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Abstract

Extensive use of third party IP cores (e.g., HDL, netlist) and open source tools in the FPGA application design and development
process in conjunction with the inadequate bitstream protection measures have raised crucial security concerns in the past for
reconfigurable hardware systems. Designing high fidelity and secure methodologies for FPGAs are still infancy and in particular,
there are almost no concrete methods/techniques that can ensure trust in FPGA applications not entirely designed and/or developed
in a trusted environment. This work strongly suggests the need for an anomaly detection capability within the FPGAs that can
continuously monitor the behavior of the underlying FPGA IP cores and the communication activities of IP cores with other
IP cores or peripherals for any abnormalities. To capture this need, we propose a technique called FIDelity Enhancing Security
(FIDES) methodology for FPGAs that uses a combination of access control policies and behavior learning techniques for anomaly
detection.

FIDES essentially comprises of two components: (i) Trusted Wrappers, a layer of monitors with sensing capabilities distributed
across the FPGA fabric; these wrappers embed the output of each IP core i with a tag τi according to the pre-defined security
policy Π and also verifies the embeddings of each input to the IP core to detect any violation of policies. The use of tagging and
tracking enables us to capture the generalized interactions of each IP core with its environment (e.g., other IP cores, memory,
OS or I/O ports). Trusted Wrappers also monitors the statistical properties exhibited by each IP core functions on execution such
as power consumption, number of clock cycles and timing variations to detect any anomalous operations; (ii) a Trusted Anchor
that monitors the communication between the IP cores and the peripherals with regard to the centralized security policies Ψ and
the statistical properties produced by the peripherals. We target FIDES architecture on a Xilinx Zynq 7020 device for a red-black
system comprising of sensitive and non-sensitive IP cores. Our FIDES implementation leads to only 1-2% overhead in terms of
the logic resources per wrapper but 4-5X increase in latency (worst case scenario), measured in terms of clock cycles, as compared
to the baseline implementation.

Index Terms

Design; Security and Trust; Hardware Trojans; FPGAs

I. INTRODUCTION

Due to the size, weight and power (SWaP) advantages, FPGA (Field Programmable Gate Array) devices are the primary
source for both computation and communication tasks in various mission and safety critical embedded systems such as smart
grid, embedded and network encryption, avionics, tactical radios, satellite communications, finance and banking, and homeland
security. While the benefits of FPGAs are great, hardware security is now emerging as a serious concern for FPGAs due to
the extensive use of third party IP cores/functions (e.g., HDL, netlist), open source tools (e.g., CAD) and unauthenticated
configuration bitstreams in the application design and development process. For instance, efforts [1], [2], [3] show how one
can exploit various vulnerable stages of the hardware lifecycle to inject stealthy malwares (’Trojans’) into the ASIC and FPGA
devices. Evidence of the existence of Trojans in the forms of backdoors in military grade and wireless communication devices
are also shown in [4]. Typically, an FPGA application encompass a collection of intellectual property (IP) cores and soft-core
processors which are in turn glued together to implement specific functionalities within a system. In many cases, the IP cores
(available in the form of HDL, netlist or bitstream) are procured from multiple third-party vendors with varying trust levels
which provides ample opportunities for an adversary to inject hardware Trojans. A successful triggering of one such Trojan
could create chaos in civilian infrastructure (aerospace, transportation or energy domain), sabotage critical military applications
and missions, disable missile and weapon systems, leak sensitive information or provide backdoor access to highly secure
systems. Enforcing hardware security at the device level and system level is very critical which in turn has motivated defense
agencies such as DARPA and IARPA to launch innovative programs such as Supply Chain Hardware Integrity for Electronics
Defense (SHIELD) [5] and Trusted Integrated Chips (TIC) [6].

Besides these programs, a handful of research efforts along the tangents of detecting and identifying the Trojans in hardware
have been proposed. The techniques presented in works such as UCI [7], VeriTrust [8], FANCI [9] and HaTCh [10] essentially
focus on the idea of identifying and flagging unused or suspicious Trojan wires within a design. In HaTCh [10], for instance,
authors use functional testing on the IP cores to identify all the list of unused wire combinations and augments additional
tagging circuitry to the IP cores so as to keep track of the suspicious wires; as soon as a malicious wire is activated, the



tagging circuitry will raise an exception to prevent the Trojan from depicting malicious behavior. A major drawback with all
these approaches is the assumption that the source code of the IP core design is available to the end consumers in HDL/netlist
format and hence, often neglect the scenarios where the consumers have access only to the configuration bitstreams (’hard IP
cores’). Proof-Carrying Codes [11] are also proposed where the IP vendor will construct a formal proof of the design adhering
to certain security properties, which will be later verified by IP consumer to ensure that design is free from modifications.
Besides the overhead involved in creating huge proofs for even smaller codes, loop holes can also occur while defining many
security properties.

In contrary to above efforts, the concepts presented in [12], [13], and [14] assumes a ‘blackbox’ methodology where no
assumption is made on the availability of the source code and are perhaps closest to our design. In [12], authors propose an
application-dependent security infrastructure monitoring datapath signals for illegal behaviors. This approach adds reconfig-
urable Design-for-Enabling-Security (DEFENSE) logic to the functional design to implement a centralized run-time security
monitor. The hardware-based monitors are configurable finite-state machines (FSMs) that check the current set of signals
for the properties specified by the designer. Huffmire et al. [13] propose a memory protection mechanism by designing
and implementing policy-driven memory protection techniques using reconfigurable hardware. Their work develops an access
policy language that precisely describes the fine-grained memory separation of modules on an FPGA and a policy compiler
that converts the specified memory access policies into enforcement hardware modules. This memory access policy mechanism
is then integrated into the hardware-based centralized reference monitor to detect malicious memory accesses at run-time. The
use of centralized monitors not only affects the scalability of the security mechanisms in [15], [16], [17] but also makes it
vulnerable to classic communication attacks such as spoofing, Man-in-the-Middle (MITM) that enables an attacker to spoof
or tamper the signals/messages to the centralized monitor, as indicated by [18], [19]. Another drawback of these approaches
is the inability to identify the malicious IP cores that conforms to the access control policies but deviates from the normal
execution behavior; for e.g., a malicious encryption IP core instead of encrypting the data when triggered leaks the secret key.
In such scenarios, monitoring the normal execution behavior of IP cores and peripherals such as number of clock cycles, total
power consumption in real-time can be used to detect any abnormalities.

Motivation and Contribution. The addition of third party IP cores and the use of open source tools in the design and
development process renders an FPGA application vulnerable to hardware Trojan based attacks. There are currently no concrete
methods/techniques that can be easily instrumented into the FPGAs and provide trust guarantees in FPGA applications which are
not completely developed in a trusted environment. The security methods currently available have the following shortcomings:
(a) requires low level knowledge of the IP core design; (b) vulnerable to traditional communication attacks; (c) centralized
approach; and (d) inability to detect functional behavior deviation. Moreover most existing solutions overlook the communication
activities and functional behavior of IP core which in turn plays an important role in actually carrying out the attack. This
paper addresses such a significant loophole by proposing a secure communication framework and behavior monitoring module
that can reliably thwart hardware Trojan based attacks.

Alternatively speaking, motivated by the shortcomings in the existing works, we strongly argue the need for an anomaly
detection capability within the FPGAs that can be easily instrumented with the application and continuously monitor the
underlying IP core behavior and also the access activities of IP cores with other IP cores or peripherals for any signs of
abnormalities. To capture this need, we propose a technique called FIDelity Enhancing Security (FIDES) methodology for
FPGAs that uses a combination of access control policies and behavior learning techniques for anomaly detection. FIDES
essentially comprises of two components: (i) Trusted Wrappers, a layer of monitors with sensing capabilities distributed across
the FPGA fabric; these wrappers stamp the output of each IP core i with a tag τi according to the pre-defined security policy
Πi and also verifies the embeddings of each input to the IP core to detect any violation of policies. The use of tagging and
tracking enables us to capture the generalized interactions of each IP core with its environment (e.g., other IP cores, memory,
OS or I/O ports). Trusted Wrappers also monitors the statistical properties exhibited by each IP core functions on execution
such as power consumption, number of clock cycles and timing variations to detect any anomalous operations; (ii)a Trusted
Anchor that monitors the communication between the IP cores and the peripherals with regard to the centralized security
policies Ψ and the statistical properties produced by the peripherals.

We prototyped FIDES architecture on a Xilinx Zynq 7020 device, that consists of a hard fused ARM core and an Artix FPGA.
The T A is mapped to the ARM core that controls the communication of the IP cores with the external peripherals (enabled
to thwart leakage of sensitive information) and provides behavioral monitoring of the peripherals (enabled to thwart covert
attacks). Our FIDES implementation, in worst case, yields a 1-2% increase in logic resource utilization per trusted wrapper
and 4-5 times increase in latency (worst case), measured in terms of clock cycles, as compared to the baseline implementation.

To the best of our knowledge, we first design and implement a distributed and secure anomaly detection framework for
FPGAs that can identify abnormal FPGA behaviors (hardware Trojans) in real-time.

Roadmap: Section II provides the detailed description of the FIDES methodology along with the description of the
adversary/threat model and the system design of the distributed information model. The hardware implementation of the
FIDES architecture is described in Section III with the results presented in Section IV. Section V concludes this work.



II. PROPOSED SECURITY FRAMEWORK

This paper proposes a novel, distributed and secure methodology for enhancing trust in FPGA applications designed or
developed under untrusted environments called FIDES (FIDelity Enhancing Security methodology) named after the Greek God
of Trust. FIDES essentially relies on the use of two major approaches: (a) decentralized information flow control (DIFC) model
that enables safe and distributed information flows between various elements of FPGA such as IP cores, physical memory
and registers by annotating/tagging each data item with its sensitivity level and the identity of the participating entities; and
(b) statistical learning techniques that learns the normal functional behavior of IP cores, peripherals defined as conformant
core behavior (CCB) during the FPGA application integration/testing stage and leverages the learned CCB model to detect any
anomalous behavior deviations in run-time.

In the sequel, we will initially present the adversary and threat model and then discuss the detailed FIDES system design
in section II-B. Table I presents the summary of various notations used for describing the FIDES design.

Table I: Table of Notations

Notation Meaning
<Core>s

i Sensitive IP core i
<Core>ns

i Non-sensitive IP core i
Wi Trusted Wrapper assigned to <Core>i

T A Trusted Anchor
Πi User-defined policies for <Core>i

Ψ User-defined policies at T A
τi Tags assigned to <Core>i

σi <Core>i functional behavior signature
MS ,MN Sensitive and Non-sensitive memory regions

α Characteristics of IP core (S,N , E)

A. Adversary and Threat Model

Majority of the efforts show that various layers of the FPGA lifecycle ranging from design to final deployment stage are
vulnerable to Trojan intrusions. This work assumes trusted FPGA application integration and testing stage however untrusted
design, development and deployment stage due to the immense involvement of the third party IP cores, CAD tools and also,
easily accessible FPGA configuration bit streams. With this assumption, a more realistic adversary model is considered: (i) at
design and development stage, the Trojan might be present in the third party IP core or CAD tool, or might be inserted by a rogue
designer during the design process; (ii) at deployment stage, the Trojan might be injected into the FPGA configuration bitstream.
A handful of works along the lines of cryptographic defenses (e.g., use of bitstream signatures [20], design obfuscation [21])
have been proposed to thwart tampering attacks on FPGA bitstream. FIDES architecture will leverage those existing defenses
based on asymmetric cryptography.

Embedded systems often contains a mixture of critical and non-critical applications residing on the same platform. Any
intentional or accidental fault on the operation of the critical application could have an impact on safety, or could cause large
financial or social loss. It is therefore necessary to thwart the non-critical components from interrupting or compromising
the critical operations. This paper considers a similar scenario called the red-black system implemented in FPGA that will
encompass multiple IP cores procured from various third party vendors with different sensitivity levels. In such a system, two
distinct kinds of IP core (’Core’) sensitivity levels are considered: (a) IP core that accesses and processes critical and sensitive
information (e.g., network encryption) called sensitive core (<Core>s

i ) and (b) IP core that accesses and processes less critical
and sensitive information called non-sensitive core (<Core>ns

i ).
Proper segregation between the sensitive and non-sensitive operations should be realized so that an untrusted IP core will

be thwarted from accessing the shared resources (e.g., memory, peripherals) and transmit the information to the outside world
via a covert channel (e.g., secret unnoticeable channels) or a normal channel (e.g., send sensitive cryptographic information
by mixing with the noise levels or encrypting with the attacker-known keys). With regard to the red-black system design, we
derive the attack scenarios given by ([A1] - [A4]) and propose the security policy requirements addressed by ([R1] - [R4]).

Attack Scenarios.
A1. <Core>s

i accesses the critical and sensitive information and export the information to the outside world
A2. <Core>ns

i accesses the critical and sensitive information and export the information to the outside world
A3. <Core>ns

i uses trusted <Core>s
j as a conduit (a Man-in-the-middle) to access sensitive regions and export the information

to the outside world
A4. Malicious IP core spoof as a legitimate core and access application resources



Security Requirements.
R1. <Core>ns

i shall be prevented from accessing and processing the sensitive information
R2. Cores shall be restricted from accessing the peripherals directly to limit export of data.
R3. The information flow between <Core>ns

i and <Core>s
i shall be restricted or performed in the presence of a security

officer.
R4. The statistical properties of each <Core>i shall be measured and monitored to detect any anomalous functional behavior

deviations

B. System Design

Initialization phase. During the FPGA application integration/testing stage, the following components will be generated
by the end consumer: (a) Trusted Wrapper (Wi) - a thin layer of hardware logic that interface with each IP core <Core>i

and manages/monitors the communication activities of <Core>i with other cores (<Core>j , where j 6= i); (b) Trusted Anchor
(T A) - a centralized security officer, implemented in ARM, that manages/monitors the communication of the IP cores with the
external world (I/O Peripherals) according to the pre-defined security policy Ψ; (c) Tagged Physical Memory - a partitioned
memory with tags annotated to the data denoting their sensitivity level; and (d) Secure Bitstream Blob - a cryptographically
signed bitstream blob containing Wi; ∀i ∈ S, where S represents the set of IP cores and T A modules with the private key
(K-) of the end consumer; the signed blob together with the public key (K+) will be loaded into the memory. A hash of the
(K+) will be also loaded into the trusted region within the processor to thwart any attempts to modify the bitstream signatures.
The use of cryptographic signatures will prevent an adversary from subverting the protection schemes included within the
configuration bitstream. The complete architecture of FIDES is presented in Figure 1.
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Figure 1: FIDES Architecture

1) Distributed Information flow model: FIDES uses tag-based information flow control methodology to achieve decentralized
and safe flow of information between various elements in the system [22]. In order to do so, during the initialization phase,
each trusted wrapper Wi will be assigned a tag (τi) that reflects the characteristics (α) of the information handled by the
<Core>i and also the identity (i) of the participating entity (e.g., IP Core identity).

Initialization phase: Wi ⇐ τi; τi =< α, i >

Where α = (S,N , E). Here S,N and E denotes sensitive, non-sensitive and empty tokens respectively. The value of α will
be assigned based on the following policies:
• <Core>s

j |Wj ⇐ <S, j>, <Core>ns
j |Wj ⇐ <N , j>: The IP cores <Core>s

i and <Core>ns
i will be labeled with S and

N tokens, respectively, depending on the characteristics of the information handled. In cases where an IP Core processes
both sensitive and non sensitive information, the wrapper will be assigned a S token.



• Tagged physical memory: The physical memory regionsM will be partitioned into sensitive and non-sensitive regions by
tagging with S and N tokens denoted by MS and MN , respectively. The memory regions can be also tagged with the
identity i of the owner to enable horizontal access control protection, if needed. Alternatively speaking, under horizontal
access control protection <Core>s

i will be prevented from accessing the memory space belonging to <Core>s
j , though

both cores are tagged with S.
• P ⇐ <E>: The I/O peripherals (external world), denoted by P, will be labeled with empty tokens (E). This approach of

assigning empty tokens will prevent the IP cores from releasing the sensitive information to the external world as tagging
based information flow rule requires an IP core to hold an E token to release the information to the peripherals.

Since the system is distributed and each entity is not aware of the tag of others, the messages exchanged between the entities
is labeled appropriately by the trusted wrappers. Then the receiving wrappers will use the tagging based information flow rules
to determine whether to accept or reject the messages. Enforcing tags on the messages also ensures that the information will
be always prefixed with a tag when stored in temporary or permanent memory locations and only components that follows the
tagging-based information flow rules can access the information.

2) Tagging-based information flow rule aka ’DIFC’: The information labeled with the tag of τj =<αj , j> can flow to
τk =<αk, k>, only if the tags of τj is included in τk. We define the partial order � (pronounced can flow to) for two tags τj
and τk as

τj � τk; if αj = αk and (j, k) ∈ Πk

Where Πk is the security policy defined at the IP core k. The security policy Πi essentially captures the authorized set of
communications for each IP core i based on the design specifications. The above equation mainly states that core k can accept
the data from core j only if the security policy defined at k (Πk) allows the communication from core j and the characteristics
token α at both j and k matches. Under this rule the following communication will be prevented.

τj = (< S, j >) � τk = (< N , k >)

τj = (< N , j >) � τk = (< S, k >)

τj = (< S, j >) � P =< E >
τj = (< N , j >) � P =< E >

While the above rules prevent the contaminated cores from communicating with other cores or releasing the information, it
would also make it implausible for any legal communication activities or any sensitive data to get out of the system. Therefore,
DIFC supports tag declassification capability (denoted by ↓) which enables the higher tags to declassify to lower tag to receive
information; especially, we consider the following two scenarios:
(a) IP cores that process both sensitive and non-sensitive information labeled with tag S - We provide an ability for Wi;∀i∈S
to declassify its tag from S to N such that S ↓ N . To up the privilege back to S, the <Core>s

i |Wi will communicate with
T A initially and T A will set the privilege of Wi back to S, only if security policy at T A allows. If Wi is allowed to up
its privilege without contacting T A, it can be leveraged by a non-sensitive compromised IP core to defeat the system. As an
example, consider the attack where a <Core>ns

i uses <Core>s
j as a conduit (a Man-in-the-middle) to access sensitive memory

areas and export the information to the outside world. If in the absence of T A , the <Core>s
j will declassify to N to receive

data from the <Core>ns
j and up its privilege back to S token to access the sensitive regions; once accessed, the IP core will

declassify its privilege to N to export the information to <Core>ns
j . To avoid such attack scenarios, we impose the following

constraint: a Wi can declassify only after receiving an explicit request from T A;
(b) IP core that exports the data to the external world (I/O peripherals) - To export the data, declassification privileges are
assigned to T A (declassify the label from S/N to E) based on the pre-defined security policies, Ψ at T A. The Ψ essentially
captures the authorized set of peripherals for each IP core based on the design specifications.
Remark #1: This paper does not consider the presence of Trojans on interconnect. Existing efforts can be leveraged to build
secure and trustworthy interconnects such as the time based techniques in [23] to detect malicious interconnect operations
or the use of secure checksums, e.g., Message Authentication Codes (MACs), to prevent the Trojans within the interconnect
modifying or spoofing the messages.
Remark #2: The security of the proposed FIDES design depends on the policies defined by the user, Π and Ψ. This paper
assumes that the policies are generated by the end consumer based on the design specifications and requirements.

3) Behavior monitoring: Besides labeling and monitoring the communication activities, to boost the trust in an FPGA
application, the characteristics of the underlying tagged IP cores and peripherals (P) will be also observed and used by the
trusted wrappers for identifying malicious behaviors and decision making (e.g., forward/drop the message, report to T A). This
technique allows to identify the malicious IP cores that conforms to the access control policies but deviates from the normal
execution behavior; for e.g., a malicious IP core that performs erroneous computations on the input data. As each IP core exhibit
different statistical properties on execution (e.g., power consumption, number of clock cycles, and timing variations), trusted
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Figure 2: IP cores with distinct latency profiles

wrappers will use these properties to determine the normal functional execution behavior of IP cores defined as conformant
core behavior (CCB). In Figure 2, we show that each IP core exhibits distinct behavior such as number of clock cycles during
its execution. Therefore in the FPGA application integration and testing stage, for each <Core>i, we compute a signature,
denoted by σi, that captures these statistical properties. Together with the tag (τi), during the initialization phase each wrapper
Wi will be assigned σi as follows:

Initialization phase: Wi ⇐ σi

In the run-time phase, Wi will monitor the statistical properties produced by <Core>i and compares with the already
learned signature σi. If the difference between the expected and observed behavior exceeds a user-defined threshold, Wi flags
the observation as “anomalous” and informs T A for further actions. Similar to trusted wrapper, T A will also monitor the
behavior of external peripherals to detect any anomalous leaking of information. The intuition behind using statistical properties
for malicious behavior detection comes from [18], [19] where a combination of several statistical properties such as power
consumption, clock cycles, called the Hardware Trojan Detection Metric (HDM), can be used to detect malicious IP core
operations.

Remark #3: In this paper, we do not address heat or power-based Trojans. However, we can easily extend our work with
metrics that can detect these Trojans.

4) Security Proofs: We here show with proofs on how FIDES can detect and prevent the attack scenarios presented in [A1]-
[A4].
A1. <Core>s

i accesses the critical and sensitive information and export the information to the outside world using either of
the two approaches: (a) covert channel (secret and unnoticeable) and (b) obfuscate (mixing the data with random noise)
the information and transport via normal channels:

Proof. (a) <Core>s
i accesses the critical and sensitive information from the memory( MS ) and forward the information

to the T A. Since the covert channel is not an authorized peripheral for <Core>s
i , T A will reject the information according

to the pre-defined policies Ψ. (b) As obfuscation leads to noticeable changes from the learned signature σi, wrapper Wi

will flag <Core>s
i as anomalous and informs T A about the observation.

A2. <Core>ns
i accesses the critical and sensitive information and export the information to the outside world

Proof. This attack will fail as tagging based information flow rule restricts <Core>ns
i tagged with N tag from accessing

the sensitive memory regions such that MS � τi =< N , i >
A3. <Core>ns

i uses trusted <Core>s
j as a conduit (a Man-in-the-middle) to access sensitive regions and export the information

to the outside world

Proof. As tagging based information flow rule either prevents <Core>ns
i tagged with N tag from accessing the sensitive

IP cores (τi = (< N , i >) � τj = (< S, j >)) or forces <Core>s
j to declassify its tag from S to N , this attack fails.

A4. Malicious IP core spoof as a legitimate core and access application resources



Proof. As each IP core <Core>i is integrated with Wi, all the communications originating from <Core>i will be
appropriately labeled with the tag τi =<α, i> which will prevent a malicious IP core from impersonating as a valid IP
core.

III. HARDWARE IMPLEMENTATION OF FIDES

The communication framework in FPGA-based systems plays a critical role in supporting the hardware Trojan attacks and
hence it is necessary to understand the existing bus-based protocols in the FPGA platform. FPGA-based systems with soft
core processors consisted of interconnects such as Avalon in case of Altera and the processor local bus (PLB) in case of
Xilinx. With the introduction of hard fused ARM cores in FPGA devices, AXI interconnect serves as the primary protocol for
communication between the ARM core and the different IP cores [24]. The AXI protocol is a subset of the ARM Advanced
Microcontroller Bus Architecture (AMBA) and the different AXI4 interfaces are compared in Table II. The selection of AXI
protocol allows a designer to focus only on the IP behavior and not the IP interconnect, when targeting different FPGA-ARM
platforms. The AXI4-Lite interface is the most area efficient and best suited for control logic data transfer.

Table II: AXI4 interfaces

Features AXI4 AXI4-Lite AXI4-Stream
Type High-performance and memory

mapped interface
Register-style interface Non-address based high speed

streaming interface
Data transfer 256 cycles 1 cycle unlimited cycles
Data width 32-1024 bits 32-64 bits unlimited bytes
Application Embedded, memory Control logic DSP, video

In case of Xilinx systems, the ARM core is referred to as the processing system (PS), while the FPGA fabric consisting
of reconfigurable gates is called the programmable logic (PL). The IP cores are bundled with the AXI4-Lite interface by the
IP Packager tool in Xilinx’s Vivado Design suite. Each IP core is wrapped with a AXI wrapper, which configures the data
transfer into the IP core using custom register interfaces. These memory mapped registers are configured as write registers for
input ports and read registers for the output ports of the IP core. The AXI wrapper initializes these registers to a default size
of 32 bits. By default, the AXI wrapper is configured to initialize write registers for the IP core’s inputs and the IP core’s
outputs are routed to external I/O peripherals.
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Figure 3: Trusted wrapper mechanism for an IP Core

The trusted wrapper W1 shown in Figure 3 is the top-level interface to the IP core <Core>1. Each of the IP core’s I/O port
is assigned a tag τi, which is mapped to a register from the AXI4 wrapper. Since the IP core’s output is also monitored by
W1, the AXI wrapper is modified to incorporate read registers for the output ports. If the output port is directly connected
to an external peripheral, the additional read registers for the output port preserves a copy of the data and its tag. Thus the
T A supervises the data being transferred through the external I/O peripherals and is able to provide behavioral monitoring. In
summary, the trusted wrapper W1 consists of the following register configurations:
• Write registers for the input ports of the IP core,
• Write registers for tagging the input ports,
• Read registers for monitoring the IP core’s output ports,
• Read registers for tagging the IP core’s output ports,



• Read register for declassification of data transfer depending on the security policy framed for the IP core,
• Write register for providing the modified output label based on the temporary downgrade of the security policy access

of the IP core.
The trusted wrapper is embedded into the IP core during the Xilinx Vivado tool’s IP Packaging and Configuration step. This

ensures that the IP core’s tagging functionality is available when instantiating the IP core in other designs.
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Figure 4: Flowchart of the FIDES algorithm implementation

Figure 4 shows the flowchart of the FIDES algorithm implementation. The first step consists of initializing the IP core with
appropriate tokens, α = (S,N , E). Each IP core’s ports and tags are memory mapped and is accessed by the trusted wrapper
Wk to identify the IP core’s privilege and the different sensitivities assigned to each of its ports. When data with tag τj is
being written to the IP core’s input port with its initialized tag τk, Wk checks the tokens embedded in the tag. These tokens
are fetched from the initialization list corresponding to the IP core and its ports. Then Wk checks the following conditions:

τj = (< S, j >) ∧ τk = (< N , k >)

τj = (< N , j >) ∧ τk = (< S, k >)

If any of these conditions are true, the trusted wrapper Wk issues a policy violation message. Wk saves the tag of the
sensitive port or data and declassifies it from S ↓ N . In case of IP core <Core>s

i , Wk checks the register corresponding to
the declassification value for the IP core. Once this value is verified as N , Wk writes the data to the port. After the data is
written, Wk fetches the previously saved tag and writes it back to the IP core or to the data value, thus changing the privilege
from N ↑ S. All the declassification and classification of privileges is done in the presence of the T A.

IV. RESULTS

The FIDES algorithm is prototyped on the MicroZed Xilinx Zynq-based Z7020 FPGA development board. The Zynq 7020
consists of a dual core ARM processor and a Xilinx Artix FPGA with 85K logic cells. Both the baseline and the FIDES



implementations are synthesized and implemented using Xilinx Vivado tool. The Vivado tool provides the logic resource
utilization of the complete design and also provides a definition file. The definition file is mapped using Xilinx SDK to execute
the software algorithm implementation. Figure 5 shows the resource utilization obtained from Xilinx Vivado after embedding
the IP core in the trusted wrapper. The trusted wrapper only increased the resource utilization by about 1-2% as compared to
the baseline implementation.
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Figure 5: Resource utilization for an IP core with and without a trusted wrapper
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Figure 6: Latency measurement with the trusted wrapper

The trusted anchor T A is implemented on the ARM core, as it can easily monitor the data transfer through the AXI
interconnect to the I/O peripherals, thus enabling behavioral monitoring of peripherals. Although the trusted wrapper does not
increase the resource utilization, the latency increases. Figure 6 shows the latency measurement taken for two different IP cores:
(a) crypto core, and (b) (64-point) Fast Fourier Transform (FFT) core. The latency measurement for the IP cores is for the
worst case scenario when all the inputs have mismatched tags, which requires communication with the T A for declassification
and classification purpose. The latency for the IP cores increased by 4-5 times as compared to the baseline implementation.
The latency measurement is from the Trusted Wrapper → AXI → T A. Since the data goes through the AXI interconnect, we
observe a variation in the clock cycles for the IP cores shown in Figure 6.

V. CONCLUSIONS

In this paper, we present the FIDelity Enhancing Security (FIDES) methodology for FPGAs to enhance trust in FPGA
operations that are not completely designed or developed in a trusted environment. The security measures currently available
for FPGAs have a number of shortcomings such as (a) require low level knowledge of the IP core design; (b) vulnerable
to bus communication attacks; (c) centralized design; and (d) failure to detect hardware Trojans that deviate from normal



functional behavior. We addressed a significant loophole present in these existing solutions by proposing a secure communication
framework and behavior monitoring module that can reliably detect and prevent hardware Trojan based attacks. We implemented
FIDES on the Xilinx Zynq 7020 device for a red-black system consisting of critical and non-critical IP cores. Our results
yielded a 1-2% increase in hardware resources and 4-5X increase in latency (worst case scenario where all the communications
happen between the trusted wrapper and Trusted Anchor) as compared to the baseline implementation. We observe that the
resource utilization and latency results can be optimized by clustering the IP cores into groups that share same characteristics,
which will be addressed in future work.
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