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Abstract. Garg, Gentry and Halevi (GGH) described the first candidate multilinear maps using 
ideal lattices. However, Hu and Jia presented an efficient attack on GGH map, which breaks the 
GGH-based applications of multipartite key exchange (MPKE) and witness encryption (WE) based 
on the hardness of 3-exact cover problem. We describe a new construction of multilinear map using 
random matrix, which supports the applications for public tools of encoding in the origin GGH, such 
as MPKE and WE. The security of our construction depends upon new hardness assumption. 
Furthermore, our construction removes the special structure of the ring element in the principal ideal 
lattice problem, and avoids potential attacks generated by algorithm of solving short principal ideal 
lattice generator. 
Keywords. Multilinear maps, Ideal lattices, Multipartite Diffie-Hellman key exchange, Witness 
encryption, Zeroizing attack 

1 Introduction 

Constructing cryptographic multilinear map is a long-standing open problem [BS03]. It has many 
applications, such as witness encryption [GGS+13], general program obfuscation [GGH+13b, 
Zim15], function encryption [GGH+13b], and other applications [GGH+13a, BZ14]. Garg, Gentry, 
and Halevi (GGH) proposed the first candidate construction of multilinear maps from ideal lattices 
[GGH13]. GGHLite [LSS14] is an efficient improvement version of GGH map. Using same 
framework of the GGH map, Coron, Lepoint, and Tibouchi [CLT13] (CLT) presented a construction 
over the integers. Gentry, Gorbunov and Halevi [GGH15] constructed graph-induced multilinear 
maps from lattices. 

The attacks for CLT and GGH demonstrate that the security of current constructions requires 
further deep cryptanalysis. On the one hand, Cheon, Han, Lee, Ryu, and Stehle recently broke the 
CLT construction using zeroizing attack introduced by Garg, Gentry, and Halevi. To fix the CLT 
construction, Garg, Gentry, Halevi and Zhandry [GGH+14], and Boneh, Wu and Zimmerman 
[BWZ14] presented two candidate fixes of multilinear maps over the integers. However, Coron, 
Lepoint, and Tibouchi showed that two candidate fixes of CLT can also be defeated using extensions 
of the Cheon et al.’s Attack [CHL+14]. By modifying zero-testing parameter, Coron, Lepoint and 
Tibouchi [CLT15] proposed a new construction of multilinear map over the integers. On the other 
hand, Hu and Jia [HJ15a] very recently presented an efficient attack on the GGH map, which breaks 
the GGH-based applications on multipartite key exchange (MPKE) and witness encryption (WE) 
based on the hardness of 3-exact cover problem. The Cheon and Lee [CL15] proposed an attack for 
the GGH map by computing a basis of secret ideal lattice. 

Gu (Gu map-1) [Gu15] presented a construction of multilinear maps without encodings of 
zero, which is an improvement of GGH map. Since no encodings of zero are given in the public 
parameters, MPKE based on Gu map-1 [HJ15c] successfully avoids the attack in [HJ15a]. However, 
Gu map-1 cannot be used for the instance of witness encryption based on the hardness of 3-exact 
cover problem [HJ15b]. This is because there is no randomizer in Gu map-1. But the instance of WE 
based on the hardness of 3-exact cover problem is a strong application of multilinear map. Thus, 
there is a strong demand to construct scheme with randomizer. 
Our results. Our main contribution is to construct a new multilinear map using random matrix. Our 
construction improves the GGH map in three aspects.  

(1) We modify the zero-testing parameter of GGH from /zt q

   p z h g  to 
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( / )zt q
Rot    P T z h g S  by using random matrix , n n

q
T S  , where ( )Rot r  is the anti-cycle 

matrix of r . Since the level-1 encodings and level-0 encodings are multiplied by different matrices, 
they cannot be directly multiplied, and must use zero-testing matrix ztP  as intermediate element to 

multiply them together. As a result of using random matrix, our construction thwarts the revelation 
of the secret parameters. 

(2) We transform the final result into a non-square matrix to damage the structure of ring 
elements between random matrices and further avoid the principal ideal lattice problem. Although 

one merely can get the final result of the form ( )k

q
Rot   V T rg S  with 0 k   , the 

structure and some secret information of g  still remain in V . To remove this weakness, we 

choose another two matrics 
10 ,k nD

T


, 
20 ,n kD
S


 with 1 2k k n  and set 1

0
*T T T , 

1
0

*S = S S . Now, we must multiply *T  and *S in both sides of V  to obtain the non-reduced 

matrix over modulus q . That is, we get the matrix 0 0 0( )kRotV T rg S . Notably, 0V  is an 

1 2k k -matrix, and does not have the structure of the ring element krg . However, using a variant 

of Cheon et al. attack, one can also obtain some secret information of g . To avoid this problem, we 

use two zero-testing parameters to introduce new noise term and really destroy the structure of ring 
element. Owing to this reason, we can give encodings of zero in the public parameters. Thus, our 
construction supports the applications using GGH as public tools of encoding, and removes the 
weakness of the principal ideal lattices problem in GGH.  

(3) By using composite-order ideal lattice, our construction can have more applications than 
GGH [GGH13]. Owing to destroying the structure of ring element, we conjecture that the 
membership group problem (SubM) and the decisional linear (DLIN) problem are hard in our 
construction. Thus, we can use composite-order ideal lattice in our construction to support the 
applications based on the SubM problem and the DLIN problem. However, in the GGH map, one 
can compute non-reduced ring elements over modulus q  and basis of some secret ring elements. 

As a result, the SubM problem and the DLIN problem are easy in the GGH map. 
Our second contribution is to describe the applications of MPKE and WE using our 

multilinear map. Since these applications are attacked by [HJ15a], fix for them is urgently required. 
The constructions of MPKE and WE based on our new map are same as ones using GGH. However, 
different from GGH, the security of our construction depends on new hard assumption. 

Organization. We first recall some background in Section 2. Then we describe symmetric 
construction in Section 3, commutative variant and asymmetric variant in Section 4. Finally, we 
present two applications of MPKE and WE using our construction in Section 5, and draw conclusion 
in Section 6. 

2 Preliminaries 

2.1 Notations 

We denote , ,    the ring of integers, the field of rational numbers, and the field of real 

numbers. We take n  as a positive integer and a power of 2. Notation  n  denotes the set 

{1,2, , }n , and  qa  the absolute minimum residual system   mod ( / 2, / 2]
q

a a q q q   . 

Vectors and matrices are denoted in bold, such as , ,a b c  and , ,A B C . Let I  be the identity 

matrix. The j -th entry of a  is denoted as ja , the element of the i -th row and j -th colomn of 

A  is denoted as ,i jA (or [ , ]A i j ). Notation 


a  ( a  for short) denotes the infinity norm of 

a . The polynomial ring [ ]/ 1nX x    is denoted by R , and [ ]/ 1n
q X x    by qR . 
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The elements in R  and qR  are denoted in bold as well. Similarly, notation  qa  denotes each 

entry (or each coefficient) ( / 2, / 2]ia p p   of a . 

2.2 Lattices and Ideal Lattices 

An n -dimension full-rank lattice nL    is the set of all integer linear combinations 

1

n

i ii
x

 b  of n linearly independent vectors n
i b  . If we arrange the vectors ib  as the 

columns of matrix n nB  , then  : nL Z Bz z . We say that B  spans L  if B  is a 

basis for L . Given a basis B  of L , we define ( ) { | , : 1/ 2 1/ 2}n
iP i z     B Bz z   

as the parallelization corresponding to B . Let det( )B  denote the determinant of B . 

Given Rg , let I  g  be the principal ideal in R  generated by g , whose  -basis 

is 1( ) ( , ,..., )nRot x x   g g g g . 

Given nc  , 0  , the Gaussian distribution of a lattice L  is defined as L x , 

, , , ,( ) / ( )LD L   c c cx , where 
2 2

, ( ) exp( / )    c x x c , , ,( ) ( )
x L

L  


c c x . 

In the following, we will write 
, ,0nD


 as 
,nD


. We denote a Gaussian sample as ,LD x  

(or ,ID d ) over the lattice L (or ideal lattice I ). 

2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1   cyclic groups 1,..., , TG G G  of the same 

order q , a  -multilinear map 1: Te G G G    has the following properties: 

(1) Elements  
1,...,j j j

g G


 , index  j  , and integer qa  hold that 

1 1( , , , , ) ( , , )je g a g g a e g g       

(2) Map e  is non-degenerate in the following sense: if elements  
1,...,j j j

g G


  are 

generators of their respective groups, then 1( , , )e g g  is a generator of TG . 

 
Definition 2.2 ( -Graded Encoding System [GGH13]). A  -graded encoding system over R  

is a set system of   ( ) : ,jS S R R j       with the following properties: 

(1) For every index  j  , the sets  ( ) :jS R    are disjoint. 

(2) Binary operations ‘ ’ and ‘ ’ exist, such that every 1 2,  , every index  j  , and 

every 1( )
1 ju S   and 2( )

2 ju S   hold that 1 2( )
1 2 ju u S     and 1 2( )

1 2 ju u S    , where 

1 2   and 1 2   are the addition and subtraction operations in R  respectively. 

(3) Binary operation ‘ ’ exists, such that every 1 2,  , every index  1 2,j j   with 

1 2j j   , and every 1

1

( )
1 ju S   and 2

2

( )
2 ju S   hold that 1 2

1 2

( )
1 2 j ju u S  

  , where 1 2   

is the multiplication operation in R  and 1 2j j  is the integer addition. 
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3 Construction using random matrix 

Setting the parameters. Let   be the security parameter,   the multilinearity level, n  

the dimension of elements of R . Concrete parameters are set as n  , 1.5n   , 2   , 
16 ( )2 Oq n  , 2m  ,  2( )n O  , 2( )O n  , ( )O n  , 1 (log )k O n , 2 (log )k O n  such 

that 1 2 ( )k k n O   . 

3.1 Construction 

Instance generation: (par) InstGen(1 ,1 )  . 

(1) Choose a prime 16 ( )2 Oq n  . 

(2) Sample 
,nj D


g


,
,nj q

Dh


,  j m  in R , and set 
1

m

jj
g g  so that 

jg ,  j m  are pairwise relatively prime and 1
j n g . 

(3) Sample 
,nD


f


,
,n q

Dh


 in R  so that 1 n f . 

(4) For  2t , choose , , , '
, nt i t i D


a b


,  i  , and , , 'nt D 

q


,     in R . 

(5) Choose 1, , 'ni D


e


,  i   in R . 

(6) Set 2, 1, 1,( ) modi i i e a g e f , 2, 1,( ) modi v q g f , and 2, 1, 1,( ) modi i i w b g e f . 

That is, 1, 1, 1, 2,i i i i  a g e r f e , 1, 2, 2,   q g r f v , and 1, 1, 3, 2,i i i i  b g e r f w . 

(7) Choose a random element t qRz  so that 1
t qR z ,  2t . 

(8) Choose randomly matrices , n n
t t q

T S   so that 1 1, n n
t t q
  T S  ,  2t . 

(9) Choose randomly matrices 
10 ,k nD

T


, 
20 ,n kD
S


. 

(10) For  2t , set * 1
0t t

T T T , * 1
0t t

S = S S . 

(11) For  i   and    , set 

1, 1, 1
1, 1 1

1

( )i i
i

q

Rot  
  
 

a g e
Y T T

z
, 1, 1

1, 1 1
1 q

Rot 


  
   

  

q g
Q T T

z
, and 

1
1, 1 1, 1, 1( )i i i q

Rot   X S b g e S ; 

2, 2, 1
2, 2 2

2

( )i i
i

q

Rot  
  
 

a f e
Y T T

z
, 2, 2, 1

2, 2 2
2

( )
q

Rot  


 
  
 

q f v
Q T T

z
, and 

1
2, 2 2, 2, 2( )i i i q

Rot   X S b f w S . 

(12) Set   1 1
,1 1 1 11

m

zt j jj
q

Rot   


    P T z h g hf S ,  1
,2 2 2 2zt

q
Rot     P T z hf S ; 

(13) Output the public parameters 

            
 

* *
, , ,

2
par , , , , , ,t,i t i t zt t t ti t

q     

 
  
 

Y X Q P T S . 

Generating level- k  encoding:    1 2, Enc par, , ,kU U d r . 

Given 
, *

D  
d


 and 

, *
D  

r


, set , ,1 1
( ) ( )k k

t i t i ti q
d r

 
  

      U Y Q ,  
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and ,1
( )k

t i t ii q
= d




  E X  for  2t . 

Adding encodings:       1 2 1,1 2,1 1, 2,, Add par, , , , , ,s skU U U U U U . 

Given s  level- k  encodings  1, 2,,l lU U , set ,1
=

s

t t ll q
 
 U U  for  2t . 

Multiplying encodings:       1 2 1,1 2,1 1, 2,, Mul par, , , , , ,s skU U U U U U . 

Given k  level-1 encodings  1, 2,,l lU U , set ,1
=

k

t t ll q
 
 U U . 

Zero testing:   1 2isZero par, , ,U U d . 

(1) Given d , we compute 1 1,1 i ii q
= d




  E X  and 2 2,1 i ii q

= d



  E X . 

(2) Given a level-  encoding  1 2,U U , to determine whether 1U  is a level-  encoding 

of zero for g , we compute an extraction encoding for g  as follows: 
* * * *

1 1 ,1 1 1 2 2 ,2 2 2zt zt q
          V = T U P E S T U P E S . 

(3) We check whether V  is short: 

  
3/4

1 2

1 if
isZero par, , ,

0 otherwise

q 
 


V
U U d . 

Extraction:   1 2Ext par, , ,sk  U U d . 

(1) Given d , we compute 1 1,1 i ii q
= d




  E X  and 2 2,1 i ii q

= d



  E X . 

(2) Given a level-  encoding  1 2,U U , we compute an extraction encoding for g  as 

follows: 
* * * *

1 1 ,1 1 1 2 2 ,2 2 2zt zt q
          V = T U P E S T U P E S . 

(3) We collect (log ) / 4q   most-significant bits of each of the 1 2k k -matrix V : 

     1 2Ext par, , , Extract msbU U d V . 

Remark 3.1 (1) To generate a level-l encoding of a given plaintext, one can provide the level-l 

encoding and level-0 encoding in the public parameters for plaintext jx , 0,..., 1j n   as follows: 

1, 1
1, 1 1

1

( )
j

j
j

q

x
Rot  

  
  

a g
Y T T

z
 and 1

1, 1 1, 1( )j
j j q

Rot x   X S b g S . 

Given a plaintext 
, *nD


d


, we can generate its level-1 encoding 

1 1, 1,1 1
( )

n

j jj q
d r


  

     U Y Q , where 
, *

D  
r


, and its level-0 encoding 

1 1,1

n

j jj q
d


   E X . 

In this case, we need also to generate 2, jY  and 2, jX  corresponding to 1, jY  and 1, jX . 

(2) Although we randomly choose the matrices , n n
t t q

T S  ,  2t , we still use the 

element tz  to control the level number of encoding. 

(3) The composite-order element g  is to support the applications based on the SubM 

problem and the DLIN problem. 
(4) Using d  in the zero-testing and the extraction algorithm is to describe the security of our 
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construction and present the MPKE protocol. 
(5) The level-1 encodings of zero in the public parameters are to construct an instance of 

witness encryption. 
(6) We set 1 2 ( )k k k n O     . Notably, 1 2,k k  may be set 1. Because n  is the 

dimension of ring element, our aim is to compress n  free variables of the ring element to k  
variables, and breakdown the structure of the ring element in the principal ideal lattice problem. 

(7) One can sample 
, *nj D


h


 instead of 
,nj q

Dh


 since ztP  cannot be squared. 

(8) The number   of level-1 encodings of non-zero in the public parameters can be set to 
( )O n  according to the result in [HJ15c]. 

3.2 Correctness 

Lemma 3.2 The algorithm InstGen(1 ,1 )   runs in polynomial time. 

Lemma 3.3 The encoding    1 2, Enc par, , ,kU U d r  is a level- k  encoding. 

Proof. (1) For g , the encoding 1U  is a level- k  encoding, and the plaintext encoded by 1U  is 

identical to the plaintext encoded by 1E . 

By 1, 1, 1
1, 1 1

1

( ) ( )i ik k
i

q

Rot  
  
 

a g e
Y T T

z
 and 1, 1

1, 1 1
1

( ) ( )k k

q

Rot 


 
  
 

q g
Q T T

z
, we have 

1 1, 1,1 1

1, 1, 1, 11 1 1
1 1

1

11 1
1 1

1

( ) ( )

( )
( )

( )

k k
i ii q

' ' k
i i i ii i

k

q

k

q

d r

d r d
Rot

Rot

 
 

  
 

 

  



     

  
 
  

 
  
 

 

  

U Y Q

a g q g e
T T

z

a g e
T T

z

, 

where 1, 1, 1, 1,(( ) ( ) ) /' k k
i i i i  a a g e e g , 1, 1,( ) /' k

 q q g g , '
1 1, 1,1 1

'
i ii

= d r
 

  
  a a q , 

and 1 1,1
( )k

i ii
= d




e e . 

By using 1
1, 1 1, 1, 1( ) ( )k k

i i i q
Rot   X S b g e S , we have 

1 1,1

1 '
1 1, 1, 11 1

1
1 1 1 1

( )

( ( ) )

( )

k
i ii q

k
i i i ii i q

q

d

Rot d d

Rot



 




 



   

   

   



 

E X

S b g e S

S b g e S

, 

where 1, 1, 1, 1,(( ) ( ) ) /' k k
i i i i  b b g e e g , '

1 1,1 i ii
= d




b b , and 1 1,1

( )k
i ii

= d



e e . 

(2) For f , the plaintext of 1U  is same as the plaintext of 2U ; the plaintext in 1E  is 

similar to the plaintext in 2E . 

By using 1, 1, 1, 2,i i i i  a g e r f e  and 1, 2, 2,   q g r f v , we get 
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1 1, 1,1 1

1, 2, 2, 2,1 1
1 1 1 11 1

1 1

1, 2, 2, 2, 11 1 1 1
1 1

1

1

( ) ( )

( ) ( )

( ) ( )
( )

(

k k
i ii q

i i k k
ii

q

' ' k k
i i i ii i

k

q

d r

d Rot r Rot

d r d r
Rot

Rot

 
 

   


   
    

 

 
 

   

     

  
    
 

   
 
  



 

 

   

U Y Q

r f e r f v
T T T T

z z

r f r f e v
T T

z

T 11 2
1

1

)
k

q

 
 
 

r f e
T

z

, 

where 1, 1, 2, 2,(( ) ( ) ) /' k k
i i i i  r r f e e f , 2, 2, 2, 2,(( ) ( ) ) /' k k

     r r f v v f , 

'
1 1, 2,1 1

'
i ii

= d r
 

  
  r r r , and 2 2, 2,1 1

( ) ( )k k
i ii

= d r
 

  
  e e v . 

2 2, 2,1 1

2, 2, 2, 2,1 1
2 2 2 21 1

2 2

12 2
2 2

2

( ) ( )

( ) ( )

( )

k k
i ii q

i i k k
ii

q

k

q

d r

d Rot r Rot

Rot

 
 

   


 

 
 



     

  
    
 

 
  
 

 

 

U Y Q

a f e q f v
T T T T

z z

a f e
T T

z

, 

where 2, 2, 2, 2,(( ) ( ) ) /' k k
i i i i  a a f e e f , 2, 2, 2, 2,(( ) ( ) ) /' k k

     q q f v v f , 

'
2 2, 2,1 1

'
i ii

= d r
 

  
  a a q , and 2 2, 2,1 1

( ) ( )k k
i ii

= d r
 

  
  e e v . 

Again using 1, 1, 3, 2,i i i i  b g e r f w , we obtain 

1 1,1

1 '
1 3, 2, 11 1

1
1 3 2 1

( )

( ( ) )

( )

k
i ii q

k
i i i ii i q

q

d

Rot d d

Rot



 




 



   

   

   



 

E X

S r f w S

S r f w S

, 

where 3, 3, 2, 2,(( ) ( ) ) /' k k
i i i i  r r f w w f , '

3 3,1 i ii
= d




r r , and 2 2,1

( )k
i ii

= d



w w . 

2 2,1

1 '
2 2, 2, 21 1

1
2 2 2 2

( )

( ( ) )

( )

k
i ii q

k
i i i ii i q

q

d

Rot d d

Rot



 




 



   

   

   



 

E X

S b f w S

S b f w S

, 

where 2, 2, 2, 2,(( ) ( ) ) /' k k
i i i i  b b f w w f , '

2 2,1 i ii
= d




b b , and 2 2,1

( )k
i ii

= d



w w .  □ 

Lemma 3.4 Given s  level- k  encodings  1, 2,,l lU U ,  l s , then  1 2,U U  is a level- k  

encoding, where ,1
=

s

t t ll q
 
 U U ,  2t . 

Proof. Since the level- k  encoding 
' '
1, 1, 1

1, 1 1
1

( )l l
l k

q

Rot  
  
 

a g e
U T T

z
 for g , then 
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' '
1, 1, 1 11 1 1

1 1, 1 1 1 11
1 1

( )
= ( ) ( )

s
s l ll

l k kl q
q

q

Rot Rot 


               


a g e a g e

U U T T T T
z z

, 

where '
1 1,1

s

ll
 a a  and '

1 1,1

s

ll
e e . 

     For f , the level- k  encoding 
' '
, 2, 1

, ( )t l l
t l t tk

t q

Rot  
  
 

r f e
U T T

z
, then 

' '
, 2, 1 11 2

,1

( )
= ( ) ( )

s
s t l ll t

t t l t t t tk kl q
t t q

q

Rot Rot 


               


r f e r f e

U U T T T T
z z

, 

where '
,1

s

t t ll
r r  and '

2 2,1

s

ll
 e e .                                        □ 

Lemma 3.5 Given k  level-1 encodings  1, 2,,l lU U ,  l k , then  1 2,U U   is a level- k  

encoding, where ,1
=

k

t t ll q
 
 U U . 

Proof. For g , the level-1 encoding 
' '
1, 1, 1

1, 1 1
1

( )l l
l

q

Rot  
  
 

a g e
U T T

z
, then 

' '
1, 1, 1 11 1 1

1 1, 1 1 1 11
1 1

( )
= ( ) ( )

k

k l ll
l k kl q

q
q

Rot Rot 


               


a g e a g e

U U T T T T
z z

, 

where ' ' '
1 1, 1, 1,1 1

( ( ) ) /
k k

l l ll l 
   a a g e e g  and '

1 1,1

k

ll
e e . 

     For f , the level- k  encoding 
' '
, 2, 1

, ( )t l l
t l t tk

t q

Rot  
  
 

r f e
U T T

z
, then 

' '
, 2, 1 11 2

,1

( )
= ( ) ( )

k

k t l ll t
t t l t t t tk kl q

t t q
q

Rot Rot 


               


r f e r f e

U U T T T T
z z

, 

where ' ' '
1, 2, 2,1 1

( ( ) ) /
k k

t l l ll l 
   r r f e e f  and '

2 2,1

k

ll
e e .                     □ 

Lemma 3.6 The zero testing   1 2isZero par, , ,U U d  correctly determines whether 1U  is a 

level-  encoding of zero for g . 

Proof. Given a level-  encoding  1 2,U U , then we have 11 1
1 1 1

1

( )
q

Rot 
 

  
 

a g e
U T T

z
 for g , 

and 12( )t
t t t

t q

Rot 
 

  
 

r f e
U T T

z
 for f  such that 1 1 1 2  a g e r f e . 

Since 1 1,1 i ii q
= d




  E X  and 2 2,1 i ii q

= d



  E X , then we have 

1 ' '
1 1 1 1 1( )

q
Rot   E S a g e S  for g , and 1

2( )t t t t q
Rot   E S b f w S  for f  such that 

' '
1 1 1 2  a g e b f w . 

Thus, we get 
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* *
1 1 ,1 1 1

1 1
0 1 1 ,1 1 1 0

1 1 ' '
0 1 1 1 1 01

1 1 ' '
0 1 1 1 1 01

1 ' '
0 1 1 1 11

( ) ( )

( ) ( )

( ) ( )

zt q

zt q

m

j jj
q

m

j jj
q

m

j jj

Rot Rot Rot

Rot

Rot

 

 


 





     

      

          

        

  







T U P E S

T T U P E S S

T a g e h g hf a g e S

T a g e h g hf a g e S

T a g e h g a g e 1
1 2 1 2 0( ) ( )

q

     
r f e hf b f w S

, 

 

* *
2 2 ,2 2 2

1 1
0 2 2 ,2 2 2 0

1
0 2 2 2 2 0( ) ( )

zt q

zt q

q
Rot

 



     

      

      

T U P E S

T T U P E S S

T r f e hf b f w S

. 

Thus, we have 

  
* * * *

1 1 ,1 1 1 2 2 ,2 2 2

1 ' '
0 1 1 1 1 01

( ) ( )

zt zt q

m

j jj
q

Rot 


           

        

V T U P E S T U P E S

T a g e h g a g e rh S
, 

where 1 1 1 2 1 2 2 2 2 2 2 2     r r b f r w b e r b f r w b e . 

If 1U  is a level-  encoding of zero for g , namely 1 0mod je g . Since jg ’s are 

coprime, we get 1 0e . Thus, we have 

  
  
  

1 ' '
0 1 1 1 1 01

1 ' '
0 1 1 1 01

' '
0 1 1 1 01

( ) ( )

( )

/ ( )

m

j jj
q

m

j jj
q

m

j jj
q

Rot

Rot

Rot









        

       

        







V T a g e h g a g e rh S

T a g h g a g e rh S

T a h g g a g e rh S

. 

For our choice of parameter, 1/8
1 qa , ' ' (1)

1 1
On a g e , 1/8qr and 

0 0 n
 
 T S . Moreover, V  is not reduced modulo q , that is  q V V . Hence, 

  
  

' '
0 1 1 1 01

' '
0 1 1 1 01

3 ' '
0 1 1 1 01

4 (1)
1 1

(1) 2 1/8

(1) 2

/ ( )

/ ( )

2 ( / ) ( )

2 ( ) ( / )

2 ( / )

m

j jj
q

m

j jj

m

j jj

m O
j jj

O
j j

O

Rot

Rot

n Rot Rot

n n Rot Rot n n

n q m Rot

n

 













        

     

   

    

    











V T a h g g a g e rh S

T a h g g a g e rh S

T a h g g a g e S

a h g g

h g g

1/8 1/2

3/4

( ) ( )q poly n q poly n

q

   

. 

If 1U  is a level-  encoding of of non-zero element for g , namely, 1 0mod je g  for at 
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least one  j m . Thus,  

  
 

1 ' '
0 1 1 1 1 01

' '
1 1 1' '

0 1 1 1 0 0 01 1

( ) ( )

( )
( ) / ( )

m

j jj
q

m m j
j jj j

j q

Rot

Rot Rot




 

       

 
     
  



 

V = T a g e h g a g e rh S

h e a g e
T a a g e h g g rh S T S

g

. 

Since 
' '

1 1 1
0 01

( )
( )

m j

j
j q

Rot q


 
 

  


h e a g e
T S

g
 by Lemma 4 in [GGH13] , and 

 ' ' 3/4
0 1 1 1 01

( ) /
m

j jj
q

Rot q


     T a a g e h g g rh S  from the above. That is, qV .  □ 

Lemma 3.7 Given two level-  encodings  1 2,U U  and  1 2,W W , suppose that 1 1,U W  

encode same plaintext for g , then 

     1 2 1 2Ext par, , , Ext par, , ,U U d W W d . 

Proof. Assume that 11 1
1 1 1

1

( )
q

Rot 
 

  
 

a g e
U T T

z
 and 12 1

1 1 1
1

( )
q

Rot 
 

  
 

a g e
W T T

z
. Then 

  
 

* * * *
1 1 1 ,1 1 1 2 2 ,2 2 2

1 ' '
0 1 1 1 1 1 01

' '
1 1 1' '

0 1 1 1 1 0 0 01 1

( ) ( )

( )
( ) / ( )

zt zt q

m

j jj
q

m m j
j jj j

j q

Rot

Rot Rot




 

           

        

 
     
  



 

V T U P E S T U P E S

T a g e h g a g e r h S

h e a g e
T a a g e h g g r h S T S

g

, 

  
 

* * * *
2 1 1 ,1 1 1 2 2 ,2 2 2

1 ' '
0 2 1 1 1 2 01

' '
1 1 1' '

0 2 1 1 2 0 0 01 1

( ) ( )

( )
( ) / ( )

zt zt q

m

j jj
q

m m j
j jj j

j q

Rot

Rot Rot




 

           

        

 
     
  



 

V T W P E S T W P E S

T a g e h g a g e r h S

h e a g e
T a a g e h g g r h S T S

g

. 

For our parameter setting,  ' ' 3/4
0 1 1 01

( ) /
m

t j j tj
q

Rot q


     T a a g e h g g r h S . By 

Lemma 4 in [GGH13], 
' '

1 1 1
0 01

( )
( )

m j

j
j q

Rot q


 
 

  


h e a g e
T S

g
 when 1 0mod je g  for at 

least one  j m . Thus, the equality holds.                                         □ 

3.3 Security 

Consider the following security experiment: 

(1) par InstGen(1 ,1 )   
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(2) For 0l   to  : 

     Sample 
, *l D  

d


, 
, *l D  

r


; 

     Compute level-0 encoding , , ,1t l l i t ii q
d




   E X ,  2t ; 

     Generate level-1 encoding , , , , ,1 1t l l i t i l ti q
d r

 
  

    U Y Q ,  2t . 

(3) Set ,1t t jj q




   U U ,  2t . 

(4) Set * * * *
1 1 ,1 1,0 1 2 2 ,2 2,0 2C D zt zt q

            V V T U P E S T U P E S . 

(5) Set * * * *
1 1 ,1 1,0 1 2 2 ,2 2,0 2R zt zt q

           V T U P R S T U P R S , where 

,0 1t i t,ii q
r




   R X ,  2t  and 

, *
D  

r


. 

Definition 3.8 (ext-GCDH/ext-GDDH). According to the security experiment, the ext-GCDH and 
ext-GDDH are defined as follows: 

Level-  extraction CDH (ext-GCDH): Given     1,0 2,0 1, 2,par, , , , , U U U U , output a 

level-  extraction encoding 1 2k k
q
W   such that   3/4

C q
q


 V W . 

Level-   extraction DDH (ext-GDDH): Given     1,0 2,0 1, 2,par, , , , , , U U U U V , 

distinguish between     1,0 2,0 1, 2,par, , , , , ,ext GDDH DD    U U U U V  and 

    1,0 2,0 1, 2,par, , , , , ,ext RAND RD    U U U U V . 

3.4 Cryptanalysis 

We first generate easily computable quantities in our construction, then analyze possible 
attacks using these quantities.  

3.4.1 Easily computable quantities 

For an arbitrary level-  encoding  1 2,U U , if 1U  is a level-  encoding of zero for g , 

then we have  0 1 2 0
k

q
Rot      V T r g hr S , where 0 k    and 1 2, Rr r . Although 

V  is not reduced modulo q , the noise term 2hr  prevents adversary obtaining the information of 

g . Moreover, it is easy to see that V  has been destroyed the structure of the ring element by using 

0 0,T S , and does not have the property of the principal ideal lattice problem. We do not find feasible 

attacks by using V  for our construction. 
Other attacks (such as [HJ15a, CL15]) are described in the following full version. 

3.4.2 The Subgroup Membership and Decision Linear Problems 

The SubM problem. Let /j jR R R g , 1 mG R R   , and  1 20 mG R R    . Let  

iZ  be level-1 encodings of elements from G , and (1)
iZ  be level-1 encodings of elements from 

1G . When generating encoding enc(par, , , )tU d r , we replace iY  with iZ  or (1)
iZ . The 

subgroup membership problem is to distinguish between enc(par, , , )tU d r  using iZ  and 

1 1 1enc(par, , , )tU d r  using (1)
iZ . By the above analysis, ( )V  has erased the structure of 

principal ideal lattice problem. That is, one cannot distinguish between U  and 1U . Thus, we 
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conjecture that the SubM problem is hard in our encoding scheme. 

The DLIN problem. Given a matrix of elements ,( ) w w
i j R  A a  and their encodings matrix 

,(enc(par, , , ))i jtT a r , the DLIN problem is to distinguish between rank w  and rank 1w  

matrices A . Based on same reason, we conjecture that the DLIN problem is hard in our encoding 
scheme. 

4 Variant 

We can use polynomial ring instead of integer ring   for our symmetric construction to 
improve the efficiency of our construction. It is easy to verify that our constructions are still correct 
under this case. 

We can adapt the above symmetric construction into asymmetric variant. This variant is same 
as that [GGH13], except with changing polynomial ring to matrix ring. 

5 Applications 

In this section, we describe two applications using our construction, the MPKE protocol and 
the instance of witness encryption. 

5.1 MPKE Protocol 

(1 ,1 )NSetup . Output (par) InstGen(1 ,1 )   as the public parameters. 

(par, )jPublish . The j -th party samples 
, *j D  

d


, 
, *j D  

r


, publishes the public key 

, , ,1 1
( ) ( )t j j,i t i j, ti q
d r

 
  

      U Y Q ,  2t  and generates the secret key jd . 

 1, 2,(par, , , , )j k k k j
j


d U UKeyGen . The j -th party computes , ,t j t kk j

C U  and extracts 

the common secret key   1, 2,Ext par, , ,j jsk  C C d . 

Theorem 5.1 Suppose the ext-GCDH/ext-GDDH defined in Section 3.3 is hard, then our 
construction is one round multipartite Diffie-Hellman key exchange protocol. 
 

5.2 Witness Encryption 

5.2.1 Construction 

Garg, Gentry, Sahai, and Waters [GGSW13] constructed an instance of witness encryption 
based on the NP-complete 3-exact cover problem and the GGH map. However, Hu and Jia [HJ15a] 
have broken the GGH-based WE. In this section, we present a new construction of WE based on our 
new multilinear map. 

3-Exact Cover Problem [GGH13, Gol08] Given a collection Set  of subsets 1 2, ,...,T T T  

of    1, 2,...,K K   such that 3K   and 3iT  , find a 3-exact cover of  K .  For an 

instance of witness encryption, the public key is a collection Set  and the public parameters par  

in our construction, the secret key is a hidden 3-exact cover of  K . 

(1 , par, )MEncrypt : 

(1) For  k K , sample 
,k Z

D  
d , 

, *k D  
r


 and generate level- 1  encodings 
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, , , ,1 1
( )t k k i t i k,i ti q

d r
 

 
     U Y Q ,  2t . 

(2) Compute ,1

K

t t kk q
   U U ,  2t  and   1 2Ext par, , ,sk  U U 1 , and encrypt 

a message M  into ciphertext C , where (1,...,1)  1  . 

(3) For each element  1 2 3, ,iT i i i , sample 
, *iT D  

r


, and generate a level- 3  

encoding 
1 2 3

3

, , , , ,1
( )

i it T t i t i t i T , t
q

r


  
    U U U U Q ,  2t . 

(4) Output the ciphertext C  and all level- 3  encodings   1, 2,, ,
i iT T iE T Set U U . 

( , , )C E WDecrypt : 

(1) Given C , E  and a witness set W , compute , ii
t t TT W q

   U U ,  2t . 

(2) Generate   1 2Ext par, , ,sk  U U 1 , and decrypt C  to a message M . 

 
Similar to [GGSW13], the security of our construction depends on the hardness assumption of 

the Decision Graded Encoding No-Exact-Cover. 
Theorem 5.2 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our 
construction is a witness encryption scheme. 

5.2.2 Hu-Jia Attacks 

The Hu-Jia attack [HJ15b] is thwarted in our new construction. Since Gu map-1 [Gu15] uses 
hidden randomizers, in some sense one merely can generate a deterministically level- l  encoding. As 

a result, one can compute 1( )
i j k lT T T T

q

   U U U U  if i j k lT T T T  . Thus, one can generate 

a combined 3-exact cover, and correctly compute a secret level- K  encoding. However, since 

1 2 3

3

, , , , ,1
( )

i it T t i t i t i T , t
q

r


  
    U U U U Q  is a level-3  encoding in our new construction, one 

cannot obtain 1
, , , ,( )

i j k lt T t T t T t T
q

   U U U U  when i j k lT T T T  . This is because our 

construction uses level-1 encodings Q  of zero. 

6 Conclusion 

In this paper, we describe a new modification of GGH, which supports the applications for public 
tools of encoding in GGH, such MPKE and WE. Our construction removes the special structure of 
the principal ideal lattice problem, and avoids potential attacks generated by algorithm of solving 
short principal ideal lattice generator. However, the security of our construction depends upon new 
hardness assumption, which cannot be reduced to classical hardness problem, such as LWE or SVP.  
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