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Abstract. Feistel structure is among the most popular choices for de-
signing ciphers. Recently, 3-round/5-round integral distinguishers for
Feistel structures with non-bijective/bijective round functions are pre-
sented. At EUROCRYPT 2015, Todo proposed the Division Property

to effectively construct integral distinguishers for both Feistel and SPN
structures. In this paper, firstly, it is proved that if X ⊆ F

n
2 has the

division property Dn
k , the number of elements in X is at least 2k, based

on which we can conclude that if a multi-set X has the division prop-
erty Dn

n , it is in some sense equivalent to either F
n
2 or ∅. Secondly, let

d be the algebraic degree of the round function F : Fn
2 → F

n
2 of a Feis-

tel structure. If d ≤ n− 1, the corresponding integral distinguishers are
improved as follows: there exists a 3-round integral distinguisher with
at most 2n chosen plaintexts and a 4-round integral distinguisher with
at most 22n−2 chosen plaintexts. These results can give new insights to
both the division property and Feistel structures.
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1 Introduction

Integral cryptanalysis[1], which was first proposed by Knudsen and Wagner, is
among the most important cryptanalytic techniques. With some special inputs,
we check whether the sum of the corresponding ciphertexts is 0 or not. Usually,
we do not need to investigate the details of the S-boxes and only view the S-
boxes as bijective transformations over finite fields/vector spaces. In some other
literatures, integral cryptanalysis is also known as square attack[2], saturation
attack[3], multi-set attack[4], higher-order differential attack[5, 6] and so on. The
following 4 integral properties of a multi-set X are the most used ones:

- ALL(A): Every value in F
n
2 appears the same times in X .

- BALANCE(B): The Xor of all values in X is 0.
- CONSTANT(C): The value is fixed to a constant for all texts in X .
- UNKNOWN(U): X is indistinguishable from random sets.

⋆ The work in this paper is supported by the Natural Science Foundation of China(No:
61402515).
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With these notations, we can determine that, after applying a bijective trans-
formation, property A is reserved; the sum of two multi-sets with property A
has property B. However, assume a multi-set has property B, it is hard to deter-
mine, after applying a nonlinear transformation, whether the output multi-set
has property B or not. And if we could determine the property of the output
multi-set, the integral distinguishers could be improved.

As the notations introduced above can only apply to word-oriented ciphers,
in [7], Z’aba introduced the bit-pattern to evaluate the sum of some outputs. And
this method is quite useful in constructing integral distinguishers for bit-oriented
ciphers such as PRESENT and SERPENT. In [8–10], by using polynomials over
finite fields, the authors proposed some algebraic techniques to construct integral
distinguishers for block ciphers, such as PURE and ARIA.

In EUROCRYPT 2015, Todo proposed the Division Property to evaluate the
sum of the outputs of a nonlinear function[11]. A multi-set X has the division
property Dn

k if and only if for all Boolean functions f : Fn
2 → F2, deg f < k,

the sum of f on X is always 0. It has been pointed that the division property
Dn

2 is equivalent to the property B. However, there is a gap between Dn
n and A.

Let X and Y be the input and output sets of an S-box, respectively, and d be
the algebraic degree of the S-box. The newly proposed methods of constructing
integrals for both Feistel and SPN structures are based on the following fact: If
X has the division property Dn

k , Y has the division property Dn
⌈k/d⌉. The result

shows that for a given Feistel structure, we can always construct a 3-round and
a 5-round integral distinguisher in case the round function is non-bijective and
bijective, respectively.

In CRYPTO 2015[12], Sun et al. proved that a zero correlation linear hull
always implies the existence of an integral distinguisher. Therefore, we can con-
struct integrals of a block cipher by finding zero correlation linear hulls. For
example, based on the known zero correlation linear hulls of 3-round/5-round
Feistel structures with non-bijective/bijective round functions, they theoretically
proved that there always exist 3-round/5-round integral distinguishers for Feistel
structures with non-bijective/bijective round functions.

In [11], Todo constructed a special subset with the division property Dk
n.

Since the number of elements in this subset is 2k, we wonder whether we could
construct some other subset with the division property Dk

n, however with less
elements than 2k, to reduce the data complexity of the integral distinguishers of
Feistel structures.

Contributions. This paper mainly focuses on the study of characteristics of
the division property and the improvement of the known integral distinguishers
for Feistel structures. The main contributions of this paper are as follows:

(1) We prove that if X ⊆ F
n
2 has the division property Dn

k , #X ≥ 2k;

(2) Although Dn
n and A are different, we prove that if a multi-set X has the

division property Dn
n, X is in some sense equivalent to either F

n
2 or ∅ (we

define this equivalence relation in Section 3);
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Furthermore, when the algebraic degree of the round function d is no more than
n−1, the 3-round integral distinguishers for Feistel structures could be improved
in the following two directions:

(3) The data complexity of the known 3-round integral distinguishers is reduced
from 2n+1 to 2n;

(4) We prove that there always exists a 4-round integral distinguisher with 22n−2

chosen plaintexts.

The rest of this paper is organized as follows: Sec. 2 gives the definitions
of Feistel structure and the division property; Sec. 3 studies the properties of
Dn

k ; Sec. 4 improves the known 3-round integral for Feistel structure and Sec. 5
concludes the paper.

2 Preliminary

We will briefly introduce the Feistel structure and the division property that will
be used throughout this paper.

2.1 Feistel Structure

Many block ciphers are designed based on the Feistel structure, such as DES[13]
and Camellia[14]. A Feistel structure consists of r rounds, each of which is defined
as follows (See Fig.1). Denote by (Li−1, Ri−1) the 2n-bit input to the i-th round,
and (Li, Ri) the output of the i-th round. Then

{

Li = Fi(Li−1)⊕Ri−1,

Ri = Li−1,

where Fi is the round function. In the following we use (n, d)-Feistel structure
to denote a Feistel structure, where n is the number of input bits of the round
function and d is the algebraic degree of the round function.

Fi

1iL  1iR  

i
L

i
R

Fig. 1. Feistel Structure
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2.2 Division Property

We will recall the definition of the division property, the vectorial division prop-
erty and the collective division property introduced in [11], and then some ex-
amples will be given to make us better understand these conceptions.

Definition 1 (Bit Product Function). [11] Let u = (u0, . . . , un−1) ∈ F
n
2 and

x = (x0, . . . , xn−1) ∈ F
n
2 . The Bit Product Function πu is defined as

πu(x) =
∏

ui=1

xi.

Let U = (u(0), . . . , u(m−1)) ∈ (Fn
2 )

m and X = (x(0), . . . , x(m−1)) ∈ (Fn
2 )

m. The
Bit Product Function πU is defined as

πU (X) =

m−1
∏

i=0

πu(i)

(

x(i)
)

.

In the definition above, for x ∈ F
n
2 , we always let π0(x) = 1.

Definition 2 (Hamming Weight). Let x = (x0, . . . , xn−1) ∈ F
n
2 . The Ham-

ming Weight of x is defined as

w(x) = #{i|xi 6= 0, i = 0, 1, . . . , n− 1}.

Let X = (x(0), . . . , x(m−1)) ∈ (Fn
2 )

m. The Extended Hamming Weight of X is
defined as

W (X) =
(

w(x(0)), . . . , w(x(m−1))
)

∈ Z
m.

Let x = (x0, x1, . . . , xm−1), y = (y0, y1, . . . , ym−1) ∈ Z
m. We define x � y if

for every i, 0 ≤ i ≤ m− 1, xi ≥ yi, otherwise, x 6� y.

Definition 3 (Division Property). [11] Let X be a multi-set whose elements
take a value of Fn

2 , and k takes a value between 0 and n. When the multi-set X
has the division property Dn

k , it fulfils the following conditions:
∑

x∈X πu(x) = 0
if w(u) < k. Moreover,

∑

x∈X πu(x) becomes unknown if w(u) ≥ k.

Definition 4 (Vectorial Division Property). [11] Let X be the multi-set
whose elements take a value of (Fn

2 )
m, and k = (k0, . . . , km−1) ∈ Z

m where
0 ≤ ki ≤ n. When the multi-set X has the division property Dn,m

k , the multi-
set fulfils the following conditions:

∑

x∈X πU (x) = 0 if W (U) 6� k. Moreover,
∑

x∈X πU (x) becomes unknown if W (U) � k.

Definition 5 (Collective Division Property). [11] Let X be the multi-set
whose elements take a value of (Fn

2 )
m, and k(0), . . . , k(t−1) ∈ Z

m. When the
multi-set X has the division property Dn,m

k(0),...,k(t−1) , the multi-set fulfils the fol-

lowing conditions:
∑

x∈X πU (x) = 0 if

U ∈ {V ∈ (Fn
2 )

m|W (V ) 6� k(0), . . . ,W (V ) 6� k(t−1)}.

Moreover,
∑

x∈X πU (x) becomes unknown if there exists an i0, 0 ≤ i0 ≤ t − 1

such that W (U) � k(i0).
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Example 1. Let X be a k-dimension sub-space of F
n
2 , and Bk = {f : F

n
2 →

F2| deg f < k} be the set of all the Boolean functions on F
n
2 with algebraic

degree no more than k − 1. Then for any f ∈ Bk, we always have[5]

∑

x∈X

f(x) = 0.

Meanwhile, we can construct a function g : Fn
2 → F2 such that deg g = k and

∑

x∈X g(x) = 1. Therefore a k-dimension sub-space of Fn
2 always has the division

property Dn
k .

Example 2. Let X have the division property Dn,2
(1,5),(4,4),(5,2),(6,0),(6,5). See Fig.2,

if (u0, u1) is in the gray part, for example (u0, u1) = (7, 1), we cannot deter-
mine

∑

x∈X π(u0,u1)(x). Otherwise, for example (u0, u1) = (2, 4), we always have
∑

x∈X π(u0,u1)(x) = 0. According to the definition of collective division proper-

ty, Dn,2
(1,5),(4,4),(5,2),(6,0),(6,5) is the same as Dn,2

(1,5),(4,4),(5,2),(6,0) since from Fig. 2,

we can see that these two division properties have the same (u0, u1) such that
∑

x∈X π(u0,u1)(x) is either 0 or undetermined.

(5,2)

(4,4)
(1,5)

(6,0)O x

y

(2,4)

(6,5)

undetermined

Fig. 2. Division Property D
n,2
(1,5),(4,4),(5,2),(6,0)

To further characterize the division property, we need the following propo-
sition. Let x = (x0, . . . , xm−1) ∈ Z

m and 0 6= d ∈ Z. We simply use ⌈x/d⌉ to
denote the vector (⌈x0/d⌉, . . . , ⌈xm−1/d⌉).

Property 1. [11] Let X be the multi-set whose elements take a value of (Fn
2 )

m,
s0, . . . , sm−1 be m n×n S-boxes and deg(s0) = · · · = deg(sm−1) = d. The multi-
set Y is computed as Y = {(s0(x0), . . . , sm−1(xm−1))|(x0, . . . , xm−1) ∈ X}. If X
has the collective division property Dn,m

k(0),...,k(t−1) , Y has the collective division

property Dn,m
⌈k(0)/d⌉,...,⌈k(t−1)/d⌉

.

Property 2 (Propagation for Feistel Structure). [11] Let X be the input of a
1-round Feistel structure F which has division property Dn,2

(k1,k2)
. Assume the

algebraic degree of the round function is d. Then the output of F has the division
property Dn,2

(k2+⌈0/d⌉,k1),...,(k2+⌈i/d⌉,k1−i),...,(k2+⌈k1/d⌉,0)
.
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3 Properties of Dn
k
and D

n,m

(k0,...,km−1)

In this section, we will give some bounds on the number of elements in a set which
has special division property. Notice that when X is a multi-set, an element of Fn

2

may appear several times in X , however, when X is a subset of Fn
2 , an element

of Fn
2 appears at most 1 time in X .

Lemma 1. Let X be a non-empty subset of Fn
2 with the division property Dn

k ,
k ≥ 1. Then #X ≡ 0 (mod 2).

Proof. According to the definition of the division property, for k = 1, we always
have

∑

x∈X

π0(x) =
∑

x∈X

1 = #X ≡ 0 (mod 2).

Theorem 1. Let X be a non-empty subset of Fn
2 with the division property Dn

k .
Then #X ≥ 2k.

Proof. Firstly, according to Lemma 1, we can check that if k = 1, #X ≥ 2.
Assume for k = k0 < n, A 6= ∅ is a subset of Fn

2 and has the division property
Dn

k0
, we have #A ≥ 2k0 .
Now, assume B ⊆ F

n
2 has the division property Dn

k0+1 and B 6= ∅. Since B
has at least 2 different elements, there exists at least one position t such that
the t-th elements of B are not equal to a constant. Without loss of generality,
let t = 0 and

B0 = {(x0, x1, . . . , xn−1) ∈ B|x0 = 0} 6= ∅,

B1 = {(x0, x1, . . . , xn−1) ∈ B|x0 = 1} 6= ∅.

Therefore, B0 ∩B1 = ∅ and B0 ∪B1 = B.
Since B has the division property Dn

k0+1,

∑

x∈B

x0πu(x) = 0, w(u) < k0

thus
∑

x∈B

x0πu(x) =
∑

x∈B,x0=1

πu(x) =
∑

x∈B1

πu(x) = 0,

where w(u) < k0, which implies B1 has the division property Dn
k0
.

On the other hand, for w(u) < k0,

∑

x∈B

πu(x) =
∑

x∈B0

πu(x) +
∑

x∈B1

πu(x) = 0.

Since
∑

x∈B0

πu(x) =
∑

x∈B

πu(x) −
∑

x∈B1

πu(x) = 0, w(u) < k0,
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we can conclude that B0 has the division property Dn
k0
. Therefore,

#B = #B0 +#B1 ≥ 2k0 + 2k0 = 2k0+1.

By using the same technique, we can prove the following Theorem for the vec-
torial division property:

Theorem 2. Let X 6= ∅ be a subset of (Fn
2 )

m with the vectorial division property
Dn,m

(k0,...,km−1)
. Then #X ≥ 2k0+···+km−1 .

From these results, we could find that the data complexity of the integral con-
structed by Todo cannot be reduced.

Corollary 1. Let X 6= ∅ be a subset of Fn
2 with the division property Dn

n. Then
X = F

n
2 .

This could be deduced directly from Theorem 1. However, we could give an
independent proof as follows:

Proof. Assume A 6= F
n
2 , therefore B = F

n
2 −A is non-empty.

Since both F
n
2 and A have the division property Dn

n, B also has the division
property Dn

n.
Let x0 ∈ A such that for any x ∈ A, w(x0) ≥ w(x), and let y0 ∈ B such that

for any y ∈ B, w(y0) ≥ w(y). Then we have

πx0(x) =

{

1 x = x0,

0 x 6= x0.
πy0(y) =

{

1 y = y0,

0 y 6= y0.

Therefore,
∑

x∈A

πx0(x) = 1,
∑

y∈B

πy0(y) = 1.

Since both A and B have the division property Dn
n , we have w(x0) ≥ n and

w(y0) ≥ n. Thus x0 = y0 = 2n − 1 which is contradicted with A ∩B = ∅.

Based on these results, we could give the following Corollary:

Corollary 2. Let Fn
2 = {a0, . . . , a2n−1}, X be a multi-set whose elements take

a value of Fn
2 , and tx,X be the times that x appears in X. If X has the division

property Dn
n, we have

ta0,X ≡ · · · ≡ ta2n−1,X (mod 2).

Assume a multi-set X has the division property Dn
k , and let the multi-set Y =

X ∪ {a, a}. Then Y also has the division property Dn
k . This fact leads to the

following definition:

Definition 6. Let X and Y be multi-sets whose elements take a value of Fn
2 .

Then X is equivalent with Y , denoted by X ∼ Y , if and only if for any a ∈ F
n
2 ,

ta,X ≡ ta,Y (mod 2).

Therefore, if X ∼ Y , X and Y always have the same division property.

Theorem 3. Let X be a multi-set whose elements take a value of Fn
2 . If X has

the division property Dn
n, we have either X ∼ F

n
2 or X ∼ ∅.
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4 Improved Integral Distinguishers for Feistel Structures

With the condition d ≤ n − 1, we will improve the known 3-round integral
distinguishers for Feistel structures in two directions: The first one is to reduce
the data complexity from 2n+1 to 2n; the second one is to increase the rounds
of integral distinguisher from 3 to 4.

Lemma 2. Let r(n, d) be the rounds of the integral distinguisher of (n, d)-Feistel
structure which could be found by Algorithm 1 in [11]. If d1 ≤ d2, we have
r(n, d1) ≥ r(n, d2).

This could be shown from the fact that for k ∈ Z
m, if d1 ≤ d2, we always

have ⌈k/d1⌉ � ⌈k/d2⌉.

Theorem 4. Let F : Fn
2 → F

n
2 be the round function of a Feistel structure and

d = degF ≤ n− 1 be the algebraic degree of F . For such a Feistel structure:

(1) There always exists a 3-round integral distinguisher with 2n chosen plaintexts
and the Xor sum of the right half of the ciphertexts is 0.

(2) There always exists a 4-integral distinguisher with 22n−2 chosen plaintexts
and the Xor sum of the right half of the ciphertexts is 0.

Proof. Since the technique are the same, we only give a detailed proof for the
4-round distinguisher.

According to Lemma 2, it is sufficient to give the proof for d = n− 1.

O

Input 1st Round

L

R
O

L

R
O

2nd Round

L

R

(2,0)
O

3rd Round

L

R

(1,1)
Undetermined

(n,n 2)

(n )

(1,0)
O

4th Round

L

R

(0,2)

(n 2,n)

(n )

(n n)

(0,n)

Fig. 3. Propagation of 4-round (n, n− 1)-Feistel structure

Let the inputs be (c0c1x0 · · ·xn−3, xn−2 . . . x2n−3) ∈ (Fn
2 )

2, where (c0c1) ∈ F
2
2

is a constant and x0x1 . . . x2n−3 can take all values in F
2n−2
2 .
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Since the input set has the division property Dn,2
(n−2,n). According to the

propagation of the Feistel structure, the output set of the first round has the
division property Dn,2

(n+⌈0/d⌉,n−2),...,((n+⌈(n−2)/d⌉,0)) = Dn,2
(n,n−2).

Then, the output set of the second round has the division property

Dn,2
(n−2+⌈0/d⌉,n),··· ,(n−2+⌈i/d⌉,n−i),··· ,(n−2+⌈n/d⌉,0).

which is equal to Dn,2
(n−2,n),(n−1,1),(n,0).

Similarly, we can get that the output of the third round has the division
property Dn,2

(0,n)(1,1),(2,0) and the output of the forth round has the division prop-

erty Dn,2
(0,2),(1,0), which means for any u, w(u) = 1, let CL and CR be the left and

right halves of the output of the forth round, respectively. We always have

∑

x0,...,xn

π0(CL)πu(CR) = 0,

which indicates
∑

x0,...,xn
CR = 0.

Moreover, we can only determine that the output of the fifth round has the
division property Dn,2

(0,1),(1,0), which means we cannot determine whether the

output is balanced or not.

With the results of [11] and [12], we have

Corollary 3. Let d ≤ n−1. There always exists a 4-round integral distinguisher
for Feistel structures. Furthermore, if the round function is bijective, there always
exists a 5-round integral distinguisher for Feistel structures.

5 Conclusion

In this paper, firstly, we showed some property of a set X ⊆ F
n
2 which has the

division property Dn
k . We proved that the number of different elements in X is

at least 2k. If a non-empty subset X of Fn
2 has the division property Dn

n , X is
equal to F

n
2 , from which we can conclude that if a multi-set X is not equivalent

to the empty set, there is no essential difference between F
n
2 and a multi-set X

which has the division property Dn
n .

Table 1. Integral Distinguishers for (n, d)-Feistel Structures

d Rounds Input Data Round Function

n 3 D
n,2
(1,n) 2n+1 non-bijective

≤ n− 1 3 D
n,2
(0,n) 2n

≤ n− 1 4 D
n,2
(n−2,n) 22n−2

≤ n− 1 5 D
n,2
(n−1,n) 22n−1 bijective

∗For all these distinguishers, the right halves of the outputs are balanced.
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Secondly, we presented some new features of Feistel structures with respect
to the integral attack. If d ≤ n−1, the known integral distinguishers for 3-round
Feistel structure could be improved. These results are shown in Table.1.
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