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Abstract. We improve the zeroizing attack on the multilinear map of
Garg, Gentry and Halevi (GGH). Our algorithm can solve the Graded
Decisional Diffie-Hellman (GDDH) problem on the GGH scheme when
the dimension n of the ideal lattice Z[X]/(Xn+1) is O(κλ2) as suggested
for the κ-linear GGH scheme.
The zeroizing attack is to recover a basis of an ideal generated by a secret
element g ∈ Z[X]/(Xn + 1) from the zero testing parameter and several
encodings in public. It can solve the DLIN and subgroup decision prob-
lems, but not the GDDH problem on the GGH scheme for the suggested
dimension n due to the hardness of the smallest basis problem and the
shortest vector problem on the ideal lattice. In this paper, we propose
an algorithm to find a short vector in the ideal lattice 〈g〉 by applying a
lattice reduction to a sublattice obtained from the Hermit Normal Form
of 〈g〉. This attack utilizes that the determinant of the lattice 〈g〉 is not
large. We further show that if g has a large residual degree, one can find
a short element of g in polynomial time of n. In order to resist the pro-
posed attacks, it is required that n = Ω̃(κ2λ3) and the positive generator
of 〈g〉 ∩ Z is large enough.

Keywords: Multilinear maps, graded encoding schemes, zeroizing at-
tack, Hermite normal form

1 Introduction

Multilinear Maps. After Boneh and Silverberg [BS02] investigated cryp-
tographic multilinear maps and their applications such as multipartite Diffie-
Hellman and an efficient broadcast encryption in 2002, it has been a long last-
ing open question to construct cryptographic multilinear maps. In 2013, after
about one decade, approximate cryptographic multilinear maps are first pro-
posed by Garg, Gentry, and Halevi (GGH) [GGH13]. Not much later, second
cryptographic multilinear maps are suggested by Coron, Lepoint, and Tibouchi
(CLT) [CLT13]. The GGH and CLT approximate multilinear maps are con-
structed based on ideal lattices and a variant of the approximate greatest com-
mon divisor problem, respectively. They lead to various applications [ABP14]
[Att14,BP13,BLMR13,GGHZ14,GLW14,Zha14,Zim14] to name a few. Some of
them are based of the hardness of the GDDH (Graded Decisional Diffie-Hellman)
problem on multilinear maps, and the others are based on Subgroup Membership
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(SubM), Decision Linear (DLIN) or External DH (XDH) problems on multilinear
maps.

In the first public draft of [GGH13], the SubM, DLIN, and XDH problems
were regarded to be hard on the GGH constructions, but it was reported in the
later version that they can be solved by so called a zeroizing attack introduced
by the authors of [GGH13]. The zeroizing attack is to recover a basis of an ideal
generated by a secret element g ∈ Z[X]/(Xn+1) from the zero testing parameter
and several encodings in public. It cannot solve the GDDH problem on the GGH
scheme for the suggested dimension n due to the hardness of the smallest basis
problem and the shortest vector problem on the ideal lattice.

In case of the CLT scheme, it has been claimed [CLT13] that the zeroizing
attack can not be applied directly and so the SubM, DLIN, XDH problems
remain hard on their constructions. However, an adaptation of the zeroizing
attack to the CLT constructions was proposed by Cheon et. al [CHL+14] and
leads to a total break of the CLT scheme (i.e. the secret elements are revealed)
as well as the SubM, DLIN, and XDH problems.

To resist this attack against the CLT scheme, Gentry, Halevi, Maji, and
Sahai [GHMS14], and Boneh, Wu and Zimmerman [BWZ14] suggested two can-
didate fixes of the CLT scheme. However, Coron, Lepoint and Tibouchi [CLT14]
showed that two fixes are still not secure by extending Cheon et. al’s attack
in [CHL+14]. So far, no multilinear map constructions are known to provide
hardness of the SubM, DLIN or XDH problems and many applications based on
them lost their meanings.

Contribution. We improve the zeroizing attack on the GGH scheme by in-
troducing two algorithms to find a shorter vector on the ideal lattice than the
previous. Our attack scenario is as follows: First, we apply the zeroizing attack
as in [GGH13] to find a basis of the ideal lattice 〈g〉 of Z[X]/(Xn + 1) in the
GGH scheme. Second, we show that a vector in 〈g〉 of size < q3/8/(2n2) can
be used to solve the Graded Decisional Diffie-Hellman (GDDH) problem on the
GGH scheme in polynomial time. Finally, to find this short vector, we compute
the Hermit Normal Form (HNF for short) of this ideal lattice. We are done if it
has a basis vector of size < q3/8/(2n4), whose probability will be analyzed later.
Otherwise we use our reduction algorithm on a sublattice to find a short vector
of 〈g〉. We show that this second algorithm finds a short vector < q3/8/(2n2) in
polynomial time of n, which is a result of the BKZ algorithm, when n = O(κλ2)
as suggested for the κ-linear GGH scheme with overwhelming probability (with
exception of about 2−n probability).

Our strategy to find a short vector of 〈g〉 starts with computing the Hermit
Normal Form HNF(g) of the ideal lattice 〈g〉. Our first approach comes from a
theoretical result. We observe that the Hermit Normal Form of an ideal lattice
is of very special form, and prove that the algebraic norm of a prime ideal
g ∈ Z[x]/(Xn + 1) over Q is pf for some integral prime p and a positive integer
f . Then we have

HNF(g) =

(
In−f O
A pIf

)
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for A ∈ Z(n−f)×f , where If and In−f are the identity matrix of size f and (n−f),
respectively. Since N(g) = pf = det(HNF(g)) ≤ (σ

√
n)n with overwhelming

probability, size p of the last f columns of HNF(g) are less than (σ
√
n)n/f . This

value is asymptotically less than q3/8/(2n4) when f ≥
√
n. It is well-known that

f is the order of p modulo 2n with pf ≡ 1 mod 2n. So f ≥
√
n is satisfied with

high probability if p mod 2n is uniformly distributed. It would be interesting to
see how p mod 2n is distributed when the coefficients of g follow the Gaussian
distribution.

Our second algorithm is to find a short vector in the ideal lattice 〈g〉 by
applying a lattice reduction to a sublattice obtained from the Hermit Normal
Form of 〈g〉. We observe that when the determinant of the lattice 〈g〉 is not so
large, applying a lattice reduction algorithm to a sublattice could give a shorter
vector within the same computational time than the original lattice. More pre-
cisely, the size of the short vector produced by lattice reduction algorithms in

time 2O(t) is about 2
n′
t · det (L)

1
n′ , when applied to a lattice L of dimension n′.

So if detL = O(2n
2/t), this value has a minimum for n′ =

√
t log det(L) < n. In

general, we cannot say that the determinant of sublattice is smaller than that
of lattice. However, this problem is avoidable using the HNF. By taking a sub-
lattice generated by the last n′ =

√
t log det(L) columns of HNF(g), we obtain

an appropriate sublattice. Following the parameter setting proposed by GGH
scheme, n = O(κλ2), log q = O(κλ), and detL ≤ (n

√
λ)n with overwhelming

probability. In that case, the size 2n
′/t det(L′)1/n

′
is smaller than ≤ q3/8/2n4 if

t > log n
√
λ . To avoid this attack, it is required that n = Ω̃(κ2λ3).

Open problems. To be secure against our attacks, a residual degree of prime
ideal 〈g〉 must be small. It would be an interesting problem to investigate how to
sample such g efficiently while the coefficients follow the Gaussian distribution.

Organization. In Section 2, we introduce some preliminaries related to an ideal
lattice and Gaussian distribution. In Section 3, we recall the GGH scheme and
the GDDH problem. In Section 4, we analyze Hermite normal forms of prime
ideal lattices in Z[X]/(Xn + 1). In Section 5, we present our algorithm to solve
the GDDH problem on the GGH scheme and propose new parameter setting to
resist it.

2 Preliminaries

Throughout the paper, we assume that an integer n is a power of 2. Then
K := Q[X]/(Xn+1) is a number field with the ring of integers R := Z/(Xn+1).
Especially, K is Galois extension of Q and we denote by Gal(K/Q) the Galois
group of K over Q.

For an integer q, we use the notations Zq := Z/(qZ) and Rq := Zq[X]/(Xn+
1) = R/qR. We denote by x mod p or [x]p the number in Z ∩

(
−p2 ,

p
2

]
, which is

congruent to x modulo p. For u ∈ Zn or R, [u]q and ‖u‖ denote the reduction
of u modulo q and the Euclidean norm of u, respectively. We use bold letters to
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denote vectors or ring elements in Zn or R.

Ideal Lattice. An n-dimension full-rank lattice L ⊂ Rn is the set of all Z-linear
combinations of n linearly independent vectors. Let det(L) denote the determi-
nant of lattice L. For an element g ∈ R, we denote by 〈g〉 be the principal ideal
in R generated by g, whose basis consists of {g, xg, . . . , xn−1g}. By identifying
a polynomial g =

∑
gix

i ∈ R with a vector (gn−1, gn−2, . . . , g0) in Zn, we can
apply some lattice theory to the algebraic ring R and also use some algebraic
ring theory to analyze 〈g〉.

For a polynomial u ∈ R and a basis B := {b1, b2, . . . , bn}, we denote by
u mod B the reduction of u modulo the fundamental region of lattice B, i.e. u
is the unique representation u mod B ∈ R such that u − (u mod B) ∈ B and

u mod B =
n−1∑
i=0

αibi for αi ∈ (−1/2, 1/2].

When given two elements a and b in the polynomial ring R, the following
lemma is useful for estimating the boundary of norm ‖ab‖.
Lemma 1. For any a, b ∈ R, ‖ab‖ ≤ ‖a‖ · ‖b‖ ·

√
n.

Proof. The k-th coefficient of ab is of the form:
∑

i+j=k

aibj−
∑

i+j=n+k

aibj. By the

CauchySchwartz inequality, it is smaller than ‖a‖ · ‖b‖. Since each coefficient is
smaller than ‖a‖ · ‖b‖, ‖ab‖ ≤ ‖a‖ · ‖b‖ ·

√
n. ut

Norm of an Ideal. We define the norm of an ideal I ⊂ R, NK/Q(I) or
N(I) for short, relative to Q and K, by cardinality of the quotient ring R/I.
When I is generated by one element h ∈ R, N(h) := N(〈h〉) satisfies N(h) =∏
σ∈Gal(K/Q) σ(h).

For a prime ideal ℘i, we recall N(℘i) = pf for some integral prime p ∈ Z and
a positive integer f , called a residual degree of ℘i with respect to K and Q

Gaussian distribution. Given σ > 0, the discrete Gaussian distribution over
the set L with zero mean, is defined as DL,σ(x) = ρσ(x)/ρσ(L) for any x ∈ L,
where ρσ(x) = exp(−π‖x‖2/σ2), ρσ(L) =

∑
x∈L

ρσ(x). We use a notation a ← D

to denote choosing an element a according to the distribution of D.

Smoothing parameter. For a lattice L and real ε > 0, a smoothing parameter
ηε(L) is defined as the smallest s satisfying ρ1/s(L

∗ − {0}) < ε, where L∗ is the
dual lattice of L := {r ∈ Rn; 〈r,x〉 ∈ Z for any x ∈ L} for the inner product 〈·, ·〉.

Lemma 2. [MR07, Lemma 3] Given a lattice L of dimension n and a constant
0 < ε < 1, suppose that σ ≥ ηε(L). Then we have

Pru←DL,σ
(
‖u‖ ≥ σ

√
n
)
≤ 1 + ε

1− ε
2−n

By Lemma 2, when σ ≥ ηε(L) and x is sampled from DL,σ, ‖x‖ ≤ σ
√
n with

overwhelming probability.
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3 A Multilinear Map based on Ideal lattice

First, we briefly recall the Garg et al. construction. We refer to the original
paper [GGH13] for a complete description. The scheme relies on the following
parameters.

λ: the security parameter
κ: the multilinearity parameter
q: the modulus of a ciphertext
n: the dimension of base ring
m: the number of level-1 encodings of zero in public parameters
σ: the basic Gaussian parameter for drawing the ideal generator g
σ′: the Gaussian parameter for sampling level-zero elements
σ∗: the Gaussian parameter for drawing the coefficient vector r during re-
randomization of newly generated level-1 encodings

Garg et al. suggested to set the parameters satisfying the following conditions:

• n = Õ(κ · λ2) to thwart lattice reduction attacks.
• q ≥ 28κλ · n64κ · λ12κ to support functionality from [GGH13, Lemma 4].
• m = O(n2): to apply leftover hash lemma from [GGH13, Theorem 1].
• σ =

√
λn to satisfy σ ≥ η2−λ(Zn).

• σ′ = λn3/2 to satisfy σ′ ≥ η2−λ(I).
• σ∗ = 2λ to be large enough so that the resulting distribution of rerandom-

ization process drown the initial vector.

3.1 The GGH Scheme

Instance generation: (params,pzt)← InstGen(1λ, 1κ).
For a given λ and κ, determine the parameter (σ, σ′, σ∗, q, n,m) to satisfy

the above conditions and output (params, pzt).

Sample g ← DR,σ until ‖g−1‖ ≤ n2 and I = 〈g〉 is a prime ideal in R.

Sample z ← Rq.

Sample a← D1+I,σ′ and set a level-1 encoding of 1, y =

[
a

z

]
q

.

Sample X = {big} ← DI,σ′ and set a level-1 encoding of 0, xi =

[
big

z

]
q

for each i ≤ m.

Sample h← DR,
√
q and set a zero-testing parameter pzt =

[
h

g
zκ
]
q

.

Publish params = (n, q,y, {xi}) and pzt.
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Encodings at higher levels: ci ← enc(params, i, c).
Given a level-j encoding c for j < i, compute ci = [cyi−j ]q.

Re-randomizing level-1 encodings: c′ ← reRand(params, c).
Given a level-1 encoding c, sample ri ← DZ,σ∗ for 1 ≤ i ≤ m and compute
c′ = [c +

∑m
i=1 rixi]q.

Adding and multiplying encodings:
Given two encodings c1 and c2 of same level, the addition of c1 and c2 is com-
puted by Add(c1, c2)=[c1 + c2]q. Given two encodings c1 and c2, we multiply
c1 and c2 by Mul(c1, c2)=[c1 · c2]q.

Zero-testing: isZero(params, pzt, c) =? 0/1.
Given a level-κ encoding c, return 1 if ‖[pzt·c]q‖∞ < q3/4, and return 0 otherwise.

Extraction: sk ← ext(params, pzt, c).
Given a level-κ encoding c, Compute MSBlog q/4−λ([pzt · c]q).

3.2 Hardness Assumptions

We recall the definition of the Graded Decisional Diffie-Hellman problem (GDDH),
on which the security of GGH scheme relies, and Graded Computational Diffie-
Hellman problem (GCDH) from [GGH13]. These do not seem to be reducible to
more classical assumptions in generic ways.

GDDH, GCDH.
For an adversary A and parameters λ, κ, we consider the following process in

the GGH scheme.
1. Choose (params, pzt) ← InstGen(1λ, 1κ).
2. Sample aj ← DR,σ′ for each 0 ≤ j ≤ κ.
3. Set uj ← reRand(params, enc(params,1,aj)) for all 0 ≤ j ≤ κ.
4. Choose b ← DR,σ′ .

5. Set û=a0 ×
∏κ
i=1 ui and û′ ← reRand(params, enc(params, κ,

κ∏
i=0

ai)).

6. Set u=b×
∏κ
i=1 ui and u′ ← reRand(params, enc(params, κ,

κ∏
i=1

b · ai)).

The GCDH problem is to output a level-κ encoding of
κ∏
i=0

ai + I given inputs

{params,pzt,u0, . . . ,uκ}.

The GDDH problem is to distinguish between two distributions DDDH and DR
where

DDDH = {params,pzt,u0, . . . ,uκ, û
′} and DR = {params,pzt,u0, . . . ,uκ,u

′}.
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4 Hermite normal form of prime ideal lattice

In this section, we discuss about Hermite normal forms of prime ideal lattices.
Hermite normal form is, by intuition, a triangularization over a principal ideal
domain. A matrix with integer entries is in (column) Hermite normal form (HNF,
for short) if

1. (Zero rows) All nonzero columns (columns with at least one nonzero element)
are left to any columns of all zeros (all zero columns, if any, are at the right
of the matrix).

2. (Triangular) The first nonzero entry from the above (called, the pivot) of a
nonzero column is always strictly to the below of the pivot of the column
left to it. Moreover, it is positive.

3. (Modulus Reduction) All the entries in a row left to a pivot are nonnegative
and strictly smaller than the pivot.

Note that the HNF of a matrix over Z is unique.

In order to figure out some characteristics of HNFs of prime ideal lattices,
we remind the following lemmas.

Lemma 3. For a prime element g of R, there exists a prime p in Z such that
〈g〉 ∩ Z = pZ.

Lemma 4. Let n be a power of 2 and g a prime element of R = Z[X]/(Xn+ 1)
with 〈g〉 ∩Z = pZ for an odd prime p. Then we have N(g) = pf for the smallest
positive integer f satisfying pf ≡ 1 mod 2n.

Lemma 5. Given an element g of R = Z[X]/(Xn + 1), we have

N(g) =
∏

σ∈Gal(K/Q)

σ(g) = det[g, xg, . . . , xn−1g].

Theorem 1. Let n be a power of 2 and g be a prime element of R = Z[X]/(Xn+
1) with N(g) = pf for an odd prime p and a positive integer f . The Hermit
Normal Form of g is of following form:

HNF(g) =

(
In−f O
A pIf

)
=



1
0 1
0 0 1
...

. . .

0 0 0 . . . 1
a1,1 a1,2 a1,3 . . . a1,n−f p
a2,1 a2,2 a2,3 . . . a2,n−f 0 p

...
...

. . .

af,1 af,2 af,3 . . . af,n−f 0 0 . . . p


for some ai,j ∈ Z ∩ [0, p).
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Proof. Let us denote by di the i-th diagonal entry of HNF(g). First, since 〈g〉 ∩
Z = pZ by Lemma 4, the ideal 〈g〉 contains pxi for any positive integer i as
well as p. Since the HNF is triangular, the i-th column itself should generate a
vector corresponding to a polynomial pxn−i and so the i-th diagonal entry di is
a divisor of p.

Next, we claim that di = 1 implies d1 = · · · = di−1 = 1. If di = 1, 〈g〉
contains a polynomial f = xn−i + fn−i−1x

n−i−1 + . . . + f0. For each 0 ≤ j < i
we have xi−jf = xn−j + · · ·+ f0x

i−j ∈ 〈g〉 which implies dj = 1.

Furthermore, N(g) = det[g, xg, . . . , xn−1g] = pf implies
∏n
i=1 di = pf . Com-

bining the above three arguments, we can conclude that d1 = · · · = dn−f = 1
and dn−f+1 = · · · = dn = 1.

Finally, we claim that if di = p then the i-th column of HNF(g)is pei where
ei is the i-th elementary vector. We use an induction on i reversely from n to
1. For i = n, it is clear that the n-th column is pen while f > 0. Suppose
the claim holds for all j with i < j ≤ n and di = p. Then the i-th column is
represented by pxn−i + an−i−1x

n−i−1 + . . .+ a0 for some ai ∈ Z. Since pxn−i ∈
〈g〉, an−i−1xn−i−1 + . . .+ a0 must be generated by {hi+1, . . . ,hn}, where hs is
the s-th column of HNF(g) and so equal to pen−s+1 by the induction hypothesis.
Hence, ai must be multiple of p and ai = 0, which conclude the proof. ut

5 An Attack on the GDDH problem of the GGH scheme

In this section, we propose an algorithm for the GDDH problem of the GGH
scheme. Our algorithm consists of three parts. The first part is the zeroizing
attack to find a basis of 〈g〉, which is introduced in [GGH13]. The second part
is to find the shortest vector of 〈g〉 using HNF. The third part is to perform
a lattice reduction algorithm on reduced dimension to solve the GDDH on the
GGH scheme.

5.1 Finding a basis of 〈g〉

First, we briefly recall the zeroizing attack on the GGH scheme. The GGH
has {y,xj ,pzt, n, q} as a public parameter and {z, g} as a secret parameter.
By publishing a zero-testing parameter pzt, any user can decide whether two
elements encode the same coset or not: For a given level-κ encoding u = [c/zκ]q,
the quantity [u · pzt]q = [h · c/g]q is small if and only if c ∈ 〈g〉, i.e., u is an
encoding of zero. The existence of zero-testing parameter creates a weak point
in the scheme.

The attack gets as inputs several encodings xj of zero, one encoding y of
one, and a zero testing parameter pzt as follows:

• y = [a/z]q, a level-1 encoding of 1, namely a ∈ 1 + I and a is small,

• xj = [bjg/z]q, a level-1 encoding of 0, with bj small,

• pzt = [hzκ/g]q, h ∈ R appropriately small, the zero-testing parameter.
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The attack consists of the following three steps. For the detail, we refer to
the [GGH13].

Step 1. Compute level-κ encodings of zero and get the equations in R by
multiplying by the zero-testing parameter: Let u = d/zt be a level-t encod-
ing of some message d mod I. Then

fu = [u · xj · pzt · yκ−t−1]q =

[
d

zt
· bj · g

z
· hz

κ

g
· a

κ−t−1

zκ−t−1

]
q

= d · bj · h · aκ−t−1︸ ︷︷ ︸
�q

.

Note that the last term in the above equation consists of only small elements,
so that the equality holds without modulus reduction by q. Therefore we can
obtain various multiples of h (in R) for various u and xj .

Step 2. We regard a polynomial an−1x
n−1+ . . .+a1x+a0 ∈ Rq as a column

vector (an−1, . . . a1, a0)T ∈ Znq . From O(n) multiples of h, compute a basis of
〈h〉 in time O(n3) arithmetic operations. Using a similar procedure, compute
a basis of 〈h · g〉.

Step 3. Finally, we obtain a multiple of 〈g〉 by dividing a ∈ 〈h·g〉 by b ∈ 〈h〉
in K. In generally, a/b is in K not R. By multiplying some s ∈ Z to a/b
such that sa/b ∈ R, we can get a multiple of g. From many multiples of g,
compute a basis of 〈g〉.

5.2 Solving the GDDH problem

We refer to Section 6.3.3 in [GGH13] to solve the GDDH problem with short
vector of 〈g〉. Assume that we have a short vector in 〈g〉 smaller than a con-
stant M . We explain how to use this short vector of 〈g〉 in order to solve the
GDDH problem in the GGH scheme. Given a distribution {params,pzt,u0 :=
enc1(m0), . . . ,uκ := enc1(mκ), û}, the GDDH problem is to determine whether
it is from DDDH or from DR.

Our strategy is to compute a coset of m0 modulo the ideal 〈g〉 in two different
ways: one from u0 and the other from u1, . . . ,uκ, {û}. If this distribution is
DDDH , they are identical, which can be checked easily with a basis of I := 〈g〉.
Otherwise, they would be different with high probability.

Computing a coset of m0 from u0. By multiplying xj , y and pzt several
times to u0 and y, we obtain the following two level-κ encodings of zero:

f0 := u0xjy
κ−2pzt ≡m0bjh mod I

f1 := xjy
κ−1pzt ≡ bjh mod I.

By computing f0/f1 mod I, we can recover m0 mod I. Since R/I is a finite
field having pf order elements, computing f−11 mod I can be done in time
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O(f2 log2 p) via isomorphism, or more directly with a matrix computation in
time O(f3 log2 p).

Computing a coset of m0 from {u1, . . . ,uκ, û}. Suppose we have an
element dg ∈ I satisfying ‖dg‖ < M for some d ∈ R, where M is a constant
less than q3/8/2n4. By multiplying dg to pzt in Rq, we obtain a new zero-testing
parameter p′zt = [dhzκ]q ∈ Rq.

Suppose û is a valid level-κ encoding of
κ∏
i=0

mi. Then ‖zκû‖ is smaller than

q1/8 by parameter setting of the GGH scheme, and so

‖ûp′zt‖ = ‖ûdhzκ‖ ≤ ‖zκû‖ · ‖h‖ · ‖dg‖ · ‖g−1‖ ·
√
n3

≤ q1/8 · q1/2
√
n ·M · n2 ·

√
n3 = q5/8 · n4 ·M < q/2.

Since each entry of ûp′zt is smaller than q/2, we have

[ûp′zt]q = (zkû)dh ≡ dh

κ∏
i=0

mi mod I.

Similarly from
κ∏
i=1

enc1(mi), we obtain dh
κ∏
i=1

mi mod I. By dividing dh
κ∏
i=0

mi

by dh
κ∏
i=1

mi in R/I ' Fpf , we can recover m0 mod I.

It should be identical with m0 mod I computed from u0. However, if û is
sampled from DR, they are not same with high probability. So we can solve the
GDDH problem.

5.3 Finding a short vector of 〈g〉

Now, we will show how to get a shorter vector by applying a lattice reduction
algorithm to a sublattice rather than the original lattice. It is certain that the
shortest vector of the sublattice cannot be shorter than that of the original lat-
tice. Since the asymptotic factor of the lattice reduction algorithm is exponential
in the dimension, however, the reduction algorithm on the sublattice might give
a shorter vector that one on the original lattice when the determinant of the
lattice is not so large.

More precisely, we assume as a rule of thumb in lattice reductions that the
size of the short vector produced by lattice reduction algorithms in time 2O(t) is

about 2
n
t ·det (L)

1
n , when applied to a lattice L of dimension n. When applied to a

sublattice L′ of L with detL′ = detL, this size becomes 2dim(L′)/t detL1/ dim(L′),
which has a minimum value when dim(L′) =

√
t log det(L). So if n is larger

than this optimal dimension, or equivalently detL = O(2n
2/t), we can have a

sublattice L′ producing a shorter vector computationally.
The last step of this strategy is to find a sublattice whose determinant is

not larger than that of the original lattice, which is not always true for all the
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lattices. Using HNF, however, we can choose an appropriate sublattice by taking
the last n′ column vectors of HNF(〈g〉).

Let us apply this scenario to the lattice 〈g〉. From Lemma 5, we can see
that N(g) is bounded by ‖g‖n. When each entry of g is chosen according to
the parameter generation of the GGH, its Euclidean norm is bounded by σ

√
n

with overwhelming probability by Lemma 2. We can see that N(g) ≤ (
√
nσ)n

with overwhelming probability. In that case, 2
n′
t · det (L)

1
n′ is minimized into

22
√

(n/t) log
√
nσ at n′ =

√
nt log

√
nσ. For σ =

√
λn as in the parameter setting

of the GGH, if we take a sublattice L′ with dimension n′ =
√
nt log

√
nσ < n,

one can compute a short vector of size 22
√

(n/t) logn
√
λ in time 2O(t). This short

vector is less than q3/8/(2n4) as required in our attack, if t > log(κλ) which
implies that the algorithm takes 2O(t) = poly(κλ) time complexity.

Setting the parameter of the GGH scheme. To avoid this attack, q5/8 ·n4 ·
2

√
n log(σ

√
n)

λ must be larger than q/2, or equivalently q ≤ (2n4 · 2
√
n log(σ

√
n)

λ )8/3.
The GGH parameter setting requires q to satisfy

28κλ · n64κ · λ12κ ≤ q ≤ 2
n
λ .

Since 2
n
λ > (2n4 · 2

√
n log(σ

√
n)

λ )8/3, we have a new parameter condition on q as
follows:

28κλ · n64κ · λ12κ ≤ q ≤ (2n4 · 2
√
n log(σ

√
n)

λ )8/3.

Such q can exist only if√
n log(σ

√
n)

λ
+ 4 log n+ 1 > (8κλ+ 64κ log n+ 12κ log λ) · 3/8,

which is satisfied only in n = Ω̃(κ2 · λ3).

Adaptation to the GGHLite scheme. To improve the efficiency of GGH
scheme, Langlois, Stehle and Steinfeld [LSS14] constructed GGHLite. Using
Renyi divergence, they reanalyze the GGH scheme and get a new parameter
reduced than the original scheme: σ = O(n log n), q ≥ n84κ · κ4κ and n ≥

λ log q = Ω(κλ log λ). Then the inequality 2

√
n log(σ

√
n)

λ + 4 log n+ 1 ≥ q3/8 yields
n = Ω̃(λ · (κ log λ)2), which is a bit larger than the original n = O(λ · κ log λ).

5.4 Finding a short vector of 〈g〉 with large residual degree

In case of residual degree f being large, we can find a short vector of 〈g〉 easily.
In the cyclotomic field case, the residual degree f is the least positive integer
satisfying pf ≡ 1 mod 2n, i.e. f is the order of p in Z∗2n. We can estimate the
order of p from the following lemma:
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Lemma 6. [NZM08, Theorem 2.43] Suppose that a ≥ 3. The order of 5 (mod 2a)
is 2a−2. The numbers ±5, ±52, . . . ,±5a−2 form a system of reduced residues
(mod 2a). Hence, suppose that n is power of 2, then Z∗2n ' Z2 × Zn/2, where
Z∗2n, Z2 × Zn/2 are characterized by a multiplication and addition, respectively.

By Lemma 6, for an arbitrary odd prime p ∈ Z, order of p is approximately such
as:

|p| =



n

2i
with

1

2i
probability i ∈ [1, log n− 1)

2 with
3

n
probability

1 with
1

n
probability

So f is very large with high probability assuming p mod 2n is uniformly dis-
tributed over Z∗2n. However, when g is sampled from DZ,σ, p is characterized by
〈g〉 ∩ Z = p · Z. In case of this, we don’t know the distribution of order of p.
Assume f is larger than

√
t log det(L). Then

p = det (L′)
1
d = 2

d
t · det (L′)

1
d ≤ 2

d
t · det (L)

1
d ≤ 2

n
t · det (L)

1
n

If p is smaller than q3/8/2n4, the last vector of HNF(g) can be used to solve
the GDDH problem by modifying zero-testing parameter in Section 5.2. Hence,
in just polynomial time for n (we only use the zeroizing attack and computing
the Hermite normal form), we can solve the GDDH problem. It suggests another
parameter condition. When g is sampled from DR,σ, the residual degree of p
must be very small.
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A Proof of Lemmas

Lemma 3. For prime g in R = Z[X]/(Xn + 1), there exists some prime integer
p in Z such that 〈g〉 ∩ Z = pZ.

Proof. Consider an embedding homomorphism φ from Z to R and the projection
homomorphism π from R to R/〈g〉. The Kernel 〈g〉 ∩ Z ⊂ Z of π · φ is a prime
ideal of Z so that, for some prime p ∈ Z, 〈g〉 ∩ Z = p · Z ut
Lemma 4. Let n be a power of 2 and g a prime element of R = Z[X]/(Xn + 1)
with 〈g〉 ∩Z = pZ for an odd prime p. Then we have N(g) = pf for the smallest
positive integer f satisfying pf ≡ 1 mod 2n.

Proof. Since 〈g〉 is a prime ideal in R and p ∈ 〈g〉, the quotient ring R/〈g〉
is a finite field with characteristic p. When f is the smallest positive integer
satisfying pf ≡ 1 mod 2n, for any a(x) ∈ R/〈g〉,

a(x)p
f

= a(xp
f

) = a(x) mod 〈g〉.
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Therefore the minimality of f gives |R/〈g〉| = pf i.e N(〈g〉) = pf . ut

Lemma 5. Given an element g of R = Z[X]/(Xn + 1), we have

N(g) =
∏

δ∈Gal(K/Q)

δ(g) = det[g, xg, . . . , xn−1g].

Proof. When g is a primitive element of R over Q, let F (X) =
∑n
i=0 aiX

i be
the minimal polynomial of g over Q. Then R is isomorphic to Q[X]/〈F [X]〉, and
{1, g, . . . , gn−1} is a basis for R over Q. Moreover a0 =

∏
δ∈Gal(K/Q)

δ(g) = N(g).

The matrix M of the multiplication endomorphism mg(a) = ga, for a ∈ R, with
relative to this basis is

M =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
0 0 . . . 1 −an−1


having its determinant a0. Since determinant does not depend on bases and
{1, x, . . . , xn−1} is also basis of R, the determinant of matrix of the mg with
relative to this bases is det[g, xg, . . . , xn−1g] = a0 = N(〈g〉).

Now, consider the general case. Put F [X] =
∑m
i=0 aiX

i and r = n/m. Then
N(g) = ar0. Let {yi}i=1,...,m be a basis for Q[X]/〈F [X]〉 over Q and {zi}i=1,...,r

a basis for R over Q[X]/〈F [X]〉. Then {yizj} is a basis for R over Q. Let M
be the matrix for multiplication by g in Q[X]/〈F [X]〉 with relative to the basis
{yi}. Ordering lexicographically the basis {yizj}, the matrix M ′ of the mg in R
with relative to this basis is

M ′ =


M 0 . . . 0
0 M . . . 0
...

...
. . .

...
0 0 . . . M


Similarly to above paragraph, we can get det[g, xg, . . . , xn−1g] = ar0 = N(〈g〉).

ut


