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Abstract

Adaptive security is a strong corruption model that captures “hacking” attacks where an external
attacker breaks into parties’ machines in the midst of a protocol execution. There are two types of
adaptively-secure protocols: adaptive with erasures and adaptive without erasures. Achieving adaptivity
without erasures is preferable, since secure erasures are not always trivial. However, it seems far harder.

We introduce a new model of adaptive security called adaptive security with partial erasures that
allows erasures, but only assumes them in a minimal sense. Specifically, if all parties are corrupted then
security holds as long as any single party successfully erases. In addition, security holds if any proper
subset of the parties is corrupted without erasures. We initiate a theoretical study of this new notion
and demonstrate that secure computation in this setting is as efficient as static secure computation. In
addition, we study the relations between semi-adaptive security [GWZ09], adaptive security with partial
erasures, and adaptive security without any erasures. We prove that the existence of semi-adaptive OT
implies secure computation in all these settings.
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1 Introduction

1.1 Background

Secure multi-party computation (MPC). In the setting of secure MPC, a set of parties with private inputs
wish to jointly compute some function of their inputs while preserving certain security properties. Two of
these properties are privacy, meaning that the output is learned but nothing else, and correctness, meaning
that no corrupted party or parties can cause the output to deviate from the specified function. Security is
formally defined by saying that no adversary attacking a real protocol can do more harm than an adversary in
an ideal world where an incorruptible trusted third party computes the function for the parties and provides
them their output. The adversary may be semi-honest (meaning that it follows the protocol specification
but tries to learn more than allowed) or malicious (meaning that it can run any arbitrary polynomial-time
attack strategy). Despite the stringent security requirements on such protocols, it is known that any two-
party and multi-party function can be securely computed in the presence of semi-honest and malicious
adversaries [Yao82, GMW87].

Adaptive security. The initial model considered for secure computation was one of a static adversary
where the adversary controls a subset of the parties (who are called corrupted) before the protocol begins,
and this subset cannot change. A stronger corruption model that allows the adversary to choose which parties
to corrupt throughout the protocol execution, and as a function of its view; such an adversary is called
adaptive. Adaptive corruptions model “hacking” attacks where an external attacker breaks into parties’
machines in the midst of a protocol execution. In the case where protocols run over a long period of time
(e.g., consider a “secure database search protocol” where a party can ask queries over time without revealing
the query to the database), such attacks are very realistic. We remark that there are two types of adaptively-
secure protocols: adaptive with erasures, where the honest parties may erase intermediate data as part of the
protocol specification, and adaptive without erasures where no such erasures are assumed. It is clear that
achieving adaptivity without erasures is preferable, since secure erasures are not always trivial (e.g., parts
of memory can find their way to the swap file of a machine; if memory is not zeroed then “erased data” can
remain in memory for a long time until garbage collection takes place). However, achieving adaptive security
without erasures seems far harder than with erasures. First, protocols that achieve adaptivity without erasures
are more complex and the computational hardness assumptions needed seem stronger; see [CLOS02, KO04,
CDD+04, IPS08]. In contrast, protocols that assume erasures are simpler and require seemingly weaker
assumptions [BH92, Lin09, IPS09]. Furthermore, achieving efficiency seems also to be much harder. In
particular, constant-round two-party computation that is adaptively secure with erasures is known [Lin09],
but no analogous result is known for the case of no erasures. In addition, highly efficient protocols exist
with erasures [BDOZ11, DPSZ12, NNOB12], but not without.1

We conclude that there is a high price of working with a model where no erasures are assumed. However,
assuming that all parties successfully erase all data, as specified by the protocol, is also not desirable. This
dilemma is the starting point of our work.

1Observe that the protocols of [BDOZ11, DPSZ12, NNOB12] all have a preprocessing phase followed by an online phase. The
online phase is adaptively secure if all of the secrets used to generate the results of the preprocessing phase are erased. Since the
preprocessing phase is independent of the inputs, it is also adaptively secure if corruptions take place during this phase.
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1.2 Our Results

1.2.1 Adaptively Secure Computation with Partial Erasures – A New Model

In light of the above dilemma, we introduce a new model of adaptive security that allows erasures, but only
assumes them in a minimal sense. Specifically, all parties may be given instructions to erase data (as in the
model with erasures). However, security holds as long as any single party successfully erases. We stress that
the identity of the party that successfully erases is not known, and this means that security is maintained as
long as one of the parties’ erase mechanism works, and even if all other parties’ do not. We also remark that
if any proper subset of the parties is corrupted (and so at least one of the parties remains uncorrupted), then
all of the corruptions may be without erasures. We formalize this by having two corruption commands that
can be issued in the real world: “corrupt-with-erase” (where the party is corrupted and has erased all data
as specified by the protocol) and “corrupt-without-erase” (where the party is corrupted and erases nothing).
Then, the requirement is that any adversary that corrupts all the parties must issue at least one “corrupt-
with-erase” command. This elegantly captures the intuitive notion discussed above; no other changes to the
standard definition of adaptive security are needed.

We initiate a theoretical study of this new notion of adaptivity, with the following results. On the one
hand, the cryptographic hardness assumptions needed to achieve this notion of adaptivity in general are
the same as needed for achieving full adaptivity without erasures. Thus, our goal of reducing the hardness
assumptions is not achieved, at least for the general case. On the other hand, we do show that secure chan-
nels that are adaptively secure with partial erasures (via non-committing encryption) can be achieved with
assumptions that are seemingly weaker than those used in all previous constructions. In addition, we show
that adaptivity with partial erasures can yield more efficient and much simpler protocols. We demonstrate
this for non-committing encryption, oblivious transfer and secure two-party computation protocol.

Modular composition. One important goal with respect to notions of security is that of composition.
Specifically, it is highly desirable that protocols can be composed together in different ways in order to
modularly construct more complex protocols. Our new model enables such composition, as long as the
number of parties is preserved. Specifically, it is possible to combine a number of two-party (resp., m-party)
protocols in order to obtain a more complex two-party (resp., m-party) protocol (this follows from [Can00]
who shows that protocols that are adaptively secure with and without erasures compose sequentially). How-
ever, it is not possible to combine two-party protocols in order to obtain an m-party protocol with m > 2.
This is because in the setting with m parties, security is guaranteed as long as one party successfully erases,
even if the rest do not. Now, if each pair runs two-party protocols between them, then in many pairs neither
party may successfully erase. Thus, if the two-party protocols are only secure as long as one party erases,
then they may not maintain security. This is certainly a drawback of our model. However, we believe that the
advantages (regarding assumptions and efficiency) outweigh this disadvantage. In particular, this is not of
concern in the two-party setting (which is in many real-world cases the most interesting). Also, multiparty
protocols can be designed from scratch for the desired number of parties in order to bypass this issue.

1.2.2 Relations Amongst the Different Security Notions

Recently, [GWZ09] introduced the notion of two-party semi-adaptive security in which one of the parties
is statically corrupted (i.e., corrupt from the onset) and the other can be adaptively corrupted. This is a
strictly weaker notion than adaptive security with partial erasures since the statically-corrupted party can
always be viewed as the party that was corrupted “with erasures” (since at the onset there is nothing to
erase anyway). Thus, any protocol that is adaptively secure with partial erasures is semi-adaptively secure.
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We study the relation between semi-adaptive security, adaptive security with partial erasures, and adaptive
security without any erasures.

We prove that any semi-adaptive oblivious transfer (OT) can be transformed into an adaptively secure
OT with partial erasures by sending the messages of the semi-adaptive OT protocol using a non-committing
encryption scheme (NCE) that is adaptively secure with partial erasures. (A similar transform was used
by [GWZ09] who showed that adaptively secure OT without erasures can be achieved by sending the mes-
sages of a semi-adaptive OT protocol with an NCE scheme that is adaptively secure without any erasures.)
In addition, we show that NCE that is adaptively secure without any erasures (and thus with partial erasures
as well) can be constructed from any semi-adaptive OT. We therefore have the following theorem:

Theorem 1.1 The following statements are equivalent:

1. There exists an OT protocol that is semi-adaptively secure;
2. There exists an OT protocol that is adaptively secure with partial erasures;
3. There exists an OT protocol that is adaptively secure without any erasures.

The above holds for semi-honest and malicious adversaries.

This shows that our weaker notion of adaptive security (and the even weaker notion of semi-adaptivity) does
not allow the construction of secure protocols that rely on weaker cryptographic hardness assumptions. This
deepens our understanding of adaptive security. An important corollary of this result implies that MPC with
adaptive security is reduced to semi-adaptive oblivious transfer. This follows by combining our result with
the [GWZ09] transformation specified above, and the fact that the [GMW87] protocol is adaptively secure
when instantiated with (fully) adaptively secure OT. Namely:

Corollary 1.2 (Informal.) Assume the existence of semi-adaptive OT. Then, there exists a multi-party pro-
tocol with semi-honest and adaptive security.

We summarize this discussion in Figure 1.

semi-adaptive OT

NCE

+ adaptive OT adaptive MPC

semi-adaptive MPC

PE adaptive MPC

This Paper
[GWZ09] [CLOS02]

Figure 1: Notation a → b implies that b exists relying on the assumption that a exists. Notation + implies
that both primitives are needed to build the third primitive. In addition, PE denotes partial erasures.

Our next result studies NCE. Informally, NCE implements secure channels in the presence of adaptive
corruptions. This is achieved by having an additional property where “dummy” ciphertexts can be generated
and later decrypted into any plaintext. This is a strong security requirement and as such NCE schemes
are relatively complicated, inefficient, and rely on seemingly stronger cryptographic hardness assumptions.
We show that NCE in the partial erasures model can be achieved with a seemingly weaker assumption
of public-key encryption with ciphertext samplability (NCE without any erasures is known to be achieved
with ciphertext and public-key samplability; here we remove the latter assumption, and rely on the same
assumption required for an NCE where at most one party is adaptively corrupted [DN00]). Specifically, we
show the following in semi-honest and malicious settings:

Theorem 1.3 (Informal.) Assume the existence of public-key encryption with oblivious and invertible sam-
pling of ciphertexts. Then, there exists an NCE that is secure in the partial erasures model.
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1.2.3 Efficient Constructions with Partial Erasures

We further study the efficiency of basic primitives with partial erasures security and design strictly better
constructions than in the adaptive setting, where the first two results hold in the malicious setting.

Non-committing encryption. We first construct NCE with partial erasures that is far more efficient than
standard NCE without erasures. In particular, known constructions induce overhead of O(1) public-key
operations for every transmitted bit [CFGN96, DN00, CDSMW09, GWZ09], while our protocol implies a
constant number of such operations per polynomial-length message. Informally:

Theorem 1.4 (Informal.) Under the standard assumptions for achieving adaptive security, there exists an
NCE that is secure in the partial erasures model, where the sender and receiver compute O(1) public-key
operations to transmit a message of length n.

Our construction is a slightly modified version of the NCE construction that appears in [HP14].

Oblivious transfer. Oblivious transfer is one of the most fundamental and important primitives used for
secure computation. Prior work on adaptively secure OT includes [Bea97, CLOS02, Lin09, GWZ09]. The
most efficient protocol achieving adaptively-secure OT without any erasures is due to [GWZ09], who trans-
form a semi-adaptive OT to a fully-adaptive OT without any erasures using NCE, as described above. Their
construction transfers `-bit strings using O(`) public-key operations and is built on an extension of the OT
of [PVW08] that requires only a constant number of public-key operations, but is only statically secure.

We construct OT that is adaptively secure with partial erasures, and requires only a a constant num-
ber of public-key operations to transfer a string, like the static protocol of [PVW08]. We achieve this
by constructing a semi-adaptive OT with a constant number of public-key operations, and then apply the
constant-overhead NCE that is secure with partial erasures mentioned above. This transformation was al-
ready mentioned above and yields OT that is adaptively secure with partial erasures. We therefore prove:

Theorem 1.5 (Informal.) Under the standard assumptions for achieving adaptive security, there exists an
OT protocol that is adaptively secure with partial erasures, where the sender and receiver compute O(1)
public-key operations in order to obliviously transfer a message of length n.

Secure two-party computation. Finally, we show that the [GMW87] protocol is adaptively secure with
partial erasures in the semi-honest setting when using oblivious transfer with partial erasures. This implies
that when plugging in our oblivious transfer from above, the overall time complexity of [GMW87] isO(|C|)
public-key operations. This overhead matches its overhead in the static setting but with stronger security.

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible if for every polynomial p(·) there exists
a value N such that for all n > N it holds that µ(n) < 1

p(n) . We write PPT for (non-uniform) probabilistic
polynomial-time and a← A to denote the uniform random sampling of a from a set A. We now specify the
definitions of computationally indistinguishability and statistical distance.

Definition 2.1 (Computational indistinguishability by circuits) LetX = {Xn(a)}n∈IN,a∈{0,1}∗ and Y =
{Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X ≈c Y , if for every family {Cn}n∈IN of polynomial-size circuits, there exists a negligible
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function µ(·) such that for all a ∈ {0, 1}∗,

|Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

Definition 2.2 (Statistical distance) Let Xn and Yn be random variables accepting values taken from a
finite domain Ω ⊆ {0, 1}n. The statistical distance between Xn and Yn is

SD(Xn, Yn) =
1

2

∑
ω∈Ω

|Pr[Xn = ω]− Pr[Yn = ω]|.

We say that Xn and Yn are ε-close if their statistical distance is at most SD(Xn, Yn) ≤ ε(n). We say that
Xn and Yn are statistically close, denoted Xn ≈s Yn, if ε(n) is negligible in n.

2.1 Simulatable Public-Key Encryption

Informally, a simulatable public-key encryption scheme is IND-CPA secure PKE with four additional algo-
rithms. An oblivious public-key generator (also denoted by oblivious sampler) G̃en and corresponding key
faking algorithm (also denoted by invertible sampler) G̃en

−1
, an oblivious ciphertext generator Ẽnc and a

corresponding ciphertext faking algorithm Ẽnc
−1

. Intuitively, the key faking algorithm is used to explain
a legitimately generated public-key as an obliviously generated public-key. Similarly, the ciphertext faking
algorithm is used to explain a legitimately generated ciphertext as an obliviously generated ciphertext.

Definition 2.3 (Secure simulatable PKE [DN00]) A secure Simulatable PKE consists of a tuple of proba-

bilistic polynomial-time algorithms (Gen,Enc,Dec, G̃en, G̃en
−1
, Ẽnc, Ẽnc

−1
) specified as follows:

• IND-CPA Security. (Gen,Enc,Dec) is IND-CPA secure (cf. Definition A.2).

• Oblivious public-key generation. Consider the experiment (PK, SK)← Gen(1n), r ← G̃en
−1

(PK)

and PK′ ← G̃en(r′). Then, (r, PK) ≈c (r′, PK′).

• Oblivious ciphertext generation. For any message m in the appropriate domain, consider the ex-

periment (PK, SK) ← Gen(1n), c1 ← ẼncPK(r1), c2 ← EncPK(m; r2), r′1 ← Ẽnc
−1

(c2). Then,
(PK, r1, c1) ≈c (PK, r′1, c2).

A simulatable PKE can be instantiated, for instance, by the El Gamal PKE [Gam85].

3 Security Definitions

In this section we introduce a new model of adaptive security that allows erasures, but only assumes them
in a minimal sense. Specifically, all parties may be given instructions to erase data (as in the model with
erasures). However, security holds as long as any single party successfully erases. We stress that the
identity of the party that successfully erases is not known, and this means that security is maintained as
long as one of the parties erase mechanism works, and even if all other parties’ do not. We also remark
that if any proper subset of the parties is corrupted (and so at least one of the parties remains uncorrupted),
then all of the corruptions may be without erasures. In this section, we also recall the existing notion of
semi-adaptive [GWZ09] and adaptive security. We introduce our definitions in the universal composability
framework in the two-party setting [Can01], which we briefly recall below.
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3.1 The Universal Composability Framework

The universal composability (UC) [Can01] framework was proposed by Canetti for defining security and
composition of protocols. In this framework, one first defines an “ideal functionality” of a protocol and
then proves that a particular implementation of this protocol operating in a given computational environ-
ment securely realizes the ideal functionality. The basic entities involved are two parties P0 and P1, a PPT
adversary ADV and a PPT environment ENV. The real execution of a protocol Π, run by the parties in
the presence of ADV and ENV, with input z, is modeled by a sequence of activations of the entities. The
environment ENV is activated first, generating the inputs to the other parties. Then the protocol proceeds
by having ADV exchange messages with the parties and ENV. Finally, the environment outputs one bit,
which is the output of the protocol. The security of the protocols is defined by comparing the real execution
of the protocol to an ideal process in which an additional entity, the ideal functionality F is introduced.
F is an incorruptible trusted party that is programmed to produce the desired functionality of the given
task. The parties are replaced by dummy parties who do not communicate with each other; whenever a
dummy party is activated, it forwards its input to F . Let SIM denote the PPT adversary in this ideal-
ized execution. As in the real-life execution, the output of the protocol execution is the one bit output of
ENV. Now a protocol Π securely realizes an ideal functionality F if for any real-life adversary ADV there
exists an ideal execution adversary SIM such that no ENV, on any input, can tell with non-negligible prob-
ability whether it is interacting with adversary ADV and parties running protocol Π in the real execution
or with SIM and the ideal functionality F in the ideal execution. More precisely, a protocol Π securely
realizes F if the two binary distribution ensembles, {REALΠ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN and
{IDEALF ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN are computationally indistinguishable. The first ensem-
ble describes ENV’s output after interacting with ADV and the parties P0, P1 running protocol Π with inputs
x0, x1 respectively. The second ensemble describes ENV’s output after interacting with adversary SIM, ideal
functionality F and dummy parties P0, P1 interacting with F with inputs x0, x1 respectively. Namely,

{IDEALF ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {REALΠ,ADV,ENV(n, x0, x1, z, )}x0,x1,z∈{0,1}∗,n∈IN

The F-hybrid model. In order to construct some of our protocols, we will use secure two-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where both the parties
interact with each other (as in the real model) in the outer protocol and use ideal functionality calls (as in the
ideal model) for the subprotocols. Specifically, when constructing a protocol Π that uses a subprotocol for
securely computing some functionality F , the parties run Π and use “ideal calls” to F (instead of running
the subprotocols implementing F). The execution of Π that invokes F every time it requires to execute
the subprotocol implementing F is called the F-hybrid execution of Π and is denoted as ΠF . The hybrid
ensemble HYBRIDΠF ,ADV,ENV(n, x0, x1, z) describes ENV’s output after interacting with ADV and the
parties P0, P1 running protocol ΠF with inputs x0, x1 respectively. By UC definition, the hybrid ensemble
should be indistinguishable from the real ensemble with respect to protocol Π where the calls to F are
instantiated with a realization of F .

3.2 Defining Semi-Adaptive, Partial Erasures and Adaptive Security

We begin with the formal definition of semi-adaptive security as stated in [GWZ09]. Loosely speaking,
a protocol is semi-adaptively secure if it is secure with respect to second-corruption adaptive adversarial
strategy as defined below.

Definition 3.1 An adversarial strategy is second-corruption adaptive if either at least one of the parties is
corrupted prior to the protocol execution or no party is ever corrupted. In the former case, the other party
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can be adaptively corrupted at any point during or after protocol execution. I.e, the first corruption (if at all
it occurs) must be static and the second corruption can be adaptive.

Intuitively, a semi-adaptive simulator should be able to equivocate the internal state of the party that is
adaptively corrupted. There are two subtleties regarding the construction of such a simulator. First, since
most functionalities require a trusted setup in order to be realized in UC settings, it must be ensured that this
setup is generated independently of the identity of the corrupted party (which is not the case for all statically
secure protocols). [GWZ09] denote this property by setup-adaptive simulation. Formally stated,

Definition 3.2 A simulator SIM = (SIMs, SIMp) is setup-adaptive if it first runs SIMs to simulate all the
trusted setup and then runs SIMp (which is given any output generated by SIMs) to simulate the protocol
execution. While SIMs does not get to see which party is corrupted, SIMp gets to see it.

Another subtlety that is formalized by input-preserving simulation is defined below.

Definition 3.3 An adversary is protocol-honest if it corrupts one of the parties P prior to protocol execution
and then follows the honest protocol specification using some input x on behalf of the corrupted party. A
simulator SIM is input-preserving if during the simulation of a protocol-honest adversary that corrupts party
P and runs the honest protocol with input x, SIM submits the same input x to the ideal functionality Ff on
behalf of P .

We are now ready to define semi-adaptive security.

Definition 3.4 A protocol Π semi-adaptively realizes functionalityF if for every PPT semi-honest/malicious
adversary ADV, and for every PPT environment ENV that follow a second-corruption adaptive adversarial
strategy, there exists a non-uniform setup-adaptive and input-preserving PPT ideal adversary SIM such that
for |x0| = |x1|:

{IDEALF ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {REALΠ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

Next, we recall adaptive security. A protocol is adaptively secure if it is secure with respect to an
adversary who non-restrictively corrupts any party any time during or after the protocol execution.

Definition 3.5 A protocol Π adaptively realizes the functionality F if for every PPT semi-honest/malicious
adversary ADV that can corrupt the parties adaptively during or after the protocol execution, and for every
PPT environment ENV, there exists a PPT ideal adversary SIM such that for |x0| = |x1|:

{IDEALF ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {REALΠ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

We refer to adaptive security as fully-adaptive security in order to distinguish this notion from semi-
adaptive security, or as adaptive security without erasures whenever we wish to distinguish this notion from
adaptive security with partial erasures.

Finally, we describe the new notion of security introduced in this work, adaptive security with partial
erasures, starting with the definition of adaptive with partial erasures adversarial strategy.

Definition 3.6 An adaptive with partial erasures adversarial strategy implies that an adversary adaptively
corrupts a party by either issuing a “corrupt-with-erase” or a “corrupt-without-erase” command. If it
corrupts Pi issuing a “corrupt-with-erase” command in ith step of the protocol, then upon corruption it
does not see the random inputs of Pi used up and until (i− 1)th step of the protocol. On the other hand, if it
corrupts Pi issuing a “corrupt-without-erase” command, then it sees the entire memory of Pi that includes
the random inputs used in the protocol execution. If the adversary corrupts both the parties, then it must
issue at least one “corrupt-with-erase” command.
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Definition 3.7 A protocol Π adaptively realizes the functionality F with partial erasures if for every PPT
semi-honest/malicious adversary ADV that follows the adaptive with partial erasures adversarial strategy,
and for every PPT environment ENV, there exists a PPT ideal adversary SIM such that for |x0| = |x1|:

{IDEALFf ,SIM,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {REALΠ,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN

3.3 Concrete Functionalities

Secure communication (SC). We define the functionality FSC for securely communicating a message m
from SEN to REC, following the notations from [GWZ09]. To handle the appropriate leakage to the ad-
versary in the ideal setting, the functionality is parameterized using a non-information oracle O which gets
the values of the exchanged messages m and outputs some side information to the adversary. The security
of this functionality depends on the security properties required for the oracle and thus can capture several
notions such as NCE and `-equivocal NCE. Specifically, for NCE the oracle only leaks the length of the
message, whereas for `-equivocal NCE with equivocality parameter ` the oracle leaks an `-length vector
such that the ith element in the vector depends on m, for some i ∈ {1, . . . , `}. In Figure 2 we define the
message communication functionality with respect to oracle O. Next, we define the oracles for the cases of
NCE and `-equivocal NCE, starting with the former.

Functionality FOSC

FunctionalityFOSC communicates with sender SEN and receiver REC, and adversary SIM. The functionality
starts with a channel-setup phase after which the two parties can send arbitrary many messages from one
to another. The functionality is parameterized by a non-information oracle O.

1. Channel Setup. Upon receiving input (ChSetup, sid, SEN) from SEN, initialize the machineO and
record the tuple (sid,O). Pass the message (ChSetup, SEN) to REC. In addition pass this message
to O and forward its output to SIM.

2. Message Transfer. Upon receiving an input (send, sid, SEN,m) from party SEN, find a tuple
(sid,O), and, if none exits, ignore the message. Otherwise, send the message (send, sid, SEN,m)
to REC. In addition invoke O with (send, sid, SEN,m) and forward its output to SIM.

3. Corruption. Upon receiving message (corrupt, sid, P ) from SIM where P ∈ {SEN,REC}, send
(corrupt, sid, P ) to O and forward its output to the adversary. After the first corruption, stop the
execution of O and give SIM complete control over the functionality to let it learn all inputs and
specify any outputs.

Figure 2: The message communication functionality.

Definition 3.8 O, on input (send, sid, SEN,m), produces the output (send, sid, SEN, |m|), and on any in-
puts corresponding to the ChSetup, Corrupt commands produces no output. We call the functionality FOSC
or just FSC for brevity, an NCE functionality. A real world protocol which realizes FSC is called an NCE
scheme.

In order to define O for `-equivocal NCE, we present the following definition first.

Definition 3.9 An oracle I is called message-ignoring oracle if, on any input (send, sid, SEN,m), it ignores
the message value m and processes only the input (send, sid, SEN, |m|). An oracleM is called message-
processing oracle if it has no such restrictions. We call a pair of oracles (M, I) well-matched if no PPT
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distinguisher D (with oracle access to either M or I) can distinguish the message-processing oracle M
from the message-ignoring oracle I.

Definition 3.10 Let (M, I) be a well-matched pair which consists of a message-processing and a message-
ignoring oracle respectively. Then we define O for `-equivocal NCE as O` with the following structure.
Note that O` is a (stateful) oracle.

– Upon initialization, O` chooses a uniformly random index i ← {1, . . . , `}. In addition it initializes a
tuple of ` independent oracles: (O1, . . . ,O`), where Oi = M and for j 6= i, the oracles Oj are
independent copies of I.

– Whenever O` receives inputs of the form (ChSetup, sid, SEN) or (send, sid, SEN,m), it passes the input
to each Oi receiving an output yi. It then outputs the vector (y1, . . . , y`).

– Upon receiving an input (corrupt, sid, P ), the oracle reveals the internal state of the message-processing
oracle Oi only.

For any such oracle O`, we call FO`SC an `-equivocal NCE functionality. For brevity, we will also use the
notation F `SC to denote FO`SC . Lastly, a real world protocol which realizes F `SC is called an `-equivocal NCE
scheme.

As before, no information about message m is revealed during the ‘message transfer’ stage. However,
the internal state of the message-processing oracle Oi, which is revealed upon corruption, might be “com-
mitting”. Nevertheless, a simulator can simulate the communication between two honest parties over a
secure channel, as modeled by F `SC, in a way that allows it to explain later this communication as any one
of ` possibilities.

On semi-honest and malicious realizations ofFSC. Notably, a semi-honest secure realization ofFSC (orF `SC)
implies malicious security. This is because when the sender is statically corrupted (or before the message has
been transferred), the simulator can extract the message by playing the role of the honest receiver (which
does not introduce any input to the protocol), and then forward to FSC whatever the emulated receiver
outputs. On the other hand, in case the receiver is statically corrupted the simulator obtains m from FSC

and perfectly emulates the communication with the corrupted receiver. Moreover, adaptive corruptions that
occur after the message has been transferred are easily simulated as in the semi-honest case. Consequently,
we only realize FSC in the presence of semi-honest adversaries, regardless of the corruption strategy.

Oblivious transfer (OT). The 1-out-of-2 OT functionality is defined in Figure 3. In a bit OT x0, x1 ∈
{0, 1}, whereas in a string OT x0, x1 ∈ {0, 1}n.

Functionality FOT

Functionality FOT communicates with with sender SEN and receiver REC, and adversary SIM.

1. Upon receiving input (sender, sid, x0, x1) from SEN where x0, x1 ∈ {0, 1}n, record (sid, x0, x1).

2. Upon receiving (receiver, sid, σ) from REC, where a tuple (sid, x0, x1) is recorded and σ ∈ {0, 1},
send (sid, xσ) to REC and sid to SIM. Otherwise, abort.

Figure 3: The oblivious transfer functionality.
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Secure computation. In Figure 4, we define F that computes a general function with two inputs and two
outputs f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f0, f1) maps pairs of inputs to pairs of
outputs. Specifically, the first party with input x0 wishes to receive f0(x0, x1), while the second party with
input x1 wishes to obtain f1(x0, x1).

Functionality Ff

Ff communicates with two parties P0 and P1, and adversary SIM.

1. Upon receiving input (Input0, sid, x0) from P0, record the value (P0, x0) and send the mes-
sage (Input0, sid) to SIM. Ignore future (Input0, ...) inputs. Similarly, upon receiving input
(Input1, sid, x1) from P1, record the value (P1, x1) and send the message (Input1, sid) to SIM.
Ignore future (Input1, ...) inputs.

2. Upon receiving (Output0, sid) from SIM, if either (P0, x0) and (P1, x1) are not recorded, ignore the
message. Else if (y0, y1) is not recorded, then compute (y0, y1) ← f(x0, x1) and record (y0, y1);
send (Output0, sid, y0) to P0. Ignore future (Output0, ...) inputs from SIM. Similarly, upon receipt
of (Output1, sid) from SIM, send (Output1, sid, y1) to P1. Ignore future (Output1, ...) inputs from
SIM.

Figure 4: The two-party computation functionality for function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗.

Setup generation. As noted in the literature, most functionalities cannot be realized in the UC framework
without a trusted setup. One common form of setup is the common reference string (CRS) which is modeled
by a functionality FDCRS, defined in Figure 5.

Functionality FDCRS

FDCRS is parameterized by a PPT sampling algorithm D.

On input CRS, sid from P , if there is no value crs recorded then choose crs← D() and record it. Send
(CRS, sid, crs, P ) to SIM and P .

Figure 5: The common reference string ideal functionality.

4 Relations Amongst Semi-Adaptive, Adaptive with Partial Erasures and
Adaptive Security

In this section, we study the relations between semi-adaptive security, adaptive security with partial erasures
and adaptive security with no erasures (denoted also by adaptive or fully-adaptive). Our first transformation
shows that semi-adaptive OT implies NCE (Section 4.1). This further implies that the security of adaptively
secure NCE without any erasures can be reduced to the security of semi-adaptive OT. Combining this result
with the [GWZ09] compiler that transforms semi-adaptive OT to fully-adaptive OT using NCE, and the fact
that the [GMW87] is adaptively secure when instantiated with (fully) adaptively secure OT, the following
important theorem is concluded:
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Theorem 4.1 Assume the existence of semi-adaptive semi-honest OT. Then, there exists a multi-party pro-
tocol that adaptively (respectively, with partial erasures or semi-adaptively) realizes any well-formed multi-
party efficient functionality f in the presence of semi-honest adversaries.

We refer to [CLOS02] regarding the formal definition of well-formed functionalities. In the second part
of this section we demonstrate the feasibility of adaptively secure NCE with partial erasures under strictly
weaker hardness assumptions than simulatable PKE (Section 4.2), where all known NCE constructions are
based on (a variant) of this assumption. Finally, we prove that any semi-adaptive protocol can be transformed
into an adaptively secure protocol with partial erasures by encrypting the messages of the semi-adaptive
protocol using NCE that is adaptively secure with partial erasures. This result is given in Section 4.3.

4.1 NCE from Semi-Adaptive Oblivious Transfer

Security in the semi-adaptive setting requires that one of the parties is statically corrupted, which implies
a weaker notion of security than adaptive. In the following, we show that NCE, that is adaptively secure
without any erasures (and thus secure with partial erasures as well), can be constructed from any semi-
adaptive OT. Namely, recalling the OT ideal functionality from Figure 3, we exploit the fact that a semi-
adaptive OT implies a simulator that either equivocates the receiver’s input bit σ (in case the sender is
statically corrupted) or x1−σ (in case the receiver is statically corrupted), but never both. For simplicity we
describe our protocol in the FOT-hybrid setting.

Protocol 1 (NCE from semi-adaptive OT)

• Inputs: Sender SEN is given input message m ∈ {0, 1}.

• The Protocol:

1. Executing semi-adaptive OT on random inputs. The parties invoke FOT on random inputs, where
SEN plays the receiver on a random bit σ and REC plays the sender on random bits r0, r1. Let r denote
the output of SEN.

2. Message from the sender. SEN sends c to REC where c = σ ⊕m if r = σ. Otherwise, c←R {0, 1}.
3. Output. Upon receiving c, REC recovers the message by computing m = c⊕ r0.

Theorem 4.2 Assume that FOT is implemented in the presence of semi-adaptive semi-honest adversaries.
Then, Protocol 1 adaptively realizes FSC in the presence of semi-honest adversaries, where correctness
holds with probability 5/8.

The complete proof follows. We note that by repeating Protocol 1 sufficiently many times, one obtains a
protocol ΠNCE where the probability of correctness is arbitrarily close to 1. The above theorem implies a
simpler NCE protocol assuming the Quadratic Residuosity (QR) assumption (based on the semi-adaptive
OT of [GWZ09] that is proven under the QR assumption). In addition, plugging in our semi-adaptive OT
from Section 5.2.4 implies the first NCE under the DCR hardness assumption.

Proof: Our proof is split into correctness and security arguments.

Correctness. We show that REC restores the correct value of m with probability 5/8. To argue that
correctness holds we examine all possible combinations of the three variables r0, r1, σ (recall that these bits
are chosen uniformly at random) and measure the probability of correctness for each such a combination in
Figure 6. For example, consider the first row. Then, whenever the sender picks r0 = r1 = 0 and the receiver
picks σ = 0, the receiver always outputs the correct message since the conditions rσ = σ and r0 = r1 are
met.
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r0r1σ Correctness Probability
000 1
001 1/2
010 1
011 0
100 1/2
101 1/2
110 1/2
111 1

Figure 6: Correctness probability by r0, r1, σ.

On the other hand, if the sender picks r0 = r1 = 0 but the
receiver picks σ = 1, then the correct recovery of the message
is guaranteed with probability 1/2. This is because σ 6= rσ
and the sender uses a random bit c. One can verify the other
rows similarly. Inspecting Figure 6, we conclude that correct-
ness is satisfied with probability 5/8 (where this probability
is obtained by summing up the probabilities listed in the ta-
ble, divided by the total number of combinations/rows which
equals to 8).

Security. Before presenting our simulator strategy we exam-
ine in Figures 7 and 8 the probabilities of each of the 16 com-
binations for variables r0, r1, σ, c when the message equals 0
and 1 in the hybrid execution, respectively. Each row in these
figures corresponds to a unique combination of r0, r1, σ, c and the probability that this combination occurs.
Note that there are overall 12 combinations for each table that occur with a non-zero probability, whereas
the remaining 4 combinations do not occur at all. For instance, 0001 cannot occur when m = 0 since SEN

picks r0 = r1 = 0 and REC picks σ = 0 thus c = σ ⊕m = 0. Due to similar reasons, combinations 0101,
0110 and 1110 cannot occur when m = 0 and combinations 0000, 0100, 0111 and 1111 cannot occur when
m = 1. We note that each such combination occurs with the following probability: first, any joint value for
r0, r1, σ is determined with probability 1/8 since these bits are picked randomly. Next, if rσ = σ then c
is computed deterministically and any value for r0, r1, σ, c is determined with probability 1/8. Whereas, if
rσ 6= σ then c is picked randomly and so any potential combination for r0, r1, σ, c occurs with probability
1/16.

r0r1σc Prob.
0000 1/8
0001 0
0010 1/16
0011 1/16
0100 1/8
0101 0
0110 0
0111 1/8
1000 1/16
1001 1/16
1010 1/16
1011 1/16
1100 1/16
1101 1/16
1110 0
1111 1/8

Figure 7: m = 0.

r0r1σc Prob.
0000 0
0001 1/8
0010 1/16
0011 1/16
0100 0
0101 1/8
0110 1/8
0111 0
1000 1/16
1001 1/16
1010 1/16
1011 1/16
1100 1/16
1101 1/16
1110 1/8
1111 0

Figure 8: m = 1.

Our simulator strategy is as follows. The sim-
ulator sends (ChSetup, sid, SEN) to FSC, receiv-
ing back (send, sid, SEN, |m|). It them determines
r0, r1, σ, c uniformly at random and emulates the
role of FOT. Finally, the simulator concludes by
sending c of the appropriate length to REC on be-
half of SEN. Specifically, the only message trans-
mitted by the protocol and seen by the adversary
until no corruption occurs is c. Then, upon corrupt-
ing a party the simulator learns the message m and
determines r0, r1, σ to be consistent with m and c
by equivocating σ or r1−σ (if required). The ability
to equivocate these values follows from the fact that
FOT is instantiated with a semi-adaptive OT thus the
simulator can equivocate either the receiver’s input
σ or the sender’s other input r1−σ, sent within the
semi-adaptive OT. As demonstrated below, this en-
ables the simulator to generate the same probability
distribution for r0, r1, σ, c as in hybrid execution.
We stress that without equivocating these values the
adversary can easily distinguish the hybrid and sim-
ulated executions, as some combinations do not occur in the hybrid execution while they will occur in the
simulated run. More specifically, each of the 16 combinations for r0, r1, σ, c occur with the same probability
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in the simulation, whereas in the hybrid execution their probability varies between 1/16, 1/8 or even 0.
We explain our simulation strategy in Figures 9 and 10 separately for m = 0 and m = 1, and specify

for each value whether the simulator equivocates either σ or r1−σ. We begin with the case where the
first corruption takes place after c is transmitted. Then the rightmost column of each table in Figure 11
specifies the values after equivocation takes place, while the leftmost column specifies the initial values as
picked by the simulator (where each value is picked with probability 1/16). Importantly, while the leftmost
column in each table lists all 16 potential combinations for r0, r1, σ, c only the 12 combinations that occur
with non-zero probability in the hybrid execution appear in the rightmost columns, such that some of the
combinations are repeated twice. We now show that the combinations that occur with probability 1/8 in the
hybrid execution appear exactly twice in the rightmost columns, the combinations that occur with probability
1/16 in the hybrid execution appear exactly once in the rightmost columns, and that the combinations that
occur with probability zero in the hybrid execution do not appear at all. This proves that the probability
distribution on r0, r1, σ, c is identical in both hybrid and simulated executions.

r0r1σc Equivocate r′0r
′
1σ
′c

0000 Nothing 0000

0001 σ 0011

0010 σ 0000

0011 r1−σ 1011

0100 Nothing 0100

0101 σ 0111

0110 σ 0100

0111 Nothing 0111

1000 σ 1010

1001 r1−σ 1101

1010 r1−σ 0010

1011 σ 1001

1100 r1−σ 1000

1101 σ 1111

1110 σ 1100

1111 Nothing 1111

Figure 9: m = 0.

r0r1σc Equivocate r′0r
′
1σ
′c

0000 σ 0010

0001 Nothing 0001

0010 r1−σ 1010

0011 σ 0001

0100 σ 0110

0101 Nothing 0101

0110 Nothing 0110

0111 σ 0101

1000 r1−σ 1100

1001 σ 1011

1010 σ 1000

1011 r1−σ 0011

1100 σ 1110

1101 r1−σ 1001

1110 Nothing 1110

1111 σ 1101

Figure 10: m = 1.

Figure 11: The probability distributions in the simulation.

Say m = 0 then each of the following combinations 0000, 0100, 0111, 1111 occurs in the hybrid exe-
cution with probability 1/8 (see Figure 7). It is easy to verify that these combinations occur with the same
probability in the simulated execution as well since for each value there are exactly two rows in the right-
most column of Figure 9 that contain this value. Apart from these combinations there are 8 more values that
may occur in the hybrid execution with probability 1/16. Specifically, 0010, 0011, 1000, 1001, 1010, 1011,
1100 and 1101, as shown in Figure 7. These combinations occur with probability 1/16 in the simulation as
well, since there is a single row in Figure 9 that corresponds to each of these combinations.

Next, say m = 1 then each of the following combinations 0001, 0101, 0110, 1110 occur in the hybrid
execution with probability 1/8 (see Figure 8). It is easy to verify that these combinations occur with the
same probability in the simulated execution as well since for each value there are exactly two rows in the
rightmost column of Figure 10 that contain this value. As in the case of m = 0, the remaining eight
combinations that occur in the hybrid execution with probability 1/16 occur in the simulated execution with
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the same probability, i.e., each of this values appears only once in the rightmost column of Figure 10.
Finally, any combination that does not occur in the hybrid execution does not occur in simulation as well.

We showed that the simulated and hybrid executions are identical in the FOT-hybrid model when corruption
takes places after c is transferred. If corruption occurs before Step 2 of the protocol is concluded (note that
the message m is not used by the protocol before this step), the simulator learns the message before c is
sent and simulates the role of the sender (if SEN is not corrupted) as in the hybrid execution, generating an
identical distribution as well. This concludes our proof.

4.2 Adaptively Secure NCE with Partial Erasures under Weaker Assumptions

In this section we construct an NCE scheme with partial erasures security based on PKE with oblivious
ciphertexts generation. This is in contrast to fully adaptive NCE constructions that require simulatable
PKE, which implies the oblivious generation of both public-keys and ciphertexts (see a formal definition
in Section 2.1). Our construction follows the NCE approach of [DN00] with the difference that instead
of locally generating the public-keys, they are now being generated via a two-party protocol πKeySetup that
realizes functionality,

FKeySetup : (α, β) 7→
(
(PK1

0, PK1
1, PK2

0, PK2
1, SK1

α), (PK1
0, PK1

1, PK2
0, PK2

1, SK2
β)
)
.

Namely, the parties first agree on two public messages m0,m1 ∈M and invoke πKeySetup. Next, REC picks
a random bit δ and encrypts mδ under PK1

δ , and obliviously samples the (1 − δ)th ciphertext. Similarly,
SEN picks a random bit γ and encrypts mγ under PK2

γ , and obliviously samples the (1 − γ)th ciphertext.
The parties exchange ciphertexts and decrypt them using the secret keys that they possess. Note that ifM is
super polynomial then it is unlikely that an obliviously sampled ciphertext is decrypted into m1−δ, and thus
SEN can correctly conclude whether α = δ with very high probability. Similarly, REC correctly concludes
whether β = γ. If both equalities hold SEN sends its message blinded with α ⊕ γ. Otherwise, the parties
make another attempt, running the protocol again. This implies that an expected number of four attempts
yields a successful attempt since the two pairs of bits equal with probability 1/4. We observe that a single
attempt of our protocol is composed of two attempts of the [DN00] protocol, where the local key generation
is replaced by a two-party protocol. Specifically, combining two such attempts enables to equivocate either
(α, δ) or (β, γ), which implies message equivocation.

Note that it is sufficient to realize FKeySetup using a statically secure protocol that can be implemented
under the same assumption of PKE with oblivious ciphertexts generation. This is because any PKE with
this property implies oblivious transfer [EGL85] which, in turn, implies general secure computation in the
presence of semi-honest adversaries [Yao82]. We stress that the parties cannot simply choose the public
and secret keys by themselves since that would require the additional assumption of oblivious public-key
generation, that we wish to avoid here. Formally, denoting by Π = (Gen,Enc,Dec, Ẽnc, Ẽnc

−1
) a PKE with

oblivious ciphertexts generation, we implement functionality FSC as follows.

Protocol 2 (NCE with partial erasures (ΠPE−NCE))

• Inputs: Sender SEN is given input message m ∈ {0, 1}.

• The Protocol:

1. Agreeing on messages m0 and m1. The parties publicly agree on messages m0 and m1.
2. Invoking πKeySetup. SEN and REC pick random bits α and β, respectively, and invoke πKeySetup on these

bits. Denote by (PK1
0, PK1

1, PK2
0, PK2

1, SK1
α) the output of SEN and by (PK1

0, PK1
1, PK2

0, PK2
1, SK2

β) the
output of REC.
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3. Exchanging ciphertexts. Next, SEN picks a uniform bit γ and sends c20, c
2
1 where c2γ ← EncPK2

γ
(mγ ; r2γ)

and c21−γ ← ẼncPK2
1−γ

(r21−γ). Moreover, REC picks a random bit δ and sends c10, c
1
1 where c1δ ←

EncPK1
δ
(mδ; r

1
δ) and c11−δ ← ẼncPK1

1−δ
(r11−δ).

4. Checking for equality of bits. Upon receiving (c10, c
1
1), SEN checks whether mα = DecSK1

α
(c1α) and

sends s0 = 1 if equality holds, and s0 = 0 otherwise. Similarly, upon receiving (c20, c
2
1), REC checks

whether mβ = DecSK2
β
(c2β) and sends s1 = 1 if equality holds, and s1 = 0 otherwise.

If one of the parties sent the bit 0 the parties return to Step 2.
5. Message from SEN. Otherwise, SEN computes z = m⊕ α⊕ γ and sends z.
6. Output. Finally, REC computes m = z ⊕ δ ⊕ β and outputs m.

The security proof relies on the ability of a party to erase its randomness within πKeySetup. Specifically, if
a party is corrupted before the execution of πKeySetup is completed then the simulator completes the execution
as in the real setting. Otherwise, the input/output within πKeySetup of the corrupted party that uses erasures can
be equivocated. Combining these observations with oblivious ciphertexts generation enables the simulator
to equivocate the common bit that masks the message. Furthermore, unsuccessful attempts (Steps 2-4) are
perfectly simulated.

Theorem 4.3 Assume Π = (Gen,Enc,Dec, Ẽnc, Ẽnc
−1

) is IND-CPA secure PKE with oblivious ciphertexts
generation and let πKeySetup be a protocol that statically realizes FKeySetup in the presence of semi-honest
adversaries. Then, Protocol 2 adaptively realizes FSC with partial erasures in the presence of semi-honest
adversaries.

Proof: We say that an attempt is successful if s0 = s1 = 1 and denote other attempts by failed attempts. We
argue first that the expected number of failed attempts is constant. Recall that a successful attempt occurs
only when the parties sample the same pair of bits. Namely, whenever α = δ and β = γ such that α, γ
are uniformly chosen by SEN and β, δ are uniformly chosen by REC. This implies that a successful attempt
occurs after 4 independent attempts on the average since both equalities hold with probability 1/4.

We proceed with the proof of security. We recall first that in the partial erasures settings the adversary
either corrupts both parties while at most one of them is allowed to use erasures, or only a single party
without allowing erasures. We focus our attention on the former corruption case since it is stronger. We
distinguish four types of attempts ATTEMPTs0,s1 for s0, s1 ∈ {0, 1} and construct a different simulator
SIMATTEMPTs0,s1 for each such pair of values. An attempt ATTEMPTs0,s1 with s0 = s1 = 1 is denoted
as a successful attempt. For all other combinations of s0, s1, ATTEMPTs0,s1 is denoted as a failed attempt.
A single simulator SIM can be built based on the four types of simulators SIMATTEMPTs0,s1 for s0, s1 ∈
{0, 1}. Specifically, SIM first picks s0 and s1 independently and uniformly at random from {0, 1} and then
invokes SIMATTEMPTs0,s1 . In case of a failed attempt SIM repeats the above for fresh s0, s1. In case of a
successful attempt SIM sends a random bit z on behalf of SEN and concludes the simulation.

We now proceed with the descriptions of our simulators for the different types of attempts.

The descriptions of SIMATTEMPT0,0, SIMATTEMPT0,1 and SIMATTEMPT1,0. In a failed attempt, (1)
SIMATTEMPT0,0 randomly picks α and sets δ = 1 − α. It further picks β at random and sets γ = 1 − β.
(2) SIMATTEMPT0,1 randomly picks α and sets δ = 1 − α. It further picks β at random and sets γ = β.
(3) SIMATTEMPT1,0 randomly picks α and sets δ = α. It further picks at random β and sets γ = 1 − β.
The simulators then play the role of the honest parties using these fixed values for α, β, γ, δ. We claim
that the real and the simulated executions are identically distributed for any combination (even without
relying on erasures and oblivious generation). This is because the distribution on α and β is identical as
these values are picked at random in both executions. Finally, note that δ and γ are picked with probability
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1/2 each, since these probabilities depend on the probability we sample s0 and s1. We demonstrate our
argument for simulator SIMATTEMPT0,0 where s0 = s1 = 0 implying that α 6= δ and β 6= γ. Specifically,
Pr[δ = 1 − α] = Pr[s0 = 0] = 1/2 and Pr[γ = 1 − β] = Pr[s1 = 0] = 1/2. Notably, the distributions
are identical irrespective of the time of corruption or the identity of the corrupted party with erasures, since
the simulator knows in advance that the attempt fails and thus it will never reach Step 5. A similar argument
can be made with respect to the other two simulators.

The description of SIMATTEMPT1,1. In case of a successful attempt, simulator SIMATTEMPT1,1 fixes
α and β by choosing two bits uniformly at random and sends (ChSetup, sid, SEN) to FSC, receiving back
(send, sid, SEN, |m|). It then honestly emulates SEN and REC in πKeySetup with the appropriate randomness.
Denote by (PK1

0, SK1
0), (PK1

1, SK1
1) and (PK2

0, SK2
0), (PK2

1, SK2
1) the two pairs of public/secret keys gen-

erated within πKeySetup. It then generates two pairs of ciphertexts (on behalf of both SEN and REC) using
algorithm Enc instead of obliviously sampling one of the ciphertexts from each pair. Namely, it generates
c1

0 ← EncPK1
0
(m0, r

1
0) and c1

1 ← EncPK1
1
(m1; r1

1) and sends c1
0, c

1
1 to SEN on behalf of REC. It then gener-

ates c2
0 ← EncPK2

0
(m0, r

2
0) and c2

1 ← EncPK2
1
(m1; r2

1) and sends c2
0, c

2
1 to REC on behalf of SEN. Finally,

SIMATTEMPT1,1 sends on behalf of both parties the bits s0 = s1 = 1.
Consider first the corruption case where the parties are corrupted after z is delivered. Upon corrupt-

ing party P , SIMATTEMPT1,1 sends FSC the message (corrupt, sid, P ) and gets complete control over the
functionality FSC. It also gets to know the message m. We now prove that SIMATTEMPT1,1 generates a
distribution that is computationally indistinguishable from the distribution generated in the real setting. Fur-
thermore, we show that SIMATTEMPT1,1 is able to equivocate the bits α⊕ γ and β ⊕ δ into any bit (where
both bits are equivocated into the same value), which allows SIMATTEMPT1,1 to equivocate the message m.
We observe that the cases where the parties are corrupted before the sender sends its last message are simple
to prove and do not require the equivocation of α ⊕ γ and β ⊕ δ since the simulator learns m before it is
required to use it. We show that security in these cases is only based on the oblivious ciphertexts generation
(and does not need to rely on erasures). We discuss these cases below.

Recall that the adversary’s view is comprised of messages m0,m1, two pairs of ciphertexts c1
0, c

1
1, c2

0, c
2
1

and the bits s0, s1, z. We now demonstrate how can SIMATTEMPT1,1 explain the state of SEN and REC with
respect to such a view and equivocate the bits α⊕ γ, β⊕ δ. Consider the case that SEN is corrupted without
erasures. This implies that α is fixed and thus cannot be equivocated (this further implies that δ is fixed as
well since δ = α). Simulator SIMATTEMPT1,1 operates as follows:

1. In order to prove that REC indeed picked δ = α simulator SIMATTEMPT1,1 presents randomness
r1
α it used to encrypt mα within c1

α (on behalf of REC). Moreover, in order to claim that c1
1−α was

obliviously picked, SIMATTEMPT1,1 invokes r′11−α ← Ẽnc
−1

(c1
1−α) and presents r′11−α.

2. Next, it equivocates β into β′ such that m = z ⊕ β′ ⊕ δ, conditioned on δ = α. This equivocation
relies on erasures in the real execution. Namely, the simulator simply claims that β′ is REC’s input to
protocol πKeySetup without producing the randomness used by REC in πKeySetup. As REC’s randomness
is erased when it is corrupted with erasures.

3. Finally, in order to prove that SEN indeed picked γ = β′ the simulator presents randomness r2
β′ it used

to encrypt mβ′ within c2
β′ (on behalf of SEN). Moreover, in order to claim that c2

1−β′ was obliviously

picked, it invokes r′21−β′ ← Ẽnc
−1

(c2
1−β′) and presents the randomness r′21−β′ to the adversary.

We now prove indistinguishability of the real and the simulated views. We define the joint view of SEN

and REC, generated on respective randomness rSEN and rREC, within a successful attempt in the real setting
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by: (1) the common view, (2) the private view of SEN and (3) the private view of REC. Formally,

Attempt1,1 =
{(

PK1
0, PK1

1, PK2
0, PK2

1, c
1
0, c

1
1, c

2
0, c

2
1, s0, s1

)
,
(
α, γ, SK1

α, r
2
0, r

2
1

)
,(

β, δ, SK2
β, r

1
0, r

1
1

)}
.

We define by SimAttempt1,1 the distribution generated by simulator SIM in a successful attempt.

SimAttempt1,1 =
{(

PK1
0, PK1

1, PK2
0, PK2

1, c
1
0, c

1
1, c

2
0, c

2
1, s0, s1

)
,
(
α, γ = β′, SK1

α, r
2
γ , r
′2
1−γ
)
,(

β′, δ = α, SK2
β′ , r

1
δ , r
′1
1−δ
)}
.

We claim that SimAttempt1,1 ≈c Attempt1,1, specifying the differences between the distributions first.
SIMATTEMPT1,1 does not obliviously sample ciphertexts c1

1−δ and c2
1−γ as required in Protocol 2 but rather

encrypts m0 and m1 twice. In addition, it invokes algorithm Ẽnc
−1

for generating consisting randomness
for c1

1−α and c2
1−β′ . By the oblivious ciphertext generation property these two sets of ciphertexts are compu-

tationally indistinguishable even in the presence of the randomness returned by Ẽnc and Ẽnc
−1

. The second
difference is the way the value β′ is fixed, where SIMATTEMPT1,1 first fixes β and then equivocates it to β′.
This is achieved by relying on the erasure of the randomness used for πKeySetup. Specifically, the security
of πKeySetup implies that it is infeasible to tell what was the receiver’s input without revealing the receiver’s
random tape. A similar argument can be made if REC is the party that is corrupted without erasures.

We now discuss the remaining two corruption cases: (a) before Step 3 is concluded; (b) between Steps 3
and 5. Note that in case the adversary corrupts a party before exchanging the ciphertexts the simulated view
is identical to the real view since the simulation is perfect until this step, while the rest of the simulation
is concluded using m that is given upon corruption. Finally, if corruption occurs after Step 3 is concluded
but before Step 5 is carried out, then the simulator simulates Steps 2- 4 as SIMATTEMPT1,1 would do (i.e.
it generates all ciphertexts using Enc, exchanges them on behalf of the parties and sends s0, s1). Fixing α
and β also fixes γ and δ since α = δ and β = γ. This requires to exploit the oblivious generation of the
ciphertexts in order to generate a view that is consistent with these bits (as shown above). Furthermore,
since m was not sent yet the simulator does not need to equivocate α or β. Therefore, the proof does not
rely on erasures. Finally, the simulator uses m to simulate the last message of the protocol (if the sender is
not yet corrupted).

This concludes our proof.

4.3 From Semi-Adaptive to Adaptive Security with Partial Erasures

We show how to transform any semi-adaptive protocol into an adaptively secure protocol with partial era-
sures. This transformation essentially encrypts all the messages of the semi-adaptive protocol using NCE
with partial erasures (similarly to the [GWZ09] transformation from semi-adaptive to fully adaptive that
uses fully adaptive NCE; see Theorem 2.10). Recall first that semi-adaptive security assumes that the first
corruption takes place statically. Therefore, the corruption case that is not addressed here is when the first
party is adaptively corrupted. Security against this corruption case is obtained (with or without erasures) by
relying on the security of the NCE with partial erasures. Namely, upon adaptively corrupting the first party,
the simulator explains the communication between the parties as if that party was statically corrupted.

Theorem 4.4 Let Π semi-adaptively realizes the functionality F . Then protocol Π′, in which the parties
send the messages of Π using NCE with partial erasures adaptively realizes F with partial erasures.
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Proof: Let ADV be a malicious PPT adversary attacking Protocol Π. We construct a simulator SIM′

such that no PPT ENV distinguishes the real and the simulated views, i.e., the following computational
indistinguishability holds

{IDEALf,SIM′,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN ≈c {REALΠ′,ADV,ENV(n, x0, x1, z)}x0,x1,z∈{0,1}∗,n∈IN.

Simulator SIM′ internally invokes a copy of the real adversary ADV and externally interacts with the
ideal functionality f and environment ENV. We neglect static corruptions (since these are covered by the
security of protocol Π) and describe the strategy of SIM′ for the following three corruption cases: (1) Simula-
tion with no corruptions. (2) Simulation when the first adaptive corruption takes place. (3) Simulation when
the second adaptive corruption takes place. Our proof follows in the FSC-hybrid model. As in the [GWZ09]
proof, we assume that Π is a well-structured protocol. Namely, a protocol execution should have the same
number of messages, message lengths and order of communication independent of the inputs or random tape
of the participating parties. This technicality is needed for simulating the communication of Π. As pointed
out in [GWZ09] almost all known constructed protocols for cryptographic tasks are well-structured and any
protocol can be easily converted into a well-structured protocol.

Simulation with no corruptions. In case both parties are honest, first simulator SIM initializes a copy
of the semi-adaptive simulator SIM = (SIMs, SIMp) and simulates the setup phase of protocol Π. Next,
relying on the fact that Π is well-structured, SIM′ simulates the communication between the parties by
simply forwarding publicly known data. Specifically, for wash round i, the simulator forwards the message
(send, sid, Pbi , ki) to ADV on behalf of FSC, where bi is the identity of the party that sends the message in
round i and ki is its length.

Simulation for the first adaptive corruption. Denote the identity of the first corrupted party by P1 and
the other identity by P2. Then SIM′ receives from f the corrupted party’s input x1 and (possible) output y1.
Let ADV1 denote a PPT adversary that corrupts party P1 right after the setup phase, yet uses the real input
of P1 in the execution, and let SIM1 denote the simulator for that adversary. We consider two cases here,
depend on whether P1 is corrupted with or without erasures.

P1 is adaptively corrupted without erasures. SIM′ invokes SIM1 until party P1 is corrupted while play-
ing the role of functionality f . Namely, by the input-preserving property SIM1 can only submits the
input x1. If it expects to receive an output, SIM′ forwards SIM1 the value y1. Once the simulation
reaches the point where P1 is corrupted, SIM′ takes the internal state of SIM1 and sets it as the internal
state of P1.

P1 is corrupted with erasures. Whenever ADV corrupts party P1 without erasures, then the difference
from the prior simulation strategy is that now SIM′ relies on erasures in order to explain the messages
sent within Π′.

Simulation for the second adaptive corruption. Upon adaptively corrupting P2, SIM′ informs SIM of
the second corruption and receives back the internal state of P2. Note that security follows here due to the
security of the underlying semi-adaptive protocol Π that enables to generate the internal state of the party
that is adaptively corrupted second. This part follows identically to the proof from [GWZ09].
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5 Efficient Adaptively Secure Computation with Partial Erasures

In this section we study the efficiency of adaptively secure two-party computation with partial erasures in
the malicious setting. Towards defining a generic protocol we study the efficiency of NCE and OT primitives
with partial erasures security, and demonstrate that they can be designed with constant overhead. Concretely,
we first build NCE with partial erasures for exponentially large plaintext spaces using only a constant num-
ber of public-key encryption (PKE) operations (Section 5.1). Note that this is significantly better than the
overhead of fully adaptive NCE constructions that require O(1) PKE operations per bit. In Section 5.2 we
demonstrate the feasibility of string OT, again with constant overhead, which is significantly better than
prior work in the fully adaptive setting. These two results are demonstrated in the malicious setting. We
conclude this section with the feasibility of generic secure two-party computation with partial erasures and
semi-honest security. Our results imply that the [GMW87] protocol achieves O(|C|) time complexity when
the oblivious transfer functionality is implemented with our protocol from the previous section, such that C
is the boolean circuit that computes the specified functionality. This result is demonstrated in Section 5.3.

5.1 Adaptively Secure String NCE with Partial Erasures

In this section we prove that a slightly modified version of the NCE construction from [HP14] is NCE with
partial erasures, which only requires a constant number of public-key operations per polynomial-length
message. This construction is built on two IND-CPA secure primitives with an additional equivocation
property. (1) NCE for the receiver (NCER) that implies that one can efficiently generate a secret key that
decrypts a simulated ciphertext into any plaintext. (2) NCE for the sender (NCES) that implies that one
can efficiently generate randomness for proving that a ciphertext, encrypted under a fake key, encrypts an
arbitrary plaintext. We review the formal definitions of these primitives in Appendix B.

The idea of this protocol is to have the receiver create two public/secret key pairs where the first pair
is for NCES and the second pair is for NCER. The receiver sends the public-keys and the sender encrypts
two shares of its message m, each share with a different key. Upon receiving the ciphertexts the receiver
recovers the message by decrypting the ciphertexts. We stress that this idea only works if the simulator
knows the identity of the corrupted party prior to the protocol execution, since the simulator must decide
in advance whether the keys or the ciphertexts should be explained as valid upon corruption (as we cannot
have both generated in a fake mode). Nevertheless, in the one-sided setting we cannot tell which party will
be adaptively corrupted prior to the execution. We thus resolve this issue using `-equivocal NCE in order to
commit to the choice of having fake/valid keys and ciphertexts (so the simulator can postpone its decision
regarding having either fake keys or ciphertexts to the point where corruption occurs). The fact that this
choice induces a binary equivocation space enables to design a protocol with a constant overhead.

The proof from [HP14] is shown in the one-sided setting where either the sender or the receiver are
corrupted, but not both. In case both parties are corrupted it seems infeasible to prove security since the
parties are required to use fake keys/ciphertexts for equivocation, but at the same time explain the keys
and ciphertexts as valid. It turns out that the assumption where one of the parties erases its random-
ness plays a key role in resolving this technicality. That is, if the randomness used for creating the fake
key/ciphertext is erased, then it is computationally hard to distinguish a fake key/ciphertext from a valid
one. We are now ready to introduce the protocol in the F `SC-hybrid model (for ` = 2). Formally, let
ΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) and ΠNCER = (Gen,Enc,Enc∗,Dec,Equivocate) respectively
denote NCES and NCER for a plaintext space {0, 1}n. Then, consider the following protocol for realizing
FSC.

Protocol 3 (NCE with partial erasures for exponential message spaces (ΠPE−NCE−STR))

• Inputs: Sender SEN is given input message m ∈ {0, 1}n. Both parties are given security parameter 1n.
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• The Protocol:

1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains two public/secret
key pairs (PKS , SKS) and (PKR, SKR), respectively. REC then forwards (ChSetup, sid,REC) and
(send, sid,REC, PKS) to F`SC, and the message PKR to SEN.

2. Sending the first share. Upon receiving (send, sid,REC, PKS) from F`SC and PKR from REC, SEN
picksmS randomly and encrypts it using PKS , creating ciphertext cS . SEN forwards (ChSetup, sid′, SEN),
(send, sid′, SEN, cS) to F`SC.

3. Receiving the first share. Upon receiving (send, sid′, SEN, cS) from F`SC, REC decrypts cS and records
mS .

4. Sending the second share. SEN fixesmR such thatm = mS⊕mR and encrypts it using PKR, creating
ciphertext cR. SEN forwards (ChSetup, sid′′, SEN), (send, sid′′, SEN, cS) to F`SC.

5. Receiving the second share and output computation. Upon receiving (send, sid′′, SEN, cS) from F`SC,
REC decrypts cS and records mS . It then outputs m = mS ⊕mR.

Note that the plaintext space of our NCE is equivalent to the plaintext spaces of the NCES/NCER
schemes. Therefore, our protocol transmits n-bits messages using a constant number of PKE operations, as
opposed to fully adaptive NCE that require O(n) such operations.

Theorem 5.1 Assume the existence of NCER and NCES and `-equivocal NCE. Then Protocol 3 adaptively
realizes FSC with partial erasures in the F `SC-hybrid model (for ` = 2) in the presence of semi-honest
adversaries.

Proof: Let ADV be a semi-honest probabilistic polynomial-time adversary attacking Protocol 3. We con-
struct an adversary SIM such that no PPT distinguisher distinguishes the real and the simulated views. We
recall that SIM interacts with the ideal functionality FSC such that upon corrupting a party, SIM receives
its input and (possibly also) its output. SIM then must produce random coins for this party such that the
simulated transcript generated so far is consistent with the values it received. In what follows, we explain
the simulation strategies for all corruption cases. As demonstrated below, the corruption cases where at least
one of the parties is corrupted before or during Step 4 are easier to simulate since the simulator uses the real
message, and thus we ignore the corrupt-with-erase command. The more challenging corruption cases are
those where corruption takes place after the conclusion of Step 4. In more details:

SEN is corrupted first at the onset (with or without erasures). Upon corrupting SEN, SIM sends the mes-
sage (corrupt, sid, SEN) to FSC, receiving back the message (send, sid, SEN, |m|) and the sender’s
input m. The adversary ADV now runs on (1n,m) and its randomness. SIM then picks two pub-
lic/secret key pairs (PKS , SKS) and (PKR, SKR). It then emulates functionality F `SC and the honest
receiver by forwarding ADV the message (send, sid,REC, PKS) from F `SC and PKR from REC. The
simulation concludes upon receiving (send, sid′, SEN, cS) and (send, sid′′, SEN, cR) from ADV. Note
that cS and cR distribute as in the hybrid execution since the simulator perfectly emulates the adver-
sary’s view, and that the real receiver outputs in the protocol DecSKS (cS)⊕DecSKR(cR) which equals
m due to correctness of the public keys.

REC is corrupted first at the onset (with or without erasures). Upon corrupting REC, SIM sends
the message (corrupt, sid, SEN) to FSC, receiving back the message (send, sid, SEN, |m|) and the re-
ceiver’s outputm. SIM invokes the adversary on 1n and randomness and receives (send, sid, SEN, PKS)
(which is the message sent to F `SC), and PKR. Next, SIM completes the execution playing the role of
the honest sender on input m. Note that it does not make a difference whether REC generates valid or
invalid public-keys since SIM knows m and thus perfectly emulates the receiver’s view.
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Otherwise, upon receiving (send, sid, SEN, |m|) from FSC, SIM emulates the receiver’s message as
follows. It creates public/secret key pair (PKR, SKR) for ΠNCER, a valid public/secret key pair
(PKS , SKS) and a fake public-key with a trapdoor (PK∗S , tPK∗S ) for ΠNCES (using Gen and Gen∗,
respectively). SIM emulates the honest receiver by sending PKR to the sender (recall that the other
public-key is sent via F `SC).

SEN is corrupted first between Steps 1 and 2 (with or without erasures). Upon receiving the sender’s
input m, SIM completes the simulation exactly as in the previous case when SEN was corrupted at the
outset of the protocol execution, as no message was sent yet on behalf of the sender.

REC is corrupted first between Steps 1 and 2 (with or without erasures). Upon receiving the receiver’s
output message m, SIM explains the receiver’s internal state which is independent of m. Specifically,
it reveals the randomness for generating PKS , SKS and PKR, SKR, and explains PKS as the message
that was sent to F `SC. SIM then completes the simulation while playing the role of the honest sender
with input message m.

Note that in the F `SC-hybrid model the simulation and the hybrid executions are identically distributed
since the transcript only includes PKR. Moreover, we do not need to make use of erasures.

If none of the above corruption cases occurs, SIM emulates the sender’s message in Step 2 as follows. It
picks a random share m′S and prepares a pair of ciphertexts (cS , c

∗
S) for ΠNCES that respectively encrypt m′S

using PKS and PK∗S . (Recall that the sender’s message is sent via F `SC thus it is not part of the transcript
seen by the adversary).

SEN is corrupted first between Steps 2 and 4 (with or without erasures). Upon receiving the sender’s
input m from FSC, the simulator explains the sender’s internal state as follows. It first explains PK∗S
for being the public-key received from F `SC. Furthermore, it explains c∗S as the ciphertext sent to F `SC.
It then plays the role of the honest REC for the rest of the protocol execution as above (when the
sender is statically corrupted).

REC is corrupted first between Steps 2 and 4 (with or without erasures). Upon receiving the receiver’s
output m from FSC, SIM explains the receiver’s internal state as follows. Specifically, it reveals the
randomness for generating PKS , SKS and PKR, SKR, and explains PKS as the message that was sent
to F `SC and cS as the message sent via F `SC. SIM then completes the execution while playing the role
of the honest sender with input message m.

Note that in the F `SC-hybrid model the simulation and the hybrid executions are identically distributed
since the transcript only includes PKR.

If none of the above corruption occurs, SIM emulates the message of the sender in Step 4 as follows.
It picks a random share m′R and generates a pair of ciphertexts (cR, c

∗
R) for ΠNCER such that cR is a valid

encryption of m′R using the public-key PKR, and c∗R is a simulated ciphertext (generated by (c∗R, tc∗R) ←
Enc∗(PKR)). (Recall that the sender’s message is sent via F `SC thus it is not part of the transcript seen by
the adversary).

SEN is corrupted with erasures and REC without erasures between Steps 4 and 5. Upon corrupting
SEN and REC in an arbitrary order, SIM obtains the sender’s input m. It then explains the sender’s
and the receiver’s internal states as follows. Regarding the sender’s internal state, it first explains
PKS as the message received from F `SC. It further explains cS and c∗R as the messages sent via F `SC.
Finally, SIM sets m′′R such that m = m′S ⊕ m′′R and explains m′S and m′′R as the shares of m that
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were encrypted within cS and c∗R. Note that SIM does not need to present the randomness used for
these ciphertexts since SEN is corrupted with erasures, and that ADV cannot detect that c∗R is a fake
ciphertext without observing its randomness.

Next, SIM explains the receiver’s internal state as follows. It explains PKS as the input to F `SC and
presents PKS , SKS . It then explains that cS and c∗R as the ciphertexts sent by F `SC. Finally, it reveals
a secret key SK∗R ← Equivocate(tc∗R , SKR,m

′′
R) so that m′′R ← DecSK∗R(c∗R) and m′′R ⊕m′S = m.

That is, it explains (PKR, SK∗R) as the NCER pair of keys that were generated in the first step.

REC is corrupted with erasures and SEN without erasures between Steps 4 and 5. Upon corrupting
SEN and REC in an arbitrary order, SIM obtains the sender’s input m. It then explains the sender’s
and the receiver’s internal states as follows. Regarding the sender’s internal’s state, it first explains
PK∗S message received from F `SC. It further explains c∗S and cR messages sent via F `SC. It then
computes r′′ ← EquivocatePK∗S

(tPK∗S ,m
′
S , r,m

′′
S) for m′′S such that m = m′′S ⊕m′R and explains r′′

as the randomness used for computing the ciphertext c∗S that encrypts m′′S . The randomness used for
computing cR is revealed unchanged.

SIM next explains the receiver’s internal state as follows. It first explains PK∗S as the input to F `SC and
presents PKR, SKR. It then explains that c∗S and cR as message sent via F `SC. Finally, it explains m′′S
as the message decrypted by the first ciphertext. Note that SIM does not need to reveal the secret key
for PK∗S since REC is corrupted with erasures (and the secret key for PK∗S will not be used again).
Also, ADV cannot detect that PK∗S is fake without observing the randomness used for generating it.

The security argument follows due to the security of NCER, NCES. Specifically, consider first the
view of ADV for the case that SEN is corrupted with erasures. Namely, upon corrupting SEN and
REC the adversary seesm′S ,m

′′
R, (PKS , SKS), (PKR, SKR) and cS , cR, where the randomness of the

ciphertexts has been erased and is not part of the view. Then, the simulated ciphertext cR is fake,
where secret key SKR is computed using algorithm Equivocate and m′′R. This is in contrast to the
real execution where the equivocation algorithm is not used. Specifically, cR and SKR are replaced
in the simulation with c∗R and SK∗R, respectively. Nevertheless, by the ciphertext indistinguishability
property of the NCER it holds that,

(PKR, SKR, cR,m
′′
R) ≈c (PKR, SK∗R, c

∗
R,m

′′
R).

Next, consider the view of ADV for the case that REC is corrupted with erasures. Namely, upon
corrupting SEN and REC the adversary obtains m′′S ,m

′
R, PKS , PKR and (cS , rS), (cR, rR), where

the secret keys have been erased and are not part of the view. Then the simulated public-key that is
computed for NCES is fake, where ciphertext cS is computed based on the fake public-key whereas
randomness rS is generated using algorithm Equivocate and m′′S . Specifically, PKS , cS and rS are
replaced in the simulation with PK∗S , c

∗
S , r
∗
S , respectively. Nevertheless, by the key indistinguishability

property of the NCES it holds that,

(PKS , rS , cS ,mS) ≈c (PK∗S , r
∗
S , c
∗
S ,m

′′
S).

Finally, we consider the corruption cases that take place after Step 5 is concluded. The simulation for
the case that SEN is corrupted with erasures and REC without erasures is similar to the above description.
The other corruption case is also similar to the above, except that the adversary does not see SKR either
since it is erased. The security for these last two corruption cases follows as above.

This concludes our proof.
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5.2 Adaptively Secure String OT with Partial Erasures

In this section we prove the feasibility of string OT with partial erasures using only a constant number
of public-key operations. We recall first that OT with partial erasures can be obtained by encrypting the
communication of a semi-adaptive OT using NCE with partial erasures (as formally proven in Section 4.3).
Therefore, in order to construct a string OT with partial erasures we need to design semi-adaptive string OT
and string NCE with partial erasures, both with a constant overhead. The later is already demonstrated in
Section 5.1. Thus, in this section we focus on designing semi-adaptive string OT with constant overhead.
Combining the two results we obtain the following theorem.

Theorem 5.2 There exists a protocol that realizes FOT with partial erasures in the presence of malicious
adversaries that requires O(1) public-key operations to transmit a message of length n.

We recall that [GWZ09] presented a generic construction for semi-adaptive OT based on a coin tossing
protocol and an enhanced dual-mode PKE for a binary plaintext space. In particular, the dual-mode plaintext
space size determines the size of the sender’s message space in the OT. [GWZ09] left the feasibility of string
semi-adaptive OT with constant overhead open. In what follows, we resolve this problem. Namely, we first
present a slightly different security definition for enhanced dual-mode PKE. Next, we build a semi-adaptive
OT from our modified enhanced dual-mode PKE (which is similar to the construction of [GWZ09]). We
further instantiate our modified enhanced dual-mode PKE with a special type of NCES that requires an extra
property. Finally, we build such an NCES based on a construction taken from [HP14] under the hardness
of the DCR assumption. Combined together, these results imply semi-adaptive string OT using a constant
number of public-key operations for exponential size message domains. We continue with our modified
definition of enhanced dual-mode cryptosystem.

5.2.1 A New Enhanced Dual-Mode PKE

Loosely speaking, a dual-mode PKE is a PKE that is initialized with system parameters that can be defined in
two modes. For each mode it is possible to generate public and secret keys that are associated with a branch
σ ∈ {0, 1}. Similarly, the encryption algorithm generates ciphertexts with respect to a branch β ∈ {0, 1}.
Moreover, if the key branch matches the ciphertext branch (that is, σ = β), then the ciphertext can be
correctly decrypted. The security of dual-mode PKE relies on the indistinguishability of the two system
parameters modes, which are denoted by messy and decryption. In messy mode the system parameters are
generated together with a messy trapdoor, which imply that any public-key (even malformed keys) can be
associated with any branch. Moreover, when the key branch does not match the ciphertext branch then the
ciphertext becomes statistically independent of the plaintext. On the other hand, in decryption mode the
system parameters allow to generate two secret keys that correctly decrypt the two ciphertexts.

In order to construct a semi-adaptive OT based in the [PVW08] OT, [GWZ09] extended the dual-mode
notion and define an enhanced dual-mode primitive that captures a number of additional requirements.
Specifically, it should be possible to equivocate either the receiver’s input or the sender’s input (depends on
which party is statically corrupted). To achieve that, [GWZ09] split the system parameters into two parts;
system and temporal. The system part is the same in both modes and is generated prior to the protocol
execution. The temporal part defines the mode and is generated during the protocol execution using a coin
tossing protocol. The idea is to fix the mode during the simulation depending on which party is statically
corrupted.

In this work, we propose a slightly modified definition of enhanced dual-mode encryption. Neverthe-
less, a semi-adaptive OT in the spirit of [GWZ09] can be constructed from our cryptosystem as well. Our
definition is different due to the following reasons. First, we consider a primitive where the system param-
eters (CRS) are identical in both modes, implying that the temporal part is empty. Moreover, the mode is
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not determined by the temporal part of the CRS, but by the subkey that is used to encrypt x1−σ. Namely, a
public-key consists of two subkeys where the left subkey is used to compute a left ciphertext and the right
subkey is used for the right ciphertext, such that each subkey is generated by a different algorithm. This
separation is similar to the partition of the system parameters in [GWZ09] into two parts. In addition, the
trapdoor that is associated with the CRS is only useful to distinguish the left and right public-keys in the
messy mode. The decryption mode has no trapdoor. Finally, in contrast to the [GWZ09] definition, we do
not define a fake ciphertext generation algorithm. More concretely,

Definition 5.3 (Enhanced dual-mode PKE) Enhanced dual-mode PKE for plaintext space {0, 1}n con-
sists of a tuple of probabilistic algorithms (dSetupGen,dKeyGen,dEnc,dDec,dFindBranch,dEquivocate)
specified as follows:

– dSetupGen, given a security parameter n, output (G,CRS, τ), where CRS is a common reference string,
τ is the corresponding trapdoor information and G is a group description.

– dKeyGen, consists of the following sub-algorithms such that the former is mode-independent and the
latter takes the mode as an input:

• dKeyGenMI: Given CRS and a key type α ∈ {0, 1}, output (PKα, SKα).

• dKeyGenMD: Given CRS, α and µ = dec, output (PK1−α, SK1−α). Otherwise, given CRS,
α and µ = mes, output PK1−α.

Output PK = (PK0, PK1) and SK = SKα. In a decryption mode, SK0 and SK1 decrypt left and
right ciphertexts, respectively.

– dEnc, given CRS, PK = (PK0, PK1), an encryption type β ∈ {0, 1} and a plaintext m, output (c, t),
where c is the encryption of m under key PKβ and t is the random coins used for encryption.

– dDec, given CRS, PK, SK and a ciphertext c, output m.

– dFindBranch, given CRS, τ, PK, output the key type ρ of PK.

– dEquivocate, given CRS, τ, PK, α, c,m′, t′,m for a public-key PK = (PK0, PK1) of type α in a messy
mode, ciphertext and randomness c, t′ such that (c, t′)← dEnc(CRS, PK, 1−α,m′) and a plaintext
m, output random coins t such that the first output of dEnc(CRS, PK, 1− α,m; t) is c.

Definition 5.4 (Secure enhanced dual-mode PKE) A dual-mode PKE ΠDUAL = (dSetupGen,dKeyGen,
dEnc,dDec,dFindBranch,dEquivocate) is secure if it satisfies the following properties.

• Completeness. For every µ ∈ {mes,dec}, (G,CRS, τ) ← dSetupGen(1n), m ∈ {0, 1}n, α ∈
{0, 1} and (PK, SK) ← dKeyGen(CRS, µ, α), the decryption on a branch α is correct except with
negligible probability. Namely, for (c, t)← dEnc(CRS, PK, α,m), m = dDec(CRS, PK, SK, c).

• Enhanced mode indistinguishability. The subkeys generated by dKeyGenMD in a messy mode and
in a decryption modes are computationally indistinguishable for α ∈ {0, 1}. Furthermore, they are
computationally indistinguishable from a random element in G. Formally, for α ∈ {0, 1},

{PK1−α}(PK1−α,t1−α)←dKeyGenMD(CRS,mes,α) ≈c {PK1−α}(PK1−α,SK1−α)←dKeyGenMD(CRS,dec,α)

≈c {R}R←G.
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• Messy branch identification and ciphertext equivocation. For every (G,CRS, τ)← dSetupGen(1n)
and every (PK, SK) ← dKeyGen(CRS,mes, ·), dFindBranch(CRS, τ, PK) outputs a branch value
ρ such that for every m ∈ {0, 1}n, dEnc(CRS, PK, 1− ρ, ·) is simulatable. Namely,

{c, t}(c,t)←dEnc(CRS,PK,1−ρ,m) ≈s {c, t}(c,t′)←dEnc(CRS,PK,1−ρ,m′),t←dEquivocate(CRS,τ,PK,ρ,c,m′,t′,m).

• Decryption mode key indistinguishability. For every (G,CRS, τ)← dSetupGen(1n), a left subkey
is statistically indistinguishable from a right subkey in a decryption mode. Namely, for anyα ∈ {0, 1},
{PK0}(PK=(PK0,PK1),SK)←dKeyGen(CRS,dec,α)v ≈s {PK1}(PK=(PK0,PK1),SK)←dKeyGen(CRS,dec,α).

5.2.2 Semi-Adaptive String OT from Enhanced Dual-Mode PKE

Given an enhanced dual-mode cryptosystem ΠDUAL = (dSetupGen,dKeyGen,dEnc,dDec,dFindBranch,
dEquivocate) defined as above for a plaintext space {0, 1}n, we construct a semi-adaptive OT following
a similar approach to the semi-adaptive construction of [GWZ09]. Namely, the receiver runs dKeyGenMI
locally with σ and CRS, and obtains (PKσ, SKσ). The parties then run a coin-tossing protocol in order to
mutually generate the output of dKeyGenMD, denoted by PK1−σ (in some unknown mode), where only the
receiver learns the outcome. REC then sets PK = (PK0, PK1) and SK = SKσ. The coin tossing protocol
ensures that the receiver does not learn both left and right secret keys. In order to prevent a corrupted
receiver from cheating, we require that it proves that either PK0 or PK1 was generated via the coin-tossing
protocol. In Appendix C we explain about the special property we need from the ZK proof used by the
receiver (denoted by witness equivocal ZK). Informally, in this type of proofs for compound statements, the
simulator knows both witnesses but not which witness will be used by the prover. This notion allows to build
weaker, yet meaningful ZK proofs that are secure in the presence of adaptive prover corruption. Formally,

Protocol 4 (Semi-adaptive OT for exponential message spaces (ΠSA−OT−STR))

• CRS: A group description G and CRS that are the output of dSetupGen(1n).

• Inputs: Sender SEN is given input messages x0, x1 and Receiver REC is given a bit σ.

• The Protocol:

1. REC runs dKeyGenMI locally and obtains (PKσ, SKσ). The parties also run a coin tossing protocol in
order to mutually generate PK1−σ . Specifically, REC selects a random element r from G and sends SEN
a commitment to r.

2. SEN selects a random element s from G and sends s to REC.
3. REC sets PK1−σ = r · s, PK = (PK0, PK1) and SK = SKσ and sends PK to SEN. REC proves in ZK

that either PK0/s or PK1/s was committed by REC.
4. If SEN verifies the proof correctly, it computes (ci, ti) ← dEnc(CRS, PK, i, xi) for all i ∈ {0, 1}, and

sends (c0, c1) to REC.
5. REC decrypts cσ using dDecSK and outputs the result.

Theorem 5.5 Assume the existence of adaptively secure UC commitment schemes, witness equivocal zero-
knowledge and that ΠDUAL meets Definition 5.3. Then, Protocol 4 realizesFOT with malicious semi-adaptive
security in the FDCRS-hybrid model, where the parties compute O(1) public-key operations to transmit a
message of length n.

We note that adaptive UC commitment schemes [DN02] are sufficient for implementing a coin-tossing pro-
tocol in the UC setting (and can be realized under the DCR hardness assumption that is used for our concrete
instantiation from Section 5.2.4). Intuitively, the security of ΠSA−OT−STR when the sender is statically cor-
rupted follows by ensuring that the simulator knows both secret keys in a decryption mode, implying that
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it can equivocate σ and decrypt the (1− σ)th ciphertext. On the other hand, when the receiver is statically
corrupted, the simulator enforces a messy mode and thus is able to equivocate x1−σ.

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking Protocol 4 by statically
corrupting one of the parties and adaptively corrupting the other. We construct a simulator SIM for the ideal
functionality FOT such that no PPT distinguisher distinguishes with a non-negligible probability whether it
is interacting with ADV in the real setting or with SIM in the ideal setting. We explain the strategy of the
simulation for the following corruption cases: (1) SEN is statically corrupted and REC is corrupted after
the protocol terminates. (2) REC is statically corrupted and SEN is corrupted after the protocol terminates.
The rest of the corruption cases follow easily. We note that ΠSA−OT−STR is statically secure similarly to the
security of the [PVW08] protocol, where security is based on the security of the dual-mode PKE. Intuitively,
in case SEN is statically corrupted then REC’s bit is statistically hidden due to the indistinguishability of the
left and right subkeys in a decryption mode. Moreover, when REC is statically corrupted then the privacy of
x1−σ is guaranteed due to the ciphertext equivocation property of the enhanced dual-mode encryption.

SEN is statically corrupted and REC is corrupted after the protocol terminates. SIM emulates the role
of FDCRS and generates (G,CRS, τ) ← dSetupGen. It hands the adversary (G,CRS) and records
τ . Next, SIM invokes dKeyGen with CRS, µ = dec and some α ∈ {0, 1}, and stores (PK =
(PK0, PK1), SK0, SK1). It then commits to an arbitrary share using the UC commitment. Upon
receiving ADV’s share x, SIM sends SEN the public-keys (PK0, PK1). Next, SIM proves that either
PK0 or PK1 were generated via the coin tossing protocol by invoking the simulator for the ZK proof
using witnesses PK0/x and PK1/x. Finally, upon receiving c0, c1 from ADV, SIM decrypts them into
(x0, x1) using SK0 and SK1, respectively, and sends (sender, sid, x0, x1) to FOT.

When REC is corrupted after the protocol terminates, SIM receives its input σ and provides to ADV

the randomness within the coin tossing protocol that is consistent with PK1−σ (by providing the
randomness of the commitment relative to the share PK1−σ/x while exploiting the equivocality of
the commitment scheme). Next, SIM explains the ZK proof relative to PK1−σ (by providing the
randomness of the proof while exploiting the witness equivocality property). It further explains the
secret key SK using SKα. This completes the simulation. Note that the simulated and real views are
computationally indistinguishable due to the difference between a simulated and a real ZK proof.

REC is statically corrupted and SEN is corrupted after the protocol terminates. SIM emulates the role
of FDCRS and generates (G,CRS, τ) ← dSetupGen. It hands the adversary (G,CRS) and records
τ . Upon receiving the receiver’s message within the coin tossing protocol, SIM extracts the re-
ceiver’s share x. It then generates a public-key PK′ in a messy mode and completes this proto-
col using the share PK′/x. Upon completing the coin tossing protocol and receiving public-key
PK = (PK0, PK1), the simulator invokes dFindBranch on PK and extracts σ. SIM then plays the
role of the honest verifier in the ZK proof. If the proof is not verified correctly the simulator aborts,
sending (receiver, sid,⊥) to FOT. Otherwise, SIM hands (receiver, sid, σ) to FOT and receives back
xσ. It then selects an arbitrary value x′1−σ and returns ciphertexts (c0, c1) encrypting (xσ, x

′
1−σ). Let

t′0, t
′
1 be the randomness used for computing c0, c1, respectively.

When SEN is corrupted after the protocol terminates, SIM receives its input x1−σ. It then invokes
dEquivocate with (CRS, τ, PK, σ, c1−σ, x

′
1−σ, t

′
1−σ) and x1−σ and obtains a matching randomness

t1−σ so that c1−σ is a valid encryption of x1−σ using randomness t1−σ. SIM presents t′σ, t1−σ to the
adversary. Note that the simulated and real views are statistically close.
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5.2.3 A New Enhanced Dual-Mode PKE from Trapdoor-NCES

We now present our new enhanced dual-mode PKE building on any trapdoor-NCES defined by NCES with
the additional ability to distinguish between valid and fake keys given a trapdoor. Informally, NCES, defined
by the set of algorithms (Gen,Gen∗,Enc,Dec,Equivocate), is a trapdoor-NCES if there exist two additional
algorithms SetupGen and FindKeyType so that SetupGen generates a global trapdoor τ (along with some
parameters) and FindKeyType efficiently distinguishes a key generated by Gen from a key generated by
Gen∗ using τ . Furthermore, algorithms Gen∗ and Equivocate are slightly different. Namely, algorithm Gen∗

no longer generates a trapdoor and Equivocate equivocates a ciphertext using the global trapdoor τ (whereas
in NCES it uses the trapdoor generated by Gen∗). The security of trapdoor-NCES is defined next.

Definition 5.6 (Trapdoor-NCES) A secure NCES ΠNCES = (SetupGen,Gen,Gen∗,Enc,Dec,Equivocate,
FindKeyType) is trapdoor NCES if the algorithms are as specified below:

• SetupGen, given a security parameter n, output (G, PARAMS, τ), where G is a group description.

• Gen,Enc,Dec are as specified in Definition A.1. All algorithms take PARAMS as an additional input.

• Gen∗, given PARAMS, outputs a public-key PK∗.

• Equivocate, given PARAMS, τ, PK∗, a tuple (m′, t′, c∗) such that c∗ ← EncPK∗(m
′; r′) and a message

m, output r such that c∗ = EncPK∗(m; r).

• FindKeyType, given PARAMS, τ and PK, output 1 if PK ← Gen(1n, PARAMS), and 0 otherwise.

Definition 5.7 (Secure Trapdoor-NCES) Trapdoor-NCES ΠNCES = (SetupGen,Gen,Gen∗,Enc,Dec,
Equivocate,FindKeyType) is secure if

• Completeness. For every (G, PARAMS, τ)← SetupGen(1n), (PK, SK)← Gen(1n, PARAMS), m ∈
{0, 1}n and c← Enc(PARAMS, PK,m), m = Dec(PARAMS, PK, SK, c).

• Key indistinguishability. The keys generated by Gen and Gen∗ are computationally indistinguish-
able. Furthermore, they are computationally indistinguishable from a random element in G. Formally,

{PK}(PK,SK)←Gen(PARAMS,1n) ≈c {PK∗}PK∗←Gen∗(PARAMS,1n) ≈c {R}R←G.

• Key type identification and ciphertext equivocation. For every (G, PARAMS, τ)← SetupGen(1n)
and any PK generated by either Gen or Gen∗, FindKeyType(PARAMS, τ, PK) outputs a key type ρ. If
ρ = 0, then for every m ∈ {0, 1}n, Enc(PARAMS, PK, ·) is simulatable. Namely,

{c, t}c←Enc(PARAMS,PK,m;t) ≈s {c, t}c←Enc(PARAMS,PK,m′;t′),t←Equivocate(PARAMS,τ,PK,c,m′,t′,m).

We next build an enhanced dual-mode PKE based on a trapdoor-NCES.

• Common reference string (dSetupGen). Invoke (G, PARAMS, τ) ← SetupGen(1n) and define
CRS = PARAMS and the trapdoor for the CRS as τ .

• Key Generation (dKeyGen). Given CRS, a key type α and a mode µ ∈ {mes, dec}, output (PK, SK)
such that PK = (PK0, PK1) and SK = SKα. Namely, algorithm dKeyGen is defined by algorithm
dKeyGenMI that computes (PKα, SKα)← Gen(1n, PARAMS) and algorithm dKeyGenMD that com-
putes the following.
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– If µ = dec compute (PK1−α, SK1−α)← Gen(1n, PARAMS).

– If µ = mes compute PK1−α ← Gen∗(1n, PARAMS).

• Encryption (dEnc). Given CRS, a public-key (PK0, PK1), a plaintext m from the message space
of underlying trapdoor-NCES and an encryption type β ∈ {0, 1}, pick randomness t, invoke c ←
EncPKβ (m; t) and output (c, t).

• Decryption (dDec). Given a secret key SK and a ciphertext c, output m = DecSK(c).

• Messy Branch Identification (dFindBranch). Given CRS, a messy trapdoor τ and a public-key
PK = (PK0, PK1), invoke FindKeyType with τ and PK1. If FindKeyType returns 0 implying that
PK1 is a fake NCES key, output 0. Otherwise output 1.

• Equivocation (dEquivocate). Given CRS, τ, PK = (PK0, PK1), α, c,m′, t′,m, invoke t = Equivocate
(CRS, τ, PK1−α, c,m

′, t′,m) such that the first output of dEnc(CRS, PK, 1− α,m; t) is c.

Theorem 5.8 Assume that ΠNCES is a trapdoor-NCES. Then, ΠDUAL is a secure enhanced dual-mode PKE.

Proof:

• Completeness. In any given mode and α ∈ {0, 1}, PKα is a valid key relative to the underlying
trapdoor-NCES. Furthermore, the secret key SK corresponding to PK is SKα which is the secret key
of PKα. If the encryption type β matches the key type α, a ciphertext that is encrypted under PKα

will be correctly decrypted using the decryption algorithm of trapdoor-NCES.

• Enhanced mode indistinguishability. We claim that the subkey generated by dKeyGenMD in a
messy mode is computationally indistinguishable from the subkey generated in a decryption mode.
This follows from the security of trapdoor-NCES that ensures that the keys generated by Gen and
Gen∗ are computationally indistinguishable from an random element from G.

• Messy branch identification and ciphertext equivocation. Messy branch identification follows
from the trapdoor security of NCES. Namely, in a messy mode, PK1−α is a fake key relative to the
underlying trapdoor-NCES. Thus, if the key type α does not match β then ciphertext equivocation
with respect to PK1−α is ensured via the equivocality of the underlying trapdoor-NCES.

• Decryption Mode Key Indistinguishability. In a decryption mode, PK contains two valid keys rela-
tive to the underlying NCES for any value of α. Thus, the left subkey is statistically indistinguishable
from right subkey for any public-key in a decryption mode.

5.2.4 Trapdoor-NCES under the DCR Assumption

We briefly overview the NCES from [HP14], proving that this construction is a trapdoor-NCES. Instantiating
our semi-adaptive OT from Section 5.2.2 using an enhanced dual-mode PKE based on our DCR trapdoor-
NCES from below, implies that the receiver’s public-key is defined by the elements PK = ((g, h0, ḡ0, h̄0),
(g, h1, ḡ1, h̄1)), where (g, h1−σ, ḡ1−σ, h̄1−σ) is the public-key part that is generated using a coin tossing
in order to encrypt x1−σ. We note that it is sufficient to mutually generate h1−σ in order to prevent the
receiver from learning the secret key. Nevertheless, if the receiver locally generates h̄1−σ, then the simulator
would not be able to enforce a messy mode when the receiver is statically corrupted. We thus use the coin
tossing protocol to generate all the elements from PK1−α except for g, by picking random elements from
Z∗N2 . Namely, for each mutually generated element from PK1−α, the receiver commits first to a random
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element from Z∗N2 . Next, the sender sends a random element from this group, say x. The receiver then
multiplies the two elements. Note that the receiver’s commitment can be implemented using the adaptively
secure commitment schemes from [DN02] based on the DCR assumption (in an equivocal mode), and the
ZK proof boils down to a witness equivocal proof for a compound statement of an N th root. That is, the
receiver proves that it committed to either h0/x or h1/x. (The receiver further proves similar statements
with respect to (ḡ0, ḡ1) and (h̄0, h̄1).) See Appendix C for more details about the proof. Formally,

– SetupGen, given a security parameter n, generate an RSA modulus N = pq with p = 2p′ + 1 and
q = 2q′+1 and primes p, q, p′, q′. Pick g′ ← Z∗N2 and set g = g′2N mod N2. Set PARAMS = (N, g),
τ = φ(N) and G = (Z∗N2)4.

– Gen, given a security parameter n and PARAMS (N, g), pick s ← ZN2/4 and set h = gs mod N2.
Choose a random r ← ZN/4 and compute (ḡ = gr mod N2, h̄ = [(1 + N) · hr] mod N2). Output
PK = (g, h, ḡ, h̄) and SK = s.

– Gen∗, given a security parameter n and PARAMS, set h = [(1 + N) · gs] mod N2. Choose a random
r ← ZN/4 and compute (ḡ = gr mod N2, h̄ = hr mod N2). Output PK∗ = (g, h, ḡ, h̄).

– Enc, given a public-key PK = (N, g, h, ḡ, h̄) and a message m ∈ ZN , choose a random t ← ZN/4 and
output the ciphertext Enc(m; t) =

(
(ḡmgt) mod N2, (h̄mht) mod N2

)
.

– Dec, given a public-key PK = (g, h, ḡ, h̄), a secret key SK = s and a ciphertext c = (c1, c2), compute m̂
as follows, and output m ∈ ZN such that m̂ = 1 +mN .

m̂ = (c2/c
s
1)N+1 = [(1 +N)m]N+1 = (1 +N)m.

– Equivocate, given φ(N), a fake key PK∗ = (g, h, ḡ, h̄), a tuple (m′, t′, c∗) such that c∗ ← EncPK∗(m
′; t′)

and a message m, extract r from PK∗ using φ(N) and output t = (rm′ + t′ − rm) mod φ(N)/4. It
is simple to verify that

EncPK∗(m; t) =
(
(ḡmgt), h̄mht)

)
=
(

(grmgrm
′+t′−rm), (hrmhrm

′+t′−rm)
)

=
(

(ḡm
′
gt
′
), h̄m

′
ht
′
)
)

= c∗.

– FindKeyType, given φ(N) and a public-key PK, check if the second element in PK is an N th power. If
yes output 1. Otherwise output 0.

5.3 Secure Two-Party Computation with Partial Erasures

In this section we show a general result, demonstrating that efficient secure two-party computation in the
presence of semi-honest adversaries can be achieved using our oblivious transfer protocol from Section 5.2.
Concretely, the efficiency of this protocol is as in the static setting and implies O(|C|) time complexity,
for C the boolean circuit that computes the specified functionality. That is, we consider the [GMW87]
protocol and plug-in our efficient OT protocol with partial erasures. Relying on the UC composition theorem
from [Can01] we conclude that the combined protocol is adaptively secure with partial erasures. We note
that the theorem from [Can01] is stated in the adaptive setting and holds even in the presence of erasures,
assuming that the same party in all sub-protocols is always corrupted with erasures.
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Next, denote the [GMW87] protocol when combined with the oblivious transfer protocol from Sec-
tion 5.2 by ΠOT. We claim that ΠOT adaptively realizes any efficient two-party well-formed functionality f
in the presence of semi-honest adversaries. More formally,

Theorem 5.9 Let f be a well-formed two-party functionality. Then, Protocol ΠOT adaptively realizes f
with partial erasures in the presence of semi-honest adversaries.

Intuitively, the proof follows directly from the composition theorem and is shown in two steps. First, that
the [GMW87] protocol is information theoretic secure in the FOT-hybrid model. Next, when replacing the
ideal calls of FOT with a protocol that is adaptively secure with partial erasures, the security of ΠOT is
implied by the composition theorem. The overall time complexity of ΠOT is reduced to the time complexity
of the OT protocol. Now, since each such invocation requires a constant overhead, the total overhead grows
linearly with the size of C. This overhead matches the [GMW87] overhead in the static setting.

6 Conclusions

We introduce the notion of adaptive security with partial erasures and show that it has the potential to yield
simpler and more efficient protocols. We believe that it is a natural security guarantee that provides a good
tradeoff between paying the price of achieving adaptive security without any erasures and trusting that all
honest parties erase securely. Our work leaves a number of interesting questions open. Most notably, the
question whether there exists a constant round generic two-party protocol with partial erasures.
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A Preliminaries - Appendix

A.1 Public-Key Encryption Schemes

We specify the definitions of public-key encryption, IND-CPA and simulatable public-key encryption.

Definition A.1 (PKE) A public-key encryption scheme consists of a tuple of probabilistic polynomial-time
algorithms (Gen,Enc,Dec) specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public-key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public-key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public-key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).

For a public-key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary ADV = (ADV1,ADV2),
we consider the following indistinguishability game:

(PK, SK)← Gen(1n).

(m0,m1, history)← ADV1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b ∈R {0, 1}.
b′ ← ADV2(c, history).

ADV wins if b′ = b.

Denote by ADVΠ,ADV(n) the probability that ADV wins the IND-CPA game.

Definition A.2 (IND-CPA) A public-key encryption scheme Π = (Gen,Enc,Dec) is IND-CPA secure, if
for every non-uniform adversary ADV = (ADV1,ADV2) there exists a negligible function negl such that
ADVΠ,ADV(n) ≤ 1

2 + negl(n).

A.2 Hardness Assumptions

Definition A.3 (DCR [Pai99]) We say that the Decisional Composite Residuosity (DCR) problem is hard
if for all polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr

[
Cn(N, z) = 1| z = yN mod N2

]
− Pr

[
Cn(N, z) = 1| z = (1 +N)r · yN mod N2

] ∣∣∣ ≤ negl(n),

where N is a random n-bit RSA composite, r is chosen at random in ZN , and the probabilities are taken
over the choices of N, y and r.

Definition A.4 (QR) We say that the Quadratic Residuosity (QR) problem is hard relative to G if for all
polynomial-sized circuits C = {Cn} there exists a negligible function negl such that∣∣∣Pr [Cn(N, z) = 1| z ← QRN ]− Pr [Cn(N, z) = 1| z ← JN \QRN ]

∣∣∣ ≤ negl(n),
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where N ← G(1n), N is a random n-bit RSA composite, JN denote the group of Jacobi symbol (+1)
elements of Z∗N , QRN = {x2 : x ∈ Z∗N} denote JN ’s subgroup of quadratic residues and the probabilities
are taken over the choices of N, z.

A.3 Zero-knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behavior. We formally
define zero-knowledge and knowledge extraction as stated in [Gol01]. We then conclude with a definition
of a Σ-protocol which constitutes a zero-knowledge proof of a special type.

Definition A.5 (Interactive proof system) A pair of PPT interactive machines (P,V) is called an inter-
active proof system for a language L if there exists a negligible function negl such that the following two
conditions hold:

1. COMPLETENESS: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L and every interactive PPT machine B,

Pr[〈B,V〉(x) = 1] ≤ negl(|x|).

Definition A.6 (Zero-knowledge) Let (P,V) be an interactive proof system for some language L. We say
that (P,V) is computational zero-knowledge if for every PPT interactive machine V∗ there exists a PPT al-
gorithm M∗ such that

{〈P,V∗〉(x)}x∈L
c
≈ {〈M∗〉(x)}x∈L

where the left term denote the output of V∗ after it interacts with P on common input x whereas, the right
term denote the output of M∗ on x.

Definition A.7 (Knowledge extraction) Let R be a binary relation and κ → [0, 1]. We say that an inter-
active function V is a knowledge verifier for the relation R with knowledge error κ if the following two
conditions holds:

NON-TRIVIALITY: There exists an interactive machine P such that for every (x, y) ∈ R, (implying that
x ∈ LR), all possible interactions of V with P on common input x and auxiliary input y are accepting.

VALIDITY (WITH ERROR κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive function P, every x ∈ LR, and every machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by Px,y,r that uses randomness r (where the probability is
taken over the coins of V). If p(x, y, r) > κ(|x|), then, on input x and with access to oracle
Px,y,r, machine K outputs a solution s ∈ R(x) within an expected number of steps bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

33



B A Review of the Different NCE Security Notions

B.1 NCE for the Receiver

NCE for the receiver is a secure PKE with an additional property that enables generating a secret key that
decrypts a fake ciphertext into any plaintext. Specifically, the scheme operates in two modes. The real
mode enables to encrypt and decrypt as in the standard definition of PKE. Whereas the fake mode enables
to generate fake ciphertexts that are computationally indistinguishable from real ciphertexts, such that using
a special trapdoor one can produce a secret key that decrypts a fake ciphertext into any plaintext. More
formally, an NCE for the receiver encryption scheme with message space m ∈ {0, 1}n consists of a tuple of
probabilistic polynomial-time algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:

• Gen,Enc,Dec are as specified in Definition A.1.

• Enc∗, given the public-key PK output a ciphertext c∗ and a trapdoor tc∗ .

• Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m ∈ {0, 1}n, output SK∗ such that
m = DecSK∗(c

∗).

Definition B.1 (NCER) NCE for the receiver is a tuple of algorithms defined above that satisfy the follow-
ing properties:

1. Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition A.2.

2. Ciphertext indistinguishability. For any m ∈ {0, 1}n the following distributions are computation-
ally indistinguishable:

{(PK, SK, c,m) | (PK, SK)← Gen(1n), c← EncPK(m)}

and

{(PK, SK∗, c∗,m) | (PK, SK)← Gen(1n), (c∗, tc∗)← Enc∗(PK), SK∗ ← Equivocate(SK, c∗, tc∗ ,m)}.

NCER can be realized under the DDH assumption [JL00, CHK05] for polynomial-size message spaces and
under the DCR assumption for exponential-size message spaces [CHK05].

B.2 NCE for the Sender

NCE for the sender is a secure PKE with an additional property that enables generating a fake public-
key, such that any ciphertext encrypted under this key can be viewed as the encryption of any message
together with the matched randomness. Specifically, the scheme operates in two modes. The real mode
enables to encrypt and decrypt as in standard definition of PKE. Whereas the fake mode enables to generate
fake public-keys and an additional trapdoor, such that the two modes keys are computationally indistin-
guishable. In addition, given this trapdoor and a ciphertext generated using a fake public-key, one can
produce randomness that is consistent with any plaintext. More formally, an NCE for the sender encryption
scheme with message space m ∈ {0, 1}n consists of a tuple of probabilistic polynomial-time algorithms
(Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

• Gen,Enc,Dec are as specified in Definition A.1.

• Gen∗ generates public-key PK∗ and a trapdoor tPK∗ .
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• Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plaintext m ∈ {0, 1}n,
output r such that c∗ = Enc(m; r).

Definition B.2 (NCES) An NCE for the sender is a tuple of algorithms defined above that satisfy the fol-
lowing properties:

1. Gen,Enc,Dec imply an IND-CPA secure encryption scheme as in Definition A.2.

2. Public key indistinguishability. For anym ∈ {0, 1}n the following distributions are computationally
indistinguishable:

{(PK, r,m, c) | (PK, SK)← Gen(1n), c← EncPK(m; r)}

and

{(PK∗, r∗,m, c∗) | (PK∗, tPK∗)← Gen∗(1n), c∗ ← EncPK∗(m
′; r′), r∗ ← Equivocate(c∗, tPK∗ ,m)}.

NCES can be realized under the DDH assumption [BHY09] for polynomial-size message spaces and under
the DCR assumption for exponential-size message spaces [HP14].

B.3 `-Equivocal Non-Committing Encryption [GWZ09]

The idea of `-Equivocal NCE is to exploit the fact that it is often unnecessary for the simulator to explain
a fake ciphertext with respect to any potential plaintext. Rather, in many scenarios the potential number
of plaintexts is a smaller set of size ` (where ` might be as small as 2). Specifically, two parameters are
considered here: a plaintext of bit length l and an equivocality parameter ` which denotes the potential
number of plaintexts (namely, the non-committed domain size). The parameter ` further dominates the
overhead of the `-Equivocal NCE construction from [GWZ09], and thus improves over fully NCE whenever
` is very small but the plaintext length is still large. In this paper, we use this primitive to encrypt small
domains (i.e., binary) plaintexts of length nwith constant overhead. Somewhat NCE is realized in [GWZ09]
under the same hardness assumptions that imply NCE.

C Witness Equivocal ZK Proofs for Compound Statements

In [HP14], the authors introduced a new technique for zero-knowledge (proofs of knowledge) for compound
statements, where the statement is comprised of sub-statements for which the prover only knows a subset of
the witnesses. The security of these proofs relies on the fact that the simulator knows the witnesses for all
sub-statements but not which subset is given to the real prover. Yet, the simulator is still able to convince an
adaptively corrupted prover that it does not know a different subset of witnesses than what should be known
to the real prover. This notion, denoted by witness equivocal, is weaker than the typical adaptive security
notion (that requires simulation without the knowledge of any witness), but is still useful here.

In compound statements for Σ-protocols the prover separates the challenge c that is given by the verifier
into two values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that the prover does not have a witness
for the first statement, then it always chooses c1 in which it knows how to complete the proof (similarly
to what the simulator does), and uses its witness for the other statement to complete the second proof on
a given challenge c2. Note that the verifier cannot distinguish whether the prover knows the first or the
second witness (or both); see [CDS94] for more details. In our simulation, the simulator uses both witnesses
to answer the challenge. Then, when the prover is adaptively corrupted, the simulator gets the real witness
from the trusted party and hands it to the adversary. It further claims that the transcript of the other challenge
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is generated obliviously of the other witness (as should have been computed by a real prover). The concrete
proof that we consider in Section 5.2.2 is a proof of anN th root in group Z∗N2 , whereN is an RSA composite
that is defined by the following relation,

RNR =
{

((u,N), v)| u = vN mod N2
}
.

This proof is formally given in [HP14].
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