
On the Power of Public-key Functional Encryption

with Function Privacy

Abstract

In CRYPTO 2014 Bitansky et al. introduced a natural strengthening of indistinguishabil-
ity obfuscation (iO) called strong iO (siO) and showed candidate constructions of such primi-
tive from reasonable assumptions. In this paper, assuming quasi-siO, a natural weakening of
siO, for a class of circuits C we construct a public-key functional encryption (FE) scheme with
function privacy (FPFE) for the same class C. In the public-key setting known constructions
of FPFE were limited to very restricted classes of functionalities like inner-product [Agrawal
et al. - PKC 2015] whereas ours can be instantiated for general functionalities.

Then, inspired by the Naor’s transformation from IBE to signature schemes, we con-
struct from FPFE a natural generalization of a signature scheme endowed with functional
properties, that we call functional anonymous signature (FAS) scheme. In a FAS (that we
show to be equivalent to quasi-siO and FPFE), Alice can sign a circuit C chosen from some
distribution D to get a signature σ and can publish a verification key that allows anybody
holding a message m to verify that (1) σ is a valid signature of Alice for some (possibly
unknown to him) circuit C and (2) C(m) = 1. Beyond unforgeability the security of FAS
guarantees that the signature σ hide as much information as possible about C except what
can be inferred from knowledge of D. As other application of FPFE, we show that it can be
used to construct in a black-box way (without using obfuscation directly) FE for randomized
functionalities (RFE). Previous constructions of (public-key) RFE relied on iO [Goyal et al.
- TCC 2015].

Furthermore, our constructions of FPFE and RFE naturally generalize to the multi-inputs
setting. Finally, we present a general picture of the relations among all these related primi-
tives. One of the key points that such implications draw is that Attribute-based Encryption
with function privacy implies FE, a notable fact that sheds light on the importance and
power of function privacy for FE.
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1 Introduction

Strong indistinguishability obfuscation In CRYPTO 2014 Bitansky, Canetti, Kalai and
Paneth [BCKP14a] introduced a natural strengthening of indistinguishability obfuscation (iO)
called strong iO (siO) and showed candidate constructions of such primitive for all circuits in NC1

from variants of semantically secure graded encoding schemes [PST14]. Informally speaking, a
siO is secure if no efficient adversary can distinguish whether a circuit was drawn from D0 or
D1 where D0 and D1 are a pair of ‘feasible‘ entropy distributions in the sense that no adversary
can distinguish oracle access to a circuit drawn from D0 or D1. In this paper, we show several
applications of siO. Specifically, for our applications it suffices to consider a natural weakening
of siO, already pointed out by Bitansky et al., requiring that the distributions be efficiently
samplable. We call such notion quasi-siO. First, assuming quasi-siO (and one-way functions) we
construct functional encryption schemes with function privacy that we describe next.

1.1 Functional Encryption with Function Privacy

Functional Encryption (FE, in short) is a sophisticated type of encryption that allows to finely
control the amount of information that is revealed by a ciphertext. Progressively more expres-
sive forms of FE were constructed in a series of works (see, e.g., [BDOP04, BW07, KSW08,
LOS+10, OT12, Wat12]) culminating in the breakthrough of Garg et al. [GGH+13]. The se-
curity notion in these works only take in account the privacy of the message but nothing was
guaranteed for the privacy of the function. In the symmetric-key setting, a preliminary study of
FE with function privacy was initiated by Shen et al. [SSW09] for the inner-product [KSW08]
functionality, subsequently followed by constructions for general functionalities [BS15]. Boneh
et al. [BRS13a] put forward the study of function privacy for FE providing constructions for
the Identity-Based Encryption (IBE) functionality, then followed by works that considered the
subspace membership [BRS13b] and the inner-product [AAB+13, AAB+15] functionalities. In
a public-key setting, the function can not be hidden completely since the adversary can never
infer partial information about it using the public-key. For such reason, Boneh et al. [BRS13a]
consider functions chosen from high min-entropy distributions. Precisely, in the context of IBE
they propose an IND style real-or-random definition of function privacy, that stipulates that as
long as the identity id was chosen from a sufficiently high min-entropy distribution, the adversary
should not be able to distinguish the token for id from a token for a uniformly random identity.
Agrawal et al. [AAB+15] also consider stronger simulation-based definitions for function privacy
but with non-standard simulators (a necessity motivated by broad impossibility results in the
area). A bit of thought shows that a meaningful simulation-based security notion of function
private FE (FPFE, in short) for some enough expressive class of Boolean circuits would imply
virtual black box obfuscation for the same class of circuits and thus it seems unachievable even
for NC1 circuits. For such reasons, we stick with the indistinguishability-based definition and
defer to future works the study of stronger security notions. Specifically, in the case of Boolean
circuits, we consider what we call pairs of ensembles of efficiently samplable feasible entropy
distributions, a strengthening of a notion defined by Agrawal et al. [AAB+15] which abstracts
the unpredictability property of Boneh et al. [BRS13a]. Formal definition is given in Section 2.
Note that we put the constraint that the distributions be efficiently samplable. This is because,
in the context of function privacy, as well as for functional anonymous signatures that we will
introduce later, users sample the cryptographic objects from efficiently samplable distributions.
This subtle difference turns to be very important, indeed it is the key to make such primitives
composable. In Section 2.2 we discuss the existence of siO and quasi-siO. To our knowledge no
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previous work in literature considered public-key FPFE for general functionalities. This leads
to the main questions that we study in this work:

Can we achieve public-key FPFE for all polynomial-sized circuits from reasonable
assumptions? And what applications and other primitives can we build from it?

Our first result answers affirmatively to the first question.

FE with Function Privacy from quasi-siO. Firs of all, it is worth reminding why existing
constructions of FE do not offer any meaningful function privacy. Consider the construction of
Garg et al. [GGH+13] of FE from iO. Therein, the token for a circuit C is an indistinguishability
obfuscation of C. One could hope that being the circuit obfuscated it should hide as much in-
formation as possible about the circuit. Nevertheless, the form of function privacy here attained
is very limited. Specifically, the token for C is indistinguishable from the token for any other
functionally equivalent circuit C ′. To show that this is insufficient in many concrete applications,
consider the case of circuits implementing point functions. Specifically, for any binary string
x ∈ {0, 1}n consider the class of circuits Cx that contain all circuits C defined so that C on
input a binary string y of length n outputs 1 if and only if y = x. Then, the class of circuits
implementing point functions, let us say restricted to points of length n, is the union of all Cx’s
for all strings x of length n. It is trivial to notice that an iO for this class could just return
the value x in clear1, assuming that this can be done efficiently. That is, the (non necessarily
efficient) obfuscator that on input a circuit C ∈ Cx for some x ∈ {0, 1}n outputs x in clear
(with evaluation procedure associated in the obvious way) is provably an iO. Notwithstanding,
this obfuscator when plugged in FE does not offer any guarantee of function privacy for these
classes of functions. In fact, consider two distributions D0 and D1 over strings in {0, 1}n defined
so that the first bit in the strings drawn from Db, for b ∈ {0, 1} is b and the remaining bits
are uniformly and independently chosen. Then, a token for a point x drawn from D0 can be
easily distinguished from a token for a point drawn from D1. This is because the obfuscated
point leaks x in clear and looking just at the first bit of it, the token can be distinguished. This
motivates the use of siO. Indeed, if the token was instead a siO of the circuit, it would leak as
few information as possible about the circuit. To the aim of having conceptually simple and
general constructions, we construct a FPFE scheme by nesting a generic FE scheme (without
function privacy) with a siO. Specifically our FPFE scheme FPFE will use the underlying FE
FE scheme as black-box and will have identical procedures except that a token for a circuit C
will consist of a token of FE for the circuit qsiO(C), where qsiO is a quasi-siO: that is, setting
C ′ = qsiO(C), a token of FPFE for C will be a token of FE for C ′. Intuitively, even though
this token is computed with a non function private scheme, as it is built on the top of circuit
obfuscated with quasi-siO, it should leak as few information as possible. In fact, we confirm this
intuition providing formal reductions. Note here that the underlying FE scheme guarantees the
privacy of the encrypted messages and quasi-siO is only used to add the extra layer of function
privacy. Furthermore, the modularity of this approach generalizes easily to multi-inputs FE
(MIFE, in short) [GGG+14] allowing to construct the first MIFE scheme with function privacy
(FPMIFE, in short). The definition of a FPFE scheme and its security are presented in Section
2.4 and its construction from quasi-siO is presented in Section 3.

We observe that the reverse direction also holds. In fact, a quasi-siO qsiO for class of circuits
C can be constructed from a FPFE FPFE for the same class in the following way. For any input C
the algorithm qsiO(C) outputs the public-key of the system FPFE and a token Tok for C of FPFE.

1Precisely, we also have to define a corresponding evaluation procedure in the obvious way.
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To evaluate such obfuscated circuit on an input x, the evaluation algorithm associated with qsiO
takes as input the public-key and Tok and encrypts2 x to get Ct and evaluates Tok on Ct to get
C(m). It is easy to see that the correctness of FPFE and our definition of INDFP-Security as
defined in Section 2.4 imply that the constructed obfuscator is a quasi-siO. This construction
also shows, as said before, that a meaningful simulation-based security notion for FPFE for
general circuits would imply VBB obfuscation for general circuits, and thus is unachievable. For
such reason we stick to an indistinguishability-based definition of function privacy.

1.2 Functional Anonymous Signatures

Recall that the Naor’s transformation3 allows to transform an identity-based encryption (IBE)
scheme [BF01] (a special case of FE) in a signature scheme. The idea is that the token for an
identity id (encoded as binary string) acts as a signature for it. Such signature can be verified
by encrypting (using the public-key of the scheme) the pair (r, id) for a random string r and
testing whether the token (i.e., the signature) evaluated on such ciphertext returns r. By the
security property of FE, such signature is unforgeable. Suppose that we generalize this idea to
FE for general circuits. What would it be the benefit in this case? For instance, this extensions
would enable Alice to sign a Boolean circuit C allowing Bob holding an input m to verify that
the signature was issued by Alice and C(m) = 1. We envision a scenario where the signature of
Alice of a circuit C hides C if it is drawn from a feasible entropy distribution. In this case, the
intent of Bob is to verify (1) that Alice signed some circuit C, that is not known to him, and (2)
verify that his input m satisfies the circuit, e.g., C(m) = 1. Before defining the security of this
primitive, that we call Functional Anonymous Signature (FAS, in short) scheme, we consider an
application scenario.

Applications of FAS. FAS can be used to implement an authenticated policy mechanism.
Alice, the head of a company, can publish her verification key and with the corresponding secret
key can sign an hidden policy P chosen from some known distribution D and send the signature
σ of P to the server of her company. The secretary of the company, who is assumed to be honest
but curious, can grant Bob access to some private document iff the access pattern m held by
Bob verifies the signature of Alice, and in particular her hidden policy, i.e., P (m) = 1. If the
signature is verified by the access pattern of Bob, then the secretary has the guarantee that (1)
the policy was signed by Alice and (2) the access pattern of Bob satisfies such policy. Both
Bob and the secretary have no information about the policy except what can be inferred from
the distribution D. Due to the possibility of using universal circuits in FAS, the role of access
pattern and policy can be inverted, that is Alice can sign an access pattern and Bob holding
a policy can verify whether his policy satisfies her access pattern. It is easy to see that FAS
implies traditional signature schemes. Another powerful application related to FAS is given in
Section 1.3.

Security of FAS. We define FAS with a notion of unforgeability that we call functional
unforgeability, that suits for most applications of FAS. The notion does not consider as valid the
forgery of a circuit more restricted than a circuit for which a signature was seen. That is, it is
not considered as a valid forgery if an adversary given a signature of circuit C can sign another
circuit C ′ that computes the same function as C or is more restricted than C. To see why such
condition is not too restrictive, consider the above application. In that case, the security of FAS

2Actually, for this implication to hold we only need ”data privacy”, i.e., security of the encryptions. In fact,
we could assume that the messages are encrypted in clear. Precisely, according to the definitions from Section
2.4, we only need INDFP-Security and not also IND-Security.

3Such transformation was first reported in Boneh and Franklin [BF01].
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should prevent some unauthorized user to claim that Alice signed a document who authorizes
him. This is exactly what the condition states. Note also that being Alice semi-trusted we
do not consider a breach of security if she is able to forge a signature for a circuit C ′ more
restricted than the circuit C of which she received a signature from Alice (a circuit C ′ is said
to be more restricted than C if C ′(x) = 1 implies C(x) = 1). Only malicious users have the
interest to forge new signatures and in this case their scope is to forge signatures for circuits
that authorize them, so a forgery for a more restricted circuit (or a functionally equivalent one)
must not be considered a successful attack. Anyway, for other applications such security could
not suffice but we show that it is possible to make FAS unforgeable according to the classical
notion of unforgeability (i.e., requiring that any PPT adversary can not forge a signature for a
circuit C ′ different (as bit string) from any circuit C for which it saw a signature) just adding
a traditional unforgeable scheme on the top of it. Beyond unforgeability, we require anonymity,
namely that a signature σ hide as much information as possible about C except what can be
inferred from knowledge of the distribution from which C is drawn. FPFE fits perfectly in the
picture, and in fact we show that it implies FAS in a black-box way. Specifically, we show how to
extend the Naor’s transformation to construct FAS for a class of circuits C from Attribute-based
Encryption (ABE, in short) [GPSW06] with function privacy, a weaker notion of FPFE, for
the same class C. We remark that despite of the name, FAS does not share much similarities
with functional signatures as defined by Goldwasser et al.[BGI14]. More related primitives are
content-concealing signatures and confidential signatures ([Can97, DFM+10]) that can be viewed
as a weak form of FAS schemes without functional capabilities (or alternatively for the class of
equality predicates).

The definition of FAS and its security are presented in Section 2.6 and its construction from
ABE with function privacy (FPABE, in short) is presented in Section 4.

1.3 Functional Encryption for Randomized Functionalities (and SPP)

Goyal et al. [GJKS15] put forward the first construction of FE supporting randomized circuits.
In this setting, the challenge is to guarantee that the circuit be evaluated on fresh randomness
that can not be maliciously chosen. A tentative solution to the problem would be to include the
seed of a pseudo-random function in the token. Unfortunately, this approach fails since the token
is not guaranteed to hide the function that the circuit is supposed to compute. This leaves open
the possibility that this basic idea could work assuming a FE whose token hides the function
(i.e., with function privacy), and in fact we are able to confirm this intuition by showing a black-
box construction of FE for randomized circuits (RFE, in short) from FPFE for (deterministic)
circuits. We adopt an indistinguishability-based security for RFE, but unlike Goyal et al. we do
not take in account the problem of dishonest encryptors that goes beyond the scope of our paper
(and concerns not only RFE but FE and FPE as well). Our construction of RFE also preserves
the function privacy of the underlying FPFE and thus satisfies the standard notion of function
privacy where the adversary can ask distributions of deterministic circuits. We call this notion
FPRFE. We believe that it also satisfies a form of function privacy extended in a natural way to
support randomized circuits, but we did not investigate the details. Our construction of RFE
can be easily extended to the multi-inputs setting, resulting in the first construction, assuming
only quasi-siO, of a Public-key FPMIFE for randomized functionalities (as said before, where the
function privacy is restricted to deterministic circuits) with selective form of indistinguishability
security. The restriction of selective security can be removed assuming in addition an adaptively
indistinguishability secure MIFE.

The definition of RFE and its security are presented in Section 2.5 and its construction from
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FPFE is presented in Section 5.

FPRFE, signed probabilistic programs and future directions. As we said, we can
achieve a weak form of FPRFE in which the function privacy is restricted to deterministic circuits
(that is, in the experiment the adversary is asked to choose two distributions of deterministic
circuits). As future direction we envisage the definition and the construction of a ”fully” FPRFE.
As application of such primitive, we think that, as FPABE implies FAS, (fully) FPRFE4 would
imply the powerful primitive of signed probabilistic programs (SPP, in short) in which Alice can
sign a probabilistic program P that can be publicly verified and executed under the following
guarantees. Bob with the verification key of Alice can check that a (possibly hidden to him)
program P was truly signed by her and Alice has the guarantee that Bob can execute P on any
input but he can not choose the random coins of P (that look indistinguishable from random to
Bob on any input). Furthermore, the signature would also have to hide the program similarly
to how FAS does. Note that it would even make sense to define a weaker notion in which the
signature contains the program in clear. Such weaker primitive could be constructed from a
RFE with a weak form of function privacy. We do not present formal definitions and further
details of SPP and defer to future study its formalization and construction.

2 Definitions

2.1 Preliminaries

A negligible function negl(k) is a function that is smaller than the inverse of any polynomial in k.
If D is a probability distribution, the writing “x← D” means that x is chosen according to D.
If D is a finite set, the writing “x← D” means that x is chosen according to uniform probability
on D. If q > 0 is an integer then [q] denotes the set {1, . . . , q}. If B is an algorithm and A
is an algorithm with access to an oracle then AB denotes the execution of A with oracle access
to B. If a and b are arbitrary strings, then a||b denotes the string representing their delimited
concatenation. We assume a standard binary encoding for circuits, so for ease of exposition
we define functions with binary inputs and invoke them with circuits as inputs instead of their
binary encodings. In this paper, we will mostly work in the non-uniform model of computation.
We say that A = {An}n∈N is a non-uniform family of PPT algorithm if there exists a polynomial
p(·) such that for any n ∈ N machine An has size bounded by p(n) and the running-time of An
on any input x of length n is bounded by p(n). Note that an algorithm An in the family A is
only required to work for inputs of size n but sometimes with a slight abuse of notation we give
to An in input the security parameter n and some other input of size polynomial related to n: for
example we write An(1n,Mpk) when we actually mean An+|Mpk|(1

n,Mpk). With a slight abuse
of notation, we write that a statement holds for all security parameters λ, whereas we actually
mean that this has to hold only for sufficiently large values of λ. In our work, we make use of
the following definition inspired by a similar definition from Agrawal et al. [AAB+13, AAB+15].

Definition 2.1 [Pair of Ensembles of Feasible Entropy Distributions]. Let D0 = {D0,n}n∈N
and D1 = {D1,n}n∈N be two ensembles of distributions over a class of circuits C = {Cn}n∈N
where any n ∈ N, Cn contains circuits of the same size. Then, we say that D0 and D1 are a
pair of ensembles of feasible entropy distributions, if for all non-uniform families of (possibly
inefficient) algorithms A = {An}n∈N making a polynomial number of queries to its oracle (i.e.,

4Precisely, for such implications to hold we just need to assume ABE for randomized circuits.
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the adversaries are semi-bounded), it holds that:∣∣∣PrC←D0

[
AC(·)
n (1n, 1|C|) = 1

]
− PrC←D1

[
AC(·)
n (1n, 1|C|) = 1

]∣∣∣ ≤ negl(n) .

Note that in the above definition we do not require that the distributions be efficiently samplable
but for all our applications we will put such additional constraint. So we will talk about a pair
of ensembles of efficiently samplable feasible entropy distributions with the obvious meaning.

Puncturable Pseudorandom Functions. In this work, we make use of puncturable pseu-
dorandom functions [SW14] which are essentially pseudorandom functions (PRFs, in short) that
can be defined on all inputs except for a polynomial number of inputs.

Definition 2.2 A puncturable family of PRFs F is given by a triple of Turing Machines
(F.Key,F.Puncture,F.Eval), and a pair of computable functions n(·) and m(·), satisfying the
following conditions:

• Functionality preserved under puncturing: For every set S ⊂ {0, 1}n(λ), for all x ∈
{0, 1}n(λ) where x /∈ S, we have that:
Pr
[
F.Eval(K, x) = F.Eval(KS, x) : K← F.Key(1λ),KS = F.Puncture(K,S)

]
= 1.

• Pseudorandom at punctured points: For every non-uniform family of PPT adversaries
A = {Aλ}λ∈N, for every set S ⊂ {0, 1}n(λ) consider an experiment where K ← F.Key(1λ)
and KS = F.Puncture(K,S). Then there exists a negligible function negl(·) such that for
any λ ∈ N such that we have:∣∣Pr [Aλ(KS , S,F.Eval(K, S)) = 1 ]− Pr

[
Aλ(KS , S, Um(λ)·|S|) = 1

]∣∣ ≤ negl(λ) .

where F.Eval(K, S) denotes the concatenation of (F.Eval(K, x1), . . . ,F.Eval(K, xk)) where
S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic order, and U`
denotes the uniform distribution over ` bits. For ease of notation, we write F(K, x) to
represent F.Eval(K, x). We also represent the punctured key F.Puncture(K,S) by K(S).

2.2 Strong and Quasi-strong Indistinguishability Obfuscation

Strong indistinguishability obfuscation has been introduced by Bitansky et al. [BCKP14a]. Their
formulation is syntactically different from ours, but as they point out ([BCKP14b], p. 4) it is
equivalent to ours. Thus, without loss of generality we adopt the following formulation as it is
more suitable for our scopes.

Definition 2.3 [Strong Indistinguishability Obfuscators for Circuits] A uniform PPT machine
siO is called a strong indistinguishability obfuscator (siO, in short) for a circuit family C =
{Cn}n∈N, if the following conditions are satisfied:

• Correctness: ∀n,∀C ∈ Cn,∀x ∈ {0, 1}? we have Pr [C ′(x) = C(x) : C ′ ← siO(1n, C) ] = 1.

• Strong indistinguishability: For all pairs of ensembles of feasible entropy distributions
D0 = {D0,n}n∈N and D1 = {D1,n}n∈N over a class of Boolean circuits C′ = {C′n}n∈N ⊂ C
where for any n ∈ N the set C′n contains circuits of the same size, for any non-uniform family
of PPT distinguishers D = {Dn}n∈N, there exists a negligible function negl(·) such that the
following holds: For all n ∈ N, we have that |PrC←D0,n

[
Dn(1n, 1|C|, siO(1n, C)) = 1

]
−

PrC←D1,n

[
Dn(1n, 1|C|, siO(1n, C)) = 1

]
| ≤ negl(n).
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Bitansky et al. also hint the following weakening of siO (as they do not explicitly assign a name
to the primitive, the new name is ours).

Definition 2.4 [Quasi-strong indistinguishability Obfuscators for Circuits] A quasi-strong in-
distinguishability obfuscator (quasi-siO, in short) for a circuit family C is defined analogously
to siO except that the strong indistinguishability condition is weakened with the quasi-strong
indistinguishability condition that is identical to the former except that it is required that the
ensembles of distributions be ensembles of efficiently samplable distributions.

On the existence of siO and quasi-siO. Bitansky et al. [BCKP14a] put forward candi-
date constructions of siO for NC1 circuits from variants of semantically secure graded encoding
schemes [PST14]. Anyway, as they point out ([BCKP14b], p. 5) “existing candidates of indis-
tinguishability obfuscation for all circuits may also be considered as candidates for siO for all
circuits”. Motivated by this conjecture, in this paper we assume the existence of siO for all
circuits. Moreover, all our results can be weakened assuming only siO for NC1 circuits. For
instance, siO for NC1 circuits is sufficient to build FE with function privacy for NC1 circuits and
similarly for the other primitives we build. We stress that even constructions of (public-key)
FPFE for NC1 were not known before. All such positive results for siO imply corresponding
positive results for quasi-siO. Furthermore, Bitansky et al. point out that quasi-siO follows from
even a weakening of their notion of semantically secure graded encoding schemes.

2.3 Functional Encryption

Functional encryption schemes are encryption schemes for which the owner of the master secret
can compute restricted keys, called tokens, that allow to compute a functionality on the plaintext
associated with a ciphertext. We start by defining the notion of a functionality.

Definition 2.5 [Functionality] A functionality F is a function F : K ×M → Σ where K is the
key space, M is the message space and Σ is the output space.

In this work, we consider the following functionality.

Definition 2.6 [Circuit Functionality] The Circuit functionality has key space K = ∪nKn with
Kn equals to the set of all polynomial-sized Boolean circuits C with n input and output wires.
The message space M = ∪nMn with Mn equal to the set {0, 1}n. For k ∈ K and m ∈ M , we

have Circuit(C,m) = C(m). Note that this also implicitly defines the output space Σ
4
= ∪nΣn

4
=

∪n{0, 1}n.

Definition 2.7 [NC1 Functionality] Such functionality is defined similarly to the functionality
Circuit except that for any n ∈ N the key space Kn equals the set of all circuits in NC1 with n
input and output wires.

The above two definitions can be generalized to any class of Boolean circuits in the obvious
way. That is, we will sometimes talk of a class of circuits C = {Cn}n∈N. In this case, for
ease of exposition, we assume that any circuit C ∈ Cn has n inputs and output wires, except
when explicitly specified. This can be easily generalized to the cost of intoducing slightly more
complicated notation.

Definition 2.8 [ABECircuit and ABENC1 Functionality] The ABECircuit functionality has key
space K = ∪nKn with Kn equals to the set of all polynomial-sized Boolean circuits C with n
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input and output wires. The message space X = M × I = ∪n(Mn× In) where M is the payload
space and I is the index space, with both Mn and In equals to the set {0, 1}n. For k ∈ K and
x = (m, ind) ∈ M , we have ABECircuit(C, (m, ind)) = m if C(ind) = 1 or ⊥ otherwise. Note
that here we assume that instead the circuits have one bit output. Note that this also implicitly
defines the output space Σ in the obvious way. Analogously we define ABENC1 in the obvious
way setting for any n ∈ N the key space Kn equals to the set of all circuits in NC1 with n input
and output wires.

Definition 2.9 [Functional Encryption Scheme for Circuit] A functional encryption scheme for
the Circuit functionality defined over (Kn,Mn) is a tuple (Setup,KeyGen,Enc,Dec) of 4 algo-
rithms with the following syntax:

Setup(1λ, 1n): on input the security parameter λ and the length n of the Boolean input sup-
ported by the scheme, outputs public and master secret keys (Pk,Msk);

KeyGen(Msk, k): on input a master secret key Msk and n-input Boolean circuit C ∈ Kn, outputs
token TokC ;

Enc(Pk,m): on input public key Pk and n-bit Boolean string m ∈Mn, outputs ciphertext Ct;

Dec(Pk, Tokk,Ct): outputs a string y.

Correctness. We require that for all n for all C ∈ Kn and m ∈ Mn, and for all (Pk,Msk)←
Setup(1λ, 1n), TokC ← KeyGen(Msk, C) and Ct← Enc(Pk, x), then

Dec(Pk, TokC ,Ct) = Circuit(C, x) = C(x)

with probability 1− negl(λ) for some negligible function negl(·).
The above definition of a FE for Circuit extends easily to other functionalities. Thus, in

general we speak about of a FE for functionality F (e.g., NC1 circuits, or an arbitrary class of
circuits C, etc.) with the obvious meaning. Of particular interest is the following special type
of FE.

Definition 2.10 [Attribute-based Encryption][GPSW06] We denote by Attribute-based En-
cryption (ABE, in short) for Circuit (resp. for NC1) a FE for functionality ABECircuit (resp.
functionality ABENC1). More generally, we speak about an ABE for functionality F (see Boneh
et al. [BSW11] for formal definitions) with the obvious meaning.

In Appendix A we recall the standard definition of indistinguishability-security for functional
encryption.

2.4 Function Private Functional Encryption

A Function Private Functional Encryption (FPFE, in short) scheme is a FE scheme satisfying
IND-Security and the following additional function privacy security notion.

Indistinguishability-based function privacy security. The indistinguishability-based func-
tion privacy notion of security for a functional encryption scheme
FPFE = (Setup,KeyGen,Enc,Eval) for a class of circuits C = {Cλ}λ is formalized by means of the
following game INDFPFPFE

A between an adversary A = (A0,A1) and a challenger C. Below, we
present the definition for only one function; it is easy to see the definition extends naturally for
multiple functions (see remark 2.13).
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INDFPFPFE
A (1λ)

1. C generates (Mpk,Msk)← Setup(1λ) and runs A0 on input Mpk;

2. A0 submits queries for Boolean circuits Ci ∈ Cλ for i = 1, . . . , q1 and, for each such
query, C computes Toki = KeyGen(Msk, Ci) and sends it to A0.

When A0 stops, it outputs two challenge distributions D0,λ, D1,λ over Cλ and its
internal state st.

3. C picks b ∈ {0, 1} at random, picks a circuit C according to distribution Db,λ, and
computes the challenge token Tok = KeyGen(Msk, C) and sends Tok to A1 that
resumes its computation from state st.

4. A1 submits queries for circuits Ci ∈ Cλ for i = q1 + 1, . . . , q and, for each such
query, C computes Toki = KeyGen(Msk, Ci) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′ then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFPFE,INDFP
A (1λ) = |Prob[INDFPFPFE

A (1λ) = 1]− 1/2|.

Note that we did not put any non-trivial constraint on the above game. In fact, any PPT
could trivially win in it. As in Agrawal et al. we need to restrict the class of adversaries to what
are called legitimate function privacy adversaries.

Definition 2.11 A non-uniform family of PPT algorithms A = {Aλ}λ∈N is called a legitimate
function privacy adversary against a FPFE scheme for a class of circuits C = {Cλ}λ∈N if all pairs
of distributions D0,λ and D1,λ output by Aλ in the above game for security parameter λ are such

that D0
4
= {D0,λ}λ∈N and D1

4
= {D1,λ}λ∈N are of a pair of ensembles of efficiently samplable

feasible entropy distributions5 over a circuit class C′ = {C′λ}λ∈N where for any λ ∈ N, C′λ contains
circuits of the same size.

Definition 2.12 We say that FPFE is indistinguishability function private secure (INDFP-Secure,
for short) if every legitimate function privacy adversary A = {Aλ}λ∈N have at most negligible
advantage in the above game.6

Remark 2.13 We defined the security for a challenge consisting of only one function. It is easy
to observe that this one-function definition implies a corresponding many-functions definition.
Nevertheless, note that this holds because we assume that the distributions output by the
adversary be efficiently samplable, that is a natural requirement in this context. For a different
definition where the adversary is allowed to output general distributions, this implication could
not hold.

5Note that the adversary is randomized so that the distributions could depend on its randomness. Thus, the
interpretation here is that all pairs of sequences (D0,λ, D1,λ)λ∈N, formed putting for any λ some pair of distribu-
tions D0,λ and D1,λ that it is a possible (i.e., such that the adversary outputs them with non-zero probability)
output of the adversary in the experiment for parameter λ, is a pair of ensembles of efficiently samplable feasible
entropy distributions. Note that Agrawal et al. do not explicitly expand on this detail. Same considerations hold
for later definition of FAS legitimate adversaries.

6Hereafter, we say that a family of algorithms B = {Bn}n∈N has negligible advantage in a experiment if there
exists a negligible function negl(·) such that for all n ∈ N the advantage of Bn in the experiment is at most negl(n).
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2.5 Functional Encryption for Randomized Functionalities

Goyal et al. [GJKS15] introduced the concept of FE for randomized functionalities. Like in
Komargodski et al. [KSY15] in this paper we do not take in account the problem of dishonest
decryptors, as this problem does not arise only in the context of randomized functionalities, and
thus we think it goes beyond the scope of our paper. A FE for randomized functionalities (RFE,
in short) has the same syntax of a FE scheme for deterministic functionalities, with the obvious
change that the functionality takes two inputs, the message and the randomness. We defer to the
aforementioned papers for details. In this paper we will focus on the functionality of randomized
circuits, both randomized NC1 circuits and general randomized poly-size circuits, defined in an
anologous way to the deterministic case except that such circuits also take a random string as
second input. Whereas the syntax of a RFE is almost identical to the deterministic setting, the
correctness and the security instead are changed.

Definition 2.14 [Correctness of RFE] A RFE scheme RFE = (Setup,KeyGen,Enc,Eval) for
a randomized class of circuits C = {Cλ}λ∈N is correct if for every sufficiently large λ ∈ N,
for every polynomial n = n(λ), for every sequence of n functions C1, . . . , Cn ∈ Cλ, and every
sequence of nmessagesm1, . . . ,mn ∈ {0, 1}n, the following two distributions are computationally
indistinguishable:

1. Real: {RFE.Eval(Cti, Tokj)}i∈[n],j∈[n], where:

• (Mpk,Msk)← RFE.Setup(1λ):

• Cti ← RFE.Enc(Mpk, xi) for i ∈ [n];

• Tokj ← RFE.KeyGen(Msk, Cj) for j ∈ [n];

2. Ideal: {Cj(xi; ri,j)}, where ri,j ← {0, 1}λ.

In the above lines, the values ri,j ’s represent the randomness used by the circuits. For ease
of notation, we assume that such random strings have length λ though it is easy to generalize
it to the cost of introducing a slightly more complicated notation.

Indistinguishability-based security for RFE. As our formalization of security we choose
what Goyal et al. call ”security against key queries after public-key” except that, as said before,
we do not take in account the problem of dishonest decryptors. The indistinguishability-based
security for a RFE scheme
RFE = (Setup,KeyGen,Enc,Eval) for a class of circuits C = {Cλ}λ is formalized by means of
the following game INDRFERFE

A between an adversary A = (A1,A2) and a challenger C. Below,
we present the definition for only one message; it is easy to see the definition can be extended
naturally for multiple messages and, as observed by Goyal et al., a RFE scheme satisfying the
definition with single message also satisfies the definition with multiple messages.
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INDRFEFE
A (1λ)

1. (x0, x1, st)← A1(1
λ);

2. (Mpk,Msk)← RFE.Setup(1λ):

3. b← {0, 1};

4. Ct? ← Enc(Mpk, xb);

5. b′ ← ARFE.KeyGen(Msk,·)
2 (Mpk,Ct?, st);

6. Output: if x0 and x0, x1 ∈ {0, 1}λ, the queries are for circuits in Cn and b = b′

then output 1 else output 0.

A generic PPT adversary could easily win in the above game. Thus, as in Goyal et al. we need
to put a restriction on the adversary to make the security requirement non-trivial.

Definition 2.15 We say that an algorithm A is a legitimate RFE adversary if in the above
experiment the following holds. Let Mpkλ be any public-key given output in the experiment for
parameter λ with non-zero probability, let stλ be any state output by A1 during the experiment
for parameter λ with non-zero probability, and let Sλ = (Ci)i∈[q] denote any list of q(λ) oracle
queries consisting of randomized circuits made, with non-zero probability, by A2 to its oracle
during the experiment for parameter λ on input Mpkλ and stλ. Then, the two ensembles of
distributions (Mpkλ, stλ, (Ci(x0; r))i∈Sλ)λ∈N and (Mpkλ, stλ, (Ci(x1; r))i∈Sλ)λ∈N are statistically
indistinguishable (i.e., there exists a negligible function negl(·) such that for any randomized
function f the probability that f can distinguish them is negl(λ) where the probability is taken
over the choices of r ∈ {0, 1}λ).

The advantage of adversary A in the above game is defined as

AdvRFE,INDRFE
A (1λ) = |Prob[INDRFERFE

A (1λ) = 1]− 1/2|.

Definition 2.16 We say that RFE is indistinguishability secure (INDRFE-Secure, for short) if all
non-uniform families of PPT legitimate RFE adversaries A = {Aλ}λ∈N have at most negligible
advantage in the above game.

2.6 Functional Anonymous Signature

Definition 2.17 [Functional Anonymous Signature Schemes] A functional anonymous signa-
ture (FAS, in short) scheme for a class of circuits C = {Cn}n∈N, where for each n ∈ N and
any C ∈ Cn has n input wires and one output wire, is a tuple of PPT algorithms FAS =
(FAS.Setup,FAS.Sign,FAS.Verify) with the following syntax:

1. FAS.Setup(1λ) outputs a pair consisting of a verification and signing key (vk, sk) for security
parameter λ.

2. FAS.Sign(sk,C), on input a signing key sk for security parameter λ, and a Boolean circuit
C ∈ Cλ outputs a signature σ of it.

3. FAS.Verify(vk, σ,m), on input verification key vk for security parameter λ, a signature σ
for some (possibly unknown) circuit C ∈ Cλ, and message m ∈ {0, 1}λ outputs 1 or ⊥;
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We require the following correctness requirement on a FAS:

• (Correctness): For all security parameter λ, all circuits C ∈ Cn, all m ∈ {0, 1}λ such that
C(m) = 1, there exists a negligible probability negl(·) sucht that it holds:

Pr
[
Verify(vk,m, σ) = 1 : (vk, sk)← KeyGen(1λ), σ ← Sign(sk,C)

]
≤ 1− negl(λ).

For the security, we require the two following security properties:

• (Functional Unforgeability): Our notion of unforgeability, that suits for most applicatios
of FAS, does not consider as valid the forgery of a circuit more restricted than a circuit
for which a signature was seen. Formally, we require that any non-uniform family of PPT
algorithms A wins in the following game with probability negligible in λ:

1. (vk, sk)← FAS.Setup(1λ);

2. (C, σ)← AFAS.Sign(sk,·)(vk);

3. Winning Condition: A wins iff C ∈ Cλ and there exists m ∈ {0, 1}λ such that
FAS.Verify(vk,m, σ) = 1 and for any circuit C ′ for which A asked an oracle query
it holds that C ′(m) = 0.

Later, we will show how to make a FAS unforgeable according to the classical notion just
adding a traditional signature scheme on the top.

• (Anonymity): Consider the following game between a challenger and an adversary A.

1. (vk, sk)← FAS.Setup(1λ);

2. (D0, D1, st)← AFAS.Sign(sk,·)(vk);

3. b← {0, 1};

4. C ← Db:

5. σ ← FAS.Sign(sk,C);

6. b′ = A(st, σ);

7. Output: A wins iff b′ = b.

A non-uniform family of PPT algorithmsA = {Aλ}λ∈N is called a legitimate FAS adversary
against a FAS scheme for a class of Boolean circuits C = {Cλ}λ∈N if all pairs of distributions
D0,λ and D1,λ output by A in the above game for security parameter λ are such that

D0
4
= {D0,λ}λ∈N and D1

4
= {D1,λ}λ∈N are a pair of ensembles of efficiently samplable

feasible entropy distributions over a circuit class C′ = {C′λ}λ∈N ⊂ C where for any λ ∈ N, C′λ
contains circuits of the same size. We require that all legitimate FAS adversaries can win
in the above game with probability at most negligible in λ.
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3 Construction of FPFE from quasi-siO

Definition 3.1 [quasi-siO-Based Construction]
Let qsiO be a quasi-siO and FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Eval) be a FE scheme, both
for a class of circuits C.

We define a FPFE functional encryption scheme
FPFE[qsiO,FE] = (Setup,KeyGen,Enc,Eval) for the class of circuits C as follows.

• Setup(1λ): output the public-key Mpk and master secret-key Msk computed, respectively,
as the public-key and the master secret-key output by FE.Setup(1λ).

• Enc(Mpk,m): output Ct← FE.Enc(Mpk,m).

• KeyGen(Msk, C: output the token FE.KeyGen(Msk, qsiO(C)).

• Eval(Mpk,Ct, Tok): output FE.Eval(Mpk,Ct, Tok).

Correctness. It is easy to see that the scheme satisfies correctness assuming the correctness
of qsiO and FE.

IND-Security. It is trivial to observe that the following theorem holds.

Theorem 3.2 If FE is IND-Secure then FPFE[qsiO,FE] is IND-Secure.

INDFP-Security.

Theorem 3.3 If qsiO is a quasi-siO then FPFE[qsiO,FE] is INDFP-Secure.

Proof: Suppose that there exists a legitimate function privacy adversaries A = {An}n∈N break-
ing the INDFP-Security of FPFE[qsiO,FE]. Specifically, suppose that there exists a non-negligible
function p(·) such that for any n ∈ N, An wins in the INDFP-Security parameterized by n with
advantage ≥ p(n). Thus, by an averaging argument, for any n ∈ N there exist two distributions
D0,n and D1,n and random strings r1, r2 ∈ {0, 1}? (to be defined later) such that in the the
security experiment (for parameter n) executed with random strings r1, r2, An outputs such
distributions as challenge distributions with non-zero probability and under the occurrence of
such event An has advantage p(n). Precisely, r1 is used to compute the public-key and the
master secret-key with which the token queries can be answered (w.l.o.g., we can assume that
KeyGen is deterministic) and r2 is used to run the adversary until the challenge query (that is,
after the challenge query other randomness will be used and r1 and r2 determine the behavior
of An until that point but not after.7). Then, from the fact that A is a legitimate function
privacy adversary it follows that the ensembles D0 = {D0,n}n∈N and D1 = {D1,n}n∈N are a pair
of ensembles of feasible entropy distributions and thus it is straightforward to construct a family
of non-uniform distinguishers D = {Dn} breaking the security of qsiO as follows. Specifically,
Dn has embedded the random strings r1, r2 (that have size polynomial in n) and takes as input
the obfuscated circuit C ′ that is a computed as qsiO(C) where the circuit C is drawn from
either D0,n or D1,n. Dn runs the setup of FE with security parameter n and randomness r1 to

7Recall that there are two ways to define probabilistic algorithms. One is to feed them with a random string,
and one is to give them access to an oracle that returns random bits. Here we can adopt the latter convention
and in this case we mean that the oracle uses the bits of r2 to answer the queries until the challenge phase, and
after that the oracle returns uniformly and independently chosen bits. Furthermore, note that r2 is not used to
answer the challenge query: indeed, as it will be specified later, the randomness used to answer it is chosen by
the challenger of quasi-siO and thus it will be not known to the distinguisher.
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get the public-key Mpk and master secret-key Msk of FE. Then, Dn runs An with randomness
r2 on input Mpk and answers the An’s queries using Msk. Then, by construction of r1 and r2,
An outputs as challenge distributions D0,n and D1,n. Dn answers the challenge query returning
to An the token FE.KeyGen(Msk, C ′) and then continues the execution of An as before. At the
end Dn outputs what An outputs. It is easy to see that the advantage of Dn in distinguish-
ing whether the input was an obfuscation of a circuit drawn from D0,n or D1,n is p(n) (note
here that the probability is also taken over the choices of the randomness used to compute C ′

that is not known to Dn). Then, we conclude that D along with the ensembles of distributions
D0 = {D0,n}n∈N and D1 = {D1,n}n∈N contradicts the security of qsiO.

Extensions to multi-inputs FE with function privacy. A nice property enjoyed by our
construction is that it easily extends to the multi-inputs setting [GGG+14]. That is, if in the
above construction we replace FE with a multi-inputs FE, the resulting scheme is a function
private multi-inputs functional encryption scheme (where the security is naturally generalized
to the multi-inputs setting).

4 Construction of FAS from FPABE

Overview. The construction extends the Naor’s transformation from IBE to (traditional)
signature schemes. Specifically a token for a circuit C computed with the ABE system acts as
a signature for C. The security of the ABE system guarantees the unforgeability as required
by FAS. In fact, no adversary, given a token for circuit C can produce another token, and
thus a valid forgery, for another circuit that would enable to distinguish the encryption of two
ciphertexts computed with an attribute x such that C(x) = 0. If in addition the ABE system
satisfies function privacy, the resulting FAS scheme is anonymous as well.

Definition 4.1 [FPFE-Based Construction] Let FPABE = (FPABE.Setup,FPABE.Enc,
FPABE.KeyGen,FPABE.Eval) be a FPABE scheme for the class of Boolean circuits C = {Cn}n∈N.

We define a FAS scheme
FAS[FPABE] = (FAS.Setup,FAS.Sign,FAS.Verify) for C as follows.

• FAS.Setup(1λ): set verification key vk and signing key sk to be respectively the public-key
and the master secret-key output by the setup of FPABE .

• FAS.Sign(sk,C): output σ ← FPABE.KeyGen(sk,C).

• FAS.Verify(vk, σ, x): choose random value r ← {0, 1}λ, encrypt Ct← FPABE.Enc(vk, (r, x))
and compute r′ ← FPABE.Eval(vk,Ct, σ). If r′ = r then output 1 otherwise output ⊥.

Correctness. It is easy to see that the scheme satisfies correctness assuming the correctness
of FPABE.

Functionally Unforgeability. It is trivial to observe that FAS[FPABE] is functionally un-
forgeable. In fact an adversary outputting a forgery that satisfies the winning condition of
functional unforgeability, is a valid adversary against the security of FPABE and thus as in
the Naor’s transformation the forgery can be used to break the security of FPABE. Thus, the
following theorem holds.

Theorem 4.2 If FPABE is IND-Secure then FAS[FPABE] is unforgeable.

Anonymity.
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Theorem 4.3 If FPABE is INDFP-Secure then FAS[FPABE] is anonymous.

Proof Sketch. The proof is almost identical to that of theorem 3.3, thus we omit full
details. Suppose that there exists a family of non-uniform PPT adversaries A = {An}n∈N
breaking the anonymity of FAS[FPABE]. Then, it is easy to construct a family of non-uniform
PPT adversaries B = {Bn}n∈N breaking the security of FPABE. Being A a legitimate FAS
adversary, we can construct Bn identical to the distinguisher Dn in the proof of theorem 3.3
except in the way that Bn has to simulates the view to A and construct the challenge. This is
also straightforward. Then, we conclude that B contradicts the security of qsiO. 2

Adding unforgeability to FAS. It is easy to make the above scheme even secure according to
the traditional notion of unforgeability. It is sufficient to use a traditional unforgeable signature
scheme and signing the token with such scheme. The resulting scheme will be unforgeable
(according to the traditional notion) as well.

5 Construction of RFE from FPFE

Definition 5.1 [FPFE-Based Construction]
Let F = (F.Key,F.Puncture,F.Eval) be a puncturable pseudorandom function and FPFE =
(FPFE.Setup,FPFE.Enc,FPFE.KeyGen,FPFE.Eval) be a FPFE scheme, both for a sufficiently
expressive class of (deterministic) Boolean circuits C′ to be specified later in Remark 5.10).

We define a RFE functional encryption scheme
RFE[F,FPFE] = (Setup,KeyGen,Enc,Eval) for the class of randomized Boolean circuits C =
{Cn}n∈N induced by C′8 as follows.

• Setup(1λ): generate the public-key Mpk and the master secret-key Msk computed, respec-
tively, as the public-key and the master secret-key output by FPFE.Setup(1λ).

• Enc(Mpk,m): output Ct← FPFE.Enc(Mpk,m).

• KeyGen(Msk, C): on input a master secret-key Msk for security parameter λ, a Boolean
randomized circuit C ∈ Cλ with input of length n and randomness of length n, compute
k ← F.Key(1λ) and output the token FPFE.KeyGen(Msk, C[k])) for the following determin-
istic Boolean circuit C[k] ∈ C′2λ.

Circuit C[k](m)
1. Pad with circuits U [C, k,m0,m1, s0, s1] and U [C, k({m0,m1}),m0,m1, s0, s1];
2. return C(m||F.Eval(k,m)).

• Eval(Mpk,Ct, Tok): output FPFE.Eval(Mpk,Ct, Tok).

Correctness. It is easy to see that the scheme satisfies correctness assuming the correctness
of FPFE and the pseudorandomness of F.

8Here, we mean that for any n ∈ N and for any randomized circuit C ∈ Cn with inputs of length n and
randomness of length n we define C to be the corresponding deterministic circuit C′ ∈ C′2n with inputs of length
2n defined in the obvious way (i.e., defined so that the two circuits when viewed as circuits with inputs of length
2n have the same description).
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Security reduction. We reduce the security of our RFE scheme to that of the underlying
primitives (FPFE and puncturable pseudorandom functions) via a series of hybrid experiments
against a PPT legitimate RFE adversary A attacking the INDRFE-Security of RFE[F,FPFE]
(here, for sake of simplicity we assume uniform adversaries). Recall that in the INDRFE-Security
experiment the adversary A selects as challenges a pair of messages (m0,m1).

• H0. This corresponds to the INDRFE-Security game in which the challenge ciphertext
encrypts the message m0.

• H1. This experiment is identical to H0 except that any token for randomized circuit C is
computed as FPFE.KeyGen(Msk, U [C, k,m0,m1, s0, s1]) where sb = F.Eval(k,mb) for b ∈
{0, 1} and U [C, k,m0,m1, s0, s1] is the following deterministic circuit:

Circuit U [C, k,m0,m1, s0, s1](m)
1. Pad with circuits C[k] and U [C, k({m0,m1}),m0,m1, s0, s1];
2. if m = m0 return C(m||s0);
2. else if m = m1 return C(m||s1);
3. otherwise return C(m||F.Eval(k,m)).

Claim 5.2 Indistinguishability of H1 from H0. First, we assume that the adversary asks
only one token query. The general case follows from a standard hybrid argument. Note
that the two circuits C[k] and U [C, k,m0,m1, s0, s1] compute the same function. In fact,
on input m = mb for b ∈ {0, 1} the first circuit computes C(mb||F.Eval(k,mb)) and the
second circuit computes C(mb||sb) that, by construction of sb, equals C(mb||F.Eval(k,mb)).
For any other input m 6= m0,m1, by construction, the two circuits output the same value
as well. Then, consider the two ensembles (parameterized by the security parameter λ) of
distributions D0 and D1 defined so to output with probability 1, respectively, the circuit
C[k] and the circuit U [C, k,m0,m1, s0, s1]. It is straightforward to notice that such pair
of ensembles of distributions is feasible, thus the claim follows from the INDFP-Security of
FPFE.

• H2. This experiment is identical to H1 except that any token for randomized circuit C is
computed as FPFE.KeyGen(Msk, U [C, k({m0,m1}),m0,m1, s0, s1]) where sb = F.Eval(k,mb)
for b ∈ {0, 1} as before but k({m0,m1}) = F.Puncture(k, {m0,m1}) and U [C, k({m0,m1},m0,m1, s0, s1]
is identical to U [C, k,m0,m1, s0, s1] except for the constant k({m0,m1} instead of k.

Claim 5.3 Indistinguishability of H2 from H1. First, we assume that the adversary asks
only one token query. The general case follows from a standard hybrid argument. Note
that the two circuits U [C, k,m0,m1, s0, s1] and U [C, k({m0,m1}),m0,m1, s0, s1] differ only
for the constant values k and k({m0,m1}). By the fact that F preserves the functionality
at points different from the punctured points, and by construction of the two circuits and
of s0 and s1, the two circuits compute the same function. Thus, as argued above, the claim
follows from the INDFP-Security of FPFE.

• H3. This experiment is identical to H2 except that any token for randomized circuit C
is computed as FPFE.KeyGen(Msk, U [C, k({m0,m1}),m0,m1, s0, s1]) where s0 and s1 are
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randomly and independently chosen in {0, 1}m(λ), and k = F.Key(1λ) and k({m0,m1}) =
F.Puncture(k, {m0,m1}) are as in the previous experiments.

Claim 5.4 Indistinguishability of H3 from H2. First, we assume that the adversary asks
only one token query. The general case follows from a standard hybrid argument. The
indistinguishability of the two experiments follows from the pseudorandomness of F at the
punctured points m0 and m1.

• H4. This experiment is identical to H3 except that the challenge ciphertext is computed
as encryption of m1.

Claim 5.5 Indistinguishability of H4 from H3. First, we notice what follows. Any token
for randomized circuit C for which A asked a query is computed as
FPFE.KeyGen(Msk, U [C, k({m0,m1}),m0,m1, s0, s1]) where s0 and s1 are randomly and
independently chosen in {0, 1}m(λ) and k({m0,m1}) = F.Puncture(k, {m0,m1}) (for k com-

puted as k ← F.Key(1λ)). By construction we have U [C, k({m0,m1}),m0,m1, s0, s1](m0)
4
=

C(m0; s0) and U [C, k({m0,m1}),m0,m1, s](m1)
4
= C(m1; s1). By the requirement that A

is a legitimate RFE adversary, it follows that A only asks queries for circuits C such that
C(m0; s) is statistically indistinguishable from C(m1; s) where the probability is taken
over the choices of s and thus the above equations imply that with all except negligible
probability over the choices of s0 and s1 in {0, 1}m(λ), C(m0; s0) = C(m1; s1). Therefore,
the indistinguishability of the two experiments follows from the IND-Security of FPFE.

• H5. This experiment is identical to H4 except that any token for randomized circuit C is
computed as FPFE.KeyGen(Msk, U [C, k({m0,m1}),m0,m1, s0, s1]) where sb for b ∈ {0, 1} is
computed as F.Eval(k,mb), and k = F.Key(1λ) and k({m0,m1}) = F.Puncture(k, {m0,m1})
are as in the previous experiments.

Claim 5.6 Indistinguishability of H5 from H4. The indistinguishability of the two exper-
iments is symmetrical to that of H3 from H2.

• H6. This experiment is identical to H5 except that any token for randomized circuit C is
computed as FPFE.KeyGen(Msk, U [C, k,m0,m1, s0, s1]) where sb for b ∈ {0, 1} is computed
as F.Eval(k,mb) and k = F.Key(1λ) as in the previous experiments.

Claim 5.7 Indistinguishability of H6 from H5. The indistinguishability of the two exper-
iments is symmetrical to that of H2 from H1.

• H7. This experiment is identical to H6 except that any token for randomized circuit C is
computed as FPFE.KeyGen(Msk, C[k]) where k = F.Key(1λ) as in the previous experiments.

Claim 5.8 Indistinguishability of H7 from H6. The indistinguishability of the two exper-
iments is symmetrical to that of H1 from H0.

Note that experiments H0 and H7 correspond to the experiments of INDRFE-Security where the
challenge encrypts respectively m0 and m1.

Thus, the indistinguishability of the above hybrid experiments implies the following theorem
(see also remark 5.10).
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Theorem 5.9 If FPFE is IND-Secure and INDFP-Secure, and F is a puncturable pseudorandom
function, then RFE[F,FPFE] is INDRFE-Secure.

Remark 5.10 Note that in order to obtain theorem 5.9, the minimal class of circuits C′ must be
sufficiently expressive to contain all circuits that can compute the ”transformed” circuits used
in the security proof and that can compute F. In particular, assuming that F can be computed
in NC1 we obtain an RFE scheme for NC1 from a FPFE scheme for NC1.

Extensions to multi-inputs RFE and RFE with function privacy A nice property
enjoyed by our construction is that it easily extends to the multi-inputs setting [GGG+14].
That is, if in the above construction we replace FPFE with a multi-inputs FPFE, the resulting
scheme is a multi-inputs functional encryption scheme for randomized functionalities (where the
security is naturally generalized to the multi-inputs setting). Moreover, the above construction
preserves function privacy, i.e., RFE[F,FPFE] is function private as well (FPRFE), under the
standard notion of INDFP-Security for deterministic circuits, i.e., the adversary against function
privacy can only ask distributions of deterministic circuits. It seems that our construction
could be also proven to satisfy a form of function privacy extended in a natural way to support
randomized circuits but we did not investigate the details.

Precisely, we have the following theorem.

Theorem 5.11 Assuming the existence of quasi-siO, there exists a selectively indistinguishabil-
ity secure multi-inputs FE with function privacy (as said before, here we refer to the standard
notion of function privacy for deterministic circuits in which the adversary against function
privacy can only submit a pair of distributions over deterministic circuits) for randomized func-
tionalities. Furthermore, the restriction of selective security can be removed assuming in addition
an adaptively indistinguishability secure MIFE.

Proof: This follows from the fact that quasi-siO implies iO that in turn implies selectively in-
distinguishability secure multi-inputs FE via [GGG+14]. Then, multi-inputs FE combined with
quasi-siO implies multi-inputs FE with function privacy that in turn implies multi-inputs FE
with function privacy for randomized functionalities. Assuming in addition adaptively indistin-
guishability secure MIFE it is easy to verify the second part of the theorem.

6 Relation between Primitives

It is easy to see that quasi-siO implies iO that in turn is known to imply (along with one-way
functions) FE [Wat14]. Thus, quasi-siO implies FPFE. Moreover, FAS can be used to construct
a quasi-siO as follows. An obfuscation of circuit C will consist of a signature for C and the
verification key of the FAS scheme, and to evaluate the obfuscated circuit on an input x, just run
the verification algorithm of FAS with input the verification key, the signature and the message
m. From the anonymity of FAS, such obfuscator is easily seen to be a quasi-siO. Note that this
implication does not assume FAS with any kind of unforgeability. Since FPFE implies FPABE,
that in turn implies FAS, we have that FAS, FPFE and quasi-siO are equivalent primitives (i.e.,
they imply each other). (Furthermore, these implication would also hold assuming selectively
secure variants of FPFE, FPABE and FAS). The equivalence also extends to FPRFE and SPP.
One of the key points highlighted by our results is that FPABE implies quasi-siO and thus iO
that in turn (assuming in addition one-way functions) implies FE [Wat14], a notable fact that
sheds light on the importance and power of function privacy for FE. Indeed, even though ABE is
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not known to imply FE, our results show that the additional property of function privacy suffices
for such scope. In Figure 1 we present relations among the primitives studied or discussed in
this paper. Note that we are not aware of any work in the literature that explicitly claims a
construction of MIFE with adaptive indistinguishable-security, so in the figure we do not put
any implication from some primitive to MIFE.
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A Security of FE

The indistinguishability-based notion of security for functional encryption scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,M) is formalized by means
of the following game INDFE

A between an adversary A = (A0,A1) and a challenger C. Below, we
present the definition for only one message; it is easy to see the definition extends naturally for
multiple messages.

INDFE
A (1λ)

1. C generates (Pk,Msk)← Setup(1λ) and runs A0 on input Pk;

2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such query, C
computes Toki = KeyGen(Msk, ki) and sends it to A0.

When A0 stops, it outputs two challenge plaintexts m0,m1 ∈M satisfying |m0| =
|m1| and its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct = Enc(Pk,mb)
and sends Ct to A1 that resumes its computation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such query,
C computes Toki = KeyGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.

6. Output: if b = b′, m0 and m1 are of the same length, and F (ki,m0) = F (ki,m1)
for i = 1 . . . , q, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,INDA (1λ) = |Prob[INDFE
A (1λ) = 1]− 1/2|.

Definition A.1 We say that FE is indistinguishably secure (IND-Ssecure, for short) if all non-
uniform families of PPT adversaries A = {Aλ}λ∈N have at most negligible advantage in the
above game.
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