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Abstract. Advanced modern processors support Single Instruction Mul-
tiple Data (SIMD) instructions (e.g. Intel-AVX, ARM-NEON) and a
massive body of research on vector-parallel implementations of modular
arithmetic, which are crucial components for modern public-key cryp-
tography ranging from RSA, ElGamal, DSA and ECC, have been con-
ducted. In this paper, we introduce a novel Double Operand Scanning
(DOS) method to speed-up multi-precision squaring with non-redundant
representations on SIMD architecture. The DOS technique partly dou-
bles the operands and computes the squaring operation without Read-
After-Write (RAW) dependencies between source and destination vari-
ables. Furthermore, we presented Karatsuba Cascade Operand Scan-
ning (KCOS) multiplication and Karatsuba Double Operand Scanning
(KDOS) squaring by adopting additive and subtractive Karatsuba’s meth-
ods, respectively. The proposed multiplication and squaring methods
are compatible with separated Montgomery algorithms and these are
highly efficient for RSA crypto system. Finally, our proposed multiplica-
tion/squaring, separated Montgomery multiplication/squaring and RSA
encryption outperform the best-known results by 22/41%, 25/33% and
30% on the Cortex-A15 platform.

Keywords: Public-key cryptography, Modular arithmetic, SIMD-level
parallelism, Vector instructions, ARM-NEON, RSA

1 Introduction

Multi-precision modular multiplication and squaring are performance-critical
building blocks of public-key algorithms (e.g. RSA, ElGamal, DSA and ECC).

⋆ Corresponding Author
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One of the most famous modular reduction techniques is Montgomery’s algo-
rithm which avoids division in modular multiplication and squaring [22]. How-
ever, the algorithm is still a computation-intensive operation for embedded pro-
cessors so it demands careful optimizations to achieve acceptable performance.
Recently, an increasing number of embedded processors started to employ Sin-
gle Instruction Multiple Data (SIMD) instructions to perform massive body of
multimedia workloads.

In order to exploit the parallel computing power of SIMD instructions, tra-
ditional cryptography software needs to be rewritten into a vectorized format.
The most well known approach is a reduced-radix representation for a better
handling of the carry propagation [13]. The redundant representation reduces
the number of active bits per register. Keeping the final result within remaining
capacity of a register can avoid carry propagations. In [4], vector instructions
on the CELL microprocessor are used to perform multiplication on operands
represented with a radix of 216. In [9], RSA implementations for the Intel-AVX
platform uses 256-bit wide vector instructions and the reduced-radix representa-
tion for faster accumulation of partial products. At CHES 2012, Bernstein and
Schwabe adopted the reduced radix and presented an efficient modular multipli-
cation on specific ECC curves. Since the target curves only have low hamming
weight in the least significant bits, modular arithmetics are efficiently computed
with multiplication and addition operations. At HPEC 2013, a multiplicand re-
duction method in the reduced-radix representation was introduced for the NIST
curves [24]. However, the reduced-radix representation requires to compute more
number of partial products than the non-redundant representation, because it
needs more number of word to store previous radix 232 variables into smaller
radix. At SAC’13, Bos et al. flipped the sign of the precomputed Montgomery
constant and accumulate the result in two separate intermediate values that are
computed concurrently in the non-redundant representation [5]. However, the
performance of their implementation suffers from Read-After-Write (RAW) de-
pendencies in the instruction flow. Such dependencies cause pipeline stalls since
the instruction to be executed has to wait until the operands from the source
registers are available to be read. In [19, 20], product-scanning multiplication
over SIMD is introduced. The method computes a pair of 32-bit multiplications
at once but it accesses to the same destination column to accumulate the inter-
mediate results in each inner loop, causing high RAW dependencies. At CHES
2014, the ECC implementation adopts 2-level Karatsuba multiplication in the
redundant representation. However, as author explained in [2, Section 1.2.], the
redundant representation is not proper choice for the standard NIST elliptic
curves. The curves allow easy computation of modular operation in radix 232

rather than reduced representations. At ICISC 2014, Seo et al. introduced a
novel 2-way Cascade Operand Scanning (COS) multiplication [29]. This method
processes the partial products in a non-conventional order to reduce the number
of data-dependencies in the carry propagations from the least to most significant
words. The same strategy was applied for 2-way NEON-optimized Montgomery
multiplication method, called Coarsely Integrated Cascade Operand Scanning
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(CICOS) method, which essentially consists of two COS computations, whereby
one contributes to the multiplication and the second to the Montgomery reduc-
tion.

However, there are still two open interesting topics for Montgomery algo-
rithm on ARM-NEON processors [5, 19, 20, 29]. First, the previous work mainly
focused on multiplication not squaring. The overheads of squaring occupies
roughly 70 ∼ 80% of that of multiplication and for RSA approximately 5/6
of all operations are spent on squaring. Second, previous methods do not con-
sider Karatsuba multiplication. The GMP multi-precision library switches to one
Karatsuba level when it comes to 832-bit inputs but recent SIMD implementa-
tions even over 1024- and 2048-bit avoided all use of Karatsuba’s method [5, 19,
20, 29]. Since Karatsuba multiplication has nice property that it ensures asymp-
totic complexity θ(nlog23), current implementations can be enhanced by using
Karatsuba algorithm. In this paper, we work on these two interesting topics by
suggesting a non-redundant Double Operand Scanning (DOS) squaring method
and constant-time Karatsuba algorithms for multiplication and squaring. Firstly,
the DOS technique partly doubles the operands and computes the squaring op-
eration without Read-After-Write (RAW) dependencies between source and des-
tination variables. Secondly, we present constant-time Karatsuba multiplication
and squaring over SIMD architectures. We choose different Karatsuba algorithms
for multiplication and squaring to ensure better performance in each operation.
Furthermore, SISD and SIMD instructions are properly mix used to reduce laten-
cies. Finally, we present separated KCOS and KDOS Montgomery multiplication
and squaring for traditional public key cryptography. Our experimental results
show that a Cortex-A15 processor is able to execute SKCOS and SKDOS Mont-
gomery multiplication/squaring with 2048-bit operands in only 19680 and 17584
clock cycles, which are almost 25% and 33% faster than the NEON implemen-
tation of Seo et al. (26232 cycles according to [29, Table 2]).

Summary of Research Contributions

The main contributions of our work are summarized as the following four points.

1. Novel Double Operand Scanning approach for efficient implementation of
multi-precision squaring on ARM-NEON processors. When implementing on
the Cortex-A15 processor, only 6288 clock cycles are required for squaring
at the length of 2048-bit. The result is the fastest implementations published
for the identical platform and non-redundant representations. The details of
novel approaches can be found in Section 4.1 and performance comparison
with related works can be found in Table 1 and 2.

2. Fast Constant-time Karatsuba multiplication/squaring for ARM-NEON pro-
cessors. Inspired by subtractive Karatsuba multiplication [11] and constant-
time Karatsuba algorithms on AVR [17], we proposed constant-time Karat-
suba multiplication and squaring on ARM-NEON, which integrate the ad-
ditive/subtractive Karatsuba algorithms and COS/DOS operations. These
carefully chosen methods allow an efficient multiplication and squaring for
large integers. The details of novel approaches can be found in Section 4.2.



4 Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim

3. Separated Montgomery algorithm for ARM-NEON processors. In terms of
modular multiplication and squaring, we presented separated Montgomery
multiplication and squaring. These are compatible with asymptotically faster
integer multiplication and squaring algorithms like Karatsuba methods to
boost performance significantly. The details of novel approaches can be found
in Section 4.3.

4. Efficiently implemented cryptographic library for RSA.As RSA-based schemes
are the most widely used asymmetric primitives, enhancements of Mont-
gomery algorithms should be concerned. Thanks to highly optimized modu-
lar multiplication and squaring operations, our work only needs 367408 and
14250720 clock cycles for 2048-bit RSA encryption and decryption over A15
processor, respectively. Performance comparison with related works can be
found in Table 1 and 2.

The remainder of this paper is organized as follows. In Section 2, we recap the
previous best results for squaring on SISD and SIMD architectures. In Section
3, we explore the asymptotically faster integer multiplication algorithm, namely
Karatsuba’s method. In Section 4, we present novel methods for multi-precision
multiplication/squaring and Montgomery algorithms for ARM-NEON engine.
Thereafter, we will summarize our experimental results in Section 5. Finally, in
Section 6, we conclude the paper.

2 Multi-precision Squaring Methods

Multi-precision squaring can be utilized with ordinary multiplication methods.
However, squaring dedicated method has two advantages over the multiplication
methods for squaring computations. First, only one operand (A) is required for
squaring computations because both operands share same variables. For this
reason, we can reduce the number of registers to retain the operands and memory
accesses to load operands by about half times. Second, the some part of partial
products output the identical partial product results. For example, both partial
products A[i]×A[j] and A[j]×A[i] output the same results. By taking accounts
of the feature, the parts are multiplied once and added twice (i.e. 2 × A[i] ×
A[j]) to intermediate results to get identical results of naive approaches (i.e.
A[i] × A[j] + A[j] × A[i]). This squaring approach can reduce the number of

partial products from n2 to n2−n
2 + n whereby n = ⌈m/w⌉, and w and m is

the word size and operand length. In the following sub-sections, we explore the
cutting-edge squaring methods over both SISD and SIMD architectures.

Squaring on SISD There are several optimal squaring methods developed by
introducing the efficient order of partial products. Lazy-Doubling (LD) method
by [15] delays the doubling process to the end of each inner partial product and
then double it at once. The method reduces the number of arithmetic operations
by conducting doubling computations on accumulated intermediate results. This
technique significantly reduces the number of doubling process to one doubling



Efficient Arithmetic on ARM-NEON 5

computation per each inner structure of partial products. In INDOCRYPT’13,
Sliding-Block-Doubling (SBD) method was introduced [28]. SBD method com-
putes doubling using “1-bit left shifting” operation at the end of duplicated par-
tial product computation. Recently, Karatsuba squaring was introduced [27]. It
divides the traditional squaring architecture into two sub-squaring and one sub-
multiplication parts. It computes the multiplication part with the subtractive-
Karatsuba multiplication and then remaining two squaring parts are conducted
with the SBD technique.

However, the advanced SISD based squaring is not compatible with SIMD
architecture. The SISD instruction set can readily handle carry bits with status
registers but carry-handing over SIMD architecture incurs a number of pipeline
stalls in the non-redundant representations. Furthermore SISD approach does
not concern about grouping the multiple operands for parallel computations but
SIMD approach should concern the alignments of operands and intermediate re-
sults. Let’s take an example of 512-bit LD squaring over (A0∼511×A0∼511) using
the 256-bit COS method as an inner loop. The structure consists of three 256-bit
wise multiplications (A0∼255×A0∼255, A0∼255×A256∼511, A256∼511×A256∼511).
For starter, a computation over A0∼255 × A0∼255 is conducted. After then, the
duplicated part (A0∼255 × A256∼511) is computed subsequently. While comput-
ing the second part, intermediate results of first part should not be mixed with
second part because the intermediate results of second part should be doubled
but first part does not need doubling process. After doubling the second part, a
number of carry propagations from 257th to 768th bit occur to sum both first
(0 ∼ 511) and second (256 ∼ 767) parts, The alternative approaches including
SBD and Karatsuba squaring methods also suffer from same problems. Firstly,
they compute the middle part (A0∼255 ×A256∼511) with doubling and then con-
duct other remaining parts (A0∼255 ×A0∼255, A256∼511 ×A256∼511). As like LD
method, the methods generate chains of carry propagations from 257th to 768th
bit to sum both intermediate results.

Squaring on SIMD in redundant representations In case of ARM-NEON
architecture, the squaring is only considered over the redundant representation
for small integers (below 500-bit) of specific ECC implementations [3, 2]. Over
the redundant representation, the squaring method is easily established with
doubling the operands or intermediate results because the redundant represen-
tation can store carry bits into spare capacities in the register. However, long
integers such as 2048- or 3072-bit for RSA cryptosystem is not favorable with
redundant representations because the number of partial products significantly
increase with smaller radix. In addition, the redundant representation needs
more number of registers for operands and intermediate results because redun-
dant representations only use the part of the registers to leave spare bits. Since
general purpose registers are limited and cannot retain whole variables, a num-
ber of memory accesses to store and load the part of variables are required.
Actually, this was not concerned in previous ECC implementations [3, 2], be-
cause the 2048-bit working registers are sufficient enough to retain 255, 414-bit
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ECC curve’s operands and intermediate results. Furthermore, redundant repre-
sentations should conduct carry propagations to fit the results into smaller radix
if the next operation is multiplication or squaring. This was not big problem in
case of scalar multiplication because the scalar multiplication consists of not
only multiplication/squaring but also addition/subtraction operations so we can
avoid direct radix-fitting and take advantages of lazy radix-fitting. However, in
case of RSA, the main exponentiation operation conducts consecutive multipli-
cation or squaring operation so results always conduct radix-fitting to maintain
smaller radix for following multiplication and squaring operations. Furthermore
as author explained in [2, Section 1.2.], the standard NIST elliptic curves al-
low easy computation of modular operation in radix 232 so suitable radix for
p = 2384−2128−296+232−1 in the redundant representation is radix 216 which
would cause considerably higher overheads than benefits. In this stance, we need
a squaring specialized operation in non-redundant representations for RSA and
specific ECC implementations, but still there are no feasible results available in
the non-redundant representation over ARM-NEON.

3 Karatsuba’s Multiplication

One of the multiplication techniques with sub-quadratic complexity is called
Karatsuba’s multiplication [14]. Karatsuba’s method reduces a multiplication of
two n-word operands to three multiplications, which have a length of n

2 words.
These three half-size multiplications can be performed with any multiplication
techniques (e.g. operand-scanning method, product-scanning method, hybrid-
scanning method, operand-caching method [21, 6, 10, 12, 25, 26]). The Karatsuba
method can also be scheduled in a recursive way and its asymptotic complexity is
θ(nlog23). There are two typical ways to describe Karatsuba’s multiplication such
as additive Karatsuba and subtractive Karatsuba. Taking the multiplication of
n-word operand A and B as an example, we represent the operands as A =
AH · 2n

2 + AL and B = BH · 2n
2 + BL. The multiplication (P = A · B) can be

computed according to the following equation when using additive Karatsuba’s
method:

AH ·BH · 2n + [(AH +AL)(BH +BL)−AH ·BH −AL ·BL] · 2
n
2 +AL ·BL (1)

and subtractive Karatsuba’s method:

AH ·BH · 2n + [AH ·BH +AL ·BL − |AH −AL| · |BH −BL|] · 2
n
2 +AL ·BL (2)

Karatsuba’s method turns one multiplication of size n into three multipli-
cations and eight additions of size n

2 . In [1], a variant of Karatsuba’s method
named refined Karatsuba’s method was introduced, which saves one addition op-
eration with a length of n

2 . Recently, Hutter and Schwabe achieved the speed
records on AVR processors (unrolled fashion, 80, 96, 128, 160, 192 and 256-bit)
by carefully optimizing the subtractive Karatsuba’s multiplication without con-
ditional statements [11]. The Karatsuba multiplication is readily compatible with
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Fig. 1: Double Operand Scanning squaring for SIMD architecture

non-interleaved Montgomery multiplication. In [8], a single level of Karatsuba
on top of Comba’s method is introduced. The Karatsuba approach for 1024-bit
modular multiplication can reduce the number of multiplication and addition
instructions by a factor 1.14 and 1.18 respectively, than that of sequential inter-
leaved Montgomery approach. Obviously the Karatsuba approach can enhance
Montgomery algorithm with SIMD instructions. However, there are no feasible
Montgomery results in non-redundant representations on ARM-NEON engine [5,
19, 20, 29]. In this paper, we present clever approaches to improve Montgomery
algorithms with Karatsuba’s multiplication in a mixed approach of SISD and
SIMD instruction sets.

4 Proposed Methods

4.1 Double Operand Scanning Squaring

Efficient implementation of squaring method is highly relied on computations of
duplicated partial products (A[i] × A[j] and A[j] × A[i]). There are two ways
to calculate the duplicated parts of squaring. First approach is doubling the
intermediate results [15, 28, 27]. Generally, the method needs to conduct the du-
plicated part and the other parts separately in order to ensure doubling the
duplicated parts except non-duplicated parts. After then, both intermediate re-
sults are summed up. However, the addition of both intermediate results causes
huge overheads in non-redundant representations by incurring a chain of carry
propagations. In order to resolve this issue, we selected a method which doubles
operands in advance rather then intermediate results. Proposed Double Operand
Scanning (DOS) method uses both doubled and original operands and the du-
plicated part and non-duplicated parts are computed with different operands
(doubled, original) in integrated way and non-redundant representations. This
can avoid inefficient carry propagations and a number of pipeline stalls by n
times for n word squaring operation compared to the method of doubling the
intermediate results.
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In Figure 1, we describe DOS squaring for SIMD architecture. The DOS
consists of three inner loops (one for duplicated ( 2⃝) and the other two for
non-duplicated parts ( 1⃝, 3⃝)) and each inner loop follows COS multiplication
[29]3. Taking the 32-bit word with 512-bit squaring as an example, our method
works as follows4. Firstly, we re-organized operands by conducting transpose
operation, which can efficiently shuffle inner vector by 32-bit wise. Instead of
a normal order ((A[0], A[1]), (A[2], A[3]), (A[4], A[5]), (A[6], A[7])), we classify
the operand as groups ((A[0], A[4]), (A[2], A[6]), (A[1], A[5]), (A[3], A[7])), for
computing two 32-bit wise multiplications where each operand ranges from 0 to
232−1 (i.e. 0xffff ffff in hexadecimal form). Secondly, multiplicationA[0] with
re-organized operands ((A[0], A[4]), (A[2], A[6]), (A[1], A[5]), (A[3], A[7])) is com-
puted, generating the partial product pairs including (C[0], C[4]), (C[2], C[6]),
(C[1], C[5]), (C[3], C[7]) where the results are located from 0 to 264 − 233 + 1,
namely 0xffff fffe 0000 0001. Third, partial products are divided into higher
bits (64 ∼ 33) and lower bits (32 ∼ 1) by using transpose operation with 64-
bit initialized registers having zero value (i.e. 0x0000 0000 0000 0000), which
outputs a pair of 32-bit results ranging from 0 to 232 − 1 (i.e. 0xffff ffff).
After then the higher bits are added to lower bits of upper intermediate re-
sults. For example, higher bits of (C[0], C[4]), (C[1], C[5]), (C[2], C[6]), (C[3])
are added to lower bits of (C[1], C[5]), (C[2], C[6]), (C[3], C[7]), (C[4]). After
the addition operation, the least significant word (C[0], lower bits of partial
product (A[0] × A[0])) is placed within 32-bit in range of [0, 0xffff ffff]
and this can be stored into 32-bit wise temporal registers or memory stor-
ages. On the other hand, the remaining intermediate results from C[1] to C[7]
are placed within [0, 0x1 ffff fffe]5, which exceed range of 32-bit in certain

3 Let A be an operand with a length of m-bit that are represented by multiple-word
arrays. Each operand is written as follows: A = (A[n−1], ..., A[2], A[1], A[0]), whereby
n = ⌈m/w⌉, and w is the word size. The result of multiplication C = A · A is twice
length of A, and represented by C = (C[2n − 1], ..., C[2], C[1], C[0]). For clarity,
we describe the method using a multiplication structure and rhombus form. The
multiplication structure describes order of partial products from top to bottom and
each point in rhombus form represents a multiplication A[i] × A[j]. The rightmost
corner of the rhombus represents the lowest indices (i, j = 0), whereas the leftmost
represents corner the highest indices (i, j = n − 1). A black arrow over the point
indicates the processing of the partial products. The lowermost side represents result
indices C[k], which ranges from the rightmost corner (k = 0) to the leftmost corner
(k = 2n − 1). Since NEON architecture computes two 32-bit partial products with
single instruction, we use two multiplication structures to describe NEON’s SIMD
operations. These block structures placed in the same level of row represent two
partial products with single instruction. In Part 2, the green block and dot represent
the partial products with doubled operands; In Part 3, yellow block and dot represent
the masked addition with carry bit of doubled operands.

4 Operands A[0 ∼ 15] are stored in 32-bit registers. Intermediate results C[0 ∼ 31] are
stored in 64-bit registers. We use two packed 32-bit registers in the 64-bit register.

5 In the first round, the range of result is within [0, 0x1 ffff fffd], because higher
bits and lower bits of intermediate results (C[0 ∼ 7]) are located in range of [0,
0xffff fffe] and [0, 0xffff ffff], respectively. From second round, the addition



Efficient Arithmetic on ARM-NEON 9

Algorithm 1 Double Operand Scanning Squaring

Require: An even m-bit operand A
Ensure: 2m-bit result C = A ·A
1: C = A[0,m

2
−1] ·A[0,m

2
−1]

2: {ACARRY , ADBL[m
2
,m−1]} = A[m

2
,m−1] ≪ 1

3: C = C +A[0,m
2
−1] ·ADBL[m

2
,m−1] · 2

m
2

4: C = C +ACARRY ·A[0,m
2
−1] · 2m

5: C = C +A[m
2
,m−1] ·A[m

2
,m−1] · 2m

6: return C

cases. However, the addition of intermediate results (C[1 ∼ 7]) and 32-bit by
32-bit multiplication in next step are placed into 64-bit registers without over-
flowing, because addition of maximum multiplication result 264 − 233 + 1 (i.e.
0xffff fffe 0000 0001) and intermediate result 233 − 2 (i.e. 0x1 ffff fffe)
outputs the final results within 64-bit 264 − 1 (i.e. 0xffff ffff ffff ffff)6.
This process is iterated by 7 times more to complete the first inner loop for
partial products (A[0 ∼ 7] × A[0 ∼ 7]). The intermediate results are retained
in temporal registers ((C[8], C[12]), (C[9], C[13]), (C[10], C[14]), (C[11], C[15]))
placed within 233 − 2 (i.e. 0x1 ffff fffe).

In second inner loop, we firstly doubled the half of 512-bit operands (256-bit,
A[8 ∼ 15]) by conducting left-shift operation by 1-bit. Since the operation may
output 1-bit carry (257th bit), we stored doubled operands into 9 32-bit registers
(ACARRY , ADBL[8 ∼ 15]). Secondly, multiplication ADBL[8] with (A[0], A[4]),
(A[2], A[6]), (A[1], A[5]), (A[3], A[7]) is computed, generating the partial product
pairs including (C[8], C[12]), (C[9], C[13]), (C[10], C[14]), (C[11], C[15]). Third,
partial products are separated into higher bits (64 ∼ 33) and lower bits (32 ∼ 1)
by using transpose operation with 64-bit initialized registers having zero value
(i.e. 0x0000 0000 0000 0000). After then the higher bits are added to lower
bits of upper intermediate results. After the addition operation, the least sig-
nificant word is saved into temporal registers or memory storages. This pro-
cess is iterated by 7 times more to complete the second inner loop for partial
products (A[0 ∼ 7] × ADBL[8 ∼ 15]). The intermediate results are retained in
(C[16], C[20]), (C[17], C[21]), (C[18], C[22]), (C[19], C[23]) placed within 233−2
(i.e. 0x1 ffff fffe).

In third inner loop, we firstly conduct the carry handling by masking the
operands with the carry bit (ACARRY ) to ensure secure against side channel at-
tacks. By using multiplication and accumulation operation (VMLAL), we can mul-
tiply the operand with the carry bit (ACARRY ) and then the results are added to

of higher and lower bits are located within [0, 0x1 ffff fffe], because both higher
and lower bits are located in range of [0, 0xffff ffff].

6 In the first round, intermediate results (C[0 ∼ 7]) are in range of [0,
0x1 ffff fffd] so results of multiplication and accumulation are in range of [0,
0xffff ffff ffff fffe]. From second round, the intermediate results are located in
[0, 0x1 ffff fffe] so results of multiplication and accumulation are in range of [0,
0xffff ffff ffff ffff].
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intermediate results simultaneously. If the carry bit is set, operands A[0 ∼ 7] are
added to the intermediate results ((C[16], C[20]), (C[17], C[21]), (C[18], C[22]),
(C[19], C[23])) and otherwise zero values are added to the intermediate results.
After then the intermediate results are separated into higher and lower 32-bit
wise and added to (C[17], C[21]), (C[18], C[22]), (C[19], C[23]), (C[20], C[24]).
Secondly, we re-organized operands (A[8 ∼ 15]) by conducting transpose opera-
tion into (A[8], A[12]), (A[10], A[14]), (A[9], A[13]), (A[11], A[15]). Thirdly, mul-
tiplication A[8] with re-organized operands ((A[8], A[12]), (A[10], A[14]), (A[9],
A[13]), (A[11], A[15])) is computed, generating the partial product pairs includ-
ing (C[16], C[20]), (C[17], C[21]), (C[18], C[22]), (C[19], C[23]). After then the
intermediate results are separated into each higher and lower 32-bit wise and
added to (C[17], C[21]), (C[18], C[22]), (C[19], C[23]), (C[20], C[24]). After the
addition operation, the least significant word is saved into temporal registers or
memory storages. This process is iterated by 7 times more to complete the third
inner loop for partial products (A[8 ∼ 15]×A[8 ∼ 15]).

After three inner loops, the results from C[0] to C[23] are perfectly fitted
into 32-bit wise word, because the least significant word is outputted in 32-bit
way in every round. However, remaining intermediate results (C[24] ∼ C[31])
are not placed within 32-bit so we should process a chain of carry propaga-
tions to satisfy the radix 232, namely final alignment. The final alignment ex-
ecutes carry propagations on results from C[24] to C[31] to fit into radix 232

with sequential addition and transpose instructions. This process causes pipeline
stalls by 8 times, because higher bits of former results are directly added to
next intermediate results. In order to reduce these latencies of final alignments,
we used SISD rather than SIMD instruction because SISD has lower latencies
than SIMD in terms of sequential operations. Finally, 512-bit DOS squaring
requires SIMD instructions including 103 VTRN, 100 VMULL/VMLAL, 100 VEOR,
104 VADD, 24 VEXT, 4 VSHR/VSHL and 9 VMOV and several SISD ADDS/ADCS in-
structions. The algorithm of DOS squaring is drawn in Algorithm 1. In Step
1, multiplications on A[0,m2 −1] × A[0,m2 −1] are conducted and stored into re-
sults (C). In Step 2, operands A[0,m2 −1] are doubled to output doubled operands
(ACARRY , ADBL[m2 ,m−1]). The part of doubled operands (ADBL[m2 ,m−1]) is mul-
tiplied by A[0,m2 −1] and added to results in Step 3. In Step 4, the carry bit
(ACARRY ) is multiplied by A[0,m2 −1] and added to results. In Step 5, multipli-
cations on A[m2 ,m−1] ×A[m2 ,m−1] are conducted and then added to intermediate
results. Finally, the results are returned in Step 6.

4.2 Constant-Time Karatsuba Multiplication/Squaring

Additive Karatsuba Multiplication The additive Karatsuba’s multiplica-
tion needs to perform several additions and subtractions (see Section 3). Among
them, the addition of two m

2 bit operands (i.e. AH +AL and BH +BL) may gen-
erate (m2 +1)-th carry bit. A straightforward carry handling would cause physical
vulnerability such as timing attacks [18]. The smart counter measure is “carry-



Efficient Arithmetic on ARM-NEON 11

Algorithm 2 Additive Karatsuba Multiplication on SIMD

Require: An even m-bit operands A(ALOW +AHIGH ·2
m
2 ), B(BLOW +BHIGH ·2

m
2 )

Ensure: 2m-bit result C = A ·B
1: L = ALOW ·BLOW (SIMD)
2: H = AHIGH ·BHIGH (SIMD)
3: {ACARRY , ASUM} = ALOW +AHIGH (SISD)
4: {BCARRY , BSUM} = BLOW +BHIGH (SISD)
5: M = ASUM ·BSUM (SIMD)
6: M = M + (AND(COM(ACARRY ), BSUM )) · 2

m
2 (SISD)

7: M = M + (AND(COM(BCARRY ), ASUM )) · 2
m
2 (SISD)

8: M = M + (AND(ACARRY , BCARRY )) · 2
m
2 (SISD)

9: C = L+ (M − L−H) · 2
m
2 +H · 2m (SISD)

10: return C

propagated” addition proposed by [17]. The method conducts masking the inter-
mediate results with carry bit. However, under non-redundant representations,
addition operation causes a chain of carry propagations. In order to avoid these
latencies, we used SISD instructions for the sequential addition and subtraction
operations. The detailed constant-time additive Karatsuba’s multiplication is
described in Algorithm 2. The partial products on ALOW ·BLOW and AHIGH ·
BHIGH are conducted by following COS multiplication for SIMD architecture.
After then, “carry-propagated” addition is conducted on ALOW + AHIGH and
BLOW +BHIGH with SISD instructions. And then, the middle partial products
on ASUM · BSUM are conducted with COS multiplication with SIMD instruc-
tions. After then, carry bits including ACARRY and BCARRY are two’s comple-
mented (COM) and logical-and operation (AND) is conducted on partial prod-
uctsBSUM andASUM with the results of COM(ACARRY ) and COM(BCARRY ),
respectively. The outputs and the result of AND(ACARRY , BCARRY ) are added
to middle block of intermediate results. Finally, whole partial products including
L,M and H are summed up by following equation (C = L + (M − L − H) ·
2

m
2 +H ·2m). From Step 6 to 9, all addition and subtraction operations are con-

ducted sequentially by using SISD operations. The combinations of SISD and
SIMD instruction sets reduce the pipeline stalls and latencies. For large integer
multiplication, we used multiple level of additive Karatsuba multiplications. For
scalability, our Karatsuba multiplications are performed in recursive way. We
used 256-bit COS multiplication as a basic multiplication operation and con-
duct 1-, 2- and 3-level of additive Karatsuba multiplication for 512-, 1024- and
2048-bit multiplications.

Subtractive Karatsuba Squaring For multi-precision squaring, we selected
subtractive Karatsuba algorithm. The subtractive Karatsuba algorithm has one
advantage over additive Karatsuba algorithm when it comes to squaring. The
fact that the partial products on differences of operand (ADIFF · ADIFF ) al-
ways produce non-negative results (M). Thanks to this feature, we can avoid
checking the sign of results (M) [17]. As like additive Karatsuba method, we
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Algorithm 3 Subtractive Karatsuba Squaring on SIMD

Require: An even m-bit operand A(ALOW +AHIGH · 2
m
2 )

Ensure: 2m-bit result C = A ·A
1: L = ALOW ·ALOW (SIMD)
2: H = AHIGH ·AHIGH (SIMD)
3: {ABORROW , ADIFF } = ALOW −AHIGH (SISD)
4: ADIFF = XOR(ABORROW , ADIFF ) (SISD)
5: ADIFF = ADIFF + COM(ABORROW ) (SISD)
6: M = ADIFF ·ADIFF (SIMD)
7: C = L+ (L+H −M) · 2

m
2 +H · 2m (SISD)

8: return C

Algorithm 4 Calculation of the Montgomery reduction

Require: An odd m-bit modulus M , Montgomery radix R = 2m, an operand T where
T = A · B or T = A · A in the range [0, 2M − 1], and pre-computed constant
M ′ = −M−1 mod R

Ensure: Montgomery product Z = MonRed(T,R) = T ·R−1 mod M
1: Q← T ·M ′ mod R
2: Z ← (T +Q ·M)/R
3: if Z ≥M then Z ← Z −M end if
4: return Z

conducted main squaring computations with parallel DOS squaring by using
SIMD instructions and the other operations with SISD operations in sequential
way. The detailed constant-time subtractive Karatsuba’s squaring is described in
Algorithm 3. The partial products on ALOW ·ALOW and AHIGH ·AHIGH are con-
ducted by following DOS squaring. After then, ALOW is subtracted by AHIGH

to output the {ABORROW , ADIFF }. If borrow occurs, the ABORROW is set to
232 − 1 (i.e. 0xffff ffff) and ADIFF is negative value. Otherwise, ABORROW

is set to zero (i.e. 0x0000 0000) and ADIFF is positive value. In order to ensure
the differences in positive form, we conduct masking operation with ABORROW

variables. Firstly, bit-wise exclusive-or operation (XOR) is conducted on differ-
ences (ADIFF ) with ABORROW . Secondly, two’s complement operation (COM)
is conducted on ABORROW and the output is added to the difference (ADIFF ). If
ABORROW is set to 232−1 (i.e. 0xffff ffff), ADIFF is two’s complemented and
otherwise ADIFF maintains its own value. This masking technique is conducted
sequentially by using SISD instructions. After then, the middle partial product
(M) on ADIFF · BDIFF is conducted with DOS squaring for SIMD instruction
sets. Finally, whole partial products including L,M and H are summed up by
following equation (C = L+ (L+H −M) · 2m

2 +H · 2m) with SISD instruction
sets. We used 512-bit DOS squaring as a basic squaring operation and conduct
multiple Karatsuba squaring in recursive way. For 1024- and 2048-bit squaring
implementations, we adopted 1- and 2-level of subtractive Karatsuba squaring
operations, respectively.
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4.3 Separated Karatsuba Cascade/Double Operand Scanning for
Montgomery Multiplication and Squaring

In [29, 5], the integrated Montgomery multiplication methods are proposed. How-
ever, the interleaved version is not compatible with Karatsuba’s methods because
Karatsuba multiplication recursively conducts the part of partial products but
Montgomery reduction is normally performed in sequential way from the least
to most significant bits. In order to exploit nice properties of Karatsuba ap-
proaches, we selected the separated (non-interleaved) Montgomery algorithm.
In the Algorithm 4, we firstly compute multi-precision multiplication (A × B)
or squaring (A×A) with KCOS multiplication or KDOS squaring, respectively.
After then the intermediate results (T ) are multiplied by inverse of modulus
(M ′) and the results are reduced by R and stored into Q. After then, following
equation ((T +Q×M)/R) is conducted.

Finally, the calculation of the Montgomery multiplication may require a fi-
nal subtraction of the modulus (M) to get a fully reduced result in range of
[0,M). In order to get the reduced results, the final subtraction is conducted.
The operation is computable with conditional branch by checking the carry bit.
However, this method has two drawbacks. First two operands should be com-
pared byte by byte via the compare function and the attacker can catch the
leakage information because conditional statements consumes different clock cy-
cles [30]. In order to resolve this problem, in [16], author suggested without
conditional branch method for Montgomery multiplication. Based on the con-
cept of incomplete modular arithmetic, we don’t compare exact value between
Z and M , but we use most significant bit (zm) of Z. If zm is set, modulus re-
mains, and otherwise modulus (M) is set to zero by using bit-masking. After
then, the intermediate results (Z) is subtracted by modulus (M)7. Final result
may not be the at least non-negative residue but this is always in the range of
[0, 2m). This incomplete reduction does not introduce any problems in practice
because incomplete representation can still be used as operand in a subsequent
Montgomery multiplication [31].

5 Results

5.1 Target Platform

The ARM Cortex-A9 and A15 series are full implementations of the ARMv7
architecture including NEON engine. Register sizes are 64-bit and 128-bit for
double(D) and quadruple(Q) word registers, respectively. Each register provides
short bit size computations such as 8-bit, 16-bit, 32-bit and 64-bit. This feature
provides more precise operation and benefits to various word size computations.
The Cortex-A9 processor is adopted in several devices including iPad 2, iPhone

7 In order to reduce the latencies, we conducted final subtraction with SISD instruction
sets because the SISD instruction set provides borrow bits and short delays per
instructions rather than that of SIMD.
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Table 1: Results of multiplication/squaring and Montgomery multiplication/squaring
and RSA operations in clock cycles on ARM Cortex-A9 platform, ∗: estimated results

Bit Cortex-A9

Our [29] NEON[5] ARM[5] GMP[7] OpenSSL[23]

Multiplication

512 1048 1050 - - 2176 -

1024 3791 4298 - - 6256 -

2048 13736 17080 - - 19618 -

Squaring

512 850 - - - 1343 -

1024 3315 - - - 4063 -

2048 9180 - - - 14399 -

Montgomery Multiplication

512 2210 2254 5236 3175 - -

1024 8245 8358 17464 10167 - -

2048 30940 32732 63900 36746 - -

Montgomery Squaring

512 1938 - - - - -

1024 7837 - - - - -

2048 26860 - - - - -

RSA encryption

1024 156502 167160∗ 379736 245167 214064 294831

2048 535020 654640∗ 1358955 872468 791911 1029724

RSA decryption

1024 2965820 - 7166897 4233862 - 4896000

2048 20977660 - 47205919 27547434 - 33134700

4S, Galaxy S2, Galaxy S3, Galaxy Note 2, PandaBoard and Kindle Fire. The
Cortex-A15 is used in Chromebook, NEXUS 10, Tegra 4, Odroid-XU, Galaxy
S4 and Galaxy S5.

5.2 Evaluation

We prototyped our methods for ARM Cortex-A9 and A15 processors, which
are equivalent to the target processors used in previous works [29, 5, 19, 20]. We
compared our results with best previous results from proceeding version of Seo
et al.’s paper presented at ICISC 2014 [29]. In Table 1 and 2, we categorize the
timings with respect to the architecture that served as experimental platform8.
In the case of 2048-bit multiplication, we achieve an execution time of 13736
and 8320 clock cycles on the Cortex-A9 and A15 series, while Seo et al.’s SIMD
implementation requires 17080 and 10672 clock cycles. Previous works did not

8 We only employ single core and optimization level is set to -O3.
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Table 2: Results of multiplication/squaring and Montgomery multiplication/squaring
and RSA operations in clock cycles on ARM Cortex-A15 platform, ∗: estimated results

Bit Cortex-A15

Our [29] [19, 20] NEON[5] ARM[5] GMP[7] OpenSSL[23]

Multiplication

512 640 658 - - - 1184 -

1024 2464 2810 - - - 4352 -

2048 8320 10672 - - - 13632 -

Squaring

512 516 - - - - 928 -

1024 1856 - - - - 3040 -

2048 6288 - - - - 11600 -

Montgomery Multiplication

512 1408 1485 4206 2473 2373 - -

1024 5392 5600 14051 8527 8681 - -

2048 19680 26232 50265 33441 33961 - -

Montgomery Squaring

512 1280 - - - - - -

1024 4784 - - - - - -

2048 17584 - - - - - -

RSA encryption

1024 95264 112000∗ 281020∗ 207647 195212 152432 224624

2048 367408 524640∗ 1005300∗ 712542 725336 654240 763120

RSA decryption

1024 1957120 - - 3332262 3288177 - 3625600

2048 14250720 - - 22812040 23177617 - 24240000

provide a squaring specialized method with non-redundant representations on
ARM-NEON [29, 5, 19, 20]. We compared our squaring to the latest GNU multi-
ple precision arithmetic library (GMP) ver 6.0.0a [7]. We compute the 2048-bit
squaring in an execution time of 9180 and 6288 clock cycles for A9 and A15,
while GMP implementation requires 14399 and 11600 clock cycles. In the case
of 2048-bit Montgomery multiplication, we achieve an execution time of 30940
clock cycles on the Cortex-A9 series, while Seo et al.’s SIMD implementation re-
quires 32732 clock cycles. Furthermore, on a Cortex-A15, we compute a 2048-bit
Montgomery multiplication within 19680 clock cycles rather than 26232 clock
cycles as specified in [29, Table 2]. The Montgomery squaring shows much more
optimized results than Montgomery multiplication. The strength of Montgomery
squaring is vividly seen in RSA encryption and decryption, because exponen-
tiation operation requires a number of modular squaring9. For this reason, our

9 RSA benchmark setting: (1) decryption with Chinese Remainder Theorem algo-
rithm, (2) RSA operations with no padding, (3) specialized squaring routine, (4) the
public exponentiation (216 + 1), (5) using window method
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Table 3: Comparison of proposed implementations with related works

Implementation Speed Record Program Style Scalability Karatsuba

Published modular multiplication implementations:

Martins et al. [19, 20] looped/parameterised
√

Bos et al. [5] looped/parameterised
√

Seo et al. [29] unrolled

This work (mul)
√

looped/parameterised
√ √

Published modular squaring implementations:

This work (sqr)
√

looped/parameterised
√ √

2048-bit RSA encryption only requires 535020 and 367408 clock cycles, while
Seo et al.’s work needs 654640 and 524640 clock cycles. Thus, our work out-
performs Seo et al.’s work by approximately 18% and 30% on a Cortex-A9 and
Cortex-A15, respectively. For comparison with 2048-bit RSA encryption and
decryption of OpenSSL 1.0.2 [23], our implementations are roughly two times
faster than that of OpenSSL. Proposed methods satisfy the operand scalability
and Karatsuba algorithm under non-redundant representations (see Table 3). In
terms of scalability, we can conduct various length of modular multiplication or
squaring in a single code by altering loop counter. This would be beneficial for
practical usages such as modular operations for random prime numbers. The
interesting point is our work even defeats the unrolled work by [29]. In case of
Karatsuba algorithm, this is a novel approach to improve SIMD based multipli-
cation and squaring under non-redundant representations. Following are reasons
for the significant speed-up compared to Seo et al.’s NEON implementations.

First, we used squaring dedicated method which can compute squaring more
efficiently than ordinary multiplication approach. Second, constant-time Karat-
suba algorithm is adopted to multiplication and squaring, which provides asymp-
totically fast methods than traditional approaches. Finally, we properly mix-used
SISD and SIMD instruction sets in order to reduce latencies from a number of
pipeline stalls.

5.3 Comparison to GMP

The most well known multiple precision arithmetic library is GMP. The GMP
also uses asymptotically fast Karatsuba algorithm. We compared the perfor-
mances on different long integers ranging from 512-bit to 8192-bit and the com-
parison graphs are drawn in Figure 2 for ARM Cortex-A9 and A15. For multi-
precision multiplication and squaring, our KCOS and KDOS methods show huge
performance enhancements in 512-bit by 46 ∼ 50% and 37 ∼ 44%. As length
of operand increases, the performance enhancements decrease but we still have
high improvements in 8192-bit by 20 ∼ 24% and 23 ∼ 35%, respectively.
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Fig. 2: Results of multiplication/squaring in clock cycles on ARM Cortex-A9/A15

6 Conclusion

We presented optimization techniques to improve the performance of modular
arithmetic operations (in particular multiplication, squaring and Montgomery
algorithm) on 2-way SIMD platforms. On an ARM Cortex-A15 processor, our
separated KCOS and KDOS methods perform 2048-bit Montgomery multiplica-
tion and squaring only 19680 and 17584 clock cycles, which are roughly 25% and
41% faster than the NEON implementation of Seo et al. (26232 cycles). For full
implementations of 2048-bit RSA encryption and decryption on A15 processor,
our implementations only need 367408 and 14250720 clock cycles.

It is also worth to note that our methods are perfectly suitable for processors
that support SIMD multiplication (PMULUDQ, VPMULUDQ) and shuffle (VPSHUFD,
PSHUFD) operations such as Intel-SSE or Intel-AVX family of processors. Based
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on these observations, the most obvious future work is to apply the proposed
modular multiplication and squaring routines to Intel-SSE and Intel-AVX pro-
cessors. This will be straight-forward to push the boundaries even further by
replacing traditional approaches by our modular arithmetic routines.
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