An Optimization of Gu Map-1 ${ }^{\star}$

Yupu Hu and Huiwen Jia
ISN Laboratory, Xidian University, 710071 Xi'an, China
yphu@mail.xidian.edu.cn

Abstract

As a modified version of GGH map, Gu map-1 was successful in constructing multi-party key exchange (MPKE). In this short paper we present a result about the parameter setting of Gu map-1, therefore we can reduce a key parameter τ from original $O\left(n^{2}\right)$ down to $O(\lambda n)$ (in theoretically secure case, where λ is the security parameter), and even down to $O(2 n)$ (in computationally secure case). Such optimization greatly reduces the size of the map.

Keywords: Multilinear maps, GGH map, Gu map-1, Multi-party key exchange (MPKE), Lattice based cryptography.

1 Introduction: Background and Our Comment

Because we presented efficient attack [1] on GGH map for given encodings of zero $[2,3]$, modification of GGH map is urgently needed. Gu map-1 [4] is one of modified versions of GGH map. It successfully forms MPKE scheme, and avoids our attack.

In this short paper we present a result about the parameter setting of Gu map-1, therefore we can reduce a key parameter τ from original $O\left(n^{2}\right)$ down to $O(\lambda n)$ (in theoretically secure case, where λ is the security parameter), and even down to $O(2 n)$ (in computationally secure case). Our result is that "vector group" $\left\{Y_{i}, i=1, \cdots, \tau\right\}$ has the "rank" n rather than n^{2}, and that "vector group" $\left\{P_{z t, i}, i=1, \cdots, \tau\right\}$ has the "rank" n rather than n^{2}.Such optimization greatly reduces the size of the map.

2 Gu Map-1

2.1 Setting Parameters

We define the integers by \mathbb{Z}. We specify that n-dimensional vectors of \mathbb{Z}^{n} are row vectors. We consider the $2 n$ 'th cyclotomic polynomial ring $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$, and identify an element $u \in R$ with the coefficient vector of the degree- $(n-1)$ integer polynomial that represents u. In this way, R is identified with the integer lattice \mathbb{Z}^{n}. We also consider the ring $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ for a (large

[^0]enough) integer q. Obviously, addition in these rings is done component-wise in their coefficients, and multiplication is polynomial multiplication modulo the ring polynomial $X^{n}+1$. For $u \in R$, we denote $\operatorname{Rot}(u)=\left[\begin{array}{cccc}u_{0} & u_{1} & \cdots & u_{n-1} \\ -u_{n-1} & u_{0} & \cdots & u_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ -u_{1} & -u_{2} & \cdots & u_{0}\end{array}\right] \in$ $\mathbb{Z}^{n \times n}$.

Because Gu map-1 scheme uses the GGH construction [2,3] as the basic component, parameter setting is set as that of GGH to conveniently describe and compare. Let λ be the security parameter, K the multilinearity level, n the dimension of elements of R. Concrete parameters are set as $\sigma=\sqrt{\lambda n}, \sigma^{\prime}=\lambda n^{1.5}$, $\sigma^{*}=2^{\lambda}, q \geq 2^{8 K \lambda} n^{O(K)}, n \geq \widetilde{O}\left(K \lambda^{2}\right), \tau=O\left(n^{2}\right)$. More detailed setting of τ is $\tau=n^{2}+\lambda$.

2.2 Instance Generation

(1) Choose a prime $q \geq 2^{8 K \lambda} n^{O(K)}$.
(2) Choose an element $g \leftarrow D_{\mathbb{Z}^{n}, \sigma}$ in R so that $\left\|g^{-1}\right\| \leq n^{2}$. In other words, g is "very small".
(3) Choose elements $a_{i}, e_{i} \leftarrow D_{\mathbb{Z}^{n}, \sigma}, b_{i} \leftarrow D_{\mathbb{Z}^{n}, \sqrt{q}}, i=1, \cdots, \tau$ in R. In other words, a_{i}, e_{i} are "very small", while b_{i} is "somewhat small".
(4) Choose a random element $z \in R_{q}$. In other words, $z \in R_{q}$ is never small.
(5) Choose two matrices $T, S \leftarrow D_{\mathbb{Z}^{n \times n}, \sigma}$. In other words, T and S are "very small".
(6) Set $Y_{i}=\left[\operatorname{TRot}\left(\frac{a_{i} g+e_{i}}{z}\right) T^{-1}\right]_{q}, P_{z t, i}=\left[\operatorname{TRot}\left(\frac{z^{K}\left(b_{i} g+e_{i}\right)}{g}\right) S\right]_{q}, i=1, \cdots, \tau$.
(7) Output the public parameters $\left\{q,\left\{Y_{i}, P_{z t, i}\right\}, i=1, \cdots, \tau\right\}$.
(8) Generating level-1 encodings. A user generates his secret $d \leftarrow D_{\mathbb{Z}^{n}, \sigma^{*}}$ in R, then publishes $U=\left[\sum_{i=1}^{\tau} d_{i} Y_{i}\right]_{q}=\left[\operatorname{TRot}\left(\frac{\sum_{i=1}^{\tau} d_{i}\left(a_{i} g+e_{i}\right)}{z}\right) T^{-1}\right]_{q} . U$ is level-1 encoding of the secret d.
(9) Generating level- K decoding factors. After the user generating his secret d, he secretly computes $V=\left[\sum_{i=1}^{\tau} d_{i} P_{z t, i}\right]_{q}=\left[\operatorname{TRot}\left(\frac{z^{K} \sum_{i=1}^{\tau} d_{i}\left(b_{i} g+e_{i}\right)}{g}\right) S\right]_{q}$. V is level- K decoding factor of the secret d.

2.3 A Note

Each public matrix Y_{i} has n^{2} entries, and so does $P_{z t, i}$. For a public encoding $U=\left[\sum_{i=1}^{\tau} d_{i} Y_{i}\right]_{q}$, if $\left\{Y_{i}, i=1, \cdots, \tau\right\}$ are linearly independent, the secret $\left\{d_{i}, i=1, \cdots, \tau\right\}$ can be uniquely solved. This is the reason that $\tau>n^{2}$, and more detailed that $\tau=n^{2}+\lambda$.

3 A Result about Parameter Setting of Gu Map-1

3.1 Our Notations

We denote $\left[\frac{a_{i} g+e_{i}}{z}\right]_{q}=\left[\begin{array}{llll}u_{i, 0} & u_{i, 1} & \cdots & u_{i, n-1}\end{array}\right]$. We denote $T=\left[\begin{array}{c}T_{1} \\ T_{2} \\ \vdots \\ T_{n}\end{array}\right]$, where T_{k} is the k 'th row of T. We denote $T^{-1}=\left[\begin{array}{llll}T_{1}^{-1} & T_{2}^{-1} & \cdots & T_{n}^{-1}\end{array}\right]$, where T_{k}^{-1} is the k^{\prime} 'th column of T^{-1}. For $T_{k}^{-1}=\left[\begin{array}{c}t_{k, 1}^{-1} \\ t_{k, 2}^{-1} \\ \vdots \\ t_{k, n}^{-1}\end{array}\right]$, we define $T_{k}^{-1}(l)=\left[\begin{array}{c}t_{k, l+1}^{-1} \\ \vdots \\ t_{k, n}^{-1} \\ -t_{k, 1}^{-1} \\ \vdots \\ -t_{k, l}^{-1}\end{array}\right]$, $l=0,1, \cdots, n-1$. It is easy to see that $T_{k}^{-1}(0)=T_{k}^{-1}$. Again we have that

$$
T_{k} T_{j}^{-1}= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}
$$

We write matrix Y_{i} into the form of "vector" \widetilde{Y}_{i}. Suppose $Y_{i}=\left[\begin{array}{cccc}y_{i, 1,1} & y_{i, 1,2} & \cdots & y_{i, 1, n} \\ y_{i, 2,1} & y_{i, 2,2} & \cdots & y_{i, 2, n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{i, n, 1} & y_{i, n} & \cdots & y_{i, n, n}\end{array}\right]$. Then $\widetilde{Y}_{i}=\left[\begin{array}{lllll}y_{i, 1,1} & y_{i, 1,2} \cdots y_{i, 1, n} & y_{i, 2,1} & y_{i, 2,2} \cdots y_{i, 2, n} \cdots y_{i, n, 1} & y_{i, n, 2} \cdots y_{i, n, n}\end{array}\right]$

3.2 A Result about Vector $\boldsymbol{Y}_{\boldsymbol{i}}$

Proposition 1

(1) $\widetilde{Y}_{i}=\left[\left[u_{i, 0} u_{i, 1} \cdots u_{i, n-1}\right] A\right]_{q}$, where A is $n \times\left(n^{2}\right)$ matrix, which is only dependent on T.
(2) We denote l as the serial numbers of rows of $A, l=0,1, \cdots, n-1$. We denote (k, j) as the serial numbers of columns of $A, k, j=1,2, \cdots, n$. Then $(l,(k, j))$ entry of A is $T_{k} T_{j}^{-1}(l)$.
(3) Special entries of A. $(0,(k, j))$ entry of A is 1 for $k=j$, and 0 for $k \neq j$.
(4) A natural corollary. The rank of $\left\{\widetilde{Y}_{i}, i=1, \cdots, \tau\right\}$ is at most n rather than n^{2}.

3.3 Similar Result about Vector $\boldsymbol{P}_{\boldsymbol{z t}, \boldsymbol{i}}$

Proposition 2 We write matrix $P_{z t, i}$ into the form of "vector" $\widetilde{P}_{z t, i}$. Then the rank of $\left\{\widetilde{P}_{z t, i}, i=1, \cdots, \tau\right\}$ is at most n rather than n^{2}.

4 Reducing τ

Suppose we obtain a public encoding $U=\left[\sum_{i=1}^{\tau} d_{i} Y_{i}\right]_{q}$.
$\tau>n$ will guarantee $\left\{Y_{i}, i=1, \cdots, \tau\right\}$ linearly dependent, therefore the secret $\left\{d_{i}, i=1, \cdots, \tau\right\}$ can not be uniquely solved.
$\tau=\lambda n$ will guarantee that SVP (the shortest vector problem) over the lattice generated by $\left\{Y_{i}, i=1, \cdots, \tau\right\}$ is theoretically hard. Notice that λ is far smaller than n.
$\tau=2 n$ will guarantee that SVP over the lattice generated by $\left\{Y_{i}, i=\right.$ $1, \cdots, \tau\}$ is computationally hard.

References

1. Hu, Y., Jia, H.: Cryptanalysis of GGH Map. Cryptology ePrint Archive, Report 2015/301 (2015)
2. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (ed.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 181-184. Springer, Heidelberg (2013)
3. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLiteMore Efficient Multilinear Maps from Ideal Lattices. In: Nguyen, P.Q., Oswald, E. (ed.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239-256. Springer, Heidelberg (2014)
4. Gu, C.: Multilinear Maps Using Ideal Lattices without Encodings of Zero. Cryptology ePrint Archive, Report 2015/023 (2015)

[^0]: * The work was supported in part by Natural Science Foundation of China under Grant 60833008

