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Abstract
Encrypting data on client-side before uploading it to a cloud
storage is essential for protecting users’ privacy. However
client-side encryption is at odds with the standard practice
of deduplication. Reconciling client-side encryption with
cross-user deduplication is an active research topic. We
present the first secure cross-user deduplication scheme that
supports client-side encryption without requiring any ad-
ditional independent servers. Interestingly, the scheme is
based on using a PAKE (password authenticated key ex-
change) protocol. We demonstrate that our scheme provides
better security guarantees than previous efforts. We show
both the effectiveness and the efficiency of our scheme, via
simulations using realistic datasets and an implementation.

Categories and Subject Descriptors
E.3 [Data Encryption]
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1. INTRODUCTION
Cloud storage is a service that enables people to store

their data on a remote server. With a rapid growth in user
base, cloud storage providers tend to save storage costs via
cross-user deduplication: if two clients upload the same file,
the storage server detects the duplication and stores only a
single copy. Deduplication achieves high storage savings [23]
and is adopted by many storage providers. It is also adopted
widely in backup systems for enterprise workstations.

Clients who care about privacy prefer to have their data
encrypted on the client-side using semantically secure en-
cryption schemes. However, näıve application of encryption
thwarts deduplication since identical files are uploaded as
completely independent ciphertexts. Reconciling dedupli-
cation and encryption is an active research topic. Current
solutions either use convergent encryption [13], which is sus-
ceptible to offline brute-force attacks, or require the aid of
additional independent servers [4, 26, 28], which is a strong
assumption that is very difficult to meet in commercial con-
texts. Furthermore, some schemes of the latter type are
susceptible to online brute-force attacks.
Our Contributions. We present the first single-server
scheme for secure cross-user deduplication with client-side
encrypted data. Our scheme allows a client uploading an
existing file to securely obtain the encryption key that was

used by the client who has previously uploaded that file.
The scheme builds upon a well-known cryptographic primi-
tive known as password authenticated key exchange (PAKE)
[7], which allows two parties to agree on a session key iff they
share a short secret (“password”). PAKE is secure even if the
passwords have low entropy. In our deduplication scheme,
a PAKE-based protocol is used to compute identical keys
for different copies of the same file. Specifically, a client up-
loading a file first sends a short hash of this file (10-20 bits
long) to the server. The server identifies other clients whose
files have the same short hash, and lets them run a single
round PAKE protocol (routed through the server) with the
uploader using the (long, but possibly low entropy) hashes
of their files as the “passwords”. At the end of the protocol,
the uploader gets the key of another client iff their files are
identical. Otherwise, it gets a random key.

Our scheme uses a per-file rate limiting strategy to prevent
online brute-force attacks. Namely, clients protect them-
selves by limiting the number of PAKE instances they will
participate in for each file. Compared with the commonly
used per-client rate limiting (used in DupLESS [4]), which
limits the number of queries allowed for each client (during
a time interval), our scheme is significantly more resistant to
online brute-force attacks by an adversary who has compro-
mised multiple clients, or by the storage server. Per-client
rate limiting is not fully effective against such attacks be-
cause the adversary can use different identities.

At a first glance, it seems that our scheme incurs a high
communication and computation overhead because a client
uploading a file is required to run PAKE many times due to
the high collision rate of the short hash. In fact, the number
of PAKE runs for an upload request is limited to a certain
level by the rate limiting strategy. For a requested short
hash, the server only checks a subset of existing files (in de-
scending order of file popularity) that have the same short
hash. This implies that our scheme may fail to find dupli-
cates for some requests, and this will certainly reduce the
deduplication effectiveness. Nonetheless, our simulations in
Section 6 show that this negative effect is very small. The
reason is that the file popularity distribution is far from be-
ing uniform, and popular files account for most of the benefit
from deduplication. Our scheme can almost always find du-
plicates for these popular files.

To summarize, we make the following contributions:

• Presenting the first single-server scheme for cross-
user deduplication that enables client-side semanti-
cally secure encryption (except that, as in all dedu-
plication schemes, ciphertexts leak the equality of the



underlying files), and proving its security in the mali-
cious model (Section 5);

• Showing that our scheme has better security guar-
antees than previous work (Section 5.2). As far as we
know, our proposal is the first scheme that can prevent
online brute-force attacks by compromised clients or
server, without introducing an identity server;

• Demonstrating, via simulations with realistic datasets,
that our scheme provides its privacy benefits while re-
taining a utility level (in terms of deduplication effec-
tiveness) on par with standard industry practice.
Our use of per-file rate limiting implies that an incom-
ing file will not be checked against all existing files in
storage. Notably, our scheme still achieves high dedu-
plication effectiveness (Section 6);

• Implementing our scheme to show that it incurs min-
imal overhead (computation/communication) com-
pared to traditional deduplication schemes (Section 7).

2. PRELIMINARIES

2.1 Deduplication
Deduplication strategies can be categorized according to

the basic data units they handle. One strategy is file-level
deduplication which eliminates redundant files [13]. The
other is block-level deduplication, in which files are segmented
into blocks and duplicate blocks are eliminated [27]. In this
paper we use the term “file” to refer to both files and blocks.

Deduplication strategies can also be categorized accord-
ing to the host where deduplication happens. In server-side
deduplication, all files are uploaded to the storage server,
which then deletes the duplicates. Clients are unaware of
deduplication. This strategy saves storage but not band-
width. In client-side deduplication, a client uploading a file
first checks the existence of this file on the server (by sending
a hash of the file). Duplicates are not uploaded. This strat-
egy saves both storage and bandwidth, but allows a client
to learn if a file already exists on the server.

The effectiveness of deduplication is usually expressed by
the deduplication ratio, defined as the “the number of bytes
input to a data deduplication process divided by the num-
ber of bytes output” [15]. In the case of a cloud storage
service, this is the ratio between total size of files uploaded
by all clients and the total storage space used by the ser-
vice. The dedpulication percentage (sometimes referred to as
“space reduction percentage”) [15, 19] is 1− 1

deduplication ratio
.

A perfect deduplication scheme will detect all duplicates.
The level of deduplication achievable depends on a number

of factors. In common business settings, deduplication ratios
in the range of 4:1 (75%) to 500:1 (99.8%) are typical. Wendt
et al. suggest that a figure in the range 10:1 (90%) to 20:1
(95%) is a realistic expectation [29].

Although deduplication benefits storage providers (and
hence, indirectly, their users), it also constitutes a privacy
threat for users. For example, a cloud storage server that
supports client-side, cross-user deduplication can be exploited
as an oracle that answers “did anyone upload this file?”.
An adversary can do so by uploading a file and observing
whether deduplication takes place [19]. For a predictable file
that has low entropy, the adversary can construct all pos-
sible files, upload them and observe which file causes dedu-
plication. Harnik et al. [19] propose a randomized threshold

approach to address such online brute-force attacks. Specif-
ically, for each file F , the server keeps a random threshold
tF (tF ≥ 2) and a counter cF that indicates the number of
clients that have previously uploaded F . Client-side dedu-
plication happens only if cF ≥ tF . Otherwise, the server
does a server-side deduplication.

In Section 8, we survey the state-of-the-art of deduplica-
tion with encrypted data.

2.2 Hash Collisions
A hash function H: Φ → {0, 1}n is a deterministic func-

tion that maps a binary string in Φ of arbitrary length to
a binary string h of fixed length n. The term cryptographic
hash function is used to denote that a hash function has ran-
dom outputs, being one-way and infeasible to find collisions.
We model the hash function H as a random oracle1.

A cryptographic hash function with a long output is colli-
sion resistant, whereas a hash function with a short output
has many collisions. As we will see in Section 4 and 5, we use
a short hash function SH to improve efficiency and privacy.

2.3 Additively Homomorphic Encryption
A public key encryption scheme is additively homomor-

phic if given two ciphertexts c1 = Enc(pk,m1; r1) and c2 =
Enc(pk,m2; r2), it is possible to efficiently compute Enc(pk,m1+
m2; r) with a new random value r (which depends on r1 and
r2 but cannot be determined by anyone who knows only r1
or r2), even without knowledge of the corresponding private
key. Examples of such schemes are Paillier’s encryption [24],
and lifted ElGamal encryption [16] where plaintexts are en-
coded in the exponent. The Lifted ElGamal Encryption is
described as follows:

• Gen(1λ) returns a generator g of a cyclic group G of
order p, and an integer h = gx where x is a random
value in Zp. The tuple (G, p, g, h) is the public key pk
and (G, p, g, x) is the private key sk;

• Enc(pk,m) chooses a random value y in Zp and re-
turns the ciphertext c = (c1, c2) where c1 = gy and
c2 = gm · hy;

• Dec(sk, c) returns c2
cx1

= gm·hy
gxy

= gm. Note that, in

general, calculating the discrete logarithm of gm is
hard, but knowing gm is enough in our application.

We use E()/D() to denote symmetric encryption/decryption,
and use Enc()/Dec() to denote additively homomorphic en-
cryption/decryption. We abuse the notation and use Enc(pk,m)
to denote Enc(pk,m; r) where r is chosen uniformly at ran-
dom. In addition, we use ⊕ and 	 to denote homomorphic
addition and subtraction respectively.

2.4 Password Authenticated Key Exchange
Password-based protocols are commonly used for user au-

thentication. However, such protocols are vulnerable to of-
fline brute-force attacks (also referred to as dictionary at-
tacks) since users tend to choose passwords with relatively

1Our deduplication scheme (see Section 5) will be based on
a PAKE protocol (see Section 2.4) that uses the random
oracle model. Therefore we choose this model for all our
analyses.



Inputs:

• Alice’s input is a password pwa;

• Bob’s input is a password pwb.

Outputs:

• Alice’s output is ka;

• Bob’s output is kb.

where if pwa = pwb then ka = kb, and if pwa 6= pwb
then Bob (resp. Alice) cannot distinguish ka (resp. kb)
from a random string of the same length.

Figure 1: The ideal functionality Fpake for password
authenticated key exchange.

low entropy that are hence guessable. Bellovin and Merritt
[7] were the first to propose a password authenticated key
exchange (PAKE) protocol, in which an adversary making
a password guess cannot verify the guess without an online
attempt to authenticate itself with that password. The pro-
tocol is based on using the password as a symmetric key to
encrypt the messages of a standard key exchange protocol
(e.g., Diffie-Hellman [12]), so that two parties with the same
password successfully generate a common session key with-
out revealing their passwords. If the passwords are different
then neither party can learn anything about the key out-
put by the other party (namely, cannot distinguish that key
from a random key).

Following this seminal work, many protocols were pro-
posed to improve PAKE in several aspects, e.g., achiev-
ing provably security [6, 8], weakening the assumption (i.e.,
working in standard model without random oracles) [18, 3],
achieving a stronger proof model [11, 10] and improving the
round efficiency [21, 6, 22].

The ideal functionality of PAKE, Fpake, is shown in Fig-
ure 1. We use it as a building block, and require the following
properties in addition to the ideal functionality:

• Implicit key exchange: At the end of the protocol, nei-
ther party learns if the passwords matched or not. (In
fact, many PAKE protocols were designed to be ex-
plicit so that parties can learn this information.)

• Single round: The protocol must be single-round so
that it can be easily facilitated by the storage server.

• Concurrent executions: The protocol must allow mul-
tiple PAKE instances to run in parallel. There are
two common security notions for such PAKE protocols.
One stronger notion is “UC-secure PAKE” [11], which
guarantees security for composition with arbitrary pro-
tocols. The other notion is “concurrent PAKE”, de-
fined by [6, 8], where each party is able to concurrently
run many invocations of the protocol. Implementa-
tions of this notion are much more efficient than im-
plementations of UC-secure PAKE. We therefore use
a concurrent PAKE protocol in our work.

Our deduplication scheme (see Section 5) uses the SPAKE2
protocol of Abdalla and Pointcheval [1], which is described
in Figure 2. This protocol is secure in the concurrent setting
and random oracle model. It requires each party to compute

Inputs:

• Alice’s input is a password pwa;

• There are n parties P1, . . . , Pn, with passwords
pw1, . . . , pwn, respectively.

Outputs:

• Alice’s output is ka,1, . . . , ka,n;

• Pi’s output is kb,i.

where ∀i ∈ [1, n] if pwa = pwi then ka,i = kb,i,
and otherwise Pi (resp. Alice) cannot distinguish ka,i
(resp. kb,i) from a random string of the same length.

Figure 3: The ideal functionality Fsame−input−pake.

only three exponentiations, and send just a single group ele-
ment to the other party. Theorem 5.1 in [1] states that this
protocol is secure assuming that the computational Diffie-
Hellman problem is hard in the group used by the protocol.
Same-Input-PAKE. In our deduplication protocol, one
client (Alice) runs multiple PAKE instances with other clients.
The protocol must ensure that the client uses the same input
in all these PAKE instances. We define this requirement in
the functionality of same-input-PAKE described in Figure 3.

We list three possible methods for implementing the same-
input-PAKE functionality: (1) The protocol can be based
on the SPAKE2 protocol, where Alice uses the same first
message X∗ in her interactions with all clients, thus using
the same input in all these instances.2 We do not know
how to prove security for this variant of PAKE, and leave
it as a heuristic solution. (2) Alice can run independent
SPAKE2 instances, with a different first message in each
instance, and in addition prove in zero-knowledge that her
inputs to all instances are identical. The proof can be based
on standard sigma protocols for Diffie-Hellman tuples and
the Fiat-Shamir heuristic (see, e.g. [20], Chap. 7), and re-
quires only one additional exponentiation from Alice and
two exponentiations from each other party. (3) The pro-
tocol can use generic protocols for non-interactive secure
computation (NISC) [2]. These protocols are single round
and secure against malicious adversaries. A variant called
multi-sender NISC [2], has one party sending the first mes-
sage of the protocol (committing to its input) and then has
multiple other parties independently answering this message
with messages encoding their input. The drawback of this
approach in terms of performance is that the protocol re-
quires an oblivious transfer for each input bit of Alice, and
is therefore less efficient than protocols based on SPAKE2
or similar specific PAKE protocols.

3. PROBLEM STATEMENT

3.1 General Setting
The generic setting for cloud storage systems consists of

a storage server (S) and a set of clients (Cs) who store their

2This change is similar to the transformation from the (in-
teractive) Diffie-Hellman key exchange protocol to the (non-
interactive) ElGamal encryption: The latter can be consid-
ered as being generated from Diffie-Hellman key exchange,
where Alice’s public key is her first message.



Public information: A finite cyclic group G of prime order p generated by an element g. Public elements Mu ∈ G associated
with user u. A hash function H modeled as a random oracle.
Secret information: User u has a password pwu.
The protocol is run between Alice and Bob:

1. Each side performs the following computation:

• Alice chooses x ∈R Zp and computes X = gx. She defines X∗ = X · (MA)pwA .

• Bob chooses y ∈R Zp and computes Y = gy. He defines Y ∗ = Y · (MB)pwB .

2. Alice sends X∗ to Bob. Bob sends Y ∗ to Alice.

3. Each side computes the shared key:

• Alice computes KA = (Y ∗/(MB)pwA)x. She then computes her output as SKA = H(A,B,X∗, Y ∗, pwA,KA).

• Bob computes KB = (X∗/(MA)pwB )y. He then computes his output as SKB = H(A,B,X∗, Y ∗, pwB ,KB).

Figure 2: The SPAKE2 protocol of Abdalla and Pointcheval [1].

files on S. Cs never communicate directly, but exchange mes-
sages with S, and S processes the messages and/or forwards
them as needed. Additional independent servers (ISs) can
be introduced to assist deduplication [4, 28, 26]. But they
are unrealistic in commercial settings3 and can be bottle-
necks for both security and performance. We do not require
any ISs to take part in our scheme.

We assume that the parties communicate through secure
channels, so that an adversary (A) cannot eavesdrop and/or
tamper with any channel.

We introduce new notations as needed. A summary of
notations appears in Appendix A.

3.2 Security Model
Ideal Functionality. We define the ideal functionality
Fdedup of deduplicating encrypted data in Figure 4. There
are three types of participants: the storage server S, the
uploader C attempting to upload a file and existing clients
{Ci} who have already uploaded a file. A protocol imple-
menting Fdedup is secure if it implements Fdedup. Specifi-
cally, the protocol leaks no information about Cs’ files and
keys, and only S knows whether deduplication happens or
not. Furthermore, we require the protocol to be secure in
the malicious model [17] where participants can behave ar-
bitrarily (are allowed to refuse to participate in the protocol,
substitute their inputs with other values, and abort the pro-
tocol prematurely).
Threat Model. An adversary A might compromise C, S,
any subset of {Ci}, or any collusion of these parties. The
security of a single upload procedure is captured by requir-
ing that the protocol implements Fdedup according to the
ideal/real model security definitions. However, additional
attacks are possible when considering the long-term opera-
tion of the system:

• Online brute-force attack by a compromised active up-
loader: as we described in Section 2.1, for a predictable
file, an uploader can construct all candidate files, up-
load them and observe which one causes deduplication;

• Offline brute-force attack by a compromised passive S:
if S gets a deterministic representation (e.g., crypto-

3It is difficult to find business justification for an indepen-
dent party to run an IS solely for improving privacy in cloud
storage services.

Inputs:

• The uploader C has input F ;

• Each existing client Ci has inputs Fi and kFi ;

• S’s input is empty.

Outputs:

• C gets an encryption key kF for F . If F is iden-
tical to an existing file Fi then kF = kFi . Oth-
erwise kF is random;

• Each Ci’s output is empty;

• S gets the ciphertext E(kF , F ). If there is a
ciphertext E(kFj , Fj) that is equal to E(kF , F )
in its storage, it learns j as well. Otherwise, S
learns that F is not in the storage.

Figure 4: The ideal functionality Fdedup of dedupli-
cating encrypted data.

graphic hash or convergent encryption) of a predictable
file, it can construct all candidate files and verify them
offline;

• Online brute-force attack by a compromised active S:
S can also masquerade as Cs running the protocol for
every “guess” and checking if deduplication occurs.

Other than the brute-force attacks, a compromised S can
easily detect whether a certain file is in the storage by run-
ning the deduplication protocol once. We claim that no
known deduplication scheme can prevent this attack, as S
always knows that deduplication happens. This attack is
not included in our threat model.

3.3 Design Goals
Security goals. We define the following security goals for
our scheme:

S1 Realize Fdedup in malicious model;

S2 Prevent online brute-force attacks by compromised ac-
tive uploaders;



S3 Prevent offline brute-force attacks by compromised pas-
sive S;

S4 Prevent online brute-force attacks by compromised ac-
tive S (masquerading as multiple Cs).

Functional goals. In addition, the protocol should also
meet certain functional goals:

F1 Maximize deduplication effectiveness (exceed realistic
expectations, as discussed in Section 2.1);

F2 Minimize computational and communication overhead
(i.e., the computation/communication costs should be
comparable to storage systems without deduplication).

4. OVERVIEW OF THE SOLUTION
Overview. We first motivate salient design decisions in our
scheme before describing the details in Section 5.

When an uploader C wants to upload a file F to S, we need
to address two problems: (a) determining if S already has
an encrypted copy of F in its storage and (b) if so, securely
arranging to have the encryption key transferred to C from
some Ci who uploaded the original encrypted copy of F .

In traditional client-side deduplication, when C wants to
upload F to S, it first sends a cryptographic hash h of F to S
so that it can check the existence of F in S’s storage. Näıvely
adapting this approach to the case of encrypted storage is
insecure since a compromised S can easily mount an offline
brute-force attack on the hash h if F is predictable. There-
fore, instead of h, we let C send a short hash sh = SH(F ).
Due to the high collision rate of SH(), S cannot use sh to
reliably guess the content of F offline.

Now, suppose that another Ci previously uploaded E(kFi , Fi)
using kFi as the symmetric encryption key for Fi and that
sh = shi. Our protocol needs to determine if this happened
because F = Fi and, in that case, arrange to have kFi se-
curely transferred from Ci to C. We do this by having C and
Ci engage in an oblivious key sharing protocol which allows
C to receive kFi iff F = Fi, and a random key otherwise. We
say that Ci plays the role of a checker in this protocol.

The oblivious key sharing protocol could be implemented
using generic solutions for secure two-party computation,
such as versions of Yao’s protocol [31], which express the
desired functionality as a boolean circuit. Protocols of this
type have been demonstrated to be very efficient, even with
security against malicious adversaries. In our setting the cir-
cuit representation is actually quite compact, but the prob-
lem in using this approach is that the inputs of the parties
are relatively long (say, 288 bits long, comprising of a full-
length hash value and a key), and known protocols require
an invocation of oblivious transfer, namely of public-key op-
erations, for each input bit. There are known solutions for
oblivious transfer extension, which use a preprocessing step
to reduce the online computation time of oblivious transfer.
However, in our setting the secure computation is run be-
tween two Cs that do not have any pre-existing relationship,
and therefore preprocessing cannot be computed before the
protocol is run.

Our solution for an efficient oblivious key sharing is having
C and Ci run a PAKE protocol, using the hash values of their
files, namely h and hi, as their respective “passwords”. The
protocol results in Ci getting ki and C getting k′i, which are
equal if h = hi and are independent otherwise. The next
step of the protocol uses these keys to deliver a key kF to C,

which is equal to kFi iff ki = k′i. C uses this key to encrypt
its file, and S can deduplicate that file if the ciphertext is
equal to the one uploaded by Ci. Several additional issues
need to be solved:

1. How to prevent uploaders from learning about stored
files? Our protocol supports client-side deduplication,
and as such informs C whether deduplication takes
place. In order to solve the problem, we use the ran-
domized threshold strategy of [19] (see Section 5.1).

2. How to prevent a compromised S from mounting an
online brute-force attack where it initiates many inter-
actions with C/Ci to identify F/Fi. Each interaction
essentially enables a single guess about the content of
the target file. Clients therefore use a per-file rate
limiting strategy to prevent such attacks. Specifically,
they set a bound on the maximum number of PAKE
protocols they would service as a checker or an up-
loader for each file. (See Section 5.2.) Our simulations
with realistic datasets in Section 6 show that this rate
limiting does not affect the deduplication effectiveness.

3. What if there aren’t enough checkers? If S has a large
number of clients, it is likely to find enough online
checkers who have uploaded files with the required
short hash. If there are not enough checkers, we can
let the uploader run PAKE with the currently avail-
able checkers and with additional dummy checkers to
hide the number of available checkers (See Section 5.3).
Again, our experiments in Section 6 show that this
does not affect the deduplication effectiveness (since
the scheme is likely to find checkers for popular files).

Relaxing Fdedup. The protocol we described implements
the Fdedup functionality of Figure 4 with the following re-
laxations: (1) S learns a short hash of the uploaded file F
(in our simulations we set the short hash to be 13 bits long).
(2) Fdedup is not applied between the uploader and all ex-
isting clients, but rather between the uploader and clients
which have uploaded files with the same short hash as F .
Therefore these clients learn that a file with the same short
hash is being uploaded.

We observe that in a large-scale system a short hash matches
many files, and uploads of files with any specific short hash
happen constantly. Therefore these relaxations leak limited
information about the uploaded files. For example, since
the short hash is random and short (and therefore matches
many uploaded files), the rate with which a client who up-
loaded a file is asked to participate in the protocol is rather
independent of whether the same file is uploaded again.

5. DEDUPLICATION PROTOCOL
In this section we describe our deduplication protocol in

detail. The data structure maintained by S is shown in
Figure 5. Cs who want to upload a file also upload the
corresponding short hash sh. Since different files may have
the same short hash, a short hash sh is associated with the
list of different encrypted files whose plaintext maps to sh.
S also keeps track of clients (C1, C2, . . .) who have uploaded
the same encrypted file.

Figure 6 shows the basic deduplication protocol. When Ci
stores the E(H1(kFi), Fi) at S, it also stores the short hash
shi of Fi. (Step 0). Note that kFi is a full-length element in



0. For each previously uploaded encrypted file E(H1(kFi), Fi),
a S also stores the corresponding short hash shi (which is

SH(Fi)).

1. Before uploading a file F , the uploader C calculates both the cryptographic hash h (which is H2(F )) and the short
hash sh (which is SH(F )), and sends sh to S.

2. S finds the checkers {Ci} who have uploaded files {Fi} with the same short hash sh. Then it asks C to run the
same-input-PAKE protocol with {Ci}b. C’s input is h and Ci’s input is hi.

3. After the invocation of the same-input-PAKE protocol, each Ci gets a session key ki and C gets a set of session keys
{k′i} corresponding to the different Ci’s.c

4. Each Ci first uses a pseudorandom function to extend the length of ki and then splits the result to kiL||kiRd. It sends
kiL and (kFi + kiR) to S.e

5. For each k′i, C extends and splits it to k′iL||k′iR in the same way as Ci does. Then it sends S its public key pk, {k′iL}
and {Enc(pk, k′iR + r)} where r is a random element chosen by C from the plaintext group.

6. After receiving these messages from {Ci} and C, S checks if there is an index j such that kjL = k′jL.

(a) If so, S uses the homomorphic properties of the encryption to compute e = Enc(pk, kFj +kjR)	Enc(pk, k′jR+r) =
Enc(pk, kFj − r), and sends e back to C;

(b) Otherwise it sends e = Enc(pk, r′), where r′ is a random element chosen by S from the plaintext group.

7. C calculates kF = Dec(sk, e) + r, and sends E(H1(kF ), F ) to S.

8. S deletes E(H1(kF ), F ) if it is equal to a stored E(H1(kFj ), Fj), and then allows C to access E(H1(kFj ), Fj). Otherwise,
S stores E(H1(kF ), F ).

a kFi is a full-length element in the plaintext group of the additively homomorphic encryption scheme used by the protocol.
We use a cryptographic hash function H1 to hash down it to the length of the keys used by E().
bAll communication is run via S. There is no direct interaction between C and any Ci. C’s input to the same-input-PAKE
protocol was sent together with sh in Step 1.
cWith overwhelming probability, ki = k′i iff Fi = F .
d After extension, the result must be long enough to be divided into kiL||kiR that satisfies: (1) kiL is long enough so that
the probability of two random instances of this key having the same value is small (namely, |kiL| >> logN where N is
the number of clients participating in the protocol); (2) kiR is a full-length element in the plaintext group of the additively
homomorphic encryption scheme.
eAddition is done in the plaintext group of the additively homomorphic encryption scheme.

Figure 6: The deduplication protocol.

root

sh1

E(kF1 , F1)E(kF2 , F2) ...

C1 C2 ...

sh2
...

Figure 5: S’s record structure.

the plaintext group of the additively homomorphic encryp-
tion scheme and we use a cryptographic hash function H1 to
hash down it to the length of the keys used by E(). When an
uploader C wishes to upload a file F , it sends the short hash
sh of this file to S (Step 1). S identifies the checkers {Ci}

who have uploaded files with the same short hash (Step 2),
and runs the following protocol with each of them.

Consider a specific Ci who has uploaded Fi. C runs a
PAKE protocol with Ci, where their inputs are the crypto-
graphic hash values of F and Fi respectively, and their out-
puts are keys k′i and ki respectively (Step 3). The protocol
must ensure that C uses the same input (hash value) in the
PAKE instances that it runs with all {Ci}. Therefore, we use
a protocol implementing the same-input-PAKE functional-
ity defined in Section 2.4. Both parties use a pseudorandom
function to extend the output of the same-input-PAKE pro-
tocol.

Each Ci sends kiL and (kFi + kiR) to S. C sends S the
set of pairs {k′iL, Enc(pk, k′iR + r)}, where r is chosen at
random, the encryption is additively homomorphic and the
private key is known to C (Steps 4-5). After receiving these
messages from all Cis, S looks for a pair i for which kiL =
k′iL. This equality happens iff Fi = F (except with negligible
probability). If S finds such a pair it sends C the value e =
Enc(pk, (kFi+kiR)−(k′iR+r)) = Enc(pk, kFi−r), computed
using the homomorphic properties. Otherwise it sends e =
Enc(pk, r′), where r′ is chosen randomly by S (Step 6). C
calculates kF = Dec(sk, e)+r, and sends E(H1(kF ), F ) to S



(Step 7). If F was already uploaded to S then E(H1(kF ), F )
is equal to the previously stored encrypted version of the file.

Note that after the PAKE protocol (in Step 3), a näıve
solution would be to just have Ci send E(ki, kFi) to C. How-
ever, this would enable a subtle attack by C to identify
whether F has been uploaded already.4 Note also in Step 5
C uses r inside the encryption (rather than sending it in the
clear) to prevent a malicious S from being able to set the
value of kF .

Implementation notes. We use the first option of im-
plementing the same-input-PAKE protocol as described in
Section 2.4. We use AES as the pseudorandom function
used in Step 3. Most importantly, in order to improve the
performance of the additively homomorphic encryption, we
implement it using lifted ElGamal encryption as described
in Section 2.3. The encryption is modulo a prime p of length
2048 bits (although encryption can also be done using ECC).
As a result, kF , kFi , kiR and k′iR are 2048 bits elements.
This requires us to apply the following modifications to the
protocol in our implementation:

• In Step 4, Ci sends g(kFi+kiR) instead of (kFi + kiR);

• In Step 5, C sends S a lifted ElGamal encryption of

k′iR + r, i.e. an ElGamal encryption of gk
′
iR+r;

• In Step 6a, Enc(pk, kFj +kjR) is a lifted encryption of

(kFj + kjR), i.e. an ElGamal encryption of g
(kFj+kjR)

;

• Similarly, in Step 6b, Enc(pk, r′) is a lifted ElGamal
encryption of r′;

• In Step 7, C calculates gkF = Dec(sk, e) · gr, where

Dec(sk, e) is g
kFj−r or gr

′
. Then, C uses H1(gkF ) as

the encryption key for F , and uses gkF as the input
when it acts as a checker. Note that C knows nothing
about kF (similarly, Ci knows nothing about kFi).

Theorem 1. The deduplication protocol in Figure 6 im-
plements Fdedup with security against malicious adversaries,
if the same-input-PAKE protocol is secure against malicious
adversaries, the additively homomorphic encryption is se-
mantically secure and the hash function H2 is modeled as a
random oracle.

Proof. (sketch) We will show that the execution of the
deduplication protocol in the real model is computation-
ally indistinguishable from the execution of Fdedup in the
ideal model. We construct a simulator that can both ac-
cess Fdedup in ideal model and obtain messages that the
corrupt parties would send in real model. The simulator
will generate a message transcript of the ideal model execu-
tion (IDEAL) that is computationally indistinguishable from
that of the real model execution (REAL). For the purpose
of the proof we assume that the same-input-PAKE protocol
is implemented as an oracle to which the parties send their
inputs and receive their outputs.

4The problem with this approach is that C learns keys ki
for multiple other Cs, and should send S information about
each key, S then tells C which key index to use (and chooses
a random index if no match is found). A corrupt C might
replace some keys with dummy values. If it is then told by
S to use an index of one of these keys then it knows that no
match was found. The protocol must therefore send back
to C a key without specifying the index to which this key
corresponds.

A corrupt uploader C: We first assume that S and Cis are
honest and construct a simulator for the uploader C. The
simulator operates as follows: it records the calls that C
makes to the hash function H2 (random oracle), and records
tuples of the form {(F j , hj , shj)}. On receiving sh from C,
it observes the call that C makes to the same-input-PAKE
protocol. If C uses in that call a value h that appears in a
tuple together with sh, the simulator invokes Fdedup with
the file F appearing in that tuple. Otherwise, it invokes
Fdedup with a random value. In either case, the simulator
will receive a key kF . (If F has been uploaded by any Cj ,
kF is the key kFj for that file, otherwise kF is random.)

The simulator also records the output set {k′i} that C re-
ceives from the same-input-PAKE protocol. On receiving a
set of pairs {(k′iL, Enc(pk, k′iR + r))} from C, it chooses a
random index l, and checks if k′lL is equal to the left part
of k′l. If so, it calculates e′ = Enc(pk, kF − r) and sends it
back to C; otherwise it sends e′ = Enc(pk, r′) where r′ is a
random value.

We now show that IDEALC = 〈{k′i}, e′〉 and REALC =
〈{k′i}, e〉 are identically distributed. (1) If F exists and C
behaves honestly, then kF = kFj and consequently e′ is equal
to e (Step 6a). (2) If F does not exist, then kF is a random
value. As a result, e′ is an encryption of a random value
like e (Step 6b). (3) If C deviates from the protocol then
the only action it can take, except for changing its input,
it to replace some elements of {k′iL, Enc(pk, k′iR + r)} that
it sends to S. We assume the size of this set is N and x
elements are replaced by C. In the real model, the execution
will change if there is an index j such that kjL = k′jL but
k′jL (and/or Enc(pk, k′jR + r)) is replaced by C. As a result,
C will get a random value even though it inputs an existing
file. The probability for this event is x

N
. In the ideal model,

the same result will be caused by the event that a replaced
element is chosen by the simulator. The probability for this
event is also x

N
. Based on (1) (2) (3), we can conclude that

IDEALC and REALC are identically distributed.
A corrupt checker Ci: We prove security with relation to

the relaxed functionality, where Ci also learns whether the
uploaded file has the same short hash as Fi. The simulator
needs to extract Ci’s inputs: Fi and kFi , but since Ci has
previously uploaded E(H1(kFi), Fi), it only needs to extract
kFi .

The simulator first observes whether sh matches the short
hash of Ci. If not, it provides a random kFi to Fdedup.
Otherwise, the simulator observes Ci’s input hi to the same-
input-PAKE protocol, its output ki, and the message (α, β)
that Ci sends to S (if Ci is honest then (α, β) is equal to
(kiL, kiR + kFi)). The simulator checks if α is equal to kiL.
If so, it extracts kFi as kFi = β−kiR and sends it to Fdedup.
Otherwise, it sends a random kFi .

To show that the simulation is accurate, observe that (1)
If Ci behaves honestly, then IDEALCi and REALCi are obvi-
ously indistinguishable. (2) If Ci deviates from the protocol,
then the only operation it can do is to send wrong values
of (α, β). If α 6= kiL then in both the real and ideal exe-
cutions kF is assigned a random value. If α = kiL then in
both the real ideal executions kF is set to be β−kiR. Based
on (1) (2), we can conclude that IDEALCi and REALCi are
identically distributed.

A corrupt server S: We prove security with relation to
the relaxed functionality. The simulator first sends a short
hash sh to S. S selects a set of clients to participate in the



same-input-PAKE protocol. Let {Ci} be the set of clients
who have uploaded to S files with the same short hash. Ci
is marked as “OK” if it is selected by S as a checker, i.e., S
has sent it a request to participate in the same-input-PAKE
protocol, and forwarded its reply to the uploader (if S is
honest then all clients in {Ci} are“OK”). The simulator then
pretends to be each selected Ci, sending S random values for
(kiL, kiR + kFi).

Next, the simulator invokes Fdedup. It sets a bit b = 1
if it receives E(H1(kF ), F ) and an index j from Fdedup (in
the case of a file match); otherwise, it sets b = 0. If b = 1
but client Cj is not “OK”, the simulator changes b to 0. It
then pretends to be the uploader C. If b = 1, it sets the
message with respect to Cj to be (kjL, Enc(pk, xj)) (where
kjL is the same as before and xj is random), and random
values for the other pairs. Otherwise, it sets random values
for all pairs.

The simulator should now receive an encryption Enc(y)

from S. If b = 0, it sends F̂ = E(H1(kF ), F ) (that was
received from Fdedup) to S. If b = 1, it decrypts Enc(y)

and checks if y = (kjR + kFj ) − xj . If so, it sends F̂ =
E(H1(kF ), F ) and the index j to S. Otherwise, it sends to

S a random string F̂ of the same length with E(H1(kF ), F ).
We now show that IDEALS = 〈 sh, {(kiL, kiR + kFi},
{(k′iL, Enc(pk, xj))}, F̂ 〉 and REALS = 〈 sh, {(kiL, kiR +
kFi)}, {(k′iL, Enc(pk, k′iR + ri))}, E(H1(kF ), F ) 〉 are identi-
cally distributed. (1) Since {ki, k′i} are random keys output
by the PAKE protocol, S cannot distinguish {(kiL, kiR+kFi}
and {(k′iL, Enc(pk, xj))} in the ideal model from those in
real model. (2) If F exists and S behaves honestly, it will
get the same E(H1(kF ), F ) and j in the real model and the
ideal model. (3) If F does not exist, then kF is a random
key in the real model, and consequently S cannot distinguish
E(H1(kF ), F ) from a random string. This also happens in
the ideal model: what the simulator gets from Fdedup is an
encryption of F under a random key. (4) If S deviates from
the protocol, it can choose to select a subset of the {Ci}
and/or send a wrong value of Enc(y). Assume that the size
of {Ci} is M and that z clients are not chosen by S. Dedu-
plication will fail if the owner of F is not chosen by S, which
happens in both the real and the ideal model with the same
probability ( z

M
). (5) If S sends a wrong value of Enc(y), C

will obtain a random key in the real model, and it will send
Enc(kF , F ) that is indistinguishable from a random string

(like F̂ in the ideal model). Based on (1)-(5) we can conclude
that IDEALS and REALS are identically distributed.

A collusion between a corrupt uploader and a corrupt server:
The simulator in this case can invoke Fdedup once, pretend-
ing to be both C and S, and providing C’s input F (S has
no input to Fdedup). It then receives the outputs of both
parties, namely the key kF , E(H1(kF ), F ), and an index j
(if there is a file match).

The simulation is similar to the case of a corrupted up-
loader, except that S might choose a subset of {Ci} to run
the same-input-PAKE protocol. Therefore, the simulation
begins as the proof of a corrupt C and the simulator extracts
C’s input F from the random oracle. Then it invokes Fdedup
with input F . If a match was found, the simulator observes
the operation of S and checks if Cj is “OK” (as was defined
in the proof for a corrupt S). If so, it uses (F, kF ) as Cj ’s
input and random values for other checkers’ inputs.

A collusion between corrupt Cis and a corrupt S: The
simulation is similar to the case of a corrupted S, except
that the simulator does not need to pretend to be checkers
sending messages to S. Instead, it can get these messages
from the same-input-PAKE protocol, which will be invoked
by each corrupt checker. The rest of the simulation is exactly
the same as in the case of a corrupt S.

Based on Theorem 1, we conclude that compromised par-
ties cannot run the computation in a way that is different
than is defined by (relaxed) Fdedup. This makes our scheme
satisfy the requirement S1 and S3. We now discuss several
extensions to the basic protocol to account for the types of
issues we alluded to in Section 4.

5.1 Randomized Threshold
The protocol in Figure 6 is for server-side deduplication.

To save bandwidth, we transform it to support client-side
deduplication. In order to satisfy requirement S2 and pro-
tect against a corrupt uploader, we use the randomized thresh-
old approach from Harnik et al. [19]: for each file F , S main-
tains a random threshold tF (tF ≥ 2), and a counter cF that
indicates the number of Cs that have previously uploaded F .

In step 6 of the deduplication protocol,

• In the case of a match (6a), if cFi < tFi , S tells C to
upload E(kF , F ) as if no match occurred (but S does
not store this copy). Otherwise, S informs C that the
file is duplicated and there is no need to upload it;

• In the case of a no match (6b), S asks C to upload
E(kF , F ).

5.2 Rate Limiting
A compromised active S can apply online brute-force at-

tacks against C or Ci. Specifically, if Fi is predictable, S can
pretend to be an uploader sending PAKE requests to Ci to
guess Fi. S can also pretend to be a checker sending PAKE
responses to C to guess F . Therefore both uploaders and
checkers should limit the number of PAKE runs for each file
in their respective roles. This per-file rate limiting strategy
can both improve security (see below) and reduce overhead
(namely the number of PAKE runs) without damaging the
deduplication effectiveness (as shown in Section 6).

We use RLc to denote the rate limit for checkers, i.e., each
Ci can process at most RLc PAKE requests for Fi and will
ignore further requests. Similarly, RLu is the rate limit for
uploaders, i.e., a C will send at most RLu PAKE requests
to upload F . Suppose that n is the length of the short hash
and m is the min-entropy of a predictable file F , and x is
the number of clients who potentially hold F . Our scheme
can prevent online brute-force attacks from S if

2m > 2n · x · (RLu +RLc) (1)

because S can run PAKE with all owners of F to confirm its
guesses. So the uncertainty in a guessable file (2m−n) must
be larger than x times per-file rate limit (RLu +RLc).

As a comparison, DupLESS [4] uses a per-client rate limit-
ing strategy to prevent such online brute-force attacks from
any single C. The rate limit must still support a client C
that needs to legitimately upload a large number of files
within a brief time interval (such as backing up a local file
system). Therefore the authors of DupLESS chose a large
bound (825 000) for the total number of requests a single C



can make during one week. The condition for DupLESS to
resist online brute-force attack by a single C is

2m > y ·RL (2)

where y is the number of compromised clients and RL is the
rate limit (825 000/week) for each client. Recall also, that a
compromised active S can masquerade as any number of Cs
that is needed, and therefore y could be as large as possible.
Consequently, DupLESS cannot fully deal with an online-
brute force attack by a compromised S.

To prevent a compromised active S from masquerading
multiple Cs, the authors of [28] introduce another indepen-
dent party called identity server. When Cs first join the
system, the identity server is responsible for verifying their
identity and issuing credentials to them. However, it is hard
to deploy an independent identity server in a real world set-
ting. As far as we know, our scheme is the first deduplication
protocol that can prevent online brute-force attacks (satis-
fying requirement S4) without the aid of an identity server.

5.3 Checker Selection
If an uploader is required to run only a few (or none)

PAKE instances, due to no short hash matches, it will learn
that it is less likely that its file is already in S’s storage.
To avoid this leakage of information, S fixes the number
of PAKE runs (i.e., RLu) for an upload request to be con-
stant. For a requested short hash sh, checkers are selected
according to the following procedure:

1. S selects the most popular file among the files whose
short hash is sh and which were not already selected
with respect for the current upload (popularity is mea-
sured in terms of the number of Cs who own the file).

2. S selects a checker for that file in ascending order of
engagement among the Cs that are currently online
(in terms of the number of PAKE requests they have
serviced so far for that specific file).

3. If the number of selected files is less than RLu, repeat
Step 1-3.

4. If the total number of selected files for which there are
online clients is smaller than RLu, S uses additional
dummy files and clients, until reaching RLu files.

Then, S lets the uploader run PAKE instances with the
selected RLu clients (S itself runs as dummy clients).

6. SIMULATION
Our use of rate limiting can impact deduplication effec-

tiveness. In this section, we use realistic simulations to study
the effect of various parameter choices in our protocol on
deduplication effectiveness.
Datasets. We want to consider two types of storage envi-
ronments. The first consists predominantly of media files,
such as audio and video files from many users. We did not
have access to such a dataset. Instead, we use a dataset
comprising of Android application prevalence data to repre-
sent an environment with media files. This is based on the
assumption that the popularity of Android applications is
likely to be similar to that of media files: both are created
and published by a small number of authors (artists/developers),
made available on online stores or other distribution sites,

and are acquired by consumers either for free or for a fee.
We call this the media dataset. We use a publicly available
dataset5. It consists of data collected from 77 782 Android
devices. For each device, the dataset identifies the set of
(anonymized) application identifiers found on that device.
We treat each application identifier as a “file” and consider
the presence of an app on a device as an “upload request”
to add the corresponding “file” to the storage. This dataset
has 7 396 235 “upload requests” in total, of which 178 396
are for distinct files.

The second is the type of storage environments that are
found in enterprise backup systems. We use data gathered
by the Debian Popularity Contest6 to approximate such an
environment. The popularity-contest package on a Debian
device regularly reports the list of packages installed on that
device. The resulting data consists of a list of debian pack-
ages along with the number of devices which reported that
package. We took a snapshot of this data on Nov 27, 2014. It
consists of data collected from 175 903 Debian users. From
this data we generated our enterprise dataset : it has 217
927 332 “upload requests” (debian package installations) of
which 143 949 are for distinict files (unique packages).

Figure 7 shows the file popularity distribution (i.e., the
number of upload requests for each file) in logarithmic scale
for both datasets. We map each dataset to a stream of
upload requests by generating the requests in random order,
where a file that has x copies generates x upload requests at
random time intervals.
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Figure 7: File popularity in both datasets.

Parameters. To facilitate comparison with DupLESS [4],
we set the min-entropy to log(825000). We then set the
length of the short hash n = 13, and (RLu + RLc) = 100
(i.e., a C will run PAKE at most 100 times for a certain file
as both uploader and checker), so that we achieve the bound
in inequality 2 in Section 5.2: A cannot uniquely identify a
file within the rate limit. We use these parameters in our
simulations.

5https://se-sy.org/projects/malware/
6http://popcon.debian.org

https://se-sy.org/projects/malware/
http://popcon.debian.org


We measure overhead as the average number of PAKE
runs7, which can be calculated as:

µ =
Total number of PAKE runs

Total number of upload requests
(3)

We measure deduplication effectiveness using the deduplica-
tion percentage (Section 2.1). We assume that all files are
of equal size so that the deduplication percentage ρ is:

ρ = (1− Number of all files in storage

Total number of upload requests
) · 100% (4)

Rate limiting. We first assume that all Cs are online during
the simulation, and study the impact of rate limits. Hav-
ing selected RLu+RLc to be 100, we now see how selecting
specific values for RLu and RLc affects the average number
of PAKE runs and the deduplication effectiveness. Figure 8
shows the average number of PAKE runs resulting from dif-
ferent values of RLu (and hence RLc) in both datasets. Both
values are very low, in the range 1.3-1.75. We also ran the
simulation without any rate limits, which led to an average
of 26.88 PAKE runs in the media dataset and 13.19 PAKE
runs in the enterprise dataset. These numbers are signifi-
cantly larger than the results with rate limiting. Figure 9
shows ρ resulting from different rate limit choices in both
datasets. We see that setting RLu = 30 (and hence set-
ting RLc = 70), maximizes ρ to be (97.58% and 99.9332%,
respectively. These values are extremely close to the per-
fect deduplication percentages in both datasets (97.59% and
99.9339% respectively). A major conclusion is that rate lim-
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Figure 8: Average number of PAKE runs VS. rate
limits.

iting can improve security and reduce overhead without neg-
atively impacting deduplication effectiveness.
Offline rate. The possibility of some Cs being offline may
adversely impact deduplication effectiveness. To estimate
this impact, we assign an offline rate to each C as its prob-
ability to be offline during one upload request. Using the

7We do not include fake PAKE runs by S (Section 5.3) since
we are interested in estimating the average number of real
PAKE runs.
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Figure 9: Dedup. percentage VS. rate limits.
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Figure 10: Dedup. percentage VS. offline rates.

chosen rate limits (RLu = 30 and RLc = 70), we mea-
sured ρ by varying the offline rate. The results for both
datasets are shown in Figure 10. It shows that ρ is still rea-
sonably high if the offline rate is lower than 70%. But drops
quickly beyond that. We can solve this by introducing de-
ferred check. Specifically, we split RLu to RLu1 + RLu2. S
will let the uploader run RLu1 times PAKE before upload-
ing, and later ask it to run further RLu2 PAKE instances
when some Cs who are previously offline, come online. If
S finds a match after uploading, it checks the counter and
random threshold for the matched file. If the counter has
exceeded the threshold, S deletes the previously uploaded
file and asks the uploader to change the encryption key to
match the detected duplicate. The only issue for this so-
lution is that the uploader needs to keep the randomness
of all PAKE runs of offline check. Otherwise, S keeps the
messages for that PAKE instance until the threshold being
crossed. Figure 11 shows that this method can significantly
improve the deduplication effectiveness when offline rate is
high.
Evolution of deduplication effectiveness. Figure 12
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shows that the ρ achieved by our scheme increases as more
files are added to the storage, and it meets the realistic ex-
pectation (95%) quickly: after receiving 304 160 (4%) upload
requests in the media dataset, and 121 110 (0.05%) upload
requests in the enterprise dataset. Given that the dedupli-
cation effectiveness of our scheme is close to that of perfect
deduplication and exceeds typical expected values, we can
conclude that it satisfies functionality goal F1. Using rate
limits implies that ρ increases more slowly in our scheme
than in perfect deduplication. Figure 13 shows that this dif-
ference stablizes as the number of upload requests increases.

Figure 16 (in Appendix B) shows the second order dif-
ference in deduplication effectiveness compared to perfect
deduplication. The second order difference vanishes as more
files are uploaded to the storage.
Explanation. The fact that our scheme achieves close
to perfect deduplication even in the presence of rate lim-
its may appear counter-intuitive at first glance. But this

phenomenon can be explained by Zipf’s law [32]. As seen
from Figure 7, beyond the initial plateau, the file popularity
distribution is a straight line and thus follows a power law
distribution (also known as Zipf distribution). The initial
plateau does not impact our system. This is evident when
we account for the use of short hash function. Figure 14
shows the file popularity in both datasets for some specific,
but randomly selected, short hash values (of length 10).
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Figure 14: File popularity for six short hashes.

Even though we use rate limits, S always selects files based
on descending order of popularity (step 1 in Section 5.3).
Since file popularity follows the Zipf distribution, selecting
files based on popularity ensures that popular uploaded files
have a much higher likelihood of being selected and thus
deduplicated. There are other examples of using the Zipf
distribution to design surprisingly efficient systems. Web
proxy caching proxies are such an example [9]. Breslau et al.
observe that the distribution of page requests follows Zipf’s
law. Consequently, proxies use their limited storage to only
cache popular files but still achieve significant bandwidth
savings. The frequency of a request for themth most popular

page can be calculated as 1/mα∑N
i=1(1/i

α)
, where N is the size of

the cache, and α is the value of the exponent characterising
the distribution[9]. As a result, most of the requested pages
can be found in the cache. Similarly, in our case, most of
the upload requests for files that have already been uploaded
can find a matched file within the rate limit.

7. PERFORMANCE EVALUATION
Our deduplication scheme incurs some extra computation

and communication due to the number of PAKE runs. In
this section, we demonstrate that the overhead is negligible
for large files by implementing a proof-of-concept prototype.
Prototype. Our prototype consists of two parts: (1) a
server program which simulates S and (2) a client program
which simulates C (performing file uploading/downloading,
encryption/decryption, and assisting S in deduplication).
We used Node.js8 for the implementation of both parties,

8http://nodejs.org

http://nodejs.org


Number of Upload Requests # 106
0 1 2 3 4 5 6 7 8

D
e

v
ia

ti
o

n
 i
n

 D
e

d
u

p
lic

a
ti
o

n
 P

e
rc

e
n

ta
g

e
 %

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Deviation from perfect deduplication in media dataset

Number of Upload Requests # 108
0 0.5 1 1.5 2 2.5

D
e
v
ia

ti
o
n
 i
n
 D

e
d
u
p
lic

a
ti
o
n
 P

e
rc

e
n
ta

g
e
 %

# 10-3

0

1

2

3

4

5

6

7

8

9

Deviation from perfect deduplication in enterprise dataset

Figure 13: Deviation from perfect deduplication VS. Number of upload requests.

and Redis9 for the implementation of S’s data structure.
We used SHA-256 as the cryptographic hash function and
AES with 256-bit keys as the symmetric encryption scheme,
both of which are provided by the Crypto module in Node.js.
We used the GNU multiple precision arithmetic library10 to
implement the public key operations. The additively homo-
morphic encryption scheme used in the protocol is ElGamal
encryption where the plaintext is encoded in the exponent,
see Section 5.
Test setting and methodology. We ran the server-side
program on a remote server (Intel Xeon with 4 2.66 GHz
cores) and the client-side program on an Intel Core i7 ma-
chine with 4 2.2 GHz cores. We measured the running time
using the Date module in Javascript and measured the band-
width usage using TCPdump..

As the downloading phase in our protocol is simply down-
loading an encrypted file, we only consider the uploading
phase. We set the length of short hash to be 13, and set
RLu = 30. We considered the case where the uploader C
runs PAKE with 30 checkers Ci. So we simulate the upload-
ing phase in our protocol as:

1. C sends the short hash of the file it wants to upload to
the server S;

2. S forwards requests to 30 checkers Ci and lets them
run PAKE with C;

3. S waits for responses in all instances back from C and
{Ci};

4. S chooses one instance and sends the result to C;
5. C uses the resulting key to encrypt its file with AES

and uploads it to S.

We measured both running time and bandwidth usage
during the whole procedure above. Network delay for all
parties was included in the final results. We compare the
results to two baselines: (1) uploading without encryption

9http://redis.io
10https://gmplib.org

and (2) uploading with AES encryption. As in [4], we repeat
our experiment using files of size 22i KB for i ∈ {0, 1, ..., 8},
which provides a file size range of 1KB to 64 MB. For each
file, we upload it 100 times and calculate the mean. For files
that are larger than the computer buffer, we do loading,
encryption and uploading at the same time by pipelining
the data stream. As a result, uploading encrypted files uses
almost the same amount of time as uploading plain files.
Results. Figure 15 reports the uploading time and band-
width usage in our protocol compared to the two baselines.
For files that are smaller than 1 MB, the overhead intro-
duced by our deduplication protocol is relatively high. For
example, it takes 15 ms (2 508 bytes) to upload a 1 KB en-
crypted file, while it takes 319 ms (145 359 bytes) to upload
the same file in our protocol. However, the overhead intro-
duced by our protocol is independent of the file size (about
10 ms for each PAKE run), and becomes negligible when the
file is large enough. For files that are larger than 64 MB file,
the time overhead is below 2%, and the bandwidth overhead
is below 0.16%. So our scheme meets F2.

8. RELATED WORK
There are several types of schemes that enable deduplica-

tion with client-side encrypted data. The simplest approach
(which is used by most commercial products) is to encrypt
Cs’ files using a global key which is encoded in the client-
side software. As a result, different copies of F result in the
same ciphertext and can therefore be deduplicated. This
approach is, of course, insecure if S is untrusted.

Another approach is convergent encryption [13], which
uses H(F ) as a key to encrypt F , where H() is a publicly
known cryptographic hash function. This approach ensures
that different copies of F result in the same ciphertext. How-
ever, a compromised passive S can perform an offline brute-
force attack if F has a small (or medium) entropy. Bellare et
al. proposed message-locked encryption (MLE), which uses
a semantically secure encryption scheme but produces a de-
terministic tag [5]. So it still suffers from the same attack.

http://redis.io
https://gmplib.org
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Other solutions are based on the aid of additional inde-
pendent servers (ISs). For example, Cloudedup is a dedu-
plication system that introduces an IS for encryption and
decryption [26]. Specifically, C first encrypts each block with
convergent encryption and sends the ciphertexts to IS, who
then encrypts them again with a key only known by itself.
During file retrieval, blocks are first decrypted by IS and
sent back to C. In this scheme, a compromised active S
can easily perform an online brute-force attack by upload-
ing guessing files and see if deduplication happens.

Stanek et al. propose a scheme that only deduplicates pop-
ular files [28]. Cs encrypt their files with two layers of encryp-
tion: the inner layer is obtained through convergent encryp-
tion, and the outer layer is obtained through a semantically
secure threshold encryption scheme with the aid of an IS.
S can decrypt the outer layer of F iff the number of Cs who
have uploaded F reaches the threshold, and thus perform
a deduplication. In addition, they introduce another IS as
an identity server to prevent online brute-force attacks by
multiple compromised Cs.

Both [26] and [28] are vulnerable to offline brute-force at-
tacks by compromised ISs. To prevent this, Bellare et al.
propose DupLESS that enables Cs to generate file keys by
running an oblivious pseudorandom function (OPRF) with
IS. Specifically, in the key generation process of convergent
encryption, they introduce another secret which is provided
by IS and identical for all Cs. The OPRF enables Cs to
generate their keys without revealing their files to IS, and
without learning anything about IS’s secret. To prevent
the online brute-force attacks from compromised active S.
DupLESS uses a per-client rate limiting strategy to limit
the number of requests that a C can send to IS during each
epoch. We have identified the limitations for this strategy in
Section 5.2. In addition, if A compromises both S and IS,
it can get the secret from IS, and the scheme is reduced to
normal convergent encryption.

Duan proposes a scheme that uses the same idea as Du-
pLESS, but distributes the task of IS [14], where a C must
interact with a threshold of other Cs to generate the key.
So this scheme is only suitable for peer-to-peer paradigm:

a threshold number of Cs must be online and interact with
one another. While improving availability and security com-
pared to DupLESS, this scheme is still susceptible to online
brute-force attacks by compromised active S, and it is un-
clear how to apply any rate-limiting strategy to it.

In Table 1, we summarize the resilience of these schemes
with respect to the design goals from Section 3.3.

XXXXXXXXXSchemes

Threat Compromised
C S (pas.) S (act.) ISs S, ISs

[13], [5]
√

X X − −
[26]

√ √
X X X

[28]
√ √ √

X X
[4]

√ √
X

√
X

[14]
√ √

X − −
Our work

√ √ √
− −

Table 1: Resilience of deduplication schemes.

9. DISCUSSION
Incentives. In our scheme Cs have to run several PAKE in-
stances as both uploaders and checkers. This imposes a cost
on each C. S is the direct beneficiary of deduplication. Cs
may indirectly benefit in that effective deduplication makes
the storage system more efficient and can thus potentially
lower the cost incurred by each C. Nevertheless, it is desir-
able to have more direct incentive mechanisms to encourage
Cs to do do PAKE checks. For example, if a file uploaded
by C is found to be shared by other Cs, S could reward the
Cs owning that file by giving them small increases in their
respective storage quotas.
User involvement. A simple solution to the problem of
deduplication vs. privacy is to have the user identify sen-
sitive files. The client-side program can then use conver-
gent encryption for non-sensitive files and semantically se-
cure encryption for sensitive files. This approach has three
drawbacks: it is too burdensome for average users, it re-
veals which files are sensitive, and it foregoes deduplication
of sensitive files altogether.



Deduplication effectiveness. We can improve dedupli-
cation effectiveness by introducing additional checks. For
example, an uploader can indicate the (approximate) file
size (which will be revealed anyway) so that S can limit
the selection of checkers to those whose files are of a similar
size. Similarly, S can keep track of similarities between Cs
based on the number of files they share and use this infor-
mation while selecting checkers by prioritizing checkers who
are similar to the uploader. Nevertheless, as discussed in
Figure 12, our scheme exceeds what is considered as realistic
levels of deduplication early in the life of the storage system.
Whitehouse [30] reported that when selecting a deduplica-
tion scheme, enterprise administrators rated considerations
such as ease of deployment and of use being more important
than deduplication ratio. Therefore, we argue that the very
small sacrifice in deduplication ratio is offset by the signif-
icant advantage of ensuring user privacy without having to
use independent third party servers.
Block-level deduplication. Our scheme can be applied
for both file-level and block-level deduplication. Applying it
for block-level deduplication will incur more overhead.
Datasets. Deduplication effectiveness is highly dependent
on the dataset. Analysis using more realistic datasets can
shed more light on the efficacy of our scheme.
Realistic modeling of offline status. In our analysis of
how deduplication effectiveness is affected by the offline rate
(Figure 10), we assumed a simple model where the offline
status of clients is distributed uniformly at a specified rate.
In practice the offline status is influenced by many factors
like geography and time of day.

10. CONCLUSIONS
In this paper, we dealt with the dilemma that cloud stor-

age providers want to use deduplication to save cost, while
users want their data to be encrypted on client-side. We de-
signed a PAKE-based protocol that enables two parties to
privately compare their secrets and share the encryption key.
Based on this protocol, we developed the first single-server
scheme that enables cross-user deduplication of client-side
encrypted data.
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APPENDIX
A. NOTATION TABLE

A table of notations is shown in Table 2.

Notation Description
Entities
C Client
S Server
A Adversary
IS Independent Server

Cryptographic Notations
E() Symmetric key encryption
D() Symmetric key decryption
k Symmetric encryption/decryption key

Enc() Additively homomorphic encryption
Dec() Additively homomorphic decryption
⊕ Additively homomorphic addition
	 Additively homomorphic subtraction
H() Cryptographic hash function
h Cryptographic hash

SH() Short hash function
sh Short hash

PAKE Password Authenticated Key Exchange
Fpake Ideal functionality of PAKE
Fdedup Ideal functionality of deduplication protocol

Parameters
F File
m Entropy of a predictable file
n Length of the short hash

RLu Rate limit by uploaders
RLc Rate limit by checkers
tF Random threshold for a file
cF Counter for a file
ρ Deduplication Percentage

Table 2: Summary of notations

B. SECOND ORDER DEVIATION FROM PER-
FECT DEDUPLICATION

Figure 16 how the second order difference in deduplication
percentage (between perfect deduplication and our scheme)
evolves as more files are uploaded to the storage server. This
second order difference essentially vanishes as more files are
added to the server.
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Figure 16: Second order difference in deduplication percentage: perfect deduplication VS. Number of upload
requests. Left: Media dataset; Right: Enterprise dataset
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