
Step by Step Towards Creating a Safe Smart Contract:
Lessons and Insights from a Cryptocurrency Lab

Kevin Delmolino
del@terpmail.umd.edu

Mitchell Arnett
marnett@umd.edu

Ahmed Kosba
akosba@cs.umd.edu

Andrew Miller
amiller@cs.umd.edu

Elaine Shi
runting@gmail.com

1 Introduction

Completely decentralized cryptocurrencies like Bit-
coin [10] and other altcoins [2] have captured the
public’s attention and interest, and have been much
more successful than any prior incarnations of elec-
tronic cash. Many would call the rise of these elec-
tronic currencies a technological revolution, and the
“wave of the future” [1]. Emerging altcoins such as
Ethereum [13] and Counterparty [8] extend Bitcoin’s
design by offering a rich programming language for
writing “smart contracts.” [11] Smart contracts are
user-defined programs that specify rules governing
transactions, and that are enforced by the network
of peers (assuming the underlying cryptocurrency
is secure). In comparison with traditional financial
contracts, smart contracts carry the promise of low
legal and transaction costs, and can lower the bar of
entry for users.

In Fall 2014, at the University of Maryland, we or-
ganized a new, hands-on smart contract program-
ming lab in our undergraduate-level “CMSC 414:
Computer and Network Security” class – the first of
its kind that has ever been attempted.

Smart contract programming: unique challenges.
Although smart contract programming in many
ways resembles traditional programming, it raises
important new security challenges. Contracts are
“play-for-keeps”, since virtual currencies have real
value. If you load money into a buggy smart con-
tract, you will likely lose it. Further, smart contract
programming requires an “economic thinking” per-
spective that traditional programmers may not have
acquired. Contracts must be written to ensure fair-
ness even when counterparties may be incentivized
to cheat in arbitrary ways to maximize their eco-
nomic gains.

As an outcome of our lab, we observed sev-

eral classes of typical mistakes students made. In
contrast to traditional software development where
bugs such as buffer overflows are typical, in our lab,
we observed bugs and pitfalls that arise due to the
unique nature of smart contract programs.

Our lab experiences show that even for very sim-
ple smart contracts (e.g., a “Rock, Paper, Scissors”
game), designing and implementing them correctly
was highly non-trivial. This suggests that extra pre-
cautions and scrutiny are necessary when program-
ming smart contracts.

Open-source course and lab materials. Based on
lessons and insights drawn through this experimen-
tal lab, we have designed new, open course materials
and lab designs for smart contract programming [4].
We hope that these open-source course materials
and labs will aid both instructors who wish to teach
smart contract programming and students/devel-
opers who wish to teach themselves smart contract
programming.

Broader insights gained. Inspired by our experi-
mental smart contract lab, we argue why cryptocur-
rency and smart contracts will serve as a great ped-
agogical platform for Cybersecurity education. We
also draw from our experiences why the “build,
break, and amend your own program” approach is
beneficial to instructing adversarial thinking and in-
centivizing a student-driven learning atmosphere.

Roadmap. In the remainder of this paper, we will
first give more background on cryptocurrency and
smart contracts (Section 2). We will then detail ex-
periences with our lab (Section 3), the typical pitfalls
we observed in smart contract programming (Sec-
tion 4), and the insights and lessons learned.

1

Contracts

Mined
Block

Miners

Block
i

Block
i + 1

Block
i + 2

Time

Blockchain

……

Code

Storage

Data

Users
Money

Figure 1: Schematic of a decentralized cryptocur-
rency system with smart contracts. A smart con-
tract’s state is stored on the public blockchain. A
smart contract program is executed by a network
of miners who reach consensus on the outcome of
the execution, and update the contract’s state on the
blockchain accordingly. Users can send money or
data to a contract; or receive money or data from a
contract.

2 Background

In this section, we provide some background on
cryptocurrencies and the programming model of
smart contracts.

2.1 Background on Decentralized Cryptocurren-
cies

Smart contracts are built on top of an underly-
ing cryptocurrency platform. A cryptocurrency is
a decentralized system for interacting with virtual
money in a shared global ledger. Users trans-
fer money and interact with contracts by publish-
ing signed messages called transactions to the cryp-
tocurrency network. The network consists of nodes
(called miners) who propagate information, store
data, and update the data by applying transactions.
A high-level schematic is shown in Figure 1.

Although many of the ideas behind cryptocurren-
cies date back around twenty years (e.g., crypto-
graphic e-cash [7] and smart contracts [11]), a recent
surge of interest in this technology has been incited
by the success of Bitcoin [9]. For a comprehensive
survey on Bitcoin and other cryptocurrencies, see
[6, 5].

The main interface provided by the underly-
ing cryptocurrency is an append-only log called
a blockchain, which imposes a total ordering on
transactions submitted by users. The data in the

blockchain is guaranteed to be valid according to cer-
tain predefined rules of the system (e.g., there are no
double-spends or invalid signatures). All of the data
in the blockchain is public, and every user can access
a copy of it. No one can be prevented from submit-
ting transactions and getting them included in the
blockchain (with at most some small delay). There is
global agreement among all nodes and users about
the contents of the blockchain, except for the most
recent handful of blocks which have not yet settled.

We also assume that the built-in currency has a
stable monetary value. Users have an incentive to
gain more of (and avoid losing) units of this cur-
rency. Anyone can acquire the virtual currency by
purchasing or trading for it using other fiat curren-
cies (e.g., US dollars) or virtual currencies. The cur-
rency is assumed to be fungible; one unit of ether
is exactly as valuable as any other, regardless of the
currency’s “history.”

The system keeps track of “ownership” of the cur-
rency by associating each unit of currency to an “ad-
dress”. A user address is a hash of a public key;
whoever knows the corresponding private key can
spend the money associated to that address. Users
can create as many accounts as they want, and the
accounts need not be linked to their real identity.

2.2 Background on Smart Contracts

A contract is an instance of a computer program that
runs on the blockchain. It consists of program code,
a storage file, and an account balance. Any user
can create a contract by posting a transaction to the
blockchain. The program code of a contract is fixed
when the contract is created, and cannot be changed.

As shown in Figure 1, a contract’s storage file is
stored on the public blockchain. A contract’s pro-
gram logic is executed by the network of miners who
reach consensus on the outcome of the execution and
update the blockchain accordingly. The contract’s
code is executed whenever it receives a message, ei-
ther from a user or from another contract. While ex-
ecuting its code, the contract may read from or write
to its storage file. A contract can also receive money
into its account balance, and send money from its
account balance to other contracts or users.

Conceptually, one can think of a contract as a spe-
cial “trusted third party” – however, this party is
trusted only for correctness but not for privacy. In partic-
ular, a contract’s entire state is visible to the public.

Contract invocation. A contract’s code will be in-
voked whenever it receives a transaction from a user.
A contract can define multiple entry points of exe-

2

cution – in Ethereum’s Serpent language, each entry
point is defined as a function. A transaction’s con-
tents will specify the entry point at which the con-
tract’s code will be invoked. Therefore, transactions
act like function calls in ordinary programming lan-
guages. After a contract finishes processing a mes-
sage it receives, it can pass a return value back to the
sender.

Gas. Ethereum uses the concept of “gas” to dis-
courage over-consumption of resources (e.g., a con-
tract program that causes miners to loop forever).
The user who creates a transaction must spend cur-
rency to purchase gas. During the execution of
a transaction, every program instruction consumes
some amount of gas. If the gas runs out before the
transaction reaches an ordinary stopping point, it
is treated as an exception: the state is reverted as
though the transaction had no effect, but the ether
used to purchase the gas is not refunded! When one
contract sends a message to another, the sender can
offer only a portion of its available gas to the recipi-
ent. If the recipient runs out of gas, control returns to
the sender, who can use its remaining gas to handle
the exception and tidy up.

Ethereum specifics. Our lab employs Ethereum’s
Serpent language to illustrate smart contract pro-
gramming, although the lessons are intended to ap-
ply more generally to other cryptocurrencies and
smart contract systems as well. Therefore we only
define as much Ethereum-specific terminology as
needed to understand our examples. In particular,
the built-in virtual currency of Ethereum is called
Ether, and units of Ether are called “wei.”

2.3 A Taste of Smart Contract Design

In this section, we will give the reader a brief
overview of smart contract design by describing the
Ethereum implementation of a simple, yet useful,
motivating example – the financial swap instrument.
This contract allows two parties, Alice and Bob, to
take opposing bets about the price of a stock at
some future time. Both parties initially deposit equal
amounts of money (as units of Ether currency). Af-
ter a deadline has passed, the current price of the
stock is queried by interacting with a designated
stock price authority (which would itself be imple-
mented as a smart contract - we refer to this con-
tract as StockPriceAuthority). Depending on
the price at that time, the entire combined deposit is
awarded to either Alice or Bob.

1 data Alice, Bob
2 data deadline, threshold
3

4 # Not shown: collect equal deposits from
Alice and Bob↪→

5 # We assume StockPriceAuthority is a
trusted third party contract that
can give us the price of the stock

↪→

↪→

6

7 def determine_outcome():
8 if block.timestamp > deadline:
9 price = StockPriceAuthority.price()

10 if price > threshold:
11 send(Alice, self.balance)
12 else:
13 send(Bob, self.balance)

Figure 2: This Serpent program implements a simple
financial “swap” instrument, illustrating that smart
contracts are a powerful and useful tool for pro-
gramming with money.

The contract’s storage allocates space for the fol-
lowing data on lines 1 and 2: 1) the public keys
of Alice and Bob; and 2) the deadline and thresh-
old of the swap contract. The contract also defines
a function determine outcome, which any party
may invoke. This example serves as motivation of
the “useful” aspects of smart contracts as financial
instruments. In our other examples, we will tend to
focus on gambling games. It also serves to illustrate
several low level aspects of Serpent programming.

3 A Recount of Our Smart Contract Pro-
gramming Lab

In our undergraduate security class at the University
of Maryland, students were asked to develop smart
contract applications of their choice atop a new cryp-
tocurrency called Ethereum [13]. Ethereum offers a
Turing complete programming language called Ser-
pent [12] for composing smart contracts.

Students were divided into groups of four. Due
to the experimental nature of the lab, the instructor
assigned one of her Ph.D. students to closely super-
vise each group, to ensure that students could obtain
hands-on help. The lab proceeded in two phases.

Creation phase. The first phase is a creation phase
where each group created a smart contract applica-
tion of their own choice. The students created a va-
riety of applications, including games (e.g., Rock-
Paper-Scissors, Russian Roulette, custom-designed
games), escrow services, auctions (e.g., sealed auc-

3

tions, silent auctions), a parking meter service, and
stock market applications.

At the end of the first phase, each group made
a short presentation of their contract application in
class. The instructor, TAs, and students jointly ob-
served numerous issues with the programs that stu-
dents created (see Section 4 for a detailed discus-
sion).

Amendment phase. Therefore, we extended the
project to a second phase, called an amendment
phase. The goal of this phase was for students to
critique their programs, find bugs, and amend their
designs. The instructor and TAs had in-person meet-
ings with each project group to help them amend
their smart contract programs. Students also formed
pair groups to critique and help the other group.

4 Pitfalls of Smart Contract Program-
ming

In this section, we will demonstrate some of the typi-
cal pitfalls we observed for smart contract program-
ming. For ease of exposition, we will use a simple
“Rock, Paper, Scissors” example to illustrate three
classes of typical mistakes. Similar mistakes were
commonly observed in various other applications
developed by the students.

Quick overview of our running example. We will
first give a quick overview of the structure of our
buggy “Rock, Paper, Scissors” program before we
go on to diagnose the bugs. In this contract, two
players will play a simple “Rock, Paper, Scissors” for
money. The contract program consists of two main
functions:

• player input: The players register with the
contract and deposit money to play. Each player
also provides input to the contract in the form of
their choice of rock, paper, or scissors.

• finalize: The contract decides a winner and
sends the proceeds to the winner.

As we show below, surprisingly, even for a very
simple smart contract like this, it is difficult to create it
correctly!

4.1 Errors in Encoding State Machines

Programming smart contracts typically involves en-
coding complex state machines. Logical errors in
encoding state machines were commonly observed.

The simplest type of logical error is a contract that
leaks money in corner cases.

To illustrate this, let us look at our buggy “Rock,
Paper, Scissors” example. Figure 3 shows the
player input function where players register with
the contract and deposit money to play. The con-
tract would then store the players’ public keys, in-
puts, and coins deposited (Lines 14-17).

This contract makes several mistakes:

• If a third player attempts to join and sends money
to the contract, that money becomes inaccessible
(Line 20). Neither the player nor anyone else can
ever recover it.

• Similarly, if a player sends an amount of money
that is not exactly 1000 wei, the contract also leaks
the money.

Note that while a careful player can protect herself
from the second problem by never sending the incor-
rect amount, she cannot always protect herself from the
first problem! In a decentralized cryptocurrency like
Bitcoin or Ethereum, multiple parties may be send-
ing inputs to the contract simultaneously. In this
case, it is up to the miner who mines this block to
decide how to order these transactions.

To fix these bugs, the contract should refund the
money back to a player unless the player is success-
fully registered in the game. This approach is taken
in our improved contract (Figure 4, Lines 18 and 21).

What is shown here is merely the simplest exam-
ple of a logical error when encoding the state ma-
chine. In our lab, students created contracts that are
far more sophisticated (e.g., stock market applica-
tions, various flavors of auctions) that required the
design of much more complex state machines. Fail-
ure to encode the correct state machine (e.g., omit-
ting certain transitions, neglecting to check the cur-
rent state) was among the most commonly observed
pitfalls.

4.2 Failing to use Cryptography

Another mistake is more subtle: Players send their
inputs in cleartext. Since transactions are broadcast
across the entire cryptocurrency network, a cheating
player may wait to see what his opponent chooses
before providing his own input.

Players in a smart contract are typically anony-
mous, and can be reasonably expected to act self-
ishly to maximize their financial gains, even if it
means deviating from the default or “honest” behav-
ior.

4

1 # A two-player game with a 1000 wei prize
2

3 data player[2](address, choice)
4 data num_players
5 data reward
6 data check_winner[3][3] # a ternary

matrix that captures the rules of
rock-paper-scissors game

↪→

↪→

7

8 def init():
9 num_players = 0

10 # code omitted: initialize check_winner
according to the game rules↪→

11

12 def player_input(choice):
13 if num_players < 2 and msg.value ==

1000:↪→

14 reward += msg.value
15 player[num_players].address =

msg.sender↪→

16 player[num_players].choice = choice
17 num_players = num_players + 1
18 return(0)
19 else:
20 return(-1)
21 def finalize():
22 p0 = player[0].choice
23 p1 = player[1].choice
24 # If player 0 wins
25 if check_winner[p0][p1] == 0:
26 send(0,player[0].address, reward)
27 return(0)
28 # If player 1 wins
29 elif check_winner[p0][p1] == 1:
30 send(0,player[1].address, reward)
31 return(1)
32 # If no one wins
33 else:
34 send(0,player[0].address, reward/2)
35 send(0,player[1].address, reward/2)
36 return(2)

Figure 3: Pitfalls in smart contract design. This
buggy contract illustrates a few pitfalls:
Pitfall 1 (Lines 19 and 20): If a third player attempts
to join the contract, his money effectively vanishes
into a blackhole.
Pitfall 2 (Line 16): Players send their inputs in plain-
text to the contract. A malicious player can wait to
see his opponents choice before deciding on his own
input.

Cryptography is often the first line of defense
against potentially malicious parties. Here, the ob-
vious remedy is to use cryptographic commitments.
Both players can commit to their inputs in one time
epoch, and then in a later epoch open the commit-
ments and reveal their inputs. A commitment satis-
fies two properties, binding and hiding. Binding en-
sures that a player cannot change their input after
committing to it. Hiding ensures that a party learns
nothing about the others input choice even after ob-
serving the commitment.

In Figure 4, we show a fixed contract that properly
uses commitments. The previous player input
function is broken up into two phases: in the new
player input function, each player provides a
commitment; after both commitments are received,
the open function is used to reveal their commited
inputs.

Opportunity to teach cryptography. When stu-
dents were given the opportunity to realize and fix
bugs in their own programs, an opportunity arose
to teach them cryptography. Given the chance, the
instructor grasped this opportunity to teach stu-
dents cryptographic commitments. In the amend-
ment phase of the project, students were able to im-
plement cryptographic commitments to secure their
smart contracts!

4.3 Misaligned Incentives

More subtle bugs remain, even for the improved
contract in Figure 4.

For example, one party can wait for the other to
open its commitment. Upon seeing that he will lose,
that party may elect to abort – thus denying pay-
ment to the other player as well. It may seem at first
glance like the losing party should be indifferent to
revealing his committed input or not (regardless, we
would prefer to have a clear positive preference for
revealing it); however, the reality is slightly worse,
since that party must incur a gas cost to even submit
transaction that opens his commitment.

This generalizes to a broader question of how to
ensure the incentive compatibility of a contract. Can
any player profit by deviating from the intended be-
havior? Does the intended behavior have hidden
costs?

In this specific example, we can remedy the prob-
lem by having both players include an additional
security deposit in the first stage, which they for-
feit unless they open their commitments in a timely
manner. This way, even the losing player has a mo-
tivation to open his bid.

5

1 data player[2](address, commit, choice,
has_revealed)↪→

2 data num_players
3 data reward
4 data check_winner[3][3]
5 data timer_start
6

7 def init():
8 num_players = 0
9 # code omitted: initialize check_winner

according to the game rules↪→

10

11 def player_input(commitment):
12 if num_players < 2 and msg.value >=

1000:↪→

13 reward += msg.value
14 player[num_players].address =

msg.sender↪→

15 player[num_players].commit =
commitment↪→

16 num_players = num_players + 1
17 if msg.value - 1000 > 0:
18 send(msg.sender, msg.value-1000)
19 return(0)
20 else:
21 send(msg.sender, msg.value)
22 return(-1)
23

24 def open(choice, nonce):
25 if not num_players == 2: return(-1)
26 # Determine which player is opening
27 if msg.sender == player[0].address:
28 player_num = 0
29 elif msg.sender == player[1].address:
30 player_num = 1
31 else:
32 return(-1)
33 # Check the commitment is not yet

opened↪→

34 if sha3([msg.sender, choice, nonce],
items=3) ==
player[player_num].commit and not
player[player_num].has_revealed:

↪→

↪→

↪→

35 # Store opened value in plaintext
36 player[player_num].choice = choice
37 player[player_num].has_revealed = 1
38 # Wait 10 blocks for second player to

open↪→

39 if not timer_start:
40 timer_start = block.number
41 return(0)
42 else:
43 return(-1)

44 def finalize():
45 # Wait 10 blocks for both players to

open↪→

46 if block.number - timer_start < 10:
47 return(-2)
48 #check to see if both players have

revealed answer↪→

49 if player[0].has_revealed and
player[1].has_revealed:↪→

50 p0 = player[0].choice
51 p1 = player[1].choice
52 #If player 0 wins
53 if check_winner[p0][p1] == 0:
54 send(player[0].address, reward)
55 return(0)
56 #If player 1 wins
57 elif check_winner[p0][p1] == 1:
58 send(player[1].address, reward)
59 return(1)
60 #If no one wins
61 else:
62 send(player[0].address, reward/2)
63 send(player[1].address, reward/2)
64 return(2)
65 # If p1 opens but not p2, send money to

p1↪→

66 elif player[0].has_revealed and not
player[1].has_revealed:↪→

67 send(player[0].address, reward)
68 return(0)
69 # If p2 opens but not p1, send money to

p2↪→

70 elif not player[0].has_revealed and
player[1].has_revealed:↪→

71 send(player[1].address, reward)
72 return(1)
73 # If neither opens, forfeit both bets
74 else:
75 return(-1)

Figure 4: An improved but nonetheless buggy contract. When an edge case occurs, the contract refunds
the players rather than leaking money (Lines 18 and 21). A cryptographic commitment scheme is used
to offer privacy of users’ inputs before they are revealed for the winner decision (Line 15 and 36). As
mentioned in Section 4.3, this improved contract is still not safe due to misaligned incentives.

6

4.4 Ethereum-specific Mistakes

Several subtle details about Ethereum’s implemen-
tation make smart contract programming prone to
error. Without going into too much detail, contracts
must be written “defensively” to avoid exceptions
that can occur when multiple contracts interact. One
Ethereum contract can send a message to another
contract, which can in turn send a message to an-
other. However, Ethereum limits the resulting call-
stack to a fixed size of 1024. For example, if the call-
stack depth is already at this limit when the send
instruction on Line 62 of Figure 4 is reached, then
that instruction will be skipped and the winner will
not get paid. Furthermore, a send instruction sends
by default the maximum available gas to the recipi-
ent. If the recipient of the send instruction on Line
62, for example, is a contract with buggy code that
raises an exception, then Line 63 is never executed
and the other player loses out. In our online course
materials [4] we offer guidance on avoiding these
Ethereum-specific hazards.

4.5 Complete, Fixed Contract

Due to space constraints, we provide a fully work-
ing, incentive compatible, and secure contract for the
“Rock, Paper, Scissors” game in our online course
materials [4].

5 Conclusion

5.1 Open-Source Course and Lab Materials

Our smart contract programming lab was an auda-
cious, original attempt at instructing a technology
of in-development nature. Ethereum and its Ser-
pent language have only recently emerged, and are
rapidly undergoing changes. The Serpent language
is not well documented and development environ-
ment support (e.g., debugging tools) is also rudi-
mentary. Therefore, several students struggled in in-
stalling the simulation environment and getting up
to speed.

To facilitate future pedagogical endeavors on
smart contract programming, and avoid issues re-
sulting from the in-development nature of the tech-
nology, we will shortly open source well-structured
course and lab materials on smart contract pro-
gramming. For a sneak peek of our course mate-
rials, please visit http://mc2-umd.github.io/
ethereumlab/ [4].

The course materials comprise the following:

• A detailed language reference guide for

Ethereum’s Serpent language – a smart con-
tract language that we adopted in the lab.

• A virtual machine image with a snapshot of
pyethereum and serpent installed, provid-
ing a simulator environment for experimenta-
tion. Since the Ethereum’s Serpent language is
constantly under development, our Serpent lan-
guage reference matches with the snapshot in-
stalled in this VM.

• A tutorial that builds on our “Rock, Paper, Scis-
sors” example, intended to walk the student
through the typical pitfalls in programming safe
smart contracts. The student is presented with
the buggy version of the contract and asked to fix
the bugs in a step-by-step, guided manner.

5.2 Cryptocurrency and Smart Contracts as a Cy-
bersecurity Pedagogical Platform

Our experiences also led us to conclude that cryp-
tocurrency and smart contracts are a great platform
for cybersecurity pedagogy. First, cryptocurrency
and smart contracts, like other cool emerging tech-
nologies, could easily capture the students’ atten-
tion and imagination. Second, cybersecurity is a sci-
ence that is interdisciplinary in nature; and cryp-
tocurrency is a platform that captures multiple core
cybersecurity notions, e.g., cryptography, program-
ming languages, and incentives. Third, cryptocur-
rency and smart contracts easily motivate “adver-
sarial thinking”. For example, in our lab, students
had to analyze their own smart contracts and reason
how other selfish players can harm honest partici-
pants and maximize their own financial gains.

5.3 The “Build, Break, and Amend Your Own
Programs” Approach to Cybersecurity Educa-
tion

Inspired by our smart contract programming lab, we
also feel that the “Build, break, and amend your own
programs” approach is very helpful for cybersecu-
rity education.

In our labs, students learned why security is dif-
ficult and learned adversarial thinking by analyzing
and breaking their own programs. Students initially
failed to make proper use of cryptography in their
smart contracts (see Section 4). But then, by realiz-
ing why their smart contracts are not safe, they be-
come self-driven in learning cryptographic building
blocks.

In future work, we plan to further extend these
pedagogical ideas, such that students can learn

7

http://mc2-umd.github.io/ethereumlab/
http://mc2-umd.github.io/ethereumlab/

through hands-on, creative experiences, and learn
adversarial thinking through attacking and amend-
ing their own code.

5.4 Inspired Research

This lab has inspired our current research program
on cryptocurrencies and smart contracts. Several ex-
citing new results are forthcoming.

Crime version of this “step by step” paper.
[Blinded et. al.] [3] recently demonstrate how
smart contracts can be leveraged to facilitate crimi-
nal activities and create incentive compatible under-
ground eco-systems. They then discuss countermea-
sures and advocate the responsible deployment of
technology. Their paper would be the criminal coun-
terpart of our “step by step” paper.

References

[1] The rise and rise of bitcoin. Documentary,
http://bitcoindoc.com/.

[2] ShaikShakeel Ahamad and Madhusoodhnan
Nair2and Biju Varghese. A survey on crypto
currencies. In Int. Conf. on Advances in Civil En-
gineering, AETACE, 2013.

[3] Anonymous. Rings of gyges: Using smart con-
tracts for crime. Manuscript, 2015.

[4] Mitchell Arnett, Kevin Delmolino, Ahmed
Kosba, Andrew Miller, and Elaine Shi.
Ethereumlab: Towards safe smart con-
tracts. http://mc2-umd.github.io/
ethereumlab/.

[5] Simon Barber, Xavier Boyen, Elaine Shi, and
Ersin Uzun. Bitter to betterhow to make bitcoin
a better currency. In Financial cryptography and
data security, pages 399–414. Springer, 2012.

[6] Joseph Bonneau, Andrew Miller, Jeremy Clark,
Arvind Narayanan, Joshua A. Kroll, and Ed-
ward W. Felten. Research Perspectives and
Challenges for Bitcoin and Cryptocurrencies
(Extended Version). Cryptology ePrint Archive,
Report 2015/452, 2015.

[7] David Chaum, Amos Fiat, and Moni Naor. Un-
traceable electronic cash. In Proceedings on Ad-
vances in cryptology, pages 319–327. Springer-
Verlag New York, Inc., 1990.

[8] Adam Krellenstein Robby Dermody and
Ouziel Slama. Counterparty announcement.
https://bitcointalk.org/index.php?
topic=395761.0, January 2014.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. 2008.

[10] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer
Electronic Cash System. http://bitcoin.
org/bitcoin.pdf, 2009.

[11] Nick Szabo. Formalizing and securing relation-
ships on public networks. First Monday, 2(9),
1997.

[12] Etheruem Wiki. Serpent. https://github.
com/ethereum/wiki/wiki/Serpent, 2015.

[13] Gavin Wood. Ethereum: A secure decentralized
transaction ledger. http://gavwood.com/
paper.pdf, 2014.

8

http://bitcoindoc.com/
http://mc2-umd.github.io/ethereumlab/
http://mc2-umd.github.io/ethereumlab/
https://bitcointalk.org/index.php?topic=395761.0
https://bitcointalk.org/index.php?topic=395761.0
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Serpent
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	Introduction
	Background
	Background on Decentralized Cryptocurrencies
	Background on Smart Contracts
	A Taste of Smart Contract Design

	A Recount of Our Smart Contract Programming Lab
	Pitfalls of Smart Contract Programming
	Errors in Encoding State Machines
	Failing to use Cryptography
	Misaligned Incentives
	Ethereum-specific Mistakes
	Complete, Fixed Contract

	Conclusion
	Open-Source Course and Lab Materials
	Cryptocurrency and Smart Contracts as a Cybersecurity Pedagogical Platform
	The ``Build, Break, and Amend Your Own Programs'' Approach to Cybersecurity Education
	Inspired Research

