An Optimization of Gu Map-1*

Yupu Hu and Huiwen Jia

ISN Laboratory, Xidian University, 710071 Xi'an, China yphu@mail.xidian.edu.cn

Abstract. As a modified version of GGH map, Gu map-1 was successful in constructing multi-party key exchange (MPKE). In this short paper we present a result about the parameter setting of Gu map-1, therefore we can reduce a key parameter τ from original $O(n^2)$ down to $O(\lambda n)$ (in theoretically secure case, where λ is the security parameter), and even down to O(2n) (in computationally secure case). Such optimization greatly reduces the size of the map.

Keywords: Multilinear maps, GGH map, Gu map-1, Multi-party key exchange (MPKE), Lattice based cryptography.

1 Introduction: Background and Our Comment

Because we presented efficient attack [1] on GGH map for given encodings of zero [2, 3], modification of GGH map is urgently needed. Gu map-1 [4] is one of modified versions of GGH map. It successfully forms MPKE scheme, and avoids our attack.

In this short paper we present a result about the parameter setting of Gu map-1, therefore we can reduce a key parameter τ from original $O(n^2)$ down to $O(\lambda n)$ (in theoretically secure case, where λ is the security parameter), and even down to O(2n) (in computationally secure case). Our result is that "vector group" $\{Y_i, i = 1, \dots, \tau\}$ has the "rank" n rather than n^2 , and that "vector group" $\{P_{zt,i}, i = 1, \dots, \tau\}$ has the "rank" n rather than n^2 . Such optimization greatly reduces the size of the map.

2 Gu Map-1

2.1 Setting Parameters

We define the integers by \mathbb{Z} . We specify that *n*-dimensional vectors of \mathbb{Z}^n are row vectors. We consider the 2n'th cyclotomic polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$, and identify an element $u \in R$ with the coefficient vector of the degree-(n - 1) integer polynomial that represents u. In this way, R is identified with the integer lattice \mathbb{Z}^n . We also consider the ring $R_q = R/qR = \mathbb{Z}_q[X]/(X^n + 1)$ for a (large

 $^{^{\}star}$ The work was supported in part by Natural Science Foundation of China under Grant 60833008

2 Yupu Hu and Huiwen Jia

enough) integer q. Obviously, addition in these rings is done component-wise in their coefficients, and multiplication is polynomial multiplication modulo the $\begin{bmatrix} u_0 & u_1 & \cdots & u_{n-1} \end{bmatrix}$

ring polynomial $X^n + 1$. For $u \in R$, we denote $Rot(u) = \begin{bmatrix} u_0 & u_1 & \cdots & u_{n-1} \\ -u_{n-1} & u_0 & \cdots & u_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ -u_1 & -u_2 & \cdots & u_0 \end{bmatrix} \in \mathbb{Z}$

 $\mathbb{Z}^{n \times n}$.

Because Gu map-1 scheme uses the GGH construction [2,3] as the basic component, parameter setting is set as that of GGH to conveniently describe and compare. Let λ be the security parameter, K the multilinearity level, n the dimension of elements of R. Concrete parameters are set as $\sigma = \sqrt{\lambda n}$, $\sigma' = \lambda n^{1.5}$, $\sigma^* = 2^{\lambda}$, $q \geq 2^{8K\lambda} n^{O(K)}$, $n \geq \widetilde{O}(K\lambda^2)$, $\tau = O(n^2)$. More detailed setting of τ is $\tau = n^2 + \lambda$.

2.2 Instance Generation

- (1) Choose a prime $q \ge 2^{8K\lambda} n^{O(K)}$.
- (2) Choose an element $g \leftarrow D_{\mathbb{Z}^n,\sigma}$ in R so that $||g^{-1}|| \le n^2$. In other words, g is "very small".
- (3) Choose elements $a_i, e_i \leftarrow D_{\mathbb{Z}^n, \sigma}, b_i \leftarrow D_{\mathbb{Z}^n, \sqrt{q}}, i = 1, \cdots, \tau$ in *R*. In other words, a_i, e_i are "very small", while b_i is "somewhat small".
- (4) Choose a random element $z \in R_q$. In other words, $z \in R_q$ is never small.
- (5) Choose two matrices $T, S \leftarrow D_{\mathbb{Z}^{n \times n}, \sigma}$. In other words, T and S are "very small".

(6) Set
$$Y_i = \left[TRot\left(\frac{a_ig+e_i}{z}\right)T^{-1}\right]_q$$
, $P_{zt,i} = \left[TRot\left(\frac{z^K(b_ig+e_i)}{g}\right)S\right]_q$, $i = 1, \cdots, \tau$.

- (7) Output the public parameters $\{q, \{Y_i, P_{zt,i}\}, i = 1, \cdots, \tau\}$.
- (8) Generating level-1 encodings. A user generates his secret $d \leftarrow D_{\mathbb{Z}^n,\sigma^*}$ in R, then publishes $U = \left[\sum_{i=1}^{\tau} d_i Y_i\right]_q = \left[TRot\left(\frac{\sum_{i=1}^{\tau} d_i(a_ig+e_i)}{z}\right)T^{-1}\right]_q$. U is level-1 encoding of the secret d.
- (9) Generating level-K decoding factors. After the user generating his secret d, he secretly computes $V = \left[\sum_{i=1}^{\tau} d_i P_{zt,i}\right]_q = \left[TRot\left(\frac{z^K \sum_{i=1}^{\tau} d_i (b_i g + e_i)}{g}\right)S\right]_q$. V is level-K decoding factor of the secret d.

2.3 A Note

Each public matrix Y_i has n^2 entries, and so does $P_{zt,i}$. For a public encoding $U = \left[\sum_{i=1}^{\tau} d_i Y_i\right]_q$, if $\{Y_i, i = 1, \dots, \tau\}$ are linearly independent, the secret $\{d_i, i = 1, \dots, \tau\}$ can be uniquely solved. This is the reason that $\tau > n^2$, and more detailed that $\tau = n^2 + \lambda$.

3 A Result about Parameter Setting of Gu Map-1

3.1 Our Notations

We denote $\left[\frac{a_{ig}+e_{i}}{z}\right]_{q} = \left[u_{i,0} \ u_{i,1} \ \cdots \ u_{i,n-1}\right]$. We denote $T = \begin{bmatrix} T_{1} \\ T_{2} \\ \vdots \\ T_{n} \end{bmatrix}$, where T_{k} is the k'th row of T. We denote $T^{-1} = \begin{bmatrix} T_{1}^{-1} \ T_{2}^{-1} \ \cdots \ T_{n}^{-1} \end{bmatrix}$, where T_{k}^{-1} is the k'th column of T^{-1} . For $T_{k}^{-1} = \begin{bmatrix} t_{k,1}^{-1} \\ t_{k,2}^{-1} \\ \vdots \\ t_{k,n}^{-1} \end{bmatrix}$, we define $T_{k}^{-1}(l) = \begin{bmatrix} t_{k,1}^{-1} \\ \vdots \\ t_{k,n}^{-1} \\ \vdots \\ -t_{k,l}^{-1} \end{bmatrix}$,

 $l = 0, 1, \dots, n-1$. It is easy to see that $T_k^{-1}(0) = T_k^{-1}$. Again we have that

$$T_k T_j^{-1} = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$$

$$\begin{split} & \vdots \\ & \text{We write matrix } Y_i \text{ into the form of "vector" } \widetilde{Y}_i. \text{ Suppose } Y_i = \begin{bmatrix} y_{i,1,1} & y_{i,1,2} & \cdots & y_{i,1,n} \\ y_{i,2,1} & y_{i,2,2} & \cdots & y_{i,2,n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{i,n,1} & y_{i,n,2} & \cdots & y_{i,n,n} \end{bmatrix} \\ & \text{Then } \widetilde{Y}_i = \begin{bmatrix} y_{i,1,1} & y_{i,1,2} & \cdots & y_{i,1,n} & y_{i,2,2} & \cdots & y_{i,2,n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{i,n,1} & y_{i,n,2} & \cdots & y_{i,n,n} \end{bmatrix}$$

3.2 A Result about Vector Y_i

Proposition 1

- (1) $\widetilde{Y}_i = \left[\left[u_{i,0} \ u_{i,1} \cdots u_{i,n-1} \right] A \right]_q$, where A is $n \times (n^2)$ matrix, which is only dependent on T.
- (2) We denote l as the serial numbers of rows of A, $l = 0, 1, \dots, n-1$. We denote (k, j) as the serial numbers of columns of A, $k, j = 1, 2, \dots, n$. Then (l, (k, j)) entry of A is $T_k T_j^{-1}(l)$.
- (3) Special entries of A. (0, (k, j)) entry of A is 1 for k = j, and 0 for $k \neq j$.
- (4) A natural corollary. The rank of $\{\tilde{Y}_i, i = 1, \dots, \tau\}$ is at most *n* rather than n^2 .

3.3 Similar Result about Vector $P_{zt,i}$

Proposition 2 We write matrix $P_{zt,i}$ into the form of "vector" $\widetilde{P}_{zt,i}$. Then the rank of $\{\widetilde{P}_{zt,i}, i = 1, \dots, \tau\}$ is at most *n* rather than n^2 .

4 Yupu Hu and Huiwen Jia

4 Reducing τ

Suppose we obtain a public encoding $U = \left[\sum_{i=1}^{\tau} d_i Y_i\right]_q$.

 $\tau > n$ will guarantee $\{Y_i, i = 1, \dots, \tau\}$ linearly dependent, therefore the secret $\{d_i, i = 1, \dots, \tau\}$ can not be uniquely solved.

 $\tau = \lambda n$ will guarantee that SVP (the shortest vector problem) over the lattice generated by $\{Y_i, i = 1, \dots, \tau\}$ is theoretically hard. Notice that λ is far smaller than n.

 $\tau = 2n$ will guarantee that SVP over the lattice generated by $\{Y_i, i = 1, \dots, \tau\}$ is computationally hard.

References

- Hu, Y., Jia, H.: Cryptanalysis of GGH Map. Cryptology ePrint Archive, Report 2015/301 (2015)
- Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (ed.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 181–184. Springer, Heidelberg (2013)
- Langlois, A., Stehlé, D., Steinfeld, R.: GGHLiteMore Efficient Multilinear Maps from Ideal Lattices. In: Nguyen, P.Q., Oswald, E. (ed.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)
- Gu, C.: Multilinear Maps Using Ideal Lattices without Encodings of Zero. Cryptology ePrint Archive, Report 2015/023 (2015)