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Abstract. We present an oblivious machine, a concrete notion for a multiparty random access machine
(RAM) computation and a toolchain to allow the efficient execution of general programs written in a
subset of C that allows RAM-model computation over the integers. The machine only leaks the list of
possible instructions and the running time. Our work is based on the oblivious array for secret-sharing-
based multiparty computation by Keller and Scholl (Asiacrypt ‘14). This means that we only incur a
polylogarithmic overhead over the execution on a normal CPU.
We describe an implementation of our construction using the Clang compiler from the LLVM project
and the SPDZ protocol by Damg̊ard et al. (Crypto ‘12). The latter provides active security against a
dishonest majority and works in the preprocessing model. The online phase clock rate of the resulting
machine is 41 Hz for a memory size of 1024 64-bit integers and 2.2 Hz for a memory of 220 integers.
Both timings have been taken for two parties in a local network. Similar work by other authors has
only been the semi-honest setting.
To further showcase our toolchain, we implemented and benchmarked private regular expression match-
ing. Matching a string of length 1024 against a regular expression with 69270 transitions as a finite
state machine takes seven hours online time, of which more than six hours are devoted to loading the
reusable program.

Keywords: Multiparty computation, random-access machine, oblivious RAM, compilers, regular ex-
pression matching

1 Introduction

Multiparty computation (MPC) refers to a technique that allows a set of parties to compute on data held
by them privately without revealing anything to each other, bar the desired result. The feasibility has been
established for some time in two lines of work, Yao’s garbled circuits [16] and secret-sharing-based multiparty
computation [1, 4, 11]. The former allow two parties to compute binary circuits, and the latter enables any
number of parties to compute arithmetic circuits over finite fields or rings. In this paper, we focus on secret-
sharing-based MPC. There are various schemes differing in the degree of adversarial power such as the number
of corrupted parties or the kind of corruption. However, all of them implement the so-called arithmetic black
box presented in Section 2.

While circuits are complete in the sense that they allow any computation, they generally incur an overhead
over random access machine (RAM) programs. This overhead is related to the fact that, to access an array
by a data-dependent index, a circuit needs to access the whole array. In addition, accessing only parts of
such an array would reveal possibly sensitive data. A first step to remedy this was taken by Ostrovsky
and Shoup [21], who proposed the oblivious random access machine (ORAM) as a mean to hide the access
pattern of a memory-restricted client on a server with larger memory. They briefly mention the possibility
of using their scheme in the context of secure two-party computation with one party holding the encrypted
server memory. Damg̊ard et al. [7] on the other hand suggested to secret share the server memory. However,
due to the lack of efficient ORAM schemes, no concrete schemes or implementations emerged.

Only following the proposal of tree-based ORAM by Shi et al. [24], practical instantiations of oblivious
data structures for multiparty computation have been proposed, both for Yao’s garbled circuits [12, 17, 29]
and secret-sharing based MPC [13]. The former only provide security against a semi-honest adversary, while



the latter does so against a malicious adversary. These works essentially provide an implementation of an
oblivious array with efficient access, that is, one access to a secret index only incurs polylogarithmic cost
(in the size of the array). Based on the oblivious array, the latter work goes on to implement an oblivious
priority queue, which is then used for Dijkstra’s algorithm, as well as the Gale-Shapley algorithm for stable
matching. In the case of Dijkstra’s algorithm, it turns out that the algorithm has to be reformulated to be
implemented as a circuit with access to oblivious data structures.

On the theoretical side, Gentry et al. [10] proposed garbled RAM, which combines Yao’s garbled circuit
and ORAM. They present two solutions, one based on identity-based encryption, and the other based on
revocable pseudorandom functions. Both approaches do not seem to be as practical because they involve the
mentioned cryptographic operations being executed in a garbled circuit. In comparison, the works presented
in the previous paragraph use relatively lightweight operations.

1.1 Our Contribution

In this work, we present a practical instantiation of an oblivious machine in the arithmetic black-box model,
that is, an actively secure MPC protocol that allows efficient, oblivious computation in the RAM model. By
oblivious computation we mean that the sequence of instructions executed is not revealed to the adversary,
only the running time is. This enables the compilation of a subset of ANSI C (including conditional expres-
sions, loops, arrays, and structs) and thus the execution of many algorithms in C with only polylogarithmic
overhead. To the best of our knowledge, we are the first to implement this. We also present a theoretical
model of an oblivious machine.

While previous works [12, 17] have introduced the concept of secure RAM-model computation, their
notions remain rather abstract. Furthermore, Liu et al. [17] call general secure RAM-model computation
“relatively inefficient” because one has to execute the universal next-instruction circuit, which must interpret
every possible instruction. By contrast, the motivation of this work is to put a price tag on such general
secure RAM-model computation.

Our construction essentially uses the oblivious array by Keller and Scholl [13] for storing data and code,
and for every step, it executes all possible instructions in a way that minimizes data accesses. While this
incurs some overhead, we believe that it is more efficient than using a one instruction set machine because
such a machine will inevitably increase the length of programs and thus the length of memory accesses,
which we have found to be the most expensive part in our implementation.

As an application of our concept, we highlight the case of regular expression matching. Regular expressions
can be implemented as finite state machines and thus in the RAM model. Kerschbaum [14] presented two
MPC protocols for regular expression matching, a secure one and one with leakage. They have complexity
in O(nml) and O(knm2 + ln) for m states, n symbols, string length l and some security parameter k.
The security of our solution lies in between because it only leaks the total running time, which is less
than every repetition of a previous state being leaked by Kerschbaum’s algorithm. With a complexity in
O(nm log3 nm + ln(log3 nm + log3 l)), our approach beats the previous work on regular expressions that are
complex enough, that is, if km� log3 nm and km2 � l(log3 nm + log3 l). Using the same approach using a
regular CPU has complexity in O(nm + ln) for loading and executing the program. Launchbury et al. [15]
also mention an implementation of regular expression matching with multiparty computation. From their
description, we estimate that their protocol is similar to the secure one by Kerschbaum.

With MPC, potentially corrupted parties are involved in any computation. While the oblivious machine
obscures the instruction currently executed as well as the data accessed, it is inherent that the adversary learns
the amount of computation. In our case, this is the number of instructions being executed. A straightforward
way to obscure this to some extent is to define a maximal number of instructions and then execute exactly
this many steps. However, this can only increase the computation time. We believe that there still is a use
case for oblivious computation leaking the total time, for example, if the same program is not executed
enough times to mount a timing attack.

Since our oblivious machine does not reveal information about the code other than the set of possible
instructions, and code can also be input in secret, it also suits private function evaluation (PFE). Informally,
private function evaluation allows two parties to compute a function known to one party on data known by
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another party without revealing either input to the other party. Previous work on PFE focuses on circuits,
such as the solution by Mohassel et al. [20]. Their solution only incurs a constant overhead for circuits. While
our solution for RAM-model computation comes with polylogarithmic overhead, it is the first such proposal
to the best of our knowledge.

1.2 Related Work

Keller and Scholl [13], while providing much of the foundation of our work, do not consider general oblivious
computation but stick to oblivious data structures and specific applications thereof.

Similarly, SCVM [18] and ObliVM [19] are two-party computation implementations that use ORAM for
oblivious arrays, but they do not fully support the RAM model. For example, when branching on secret vari-
ables, both branches are executed. This makes these approaches infeasible to use with programs using GOTO
statements such as the ones output by the regular expression compiler descriped in Section 5. Furthermore,
both SCM and ObliVM do not hide the program being executed.

Wang et al. [29] briefly mention the idea of implementing a universal RAM instruction as a circuit.
However, they do not present a more detailed account or experimental figures. In a recent preprint [28],
Wang et al. propose a compiler of bytecode for a particular processor (MIPS) to garbled circuits. Their
system falls short in comparison to ours in two aspects. First, they analyze a program to find out at which
time in the execution a memory access might be necessary. While this reduces the number of expensive
ORAM computation, this is limited to relatively small programs because it requires the computation of
every possible execution path of the program. In comparison, our approach works for every program because
it allows memory accesses in every step. Secondly, their garbled circuit implementation only provides semi-
honest security compared to malicious security in our case. The latter also explains the offline phase that is
about 1000 times more expensive than the online phase. This is inherent to the SPDZ protocol.

Our oblivious machine is related to the concept of an oblivious Turing machine, which is a Turing machine
where the movement of the head only depends on the time. Pippenger and Fischer [22] showed that any
Turing machine can be converted into an oblivious one incurring only logarithmic overhead. However, the
best known result for converting a RAM program with running time T to a Turing machine results in a
running time in O(T 2) [5]. Hence, this transformation is currently not suitable to achieve polylogarithmic
overhead for RAM programs.

In the area of homomorphic encryption, Gentry et al. [9] have proposed to use ORAM to enable private
queries to an encrypted database. They do not target general computation however.

Ben-Sasson et al. [2] proposed TinyRAM, a system for succinct verifiable non-interactive arguments to
prove the correct execution of C programs. The setting of verifiable computation differs from ours in that the
control flow does not need to be hidden. This is what mandates the use of oblivious RAM in our construction.

1.3 Paper Organization

After introducing the concept of MPC, oblivious arrays in MPC, and the RAM model in Section 2, we
present a model of our oblivious machine in Section 3. We also prove that this model implements RAM
computation, and that it can be implemented using MPC with oblivious arrays. In Section 4, we the present
our actual implementation and toolchain with examples in Section 5 on the application to regular expression
matching. Finally, we show experimental results in Section 6, and we conclude in Section 7.

2 Preliminaries

In this section, we will present previous results that are related to our work. We start with multiparty
computation. MPC schemes allow a set of parties to compute public circuits on private data. All secret-
sharing-based MPC protocols provide the arithmetic black box shown in Figure 1. Since most schemes
use linear secret sharing where the sharing commutes with linear operations, the addition operation can
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Initialize: On input (Init, F) from all parties, store F.
Public Input: On input (PublicInput, a) from all parties, store a and return a handle [a] to all parties.
Private Input: On input (PrivateInput, i, a) from Party Pi and (PrivateInput, i) from all other parties, store a

and return a handle [a] to all parties.
Addition: On input (Add, [a], [b]) from all parties, compute c = a + b in F, store it, and return a handle [c] to

the parties.
Multiplication: On input (Multiply, [a], [b]) from all parties, compute c = a ·b in F, store it, and return a handle

[c] to the parties.
Public Output: On input (PublicOutput, [a]) from all parties, reveal a to all parties.
Private Output: On input (PrivateOutput, i, [a]) from all parties, reveal a to Party Pi.
Abort: On input Abort from the adversary, abort.

Fig. 1. FABB

Initialize Array: On input (initArray, n) from all parties, allocate an array of size n, initialize its entries to
zero, and return a handle [x] to all parties.

Read Array: On input (readArray, [x], [a]) from all parties, read the a-th entry of x, store it, and return a
handle [b] to it.

Write Array: On input (writeArray, [x], [a], [v], [f ]) from all parties, write v to the a-th entry of x if f = 1.

Fig. 2. FABBOA extension

often be done without communication. On the other hand, multiplication cannot be computed without
communication.

Note that the arithmetic black box does not specify the security properties achieved by a particular
protocol, for example, whether it allows active or passive corruption, how many parties can be corrupted
etc. This goes beyond the scope of the theoretical part of this paper because the security depends on the
protocol. The only property specified by FABB is the possibility for the adversary to abort the protocol. This
is required for protocols that allow a malicious, dishonest majority such as as the SPDZ protocol [8]. However,
our protocols can be instantiated with any MPC scheme implementing FABB , and the resulting protocol will
inherit the security properties of the underlying scheme. Furthermore, because FABB only outputs handles
like [a] to intermediate information, it is often straight-forward to prove the security of protocols using it.

Keller and Scholl [13] proposed to use tree-based ORAM in the context of FABB to get oblivious arrays
with polylogarithmic overhead. Their result can be used to extend FABB to FABBOA as detailed in Figure 2.
The proposed construction keeps both the client and the server memory of an ORAM scheme in the arithmetic
black box, executes client computations using FABB addition and multiplication, and uses the public output
of FABB to reveal the address for server memory accesses (and hence the FABB handle). Their result can
be stated as PABBOA in Figure 3.

Theorem 1. PABBOA realizes FABBOA in the FABB-hybrid model.

Proof (Sketch). We simulate the ORAM operations using an emulation of FABB similarly to the protocol
as follows: We use the ORAM simulator to generate the server memory addresses being revealed and abort
FABB in case of deviation by corrupted parties. The ORAM simulator guarantees the sequence of addresses
accessed in the server memory are independent of the access pattern. Furthermore, the probability of the
ORAM delivering incorrect data is negligible. Hence, the simulation is indistinguishable from the protocol.

2.1 Random Access Machines

We will use the RAM model by Cook and Reckhow [5]. They define a random access machine as a machine
with a memory X of integer registers that can execute a finite program consisting of the instructions listed in
Table reftab:ram. The first instruction allows to load a constant to a fixed memory address, the second and
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FABB instructions: Use FABB as instructed.
Initialize Array: Allocate sufficient storage according the ORAM scheme and run the ORAM initialization

using FABB .
Read Array: Read the address stored in x at a using FABB as outlined above and return the resulting handle

as [b].
Write Array: Read the address stored in x at a as above, and use the ORAM protocol to store IfElse(f, v, b) =

f · (v − b) + b at address a in x.

Fig. 3. PABBOA

third implement addition and subtraction with fixed input and output addresses. The next two instructions
enable indirect addressing for loading and storing, which is required for array operations, for example. The
“TRA” instruction (for transfer) allows to jump conditionally in the program code, which is needed by all
control flow operations such as “if” statements and loops. Finally, “READ” and “WRITE” cover input and
output operations.

Xi ← C C any integer
Xi ← Xj + Xk

Xi ← Xj −Xk

Xi ← XXj

XXi ← Xj

TRA m if Xj > 0 Jump to address m in the program code
READ Xi Read from input
PRINT Xi Print to output

Table 1. Instructions of random access machines

3 The Oblivious Machine

In this section, we will present our theoretical oblivious machine, prove that it implements RAM-model
computation, and prove that it can implemented using the arithmetic black box with oblivious arrays.
Figure 4 shows the desired functionality of the oblivious machine.

For simplicity, we only allow either public code or private code. One could think of mixing those, but
this would require some intricate linking. Similarly, we decided to separate instruction and data storage to
simplify the description. This results in a Harvard-like architecture, where the memory for instructions is
separated from the data storage. It is straight-forward to use a Von Neumann architecture, where everything
is stored in the same memory. However, due to the polylogarithmic access complexity of the underlying
ORAM, two smaller oblivious arrays are slightly faster than one combined. Furthermore, code and data have
different formats in our implementation, which is easier to accommodate for in two different oblivious arrays.
Finally, we do not see a use case for code that can be altered by the machine.

We now present an abstraction that allows to minimize the number of memory accesses per execution
step. Essentially, we require all possible instructions to have the same pattern with respect to memory
accesses. This allows to execute all instructions in parallel, as required by design, while accessing the memory
independently of the number of possible instructions. We formalize the access pattern as an instruction
pattern, which also includes the size of the state that is carried across a memory access. An instruction is
with a certain instruction pattern is defined by the circuits that are computed before, inbetween, and after
the memory accesses. The first circuit uses the runtime arguments param as input state, while the last circuit
outputs the program counter of the next instruction to be executed. The circuits also are given the value
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Initialize: On input (Init, F, nd) from all parties, store the parameters and allocate the data array of size nd.
Instructions: On input (Instructions, Q, I0, . . . , InI ) from all parties, store the list of instructions and the in-

struction pattern Q.
Public Code: On input (PublicCode, (c0, param0), . . . , (cnc−1, paramnc−1)) from all parties, store the code array.
Private Code: On input (PrivateCode, i, (c0, param0), . . . , (cnc−1, paramnc−1)) from Party Pi and

(privateCode, i, nc, np) from all other parties, check that |parami| = np for all j, and store the code
array.

Public Data: On input (PublicData, a, d) from all parties, store d at address a in the data array.
Private Data: On input (PrivateData, a, d) from Party Pi and (PrivateData, i) from all other parties, store d at

address a.
Run: On input (Run, pc) from all parties, execute the following:

1: while pc 6= ⊥ do
2: Send (Tick) to the environment.
3: Load (cpc, parampc) from the code.
4: pc← Icpc(parampc)

5: Send (Done) to the environment.

Reveal: On input (Reveal, i, a) from all parties, reveal the item at address a in the data array to Party Pi.
Abort: At any time, the environment can request aborting.
Bounds Check: For every access to the data or instruction array, if the index is within the bound, output

(WithinBounds) to the environment. Otherwise, output (OutOfBounds) to all parties and the environment
and abort.

Fig. 4. Fmachine

ri read from memory if the instruction pattern mandates reading, and all but the last circuit also output
a memory address ai, a write flag fi a value wi to be written if the write flag is true and the instruction
pattern mandates it.

Definition 1 (Instruction pattern). An instruction pattern is a list {(n1, t1), . . . , (nL, tL)} where there
is a state size ni ∈ N and access type ti ∈ {Read, Write} for all i ∈ [L].

Definition 2 (Instruction). An instruction with instruction pattern {(n1, t1), . . . , (nL, tL)} and parameter
size n0 is a list {c1, . . . , cL+1} of arithmetic circuits over F such that ci has ni−1 + 2 inputs and ni + 3
outputs. Let nL+1 = 1. The execution of an instruction is described in Algorithm 1.

Algorithm 1 Instruction
Input: Parameters param, program counter pc
Output: Address of next instruction

state0 ← param
r0 ← ⊥
for i ∈ (1, . . . , L) do

Execute ci with input (ri−1, pc, statei−1) and output (ai, wi, fi, statei). . |statei| = ni and |statei+1| = ni+1

if ti = Read then
ri ← the content of the data array at address ai

else
ri ← ⊥
if fi = 1 then

Write wi to address ai

return stateL+1 . |stateL+1| = 1
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As an example, we will now explain our implementation in Table 2 using the instruction XXi ← Xj . The
first circuit c0 gets as input the program counter pc and the instruction parameters (i, j, k) as the state, and
it outputs the address i to be read. The content of this address is then input to c1 as r0 in the state. c1

outputs the address j to be read and the state. The content of address j is stored as r1 in the state. The
circuit c2 then requests r1 to be stored at address r0 (write flag 1). Finally, c3 simply advances the program
counter by one. The first two memory accesses only require reading the memory for every instruction (if at
all), and the last one writing. Hence, t1 = Read, t2 = Read, and t3 = Write.

Theorem 2 (RAM model multiparty computation). The oblivious machine allows the implementation
of any RAM program in the model of Cook and Reckhow with the restriction that inputs are stored at the
beginning of the execution and outputs are revealed at the end.

Proof. Let np = 3 and L = 3. Table 2 shows the circuits to implement the first six instructions of Cook
and Reckhow. Storing a constant, addition, and subtraction are done by using the relevant parameters (i, j,
and k) as addresses and the constant, and indirect loading and storing by partially using previously loaded
integers (r1 and possibly r0) as addresses. The TRA instruction mainly uses the fact that the output of cL

is used as address of the next instruction. Finally, reading inputs and revealing outputs can be done using
PrivateInput/PublicInput and PrivateOutput/PublicOutput, respectively.

c0(⊥, pc, (i, j, k)) c1(r0, pc, (i, j, k)) c2(r1, pc, (i, j, k, r0)) c3(⊥, pc, (i, j, k, r0, r1))

Xi ← C (⊥,⊥,⊥, (i, j, k)) (⊥,⊥,⊥, (i, j, k, r0)) (i, C, 1, (i, j, k, r0, r1)) (pc + 1)
Xi ← Xj + Xk (j,⊥,⊥, (i, j, k)) (k,⊥,⊥, (i, j, k, r0)) (i, r0 + r1, 1, (i, j, k, r0, r1)) (pc + 1)
Xi ← Xj −Xk (j,⊥,⊥, (i, j, k)) (k,⊥,⊥, (i, j, k, r0)) (i, r0 − r1, 1, (i, j, k, r0, r1)) (pc + 1)
Xi ← XXj (j,⊥,⊥, (i, j, k)) (r0,⊥,⊥, (i, j, k, r0)) (i, r1, 1, (i, j, k, r0, r1)) (pc + 1)
XXi ← Xj (i,⊥,⊥, (i, j, k)) (j,⊥,⊥, (i, j, k, r0)) (r0, r1, 1, (i, j, k, r0, r1)) (pc + 1)
TRA i if Xj > 0 (j,⊥,⊥, (i, j, k)) (⊥,⊥,⊥, (i, j, k, r0)) (⊥,⊥, 0, (i, j, k, r0, r1)) (IfElse(r0 > 0, i, pc + 1))

(i, j, k): runtime arguments, r0, r1: values read from memory, pc: program counter

Table 2. Implementation of the random access machine by Cook and Reckhow

Private function evaluation. Recall that private function evaluation (PFE) allows two parties, one know-
ing a function and the other knowing some data, to compute the function on the data without revealing
either. Fmachine with private code input clearly facilitates this for functions formulated as a RAM-model
computation. One party inputs the function using PrivateCode, and the other party inputs the data using
PrivateData. The only leakage is the number of instructions computed. A malicious party can input a program
that leaks some information through this number. However, we argue that this leakage is small compared to
the amount of private data for practical scenarious because it only makes sense to use RAM model compu-
tation for larger data sets. Furthermore, if the parties reveal data at the end of the computation, a malicious
party can input a program that leaks even more data there.

3.1 Implementation Using FABBOA

We now propose protocol Pmachine in Figure 5 as an implementation of the oblivious machine using MPC
with oblivious arrays. At the core of our protocol lies the execution of all possible instruction in line 8. The
oblivious selection can be done by multiplying the vector of results by a vector that contains 1 in one entry
and 0 in the remaining entries. It is obvious that the protocol reveals the running time of the program. Note
that the branching on ti on line 9 does not reveal information because ti is part of the instruction pattern,
which is shared by all instructions.
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Initialize: Initialize FABBOA for F and initialize an oblivious array [D] of size nd for the data.
Public Code: Initialize an oblivious array [C] of size nc · (1 + np) and fill it with

(c0, param0), . . . , (cnc−1, paramnc−1).
Private Code: Initialize an oblivious array [C] of size nc · (1 + np) and fill it with

([c0], [param0]), . . . , ([cnc−1], [paramnc−1]) input to the arithmetic black box FABB by Party Pi.
Public Data: Send (WriteArray([D],FABBOA(PublicInput, a),FABBOA(PublicInput, d),
FABBOA(PublicInput, 1)) to FABBOA.

Private Data: Send (WriteArray([D], [a], [d],FABBOA(PublicInput, 1)) to FABBOA.
Run: The parties execute the following:

1: while PublicOutput([pc] 6= ⊥) do
2: Load ([cpc], [parampc]) from the oblivious code array.
3: [r−1]← ⊥
4: [state−1]← [param]
5: for i = 0, . . . , L do
6: for j = 0, . . . , nI do
7: Execute ci of instruction Ij on ([ri−1], [pc], [statei−1]) in FABB to get ([aj

i ], [wj
i ], [f j

i ], [statej
i ]).

8: Obliviously select the result ([a
cpc

i ], [w
cpc

i ], [f
cpc

i ], [state
cpc

i ]) as ([ai], [wi], [fi], [statei]).
9: if ti = Read then

10: [ri]← FABBOA(ReadArray, [ai])
11: else
12: [ri]← ⊥
13: Send (WriteArray, [D], [ai], [wi], [fi]) to FABBOA.

14: pc← stateL.

Reveal: Instruct FABBOA to open the a-th entry of the oblivious data array to Party Pi.
Bounds Check: Check every data and instruction access against the size of the respective array and reveal the

result. Abort if the check fails.

Fig. 5. Pmachine

Theorem 3. Pmachine implements Fmachine in the FABBOA-hybrid model.

Proof (Sketch). The power of the corrupted parties in the protocol is very limited because it only consists
of calls to FABBOA, which only reacts if all parties input the same information. Furthermore, FABBOA only
reveals private data to any party in three situations. First, it does so so in the Reveal procedure, which
corresponds to the same procedure of Fmachine. Second, the protocol reveals the result of comparison in
line 1. Thirdly, it reveals if there is an access outside of array bounds. For these reasons, the simulator
Smachine in Figure 6 is relatively simple. The first revelation can be simulated because Smachine learns the
outputs of Fmachine to corrupted parties. For the second revelation, it receives (Tick) whenever Fmachine

executes the loop body and (Done) after completion. Similarly, it receives all results of bounds checks. In the
rest of the protocol, the adversary only learns handles, which Smachine can generate like FABBOA would.
Hence, the view of the environment is indistinguishable.

Modeling the main loop with (Tick) and (Done) messages accounts for the fact that a program can run
indefinitely. Otherwise, we would need to check whether a program halts on a given input, which is impossible
for general programs due to the halting problem.

Complexity. The amount of communication and computation depends on the cost of accessing the oblivious
array. Keller and Scholl [13] report an implementation based on Path ORAM [26] with access complexity in
O(log3 N) for arrays of length N . Using this, the complexity of initializing the data and the code array has
cost in O(nc log3 nc) and O(nd log3 nd), respectively. The cost of running the machine is in O(T (log3 nc +
L(log3 nd + nI)) where T denotes the running time of the program and L denotes the number of memory
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Generally: Emulate a copy of FABBOA by generating handles and aborting Fmachine if the adversary demands
so from FABBOA.

Run: Whenever Fmachine sends (Tick), simulate the protocol for another step revealing 0 in line 1. If Fmachine

sends (Done), reveal 1.
Reveal: If a corrupted party is due to receive data in the protocol, this is also the case in Fmachine. Simply

forward it.
Bounds Check: Emulating FABBOA, reveal the result according to (WithinBounds) or (OutOfBounds) received

from Fmachine.

Fig. 6. Smachine

accesses by instructions. In the following section, we will argue that L = 3 suffices to implement a machine
that allows the compilation of arbitrary C code. Furthermore, we will show that nI = 10 different instructions
suffice to implement a small program matching a regular expression. All in all, our implementation features
about 30 possible instructions.

4 Our Implementation

In this section, we will describe the details of our actual implementation. While the RAM model by Cook
and Reckhow is powerful, more instructions are desirable to speed up computation. We begin by considering
the differences between regular CPUs and our implementation.

Unlike in a regular CPU, there is no reason to have data registers because the memory has to be accessed
in every step to maintain obliviousness. Therefore, all values are referred to by their addresses in the data
array. The only register is the program counter referring the current instruction. Similarly, there is only one
integer data type because having several types does not make sense in an oblivious execution. Because all
possible instructions are executed at every step, any operation for a smaller integer type implies an operation
for the larger type. Therefore, it is cheaper to execute the operation for the larger integer type only. This does
not rule out the provision of floating point types. Since floating point operations are much more expensive
than integer operations, and since they would have to be executed at every step, we did not implement
floating point operations.

Our implementation only supports static memory allocation and no recursion due to the lack of stack
pointer. However, there is no inherent reason for this limitation. The stack pointer could be implemented as
another register. In such a scenario however, one has to define how to handle memory overflows. Making it
public incurs the risk of leaking data while keeping it secret could lead to wasting time for a long computation
on corrupted data.

Given the cost of ORAM accesses, the goal is to minimize the number thereof while still supporting all
desired instructions. Three ORAM accesses, two reading and one writing, suffice for the kind of instructions
that classical processors support. Every such instruction can be described as a four-tuple consisting of an
identification of the instruction and three parameters, which can be an address or constant depending on
the instruction. Not all parameters need to have a semantic meaning for an instruction.

We use the instruction pattern (3, Read), (4, Read), (5, Write). The states are used to pass on the in-
structions parameters and the previously read values, that is, state0 = param, state1 = param + (r0), and
state2 = param+(r0, r1). As in Table 2, all our instructions directly read the address specified by a parameter,
which implies that c0 simply outputs the relevant parameter as ai.

Figure 7 lists all instructions used in the example in Figure 17. The example represents a matching
algorithm for the regular expression “ab*[cd]” as explained in Section 5. To demonstrate our framework,
we will now describe three instructions in detail.

We begin with “add_const”, which could be implemented combining Xi ← C and Xi ← Xj + Xk.
However, we found that it is more efficient to have an extra instruction for adding a constant. As mentioned
above, c0 is the same for all instructions and causes the address at parameter z being read to r0. c1 only
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Instruction Description

mov x y 0 Copy the data at address y to address x.
load x 0 z Copy the data at the address stored at address z to address x.
store 0 y z Copy the data at address z to the address stored at address y.
store_const x y 0 Store the constant y at address x.
eq_const x y z Compare the number at address z to the constant y and store 1 at address x in case of equality

and 0 otherwise.
add_const x y z Add the number stored at address z and the constant y, and store the result at address x.
ult_pos_const x y z Test if the unsigned number at address z is less than the positive constant y and store 1 at

address x if yes and 0 otherwise.
ule_pos_const x y z Test if the unsigned number at address z is less or equal than the positive constant y and

store 1 at address x if yes and 0 otherwise.
jmp x 0 0 Jump to the instruction at address x.
jmp_ind 0 0 z Jump to the instruction at the address stored at x.
br x y z Jump to the instruction at address x if the number at address z is 1 and to the instruction

at address y if the number is 0. Undefined behaviour in any other case.

Fig. 7. Instructions used in Figures 10 and 17.

forwards the parameters and r0, and c2 causes r0 + y to be stored at address x. c3 causes the program to
continue with the next instruction.

The “load” instruction corresponds to Xi ← XXj
in Table 2. Again, c0 causes the address at parameter

z being read to r0. c1 then enables the dereferencing by causing the address r0 being read to r1, and c2

causes r1 to being written at address x. Finally, c3 causes the execution to continue with the next instruction
in the code memory.

Finally, the “br” instruction is similar to the TRA instruction in Table 2. It again starts with c0 causing
the address z being read to r0. c1 and c2 do nothing but forward the parameters and r0. c3 then causes the
execution to jump to either x or y in the code memory, depending on r0. IfElse denotes the selection circuit
IfElse(c, a, b) = c · (b− a) + a.

It is easy to see that our framework allows for most instructions one expects in a CPU because they
fall in one of three categories represented by the above descriptions. Binary operations can be implemented
similar to add_const by loading the operands and storing the result, indirect memory are similar to load,
and conditional and unconditional jumps can be specified similarly to br.

4.1 Compilation

To compile C code, we use Clang from the LLVM project [27]. The LLVM project provides a modular compiler
toolchain. Clang parses C code and can compile it to the LLVM internal representation. This representation
consists of CPU-like instructions for an abstract CPU with infinitely many registers.

We use a Python script to compile this internal representation for our machine. This allows to compile
simple C programs without having to write an LLVM specification of our machine.

Since our machine does not support registers, the compiler has to allocate memory space for every register.
For simplicity, every register is put in a separate space in memory. One could use static analysis to reduce
the amount of space used.

We will now present a few examples of the compilation process. The first example is a “for” loop pop-
ulating an array. Figure 8 shows the C code. Compiled to LLVM intermediate representation (Figure 9),
the code is divided in five basic blocks: the code before the loop, the loop condition check, the loop body,
the loop increment, and the code after the loop. Shown in Figure 10, the code for our machine contains less
instructions than the LLVM code because the compiler gets rid of unnecessary instructions, such as jumping
to the next instruction in the code and loading from memory to register. For the latter case, note that our
machine does not support registers. The loop variable i is stored in position 8 in the memory, initialized
to 0 and compared to the constant 5 in instruction 2. The result of this comparison goes to position 9 in
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memory, which is used by the branching instruction in instruction 3. Furthermore, memory position 10 holds
the address of the array element accessed in the loop body. The array starts at position 3; hence, instruction
4 adds 3 to the loop variable to determine the address of the array element. The loop variable is then stored
in the address by instruction 5. For incrementing, instruction 6 adds 1 to the loop variable and stores the
result in position 11, which is then copied to position 8 by instruction 7. The execution then jumps back to
the condition check in instruction 2.

1 int main() {

2 unsigned long a[5];

3 for (unsigned long i = 0; i < 5; i++)

4 a[i] = i;

5 }

Fig. 8. A “for” loop populating an array in C.

5 Efficient Private Regular Expression Matching with Minimal Leakage

Consider the problem of two parties wanting to decide whether a string known by one party matches a regular
expression known by the other. A regular expression can be modelled by a finite state machine, which in
turn can be implemented in C using mainly switch and goto statements. Bumbulis and Cowan [3] provide
an implementation of such a compilation. Therefore, the oblivious machine solves the problem by the party
holding the regular expression inputting an appropriate program using PrivateCode. In the full version, we
will show an example of the resulting C, LLVM, and machine code.

5.1 Complexity

Using Path ORAM for the oblivious arrays, loading the code and the input string takes time in O(n log3 n)
in both cases with n denoting the code size and the input size, respectively. For the regular expression,
this means quasi-linear time in the size of the finite state machine. The main execution then takes time in
O(T (log3 nc + log3 nd)) for T , nc, and nd denoting the running time of the machine, the code size, and the
size of the input string, respectively. The running time is dominated the by the comparisons made by the C
code. This depends both on the input data and the ordering of the comparison within a switch statement.
However, T can be upper bounded by O(ndnm) where nm denotes the maximum number of comparisons in
a single switch statement, which in turn is less than the number of symbols. From a certain size of switch
statements, it is more efficient to use branch tables instead of consecutive comparisons. In this case, the
loading complexity of the particular switch statement is in O(ns) for ns being the number of symbols and
the execution complexity is constant. We did not follow this avenue in our implementation, but point out
that it would possible using the jmp_ind instruction.

5.2 Security

The oblivious machine leaks the running time T , which is linear in the number of the comparison performed
and the size of the input string. The latter is public by the fact that the usage of the oblivious machine
reveals the input size. However, the former depends on the regular expression, its precise compilation, and
the input string. The party holding the regular expression could modify the switch statements such that
they have constant size. However, this can come at considerable cost if they switch statements highly vary
in size.
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1 define i32 @main () #0 {

2 entry:

3 %retval = alloca i32 , align 4

4 %a = alloca [5 x i64], align 16

5 %i = alloca i64 , align 8

6 store i32 0, i32* %retval

7 store i64 0, i64* %i , align 8

8 br label %for.cond

9
10 for.cond: ; preds = %for.inc , %entry

11 %0 = load i64* %i, align 8

12 %cmp = icmp ult i64 %0, 5

13 br i1 %cmp , label %for.body , label %for.end

14
15 for.body: ; preds = %for.cond

16 %1 = load i64* %i, align 8

17 %2 = load i64* %i, align 8

18 %arrayidx = getelementptr inbounds [5 x i64]* %a , i32 0, i64 %2

19 store i64 %1, i64* %arrayidx , align 8

20 br label %for.inc

21
22 for.inc: ; preds = %for.body

23 %3 = load i64* %i, align 8

24 %inc = add i64 %3, 1

25 store i64 %inc , i64* %i , align 8

26 br label %for.cond

27
28 for.end: ; preds = %for.cond

29 %4 = load i32* %retval

30 ret i32 %4

31 }

Fig. 9. A “for” loop populating an array in the LLVM intermediate representation.

1 # main()

2 # entry:

3 store_const 2 0 0 # 0

4 store_const 8 0 0 # 1

5 # for.cond:

6 ult_pos_const 9 5 8 # 2

7 br 4 9 9 # 3

8 # for.body:

9 add_const 10 3 8 # 4

10 store 0 8 10 # 5

11 # for.inc:

12 add_const 11 1 8 # 6

13 mov 8 11 0 # 7

14 jmp 2 0 0 # 8

15 # for.end:

16 mov 0 2 0 # 9

17 jmp 11 0 0 # 10

Fig. 10. A “for” loop populating an array in our machine code.
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6 Experiments

In order to benchmark our construction, we have implemented it based on the so-called SPDZ scheme by
Damg̊ard et al. [8], which provides active security against an adversary corrupting all but one party. It works
in the preprocessing model, that is, there is a data-independent offline phase in which correlated randomness
is generated. In the case of SPDZ, the offline phase uses homomorphic encryption to generate secret sharings
of random multiplicative triples (a, b, ab) in a finite field with some authentication. The online phase then
uses the correlated randomness to compute the product of actual inputs.

In our implementation, we use 64-bit integers as subset of Fp for a 128-bit prime p. The gap is necessary
to accommodate for the statistically secure bit decomposition protocol with security parameter 40.

Figure 11 shows the online phase clock rate for a minimal program that is executed with varying sizes
of the data memory. The offline phase is about in magnitude of a 1000 times slower. However, it is highly
parallelizable, that is, it can distributed among several machines, which does not hold for the online phase.
Furthermore, this cost is due to providing active security, which similar works do not offer.
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Fig. 11. Online phase clock rate of the machine.

6.1 Comparison with Purely Using Oblivious Arrays

In order to compare the performance of the oblivious machine with programs implemented using oblivious
arrays directly, we have benchmarked Dijkstra’s algorithm using our toolchain. The results in Figure 12
suggest that using the oblivious machine instead of the implementation by Keller and Scholl is about 100
times slower. However, the comparison is not entirely fair because the previous implementation leaks the
algorithm being computed whereas the oblivious machine does not. In other words, the price to pay to hide
the computation is a factor of 100 in this case.

6.2 Regular Expression Matching

We have implemented our protocol for regular expression matching for a string of length 1024 and randomly
generated regular expressions of varying complexity. Figure 13 shows our results. We found that the total
number of transitions is the most appropriate measure for the complexity of a finite state machine. This
coincides with the number of comparisons in the machine code. At more than ten thousand transitions,
loading the code becomes the dominant part of the computation. However, if several strings are to be
matched to the same regular expression, this is a one-off cost. Table 3 shows the smaller expressions we used
for our experiments.
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Fig. 13. Regular expression matching online time.

FSM Size Regular Expression

10 [ZrqupR]

32 [aYoNPCI7O][Lxdo][3jHl7]

70 (([x2YUux]|[FEb6o])([ssUWGaGuD]

?)?)[nO][LwhCA][Y0rp6xc]WkaNjg5

M

98 [P]([z0xwIv48]+)([IEm][^isgQn4B

]*)

161 ([M]|(XP[t]*))[slUW8XiVe][iTS2Y

86E][ykSh9uE][fAu]9T0g(Umks(do(

[^t]|[PEv3e5])+)e62e[iIl]*)

Table 3. Regular expressions used in our experiments.
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7 Conclusion and Future Directions

We have presented a theoretical model for multiparty RAM computation, a concrete protocol, and an imple-
mentation as well as an application in the form of private regular expression matching. As future direction
we suggest research into quantifying the leakage by the running time of a RAM program. This would al-
low to navigate the trade-off between the fastest execution of a program with leakage and the overhead by
adding padding operations to programs in order to hide the number of comparisons in our regular expression
matching scheme for example.

Our experiments have shown that the oblivious machine runs at a few Hertz for larger data memory size,
which is about a billion times slower than a regular CPU. Obviously, one cannot hope to achieve a similar
speed, but recent ORAM schemes optimized for circuit implementation should allow to improve at least one
or two orders of magnitude. Another issue is the round complexity of secret-sharing-based MPC schemes,
which is linear in the circuit rounds. Analyzing our implementation, we come to the conclusion that this is
the bottleneck. Two-party computation based on Yao’s garbled circuits does not suffer from this because it
has constant rounds. However, implementations using garbled circuits do not necessarily beat the ones secret
sharing [6]. It remains to be seen which approach is more efficient.

Acknowledgments

We would like to thank Peter Scholl for various comments and suggestions. This work has been supported
in part by EPSRC via grant EP/I03126X.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In Simon [25], pages 1–10.

2. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for C: verifying program executions
succinctly and in zero knowledge. In R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer, 2013.

3. P. Bumbulis and D. D. Cowan. RE2C - a more versatile scanner generator. ACM Lett. Program. Lang. Syst,
2:70–84, 1994.
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A Regular Expression Example

For the regular expression ab*[de], Figures 14 to 17 show its implementation as C code, LLVM intermediate
representation, and instruction code for the oblivious machine.
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1 long match(char* YYCURSOR) {

2 char* YYMARKER;

3
4 while (1)

5 {

6 char yych;

7
8 yych = *YYCURSOR;

9 switch (yych) {

10 case 'a': goto yy2;

11 default: goto yy5;

12 }

13 yy2:

14 ++ YYCURSOR;

15 yych = *YYCURSOR;

16 switch (yych) {

17 case 'b': goto yy2;

18 case 'c':

19 case 'd': goto yy7;

20 default: goto yy4;

21 }

22 yy4:

23 yy5:

24 ++ YYCURSOR;

25 { return 0; }

26 yy7:

27 ++ YYCURSOR;

28 { return 1; }

29 }

30 }

Fig. 14. The regular expression “ab*[de]” compiled to C
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1 define i64 @match(i64* %YYCURSOR) #0 {

2 entry:

3 %retval = alloca i64 , align 8

4 %YYCURSOR.addr = alloca i64*, align 8

5 %YYMARKER = alloca i64*, align 8

6 %yych = alloca i64 , align 8

7 store i64* %YYCURSOR , i64** %YYCURSOR.addr , align 8

8 br label %while.body

9
10 while.body: ; preds = %entry

11 %0 = load i64** %YYCURSOR.addr , align 8

12 %1 = load i64* %0, align 8

13 store i64 %1, i64* %yych , align 8

14 %2 = load i64* %yych , align 8

15 br label %LeafBlock

16
17 LeafBlock: ; preds = %while.body

18 %SwitchLeaf = icmp eq i64 %2, 97

19 br i1 %SwitchLeaf , label %sw.bb, label %NewDefault

20
21 sw.bb: ; preds = %LeafBlock

22 br label %yy2

23
24 NewDefault: ; preds = %LeafBlock

25 br label %sw.default

26
27 sw.default: ; preds = %NewDefault

28 br label %yy5

29
30 yy2: ; preds = %sw.bb1 , %sw.bb

31 %3 = load i64** %YYCURSOR.addr , align 8

32 %incdec.ptr = getelementptr inbounds i64* %3, i32 1

33 store i64* %incdec.ptr , i64** %YYCURSOR.addr , align 8

34 %4 = load i64** %YYCURSOR.addr , align 8

35 %5 = load i64* %4, align 8

36 store i64 %5, i64* %yych , align 8

37 %6 = load i64* %yych , align 8

38 br label %NodeBlock

Fig. 15. The regular expression “ab*[de]” compiled to LLVM code (part one)
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1 NodeBlock: ; preds = %yy2

2 %Pivot = icmp ult i64 %6, 99

3 br i1 %Pivot , label %LeafBlock2 , label %LeafBlock4

4
5 LeafBlock4: ; preds = %NodeBlock

6 %.off = add i64 %6 , -99

7 %SwitchLeaf5 = icmp ule i64 %.off , 1

8 br i1 %SwitchLeaf5 , label %sw.bb2 , label %NewDefault1

9
10 LeafBlock2: ; preds = %NodeBlock

11 %SwitchLeaf3 = icmp eq i64 %6, 98

12 br i1 %SwitchLeaf3 , label %sw.bb1 , label %NewDefault1

13
14 sw.bb1: ; preds = %LeafBlock2

15 br label %yy2

16
17 sw.bb2: ; preds = %LeafBlock4

18 br label %yy7

19
20 NewDefault1: ; preds = %LeafBlock2 , ←↩

%LeafBlock4

21 br label %sw.default3

22
23 sw.default3: ; preds = %NewDefault1

24 br label %yy4

25
26 yy4: ; preds = %sw.default3

27 br label %yy5

28
29 yy5: ; preds = %yy4 , %sw.←↩

default

30 %7 = load i64** %YYCURSOR.addr , align 8

31 %incdec.ptr4 = getelementptr inbounds i64* %7, i32 1

32 store i64* %incdec.ptr4 , i64** %YYCURSOR.addr , align 8

33 store i64 0, i64* %retval

34 br label %return

35
36 yy7: ; preds = %sw.bb2

37 %8 = load i64** %YYCURSOR.addr , align 8

38 %incdec.ptr5 = getelementptr inbounds i64* %8, i32 1

39 store i64* %incdec.ptr5 , i64** %YYCURSOR.addr , align 8

40 store i64 1, i64* %retval

41 br label %return

42
43 return: ; preds = %yy7 , %yy5

44 %9 = load i64* %retval

45 ret i64 %9

46 }

Fig. 16. The regular expression “ab*[de]” compiled to LLVM code (part two)
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1 # match()

2 # entry:

3 mov 1028 1026 0 # 0

4 # while.body:

5 load 1031 0 1028 # 1

6 mov 1030 1031 0 # 2

7 # LeafBlock:

8 eq_const 1032 97 1030 # 3

9 br 5 16 1032 # 4

10 # yy2:

11 add_const 1033 1 1028 # 5

12 mov 1028 1033 0 # 6

13 load 1034 0 1028 # 7

14 mov 1030 1034 0 # 8

15 # NodeBlock:

16 ult_pos_const 1035 99 1030 # 9

17 br 14 11 1035 # 10

18 # LeafBlock4:

19 add_const 1036 -99 1030 # 11

20 ule_pos_const 1037 1 1036 # 12

21 br 20 16 1037 # 13

22 # LeafBlock2:

23 eq_const 1038 98 1030 # 14

24 br 5 16 1038 # 15

25 # yy5:

26 add_const 1039 1 1028 # 16

27 mov 1028 1039 0 # 17

28 store_const 1027 0 0 # 18

29 jmp 23 0 0 # 19

30 # yy7:

31 add_const 1040 1 1028 # 20

32 mov 1028 1040 0 # 21

33 store_const 1027 1 0 # 22

34 # return:

35 mov 1024 1027 0 # 23

36 jmp_ind 0 0 1025 # 24

Fig. 17. The regular expression “ab*[de]” compiled for the oblivious machine
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