 2k − 2 we have IntExp2(n − 1) − IntExp2(t) > 0, and for i = 2k we have IntExp2(n − 1) −
IntExp2(2i) = 0 because n ≡ 1 mod 2k but n 6= 1 mod 2k+1. Then

(
n
2

)
,
(
n
4

)
,
(
n
6

)
, · · · ,

(
n

2k−2

)
are all even, but(

n
2k

)
is odd. Note that (

n

t+ 1

)
=

(
n

t

)
· n− t
t+ 1

.

This implies that the parity of
(
n
t

)
is the same as that of

(
n
t+1

)
when t is even. Therefore,

(
n
3

)
,
(
n
5

)
,
(
n
7

)
, · · · ,

(
n

2k−1

)
are all even, but

(
n
2k

)
,
(

n
2k+1

)
are odd.

Now we can see that
∑2k

i=0

(
n
i

)
is the first odd number in the sequence

1∑
i=0

(
n

i

)
,

2∑
i=0

(
n

i

)
, · · · ,

2k−1∑
i=0

(
n

i

)
,

2k∑
i=0

(
n

i

)
, · · · ,

and
∑2k+1
i=0

(
n
i

)
=
∑2k

i=0

(
n
i

)
+
(

n
2k+1

)
must be even since

(
n

2k+1

)
is odd. The next possible odd number in the

sequence must be in the form of
∑2k+2j
i=0

(
n
i

)
where 1 6 j 6 n−1−2k

2 and
(

n
2k+2j

)
is odd. Finally, if

∑2k+2j
i=0

(
n
i

)
is

odd then it must be followed by an even number
∑2k+2j+1
i=0

(
n
i

)
in the sequence because

(
n

2k+2j

)
and

(
n

2k+2j+1

)
has the same parity. 2

Theorem 1. Let n be odd, 1 6 e 6 dn2 e, and f be an n-variable balanced Boolean function. f has the
(almost) optimal resistance against FAA’s if det(V (f ; e)) = 1 holds for every e such that

∑e
i=0

(
n
i

)
is even.

Proof. Function f satisfies the first condition in Definition 2. When
∑e
i=0

(
n
i

)
is odd we need to check the rank

of W (f ; e, n−e−2), which is a
∑n
i=n−e−1

(
n
i

)
×
∑e
i=0

(
n
i

)
matrix. By Lemma 2, if

∑e
i=0

(
n
i

)
is odd then

∑e+1
i=0

(
n
i

)
must be even. Note that matrix W (f ; e, n−e−2) consists of the first

∑e
i=0

(
n
i

)
columns of W (f ; e+1, n−e−2),

which is a square matrix of order
∑e+1
i=0

(
n
i

)
. We have det(W (f ; e + 1, n − e − 2)) = det(V (f ; e + 1)) = 1 thus

W (f ; e, n − e − 2) has full column rank for 1 6 e < dn2 e such that
∑e
i=0

(
n
i

)
is odd. This means that f also

satisfies the second condition in Definition 2. Therefore, f has the (almost) optimal resistance against FAA’s.2
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4 Partitioned Property of V (f ; e, d) for RS-function f in Prime Variables

We concentrate on the resistance of rotation symmetric Boolean functions in prime number of variables and we

always let n > 2 be a prime if not mentioned in the following content of this paper.

In this section, for f ∈ RSBn, we show that matrix V (f ; e, d), the matrix that results from W (f ; e, d) by

removing the first row and the first column, can be represented as a partitioned matrix with circulant blocks.

In the next section, we consider computing the determinant of V (f ; e, n− e− 1) = V (f ; e) over F2.

Definition 3. An n× n circulant matrix C takes the form

c0 cn−1 · · · c2 c1

c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 · · · c1 c0


.

A circulant matrix is a special kind of matrix where each row vector is rotated one element to the right relative
to the preceding row vector. It can be fully specified by the last row vector (cn−1, cn−2, · · · , c0). The polynomial

a(x) = c0 + c1x+ · · ·+ cn−1x
n−1

is called the associated polynomial of matrix C. 2

Let P be a cyclic permutation matrix, given by

0 0 · · · 0 1

1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0


.

Substitute matrix P for x in the associated polynomial, we have C = a(P ).

Moreover, for any two given circulant matrices A and B, and their associated polynomials a(x) and b(x)

respectively, it is easy to see that the sum A+B is a circulant matrix with associated polynomial a(x) + b(x)

and the product AB = BA is a circulant matrix with associated polynomial a(x)b(x) mod (xn − 1). In other

words, circulant matrices form a commutative algebra.

For rotation symmetric functions, recalling Γ(n), the set of all the representative element of Gn(c), we denote

by Γe(n) the set {y ∈ Γ(n) |wt2(y) 6 e} ordered by increasing weight and by γd(n) the set {y ∈ Γ(n) |wt2(y) >

d+ 1} in reverse order as Γe(n). It is clear that applying the cyclic permutation to each element repeatedly in

Γe(n) and in γd(n) results We and Wd respectively.

Lemma 3. Let n be a prime and f ∈ RSBn. For α ∈ Γe(n) \ {0n} and β ∈ γd(n) \ {1n}, matrix

Vβα = {wyz}y∈Gn(β),z∈Gn(α),

is circulant.

Proof. Note that Vβα is a (ν(β) × ν(α)) matrix, and prime n implies that ν(β) = ν(α) = n, then Vβα is an
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n× n square matrix, and can be written as follow,

wβα wβρ(α) · · · wβρn−2(α) wβρn−1(α)

wρ(β)α wρ(β)ρ(α) wρ(β)ρ2(α) wρ(β)ρn−1(α)

... wρ2(β)ρ(α) wρ2(β)ρ2(α)

. . .
...

wρn−2(β)α

. . .
. . . wρn−2(β)ρn−1(α)

wρn−1(β)α wρn−1(β)ρ(α) · · · wρn−1(β)ρn−2(α) wρn−1(β)ρn−1(α)


Thanks to the rotation symmetry of f , we have

fy∩z̄ = fρ(y∩z̄) = fρ(y)∩ρ(z̄) = · · · = fρn−1(y∩z̄) = fρn−1(y)∩ρn−1(z̄).

Then,

wβα = wρ(β)ρ(α) = · · · = wρn−1(β)ρn−1(α) = fβ∩ᾱ

wρ(β)α = wρ2(β)ρ(α) = · · · = wβρn−1(α) = fρ(β)∩ᾱ
...

wρn−2(β)α = wρn−1(β)ρ(α) = · · · = wρn−3(β)ρn−1(α) = fρn−2(β)∩ᾱ

wρn−1(β)α = wβρ(α) = · · · = wρn−2(β)ρn−1(α) = fρn−1(β)∩ᾱ

which means that Vβα is circulant matrix with associated polynomial

aVβα(x) = fβ∩ᾱ + fρ(β)∩ᾱ · x+ · · ·+ fρn−1(β)∩ᾱ · xn−1. 2

The first row of W (f ; e, d) is {w1n,z}z∈We and the first column of W (f ; e, d) is {wy,0n}y∈Wd
. From the

definition of V (f ; e, d), it can seen that Vβα in Lemma 3 is a sub-matrix of V (f ; e, d) since α 6= 0n and β 6= 1n.

Denote by Vij(1 6 i 6 k1, 1 6 j 6 k2) the matrix Vβα where β is the i-th element in γd(n) \ {1n} and α is the

j-th element in Γe(n) \ {0n}. Then matrix V (f ; e, d) can be represented as a partitioned matrix as follow,
V11 V12 · · · V1k2

V21 V22 · · · V2k2

...
...

...

Vk11 Vk12 · · · Vk1k2

 , (1)

where k1 = |γd(n)|−1, k2 = |Γe(n)|−1 and each block Vij is circulant. This means that we obtain a partitioned

property of V (f ; e, d) for any RS-function f in prime variables.

Theorem 2. Let n be a prime and f ∈ RSBn. Then matrix V (f ; e, d) can be partitioned into (k1 × k2)
circulant blocks of order n× n, where k1 = |γd(n)| − 1 and k2 = |Γe(n)| − 1.

Note that |γn−e−1(n)| = |Γe(n)|. Thus for prime n matrix V (f ; e) can be partitioned into (k × k) circulant

blocks of order n× n, where k = |Γe(n)| − 1. With the notations in Equation (1), denote by Vji the symmetric

block of Vij(1 6 i, j 6 k, i 6= j) in matrix V (f ; e).

5 The Determinant of V (f ; e) for RS-function f in Prime Variables

The following property may be known as the generalized Schur’s formula about the determinants of partitioned

matrices or block matrices.
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Lemma 4. [16] Let R be a commutative ring. Assume that M is a (kn × kn) matrix over R and can be
partitioned into k2 blocks of order n × n. If all the blocks, denoted by Cij(1 6 i, j 6 k), are commutative
pairwise under the matrix multiplication over R, then the determinant of M ,

det(M) = det

 ∑
π∈P[k]

sgn(π)C1π(1)C2π(2) · · ·Ckπ(k)

 ,

where P[k] is set of all possible permutations of integer set {1, 2, · · · , k} and sgn is the sign of permutation π.

Corollary 1. Assume that M is a (kn × kn) non-zero matrix over F2 and can be partitioned into k2 blocks
of order n × n. If all the blocks, denoted by Cij(1 6 i, j 6 k), are pairwise commutative under the matrix
multiplication, then the determinant of M ,

det(M) = det

 ∑
π∈P[k]

C1π(1)C2π(2) · · ·Ckπ(k)

 ,

where P[k] is set of all possible permutations of integer set {1, 2, · · · , k}.
Circulant matrices are pairwise commutative under the matrix multiplication. Lemma 4 or Corollary 1 can

be applied to V (f ; e) directly.

Theorem 3. Let n be a prime and f ∈ RSBn. The determinant of matrix V (f ; e) is equal to

det

 ∑
π∈P[k]

V1π(1)V2π(2) · · ·Vkπ(k)

 ,

where k = |Γe(n)| − 1.

According to Theorem 3, the determinant of matrix V (f ; e) is equal to that of a circulant matrix of order

n × n. From the relationship between circulant matrices and their associated polynomials, we can see that its

associated polynomial is the determinant of polynomial matrix
a11(x) a12(x) · · · a1k(x)

a21(x) a22(x) · · · a2k(x)
...

...
...

ak1(x) ak2(x) · · · akk(x)


over F2[x]/(xn − 1), which is equal to

∑
π∈P[k]

(
k∏
i=1

aiπ(i)

)
mod (xn − 1),

where aiπ(i) is the associated polynomial of circulant matrix Viπ(i) and k = |Γe(n)| − 1.

Corollary 2. Let n be a prime and f ∈ RSBn. The determinant of matrix V (f ; e) is equal to that of a

circulant matrix with associated polynomial
∑
π∈P[k]

(∏k
i=1 aiπ(i) mod (xn − 1)

)
, where aiπ(i) is the associated

polynomial of circulant matrix Viπ(i) and k = |Γe(n)| − 1.

Lemma 5. Let n be a prime and f ∈ RSBn. If the associated polynomials of Vij and Vji are a(x) =
∑n−1
t=0 atx

t

and b(x) =
∑n−1
t=0 btx

t respectively, then a0 = b0, at = bn−t and bt = an−t hold for 1 6 t 6 n− 1.

7



Proof. Let β be the i-th element in γd(n) \ {1n} and α be the j-th element in Γe(n) \ {0n}. Since ᾱ is

the j-th element in γd(n) \ {1n} and β̄ is i-th element in Γe(n) \ {0n}, from the proof of Lemma 3, we have

at = fρt(β)∩ᾱ, and bt = fρt(ᾱ)∩β . Then bn−t = fρn−t(ᾱ)∩β and an−t = fρn−t(β)∩ᾱ for 1 6 t 6 n − 1, and it is

clear that a0 = fβ∩ᾱ = fᾱ∩β = b0. Note that

ρt(ρn−t(ᾱ) ∩ β) = ρt(β) ∩ ᾱ,

and

ρt(ρn−t(β) ∩ ᾱ) = ρt(ᾱ) ∩ β.

Thanks to the rotation symmetry of function f , we have fρt(β)∩ᾱ = fρn−t(ᾱ)∩β and fρt(ᾱ)∩β = fρn−t(β)∩ᾱ, i.e.,

at = bn−t and bt = an−t for 1 6 t 6 n− 1. 2

Lemma 6. Let n be a prime and f ∈ RSBn. The associated polynomial a(x) = c0 + c1x+ · · ·+ cn−1x
n−1 of

a block on the diagonal of matrix V (f ; e) satisfies ci = cn−i for 1 6 i 6 n− 1.

Proof. Let k = |Γe(n)| − 1 and α be the k-th element in Γe(n) \ {0n}. Then β = ᾱ is the k-th element in

γd(n) \ {1n}. Hence, the k-th block on the diagonal of matrix V (f ; e), denoted by Vkk, can be fully determined

by α. From the proof of Lemma 3, its associated polynomial can be given by

aVkk(x) =

n−1∑
i=0

= fρi(β)∩ᾱ · xi =

n−1∑
i=0

= fρi(ᾱ)∩ᾱ · xi,

i.e., ci = fρi(ᾱ)∩ᾱ and cn−i = fρn−i(ᾱ)∩ᾱ for 1 6 i 6 n− 1.

Let ᾱ = (a1, a2, · · · , an). For 1 6 i 6 n−1
2 we have

ρi(ᾱ) ∩ ᾱ = (ai+1a1, ai+2a2, · · · , anan−i, a1an−i+1, a2an−i+2, · · · , aian),

and

ρn−i(ᾱ) ∩ ᾱ = (an−i+1a1, an−i+2a2, · · · , anai, a1ai+1, a2ai+2 · · · , an−ian).

Therefore,

ρn−i(ᾱ) ∩ ᾱ = ρn−i(ρi(ᾱ) ∩ ᾱ),

which implies that fρi(ᾱ)∩ᾱ = fρn−i(ᾱ)∩ᾱ and ci = cn−i for 1 6 i 6 n − 1 due to the rotation symmetry of

function f . 2

For simplicity, we say that a polynomial of degree less than n over F2[x] is coefficient symmetric or a coefficient

symmetric polynomial if its coefficients satisfy the conditions in Lemma 6. The following three lemmas are about

the properties of coefficient symmetric polynomial.

Lemma 7. Let C be an n × n circulant matrix over F2. If the coefficients of associated polynomial a(x) =∑n−1
i=0 cix

i satisfy ci = cn−i for 1 6 i 6 n− 1, then the determinant of matrix C, det(C) = c0.

Proof. View matrix C as a circulant matrix over the complex field C. Let ω be the n-th roots of unity and√
−1 is the imaginary unit, i.e., ω = exp( 2π

√
−1
n ) = cos 2π

n +
√
−1 sin 2π

n . It can be verified that the eigenvalues

of the transpose of matrix C are then given by λj = c0 + c1ω
j + c2ω

2j + cn−1ω
(n−1)j with j = 0, 1, · · · , n− 1.

Then the determinant of matrix C over complex field C is equal to
∏n−1
j=0 λj , which must be an integer, and the

determinant of matrix C in finite field F2 is

det(C) =

n−1∏
j=0

(c0 + c1ω
j + c2ω

2j + · · ·+ cn−1ω
(n−1)j) mod 2.
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Note that ωij + ω(n−i)j = 2 · cos 2πij
n . From ci = cn−1 we have

det(C) =

n−1∏
j=0

c0 + 2

n−1
2∑
i=1

ci cos(
2πij

n
)

 mod 2 ≡ cn0 mod 2 = c0.

Lemma 8. Let a(x) =
∑n−1
i=0 aix

i and b(x) =
∑n−1
j=0 bjx

j be two polynomials of degree at most n − 1 over

F2[x]. Assume that c(x) = a(x)b(x) mod (xn − 1) =
∑n−1
k=0 ckx

k. For 1 6 i, j, k 6 n − 1, if ai = an−i and
bj = bn−j , or if ai = bn−i, bj = an−j and a0 = b0, then ck = cn−k.

Proof. For 1 6 k 6 n− 1 we have

ck = a0bk + akb0 +
∑

i+j=k mod n
16i,j6n−1

aibj , cn−k = a0bn−k + an−kb0 +
∑

i+j=(n−k) mod n
16i,j6n−1

aibj .

Consider

{(i, j) | i+ j = k mod n, 1 6 i, j 6 n− 1}

and

{(i, j) | i+ j = n− k mod n, 1 6 i, j 6 n− 1}.

There exist two one-to-one correspondences,

(i, j) 7→ (n− i, n− j) and (i, j) 7→ (n− j, n− i),

between the above two sets. Then, for 1 6 k 6 n− 1 we have

cn−k = a0bn−k + an−kb0 +
∑

i+j=k mod n
16i,j6n−1

an−ibn−j = a0bk + akb0 +
∑

i+j=k mod n
16i,j6n−1

aibj = ck

if ai = an−i and bj = bn−j , and have

cn−k = a0bn−k+an−kb0+
∑

i+j=k mod n
16i,j6n−1

an−jbn−i = a0ak+bkb0+
∑

i+j=k mod n
16i,j6n−1

bjai = b0ak+bka0+
∑

i+j=k mod n
16i,j6n−1

bjai = ck

if a0 = b0, ai = bn−i and bj = an−j . This completes the proof. 2

Lemma 9. Let {a1(x),a2(x), · · · ,ak(x),b1(x),b2(x), · · · ,bk(x)} be 2k polynomials of degree at most n− 1

over F2[x]. Assume that ai(x) =
∑n−1
j=0 aijx

i, bi(x) =
∑n−1
j=0 bijx

i,

h1(x) =

k∏
i=0

ai(x) mod (xn − 1) =

n−1∑
j=0

h1jx
j ,

and

h2(x) =

k∏
i=0

bi(x) mod (xn − 1) =

n−1∑
j=0

h2jx
j .

For 1 6 i 6 k and 1 6 j 6 n−1, if ai0 = bi0, aij = bi(n−j) and bij = ai(n−j), then h1j +h2j = h1(n−j) +h2(n−j).

Proof. Let Λ = {1, 2, 3, · · · , n− 1, n}. For 1 6 j 6 n− 1 we have h1j + h2j eqauls

n∑
u=1

∑
{s1,s2,··· ,su}⊆Λ

{su+1,su+2,··· ,sk}
⊆Λ\{s1,s2,··· ,su}

∑
js1

+···+jsu=j mod n

16js1 ,··· ,jsu6n−1

(
as1js1 · · · asujsuasu+10 · · · ask0 + bs1js1 · · · bsujsu bsu+10 · · · bsk0

)
.
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The proof is similar to Lemma 8. There exists one-to-one correspondence

(js1 , js2 , · · · , jsu) 7→ (n− js1 , n− js2 , · · · , n− jsu)

between

{(js1 , · · · , jsu) | js1 + · · ·+ jsu = j mod n, 1 6 js1 , · · · , jsu 6 n− 1}

and

{(js1 , · · · , jsu) | js1 + · · ·+ jsu = (n− j) mod n, 1 6 js1 , · · · , jsu 6 n− 1}.

Since ai0 = bi0, aij = bi(n−j) and bij = ai(n−j) for 1 6 j 6 n− 1, it follows that h1(n−j) + h2(n−j) equals

n∑
u=1

∑
{s1,s2,··· ,su}⊆Λ

{su+1,su+2,··· ,sk}
⊆Λ\{s1,s2,··· ,su}

∑
js1

+···+jsu=(n−j) mod n

16js1 ,··· ,jsu6n−1

(
as1js1 · · · asujsuasu+10 · · · ask0 + bs1js1 · · · bsujsu bsu+10 · · · bsk0

)

=

n∑
u=1

∑
{s1,s2,··· ,su}⊆Λ

{su+1,su+2,··· ,sk}
⊆Λ\{s1,s2,··· ,su}

∑
js1

+···+jsu=j mod n

16js1 ,··· ,jsu6n−1

(
as1(n−js1 ) · · · asu(n−jsu )asu+10 · · · ask0 + bs1(n−js1 ) · · · bsu(n−jsu )bsu+10 · · · bsk0

)

=

n∑
u=1

∑
{s1,s2,··· ,su}⊆Λ

{su+1,su+2,··· ,sk}
⊆Λ\{s1,s2,··· ,su}

∑
js1+···+jsu=j mod n

16js1 ,··· ,jsu6n−1

(
bs1js1 · · · bsujsu bsu+10 · · · bsk0 + as1js1 · · · asujsuasu+10 · · · ask0

)
= h1j + h2j .

This completes the proof. 2

Now we prove that the determinant of V (f ; e) over F2 can be obtained by computing the constant term of

the determinant of polynomial matrix 
a11(x) a12(x) · · · a1k(x)

a21(x) a22(x) · · · a2k(x)
...

...
...

ak(x) ak2(x) · · · akk(x)

 ,

over F2[x]/(xn − 1).

Theorem 4. Let n be a prime and f ∈ RSBn. The determinant of matrix V (f ; e) is equal to the coefficient
of constant term of polynomial

p(x) =

n−1∑
i=0

pix
i =

∑
π∈P[k]

(
k∏
i=1

aiπ(i)

)
mod (xn − 1),

i.e., det(V (f ; e)) = p0, where aiπ(i) is the associated polynomial of circulant matrix Viπ(i) and k = |Γe(n)| − 1.

Proof. By Corollary 2 and Lemma 7, if p(x) is coefficient symmetric then det(V (f ; e)) = p0. Therefore, it

suffices to prove that p(x) is coefficient symmetric, i.e., pi = pn−i holds for 1 6 i 6 n− 1. 2

For a given permutation π ∈ P[k], we consider the following two sets,

∆1 = {r |π(r) = r, 1 6 r 6 k}

and

∆2 = {(s, t) |π(s) = t, π(t) = s, 1 6 s, t 6 k, s 6= t}.
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Let {r1, r2, · · · , ru} = ∆1, {(s1, t1), (s2, t2), · · · , (sv, tv)} = ∆2, where 0 6 u 6 k and 0 6 v 6 k
2 . Then every

product in the sum ∑
π∈P[k]

(
k∏
i=1

aiπ(i)

)
mod (xn − 1) (2)

can be written as

ar1r1 · · ·aruruas1t1at1s1 · · ·asvtvatvsvai1j1ai2j2 · · ·aik−u−2vjk−u−2v
mod (xn − 1),

where (i1, j1), · · · , (ik−u−2v, jk−u−2v) /∈ ∆2 and i1 6= j1, · · · , ik−u−2v 6= jk−u−2v. Note that

ar1r1 · · ·aruruas1t1at1s1 · · ·asvtvatvsvaj1i1aj2i2 · · ·ajk−u−2vik−u−2v
mod (xn − 1)

is also a product in Sum (2). We add above two products and obtain

ar1r1 · · ·aruruas1t1at1s1 · · ·asvtvatvsv

(
k−u−2v∏
λ=1

aiλjλ +

k−u−2v∏
λ=1

ajλiλ

)
mod (xn − 1).

This means that some products in Sum (2) can be combined in pairs. In particular, for a given permutation π

such that k = u+ 2v,

ar1r1 · · ·aruruas1t1at1s1 · · ·asvtvatvsv
is a single product in Sum (2).

Recall that ar1r1 , · · · ,aruru are the associated polynomial of blocks on the diagonal of matrix V (f ; e). Thus,

they are coefficient symmetric and by Lemma 8 the product

ar1r1 · · ·aruru mod (xn − 1)

is also coefficient symmetric. Similarly, By Lemma 5 as1t1at1s1 mod (xn − 1), · · · ,asvtvatvsv mod (xn − 1) are

coefficient symmetric and by Lemma 8 again the product

as1t1at1s1 · · ·asvtvatvsv mod (xn − 1)

is also coefficient symmetric. Moreover, by Lemma 5

ai1j1 mod (xn − 1),ai2j2 mod (xn − 1), · · · ,aik−u−2vjk−u−2v
mod (xn − 1)

and

aj1i1 mod (xn − 1),aj2i2 mod (xn − 1), · · · ,ajk−u−2vik−u−2v
mod (xn − 1)

are two lists of polynomials satisfying the conditions in Lemma 9. Then it follows from Lemma 9 that(
k−u−2v∏
λ=1

aiλjλ +

k−u−2v∏
λ=1

ajλiλ

)
mod (xn − 1)

is a coefficient symmetric associated polynomial. Finally, we come to the conclusion that

ar1r1 · · ·aruruas1t1at1s1 · · ·asvtvatvsv

(
k−u−2v∏
λ=1

aiλjλ +

k−u−2v∏
λ=1

ajλiλ

)

modulo (xn−1) must be a coefficient symmetric polynomial and then p(x) is a sum of some coefficient symmetric

polynomials. This completes the proof. 2
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Finally, in fact, we need not to compute the whole p(x). Due to its coefficient symmetry, the coefficient of

its constant term can be obtained by computing an integer matrix of order k × k.

Theorem 5. Let n be a prime and f ∈ RSBn. The determinant of matrix V (f ; e) is equal to the determinant
of k × k integer matrix 

a11(1) a12(1) · · · a1k(1)

a21(1) a22(1) · · · a2k(1)
...

...
...

ak(1) ak2(1) · · · akk(1)


modulo 2, where aij(x) is the associated polynomial of circulant matrix Vij and k = |Γe(n)| − 1.

Proof. The determinant of matrix V (f ; e) is equal to the coefficient of constant term of polynomial p(x) =∑n−1
i=0 pix

i in F2[x]/(xn − 1) and

p(x) = det({aij(x)}16i,j6k) = det


a11(x) a12(x) · · · a1k(x)

a21(x) a22(x) · · · a2k(x)
...

...
...

ak(x) ak2(x) · · · akk(x)

 ,

where the determinant of polynomial matrix {aij(x)}16i,j6k is defined in F2[x]/(xn− 1). This determinant can

also be defined in Z[x], and viewed as a polynomial with integer coefficients of degree at most (n− 1)k, denoted

by q(x) =
∑(n−1)k
i=0 qix

i with qi ∈ Z. Then we can denote by q(1) the determinant of integer matrix
a11(1) a12(1) · · · a1k(1)

a21(1) a22(1) · · · a2k(1)
...

...
...

ak(1) ak2(1) · · · akk(1)

 =

(n−1)k∑
i=0

qi.

It is clear that p(x) = (q(x) mod (xn − 1)) mod 2. We have pi =
(∑k−1

j=0 qi+jn

)
mod 2 for 0 6 i 6 n−1. Recall

that p(x) is coefficient symmetric, i.e., pi = pn−i for 1 6 i 6 n− 1, thenk−1∑
j=0

qi+jn

 ≡
k−1∑
j=0

qn−i+jn

 mod 2,

which implies that(n−1)k∑
i=0

qi

 mod 2 =

k−1∑
j=0

q0+jn

 mod 2 +

n−1
2∑
i=0

k−1∑
j=0

qi+jn +

k−1∑
j=0

qn−i+jn

 mod 2

=

k−1∑
j=0

q0+jn

 mod 2.

This means that det(V (f ; e)) = p0 =
(∑k−1

j=0 q0+jn

)
mod 2 = q(1) mod 2. 2

Thanks to Theorem 5, we obtain an algorithm for computing the determinant of V (f ; e) over F2 more

efficiently compared with the straightforward computation of the determinant of V (f ; e) over F2.
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Computing the Determinant of V (f ; e) over F2

Input: balanced rotation symmetric function f in n variables (including all the coefficients of f), integer e with
1 6 e 6 dn2 e
Output: det(V (f ; e))
Initialize: d = n− e− 1, E =

∑e
i=0

(
n
i

)
, Γe(n), γd(n), k = ((E − 1)/n) and (k × k) matrix A

01: if E is odd then output 0
02: for i from 1 to k do
03: β ← the i-th element in γd(n) \ {1n}
04: for j from 1 to k do
05: α← the j-th element in Γe(n) \ {0n}
06: aij ← fβ∩ᾱ + fρ(β)∩ᾱ + · · ·+ fρn−1(β)∩ᾱ
07: end for
08: end for
09: A← {aij}16i,j6k
10: Compute and output det(A) mod 2

For prime n, we have that k = (
∑e
i=0

(
n
i

)
− 1)/n ≈ (

∑e
i=0

(
n
i

)
)/n. The complexity of computing det(V (f ; e))

in the way of Theorem 5 is about

O

((
e∑
i=0

(
n

i

))ω
·
(

1

n

)ω)
,

where ω is known as the exponent of the problems of computing the determinant, the matrix inverse, the rank,

the characteristic polynomial etc. As far as we know, the algorithm of Coppersmith-Winograd (for matrices

that can be operated over fields) has the lowest aymptotical estimate that ω ≈ 2.38 [17].

Note that obtaining the integer matrix in the Theorem 5 needs O
((∑e

i=0

(
n
i

))2 · (1/n)
)

extra field operations.

Thus the total complexity is about

O

( e∑
i=0

(
n

i

))2

· 1

n
+

(
e∑
i=0

(
n

i

))ω
·
(

1

n

)ω ,

which decreases by a factor of nω for large n, compared with the complexity of computing det(V (f ; e)) directly,

that is about O
((∑e

i=0

(
n
i

))ω)
.
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