
Authentication Key Recovery on
Galois/Counter Mode (GCM)

John Mattsson and Magnus Westerlund

Ericsson Research, Stockholm, Sweden
{firstname.lastname}@ericsson.com

Abstract. GCM is used in a vast amount of security protocols and is
quickly becoming the de facto mode of operation for block ciphers due
to its exceptional performance. In this paper we analyze the NIST stan-
dardized version (SP 800-38D) of GCM, and in particular the use of short
tag lengths. We show that feedback of successful or unsuccessful forgery
attempt is almost always possible, contradicting the NIST assumptions
for short tags. We also provide a complexity estimation of Ferguson’s
authentication key recovery method on short tags, and suggest several
novel improvements to Fergusons’s attacks that significantly reduce the
security level for short tags. We show that for many truncated tag sizes;
the security levels are far below, not only the current NIST requirement
of 112-bit security, but also the old NIST requirement of 80-bit security.
We therefore strongly recommend NIST to revise SP 800-38D.

Keywords. Secret-key Cryptography, Message Authentication Codes,
Block Ciphers, Cryptanalysis, Galois/Counter Mode, GCM, Authentica-
tion Key Recovery, AES-GCM, Suite B, IPsec, ESP, SRTP, Re-forgery.

1 Introduction

Galois/Counter Mode (GCM) [1] is quickly becoming the de facto mode of op-
eration for block ciphers. GCM is included in the NSA Suite B set of cryp-
tographic algorithms [2], and AES-GCM is the benchmark algorithm for the
AEAD competition CAESAR [3]. Together with Galois Message Authentication
Code (GMAC), GCM is used in a vast amount of security protocols:

– Many protocols such as IPsec [4], TLS [5], SSH [6], JOSE [7], 802.1AE (MAC-
sec) [8], 802.11ad (WiGig) [9], 802.11ac (Wi-Fi) [10], P1619.1 (data storage)
[11], Fibre Channel [12], and SRTP [13, 14]1 only allow 128-bit tags.

– The exceptions are IPsec [15] that allows 64, 96, and 128 bit tags, CMS [16]
that allows 96, 104, 112, 120, and 128 bit tags, NFC-SEC [17, 18] that only
allows 96 bit tags, and QUIC [19] that only allows 96 bit tags.

1 The Internet Drafts specifying the use of GCM in SRTP did originally allow also 64-
bit and 96-bit tags, but this was removed after the publication of this paper on the
Cryptology ePrint Archive and the discussion of this paper on the IETF AVTCORE
mailing list.



GCM is also used in several cryptography APIs:

– W3C Web Cryptography API [20] and Oracle Java SE [21] allow 32, 64, 96,
104, 112, 120, and 128 bit tags. PKCS #11 [22] allows tags of any length
between 0 and 128 bits, and for Microsoft Cryptography API [23] we could
not find any information on allowed tag lengths.

The popularity is very well deserved, GCM has exceptional performance and
proven security, it is online and fully parallelizable, and it is efficient in both
hardware and software, especially on new processors with dedicated AES-GCM
instructions. Weaknesses of the GCM decryption function were described by
Ferguson [24], which showed that the forgery probability is not 2−t, and that
feedback on successful forgeries allows an attacker to recover the authentication
key H. As a note, the fact that the substitution probability decreases as message
length increases was already known [25]. The results in this paper rely heavily
on Ferguson’s attack [24] and do not violate the provable security given in in the
original version of GCM [24]. The version standardized by NIST [1] makes nor-
mative changes to short tag lengths (32 and 64 bits) aimed to improve security,
but NIST does not provide any estimated security levels given by these changes.
The complexity of Ferguson’s authentication key recovery method for the NIST
approved short tags has not previously been analyzed.

Our results:

– In Sect. 3.1 we describe how to extend Fergusons’s method for message
forgery and authentication key recovery method [24] to use associated data,
which is needed to apply the attack to IPv6 Jumbograms. We then describe
an improvement that reduces the effective tag lengths for re-forgeries, derive
a formula for the effective tag lengths, and use this improved method to
calculate the probabilities for multiple message forgeries.

– In Sect. 3.2 we use these probabilities to calculate the complexity for authen-
tication key recovery using Ferguson’s method for the NIST approved short
tag lengths (32 and 64 bits) showing that NIST seems to have chosen the
parameters for 64 bit tags to get 80-bit security against Ferguson’s attack.

– In Sect. 3.3 we suggest several novel improvements to Fergusons’s method
that significantly reduces the security levels for short tags, in one case the
already low complexity is reduced from 281.0 to 270.0. We show that inde-
pendently of the encryption key size, the security levels (i.e. the effective key
lengths) are only 62–67 bits for 32-bit tags, and 70–75 bits for 64-bit tags.
For these tag sizes, the security levels are far below, not only the current
NIST requirement of 112-bit security, but also the old NIST requirement of
80-bit security. The results are applicable to both GCM and GMAC.

– In Sect 3.4 we show that feedback of successful or unsuccessful forgery at-
tempt is almost always possible, contradicting the NIST assumptions for
short tags. This illustrates that the key recovery attacks are practical and
that the NIST assumption of no feedback is not valid for reasonable proto-
cols and deployments. This is true especially for SRTP, which NIST claims
meet the guidelines for use of short tags.



We strongly recommend NIST to revise SP 800-38D [1] so that the security
levels of all allowed options are clearly stated, that short tags are removed, and
that it is explained why any options offering less than 112-bit security against
online attacks are acceptable.

We do however fully recommend GCM for usage with 128-bit tags, especially
with AES-128. In fact we believe that with its excellent performance and proven
security, it should be the first choice for everybody wanting an AEAD algorithm.

2 Preliminaries

2.1 Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is an Authenticated Encryption with Associated
Data (AEAD) mode of operation for block ciphers with a block size of 128 bits.
It was designed by McGrew and Viega [26, 27] and is standardized in NIST
SP 800-38D [1] and ISO/IEC 19772:2009 [28]. The analysis in this paper is
based on [1]. GCM combines the well-known counter mode of encryption with
the Galois mode of authentication, which is based on universal hashing. The
Galois mode of authentication makes use of the function GHASHH(A,C), which
uses multiplications in GF(2128) that can easily be parallelized. The 128-bit
authentication tag is defined as

Tag = EK(N)⊕GHASHH(A,C) , (1)

where K is the encryption key, N is the nonce, H = EK(0128) is the authen-
tication key (the encryption of 128 zero bits), A is the associated data (to be
authenticated but not encrypted), and C is the ciphertext. The output of the
authenticated decryption function is either the plaintext P or the special error
code FAIL. Explicit weaknesses of the GCM functions have been discussed by
Ferguson [24], Joux [29], Handschuh and Preneel [30], Saarinen [31], Procter and
Cid [32], and Abdelraheem et al. [33]. An extensive evaluation of GCM was done
by Rogaway [34].

Galois Message Authentication Code (GMAC) is an authentication-only vari-
ant of GCM. It can be seen as a special case of GCM where the ciphertext C is
the empty string. We refer to [1] for the full specification of GCM and GMAC.

2.2 Authentication Weaknesses in GCM

During the NIST standardization of AES-GCM, Fergusson [24] demonstrated
through a concrete attack that due to the linear behavior of the GCM authentica-
tion function, the forgery probability is not 2−t , and that feedback on successful
forgeries allows an attacker to recover the authentication key H.

Fergusson considers the case when there is no associated data and the at-
tacker tries to change the ciphertext C without changing the tag. Let Ci be



block i of C, where the blocks are numbered so that C1 encodes the length of
the ciphertext. The tag can now be written as

Tag = EK(N)⊕
∑
i≥1

Ci ·Hi . (2)

The attacker does not change the number of blocks in C and only changes blocks
in C where i is a power two. Let C ′ be the modified ciphertext and define the
error polynomial E as

E =
∑
i≥0

Di ·H2i =
∑
i≥0

(C2i − C ′2i) ·H
2i , (3)

where Di = (C2i−C ′2i). Fergusson shows that the error polynomial E is a linear
function of H and that the attacker can force a number of bits in E to zero. If
the length of C is at least 2l − 1 blocks and not a multiple of 16, the attacker
has 128l free variables and can in the first forgery force e0 = l bits of the error
polynomial E to zero. The effective tag length for the first forgery is therefore
t0 = t− l.

Fergusson then shows that feedback of successful forgery of a message with
effective tag length tn allows recovery of tn additional bits of the authentication
key H. The effective tag length for each succeeding forgery is therefore decreasing
until the attacker has full knowledge of H and can forge all subsequent tags with
probability 1. As the attack is dominated by the complexity of finding the first
forgery, full authentication key recovery requires approximately 2t0 = 2−l · 2t
forgery attempts. As pointed out by McGrew and Viega in [35], Fergusson’s
attack does not break the security guarantees of GCM; it proves that the bounds
in [27] are tight.

2.3 NIST Standardized Version of GCM

The NIST standard SP 800-38D [1] specifies that the 128-bit authentication tag
may be truncated to 96, 104, 112, or 120 bits. For tag lengths of at least 96 bits,
the maximum combined length of A and C is L = 257 blocks and the maximum
number of invocations q of the authenticated decryption function is unlimited.
For certain applications the tag may be truncated to 32 or 64 bits, and for these
tag lengths, L and q are more restricted. In Appendix B of SP 800-38D [1],
NIST summarizes some particulars of the GCM authentication function that
were pointed out by Ferguson [24]:

– For t-bit tags, the forgery probability is not the ideal 2−t but instead 2l ·2−t
where 2l is the length in blocks of the largest message (A and C) processed
by the authenticated encryption function.

– Each successful forgery enables the adversary to recover parts of the authen-
tication key H and increases the probability of subsequent forgeries.

NIST then draws the conclusion that the following additional requirement shall
apply to short tags:



1. There should not be feedback of whether a forgery attempt is successful or
unsuccessful.

2. The maximum combined length L of A and C shall be heavily restricted.

3. The maximum number of invocations q of the authenticated decryption func-
tion shall be restricted.

The details of requirement 2 and 3 are listed in Table 1. Unfortunately, NIST
does not give any motivations for the specific choice of parameters, or for that
matter the security levels they were assumed to give. In Sect. 3.4 we show that
requirement 1 on feedback is not realistic and that feedback is almost always
possible when security protocols like IPsec or SRTP are used. In Sect. 3.3 we
show that with our improvements to Fergusson’s attack, requirement 2 and 3
has smaller effect than expected.

Table 1. NIST requirements on the usage of GCM with short tags.

t	 32	 64	

L	 21	 22	 23	 24	 25	 26	 211	 213	 215	 217	 219	 221	

q	 222	 220	 218	 215	 213	 211	 232	 229	 226	 223	 220	 217	

	

3 Our Results

3.1 Use of Associated Data and Lowered Effective Tag Length

As mentioned above, Fergusson [24] demonstrated through a concrete attack
that due to the linear behavior of the GCM authentication function, the forgery
probability for t-bit tags is not 2−t. The tag and message lengths must therefore
be chosen so that the forgery probability L · 2−t is acceptable. We do not find
this overly problematic and our view is that complexity is a better and more
natural measure of forgery resistance. For an ideal MAC, the data complexity
to perform a single forgery is 20 · 2t = 2t. For GCM, the data complexity to
perform a single forgery is 2l · 2t−l = 2t. The fact that each successful forgery
enables the adversary to recover parts of the authentication key H and increases
the probability of subsequent forgeries is more problematic.

Reading [24], it is not trivial to understand or calculate the effective tag
lengths for re-forgeries. In this section we extend Fergusson’s method to use
associated data in addition to ciphertext. This extension is needed to apply
Ferguson’s attack to IPv6 Jumbograms. We then suggest an improvement to
Ferguson’s method, derive a formula for the effective tag lengths, and apply
this formula to the NIST approved tag and message lengths. These effective tag
lengths are then used in Sect. 3.2 to evaluate the data complexity of Ferguson’s
method for authentication key recovery.



Extension to use associated data. The attacker tries to change the associ-
ated data A and the ciphertext C without changing the tag. The attacker does
not change the number of blocks in A and C. Let A′ be the modified associated
data, let C ′ be the modified ciphertext, and define B and B′ as

B = A || 0128−v ||C || 0128−u || len(A) || len(C) ,

B′ = A′ || 0128−v ||C ′ || 0128−u || len(A) || len(C) ,
(4)

where v is the bit length of the final block of A and u is the bit length of the
final block of C. Let Bi be block i of B, where we number the blocks in the
same order as Ferguson, i.e. B1 = len(A) || len(C). We can now define the error
polynomial E as

E =
∑
i≥0

Di ·H2i =
∑
i≥0

(B2i −B′2i) ·H
2i , (5)

where Di = (B2i −B′2i).

Effective Tag Length. Let tn be the effective tag length after n successful
forgeries (with feedback). Following the procedures in [24] and assuming that:

– The byte length of A or C is not a multiple of 16. This implies that the
attacker can modify the length encoding in D0.

– The combined length of A and C is at least 2l − 1 blocks.

With these assumptions, the attacker has 128l free variables and can in the
first forgery force e0 = l bits of the error polynomial E to zero. The effective
tag length is therefore t0 = t − l. In subsequent forgeries the attacker knows
more bits of the authentication key H and can force even more bits of the error
polynomial E to zero. Feedback of successful forgery of a message with effective
tag length tn allows recovery of tn additional bits of the authentication key H.
After n successful forgeries, the attacker knows hn bits of H and can force en
bits of the error polynomial E to zero where

hn =

n−1∑
j=0

tj and en =

⌊
128l

128− hn

⌋
. (6)

Following [24], the effective tag length is tn = t− en until the attacker knows all
128 bits of H (hn ≥ 128) or when the attacker can force more then t bits of the
error polynomial to zero (en ≥ t), in which case the effective tag size is zero.

Exhaustive search improvement. We notice that when 128−hn < t−en, the
effective tag length can be reduced by doing exhaustive search on the 128− hn
unknown bits of H instead of doing exhaustive search on the t − en bits of the
tag that could not be forced to zero. With this improvement, the effective tag
size is

tn = max (0, min(t− en, 128− hn)) . (7)



This improvement significantly reduces some of the effective tag lengths, but has
negligible effect on the authentication key recovery complexities in the coming
sections. The result of applying the improved formula (7) to the NIST approved
tag and maximum message lengths, as well as the maximum message lengths of
212 and 228 blocks imposed by IPv4 and IPv6 is shown in Table 2.

While the values t0 might look short, the complexity of performing a single
forgery is still the expected 2t. If a tag length of t = 128 is used with an encryp-
tion key of length 128 bits, performing a single forgery is as hard as recovering
the encryption key, hardly a weakness.

The effective tag lengths in Table 2 are calculated with the greedy algorithm
used by Ferguson. Using the suggestions we propose in Sect. 3.3, it is possible
to decrease the effective tag length of later forgeries by increasing the effective
tag length of earlier forgeries.

Table 2. Effective tag lengths for the NIST approved tag and message lengths.

t	 32	 64	 96	 104	 112	 120	 128	

L	 21	 22	 23	 24	 25	 26	 211	 213	 215	 217	 219	 221	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	

t0	 31	 30	 29	 28	 27	 26	 53	 51	 49	 47	 45	 43	 84	 68	 39	 92	 76	 47	 100	 84	 55	 108	 92	 63	 116	 100	 71	

t1	 31	 30	 29	 27	 26	 25	 46	 43	 40	 38	 35	 33	 44	 37	 15	 36	 36	 14	 28	 31	 13	 20	 21	 8	 0	 0	 0	

t2	 31	 29	 27	 25	 24	 23	 16	 16	 15	 14	 14	 13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t3	 29	 26	 24	 22	 20	 18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t4	 6	 13	 12	 13	 12	 11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t5	 0	 0	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

	

3.2 Complexity of Ferguson’s Authentication Key Recovery
Method

The discussions [35, 36] after Ferguson’s paper [24] focused mostly on multiple
forgeries and authentication key recovery after nonce collisions in the encryp-
tion function, i.e. the forbidden attack later discussed by Joux [29]. We think the
most important aspect of Ferguson’s paper is the full recovery of the authentica-
tion key H after successful forgeries to the decryption function. While we agree
with McGrew and Viega that the expected complexity to perform multiple forg-
eries is unclear, the expected complexity against key recovery is very clear. The
complexity of performing full key recovery is expected to be 2k where k is the
stated security level. Unless stated otherwise, k is expected to be equal to the
key length. In e.g. HMAC-SHA-256 the complexity for key recovery is believed
to be 2256, unless the authentication key is derived from a smaller key. In GCM,
the authentication key is always 128 bits, which means that the security level
against authentication key recovery is never more than 128 bits, even if block
ciphers with larger key sizes like AES-192 or AES-256 are used. Other AEAD
schemes like CCM and OCB give a security level equal to the encryption key
size. This shortcoming is not mentioned in [1, 27, 34].



An important detail mentioned in [29] but not in [1, 24] is that as the authen-
tication tag depends on EK(N) , authentication key recovery in GCM does not
mean that the attacker can independently create new messages. If the length of
N is fixed, knowledge of the authentication keyH enables an attacker to modify a
valid message by freely choosing A and C, but notN . Assuming known-plaintext,
an attacker can freely chose A and P , where P is the plaintext. Still, we would
expect a security level of no less than the encryption key length against authen-
tication key recovery attacks. In [33] Abdelraheem et al. show that if a GCM
implementation supports variable nonce lengths and the attacker has knowledge
of H, slide universal forgeries using twisted polynomials enable an attacker to
choose N as well.

Complexity without query restrictions. Assuming a maximum combined
length of L = 2l blocks, the effective tag length is t0 = t − l, and the data
complexity (measured in blocks) of performing the first forgery is 2l·2t−l = 2t. As
the complexity of Ferguson’s authentication key recovery method is dominated
by the complexity of the first forgery, this is also the data complexity c for full
authentication key recovery

c ≈ 2t . (8)

Hence, without restrictions on q and irrespective of encryption key length, the
security level of GCM against full authentication key recovery is only equal to
the tag length t. This shortcoming is not mentioned in [1, 34].

Complexity with query restrictions. The complexity of Fergusson’s key
recovery method with restrictions q and L has not previously been analyzed. In
this section we derive the complexities for the NIST approved tag and maximum
message lengths. Let pn be the probability that an attacker succeeds with n
forgeries in q attempts and let l = log2 L. We can now calculate the complexity
c of authentication key recovery with Ferguson’s method as

c ≈ q · 2l/pn , (9)

where n is the number of forgeries needed to recover the full authentication
key. Limiting the maximum number of invocations q of the decryption function
so that 2t0 � q � 2t1 does not increase the complexity of authentication key
recovery. The data complexity is q · 2l and the probability that the attacker
succeeds with one forgery in q attempts is p1 ≈ q · 2−t0 , resulting in the same
total complexity of q · 2l/p1 = 2l/2l−t = 2t.

Restricting q so that 2t1 � q does however increase the complexity of Fer-
guson’s method. Let φi = 2−ti . The probability that the first successful forgery
will occur on forgery attempt f is approximately φ0(1− φ0)f−1 and the proba-
bility of a second forgery is approximately φ1(q− f). The probability p2 that an
attacker succeeds with two forgeries in q attempts is therefore:

p2 ≈
q∑

f=1

φ0(1− φ0)f−1 · φ1(q − f) =
φ0φ1

2
q2 +O

(
φ20φ1

6
q3
)

. (10)



We used SageMath to calculate the Taylor series and then collected the leading
terms for the domain φ0, φ1 � q−1. McGrew and Viega prove a formula similar
to (10) in [36], but do not calculate further values. With the above approximation
for p2 we can approximate p3 using that the probability of a second and third
forgery is approximately φ1φ2(q−f)2/2, and with pn we can approximate pn+1,
etc.2

p3 ≈
q∑

f=1

φ0(1− φ0)f−1 · φ1φ2
2

(q − f)2 =
φ0φ1φ2

6
q3 +O

(
φ20φ1φ2

24
q4
)

,

p4 ≈
q∑

f=1

φ0(1− φ0)f−1 · φ1φ2φ3
6

(q − f)3 =
q4

4!

3∏
j=0

φj +O

φ0q5
5!

3∏
j=0

φj

 ,

p5 ≈
q∑

f=1

φ0(1− φ0)f−1 · φ1φ2φ3φ4
24

(q − f)4 =
q5

5!

4∏
j=0

φj +O

φ0q6
6!

4∏
j=0

φj

 ,

(11)

Complexity for the NIST tag and message lengths. With the approxima-
tions for p1, p2, p3, p4, p5 we can calculate the complexity of authentication key
recovery with Ferguson’s method. Table 3 shows the complexities achieved by
applying (9), (10), and (11) to the NIST approved tag and maximum message
lengths. The grey coloring shows the tn that was used in the calculation In a
few cases the domain assumption does not hold as 2tn ≈ q. In these cases we
have chosen n to overestimate rather than underestimate the complexity. Note
that the complexities for authentication key recovery are independent of the
encryption key length.

Our analysis show that with Ferguson’s method the security levels for 32-bit
tags are below the old NIST requirement of 80-bit security (that was in place in
2007 when [1] was published), while 64-bit tags are just on the border. In fact,
NIST seems to have chosen the parameters for 64 bit tags to get 80-bit security
against Ferguson’s attack.

Only 112, 120, and 128 bit tags fulfill the current NIST requirement of 112-
bit security. Unfortunately, NIST does not give any motivations for the exact
restrictions they put on 32 and 64 bit tags, or for that matter the security levels
they were assumed to give.

3.3 Our Improved Method for Authentication Key Recovery

In this section we propose several novel improvements to Ferguson’s method
for authentication key recovery. These improvements significantly reduce the
security levels for short tags.

2 The calculations below lead us to the hypothesis that pn ≈ qn

n!

∏n−1
j=0 φj +

O
(
φ0q

n+1

(n+1)!

∏n−1
j=0 φj

)
. This is however something that we do not use and that we do

not prove, but by dividing q into n intervals, it is easy to prove that pn ≥ qn

n!

∏n−1
j=0 φj .



Table 3. Data complexity with Ferguson’s method for full authentication key recovery.

t	 32	 64	 96	 104	 112	 120	 128	

L	 21	 22	 23	 24	 25	 26	 211	 213	 215	 217	 219	 221	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	

q	 222	 220	 218	 215	 213	 211	 232	 229	 226	 223	 220	 217	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	

t0	 31	 30	 29	 28	 27	 26	 53	 51	 49	 47	 45	 43	 84	 68	 39	 92	 76	 47	 100	 84	 55	 108	 92	 63	 116	 100	 71	

t1	 31	 30	 29	 27	 26	 25	 46	 43	 40	 38	 35	 33	 44	 37	 15	 36	 36	 14	 28	 31	 13	 20	 21	 8	 0	 0	 0	

t2	 31	 29	 27	 25	 24	 23	 16	 16	 15	 14	 14	 13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t3	 29	 26	 24	 22	 20	 18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t4	 6	 13	 12	 13	 12	 11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

c	 261.6	 261.6	 262.6	 265.6	 268.9	 271.9	 279.0	 279.0	 279.0	 280.0	 280.0	 281.0	 296.0	 296.0	 296.0	 2104	 2104	 2104	 2112	 2112	 2112	 2120	 2120	 2120	 2128	 2128	 2128	

	

– The attacker may choose to modify a message with a message length that is
smaller than the maximum message length L.

– After each successful forgery, the attacker may choose to modify a different
message.

– The attacker may choose to modify messages with different lengths 2l0 , 2l1 ,
2l2 , . . .

Let the length of the first message be 2l0 and let l = max(l1, l2, . . . ). The proba-
bility that the attacker does not achieve a single successful forgery in q attempts
is (1−φ0)q in which case the attacker sends q2l0 blocks of data. The probability
that the first successful forgery will occur on forgery attempt f is approximately
φ0(1−φ0)f−1 in which case the attacker sends at most f2l0 + (q−f)2l blocks of
data. The average number of blocks w sent by the attacker is therefore bounded
by:

w ≤ (1− φ0)q · q2l0 +

q∑
f=1

φ0(1− φ0)f−1 ·
(
q2l − f(2l − 2l0)

)
= q2l0 +

1

2
φ0q

2(2l − 2l0) +O(φ20q
32l0) .

(12)

We used SageMath to calculate the Taylor series and then collected the lead-
ing terms for the domain φ0 � q−1. Using this improved method, the data
complexity c of authentication key recovery is

c ≈ q · 2l0/pn . (13)

64-bit tags. Let l0 = 0 and l = log2 L. For 64-bit tags, the effective tag lengths
are t0 = 64, t1 = 64− 2l, and the complexity is

c64 ≈ q · 2l0/p2 = 2t0+t1+1/q = 2129/L2q . (14)

By applying (14) to the column (L = 221, q = 217), the already low complexity
is reduced from 281.0 to 270.0. It seems infeasible to increase the security level
to 112 bits, as this would either restrict the message length too much or make
deployments vulnerable to denial-of-service attacks.



Table 4 shows the complexities achieved by applying our improved method
(13) with l0 = 0 and l = log2 L to the NIST approved tag and maximum message
lengths. This significantly reduces the data complexities of authentication key
recovery for short tags. With our improved method, the security levels are 62–67
bits for 32-bit tags and 70–75 bits for 64-bit tags; this is below the old NIST
requirement of 80-bit security and far below the current NIST requirement of
112-bit security.

Table 4. Data complexity with our improved method for full authentication key re-
covery.

t	 32	 64	 96	 104	 112	 120	 128	

L	 21	 22	 23	 24	 25	 26	 211	 213	 215	 217	 219	 221	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	 212	 228	 257	

q	 222	 220	 218	 215	 213	 211	 232	 229	 226	 223	 220	 217	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	 ∞	

t0	 32	 32	 32	 32	 32	 32	 64	 64	 64	 64	 64	 64	 96	 96	 96	 104	 104	 104	 112	 112	 112	 120	 120	 120	 128	 128	 128	

t1	 31	 30	 28	 27	 26	 24	 42	 38	 34	 30	 26	 22	 32	 0	 0	 24	 0	 0	 16	 0	 0	 0	 0	 0	 0	 0	 0	

t2	 31	 29	 27	 25	 23	 22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t3	 29	 26	 23	 21	 19	 17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

t4	 5	 9	 11	 10	 10	 9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

c	 261.6	 261.6	 260.6	 264.6	 265.9	 266.9	 275.0	 274.0	 273.0	 272.0	 271.0	 270.0	 296.0	 296.0	 296.0	 2104	 2104	 2104	 2112	 2112	 2112	 2120	 2120	 2120	 2128	 2128	 2128	

	

3.4 Analysis of the use of GCM in Security Protocols

We show that neither IPsec nor SRTP fulfills the NIST requirements for short
tags. The specification of the use of GCM with 64 bit tags in IPsec [15] was
published shortly after Fergusson’s paper [24] and does not refer to the NIST
specification [1]. The RFC [13] and Internet Draft [14] specifying the use of GCM
in SRTP do no longer allow the use of truncated tags, but the NIST specification
mentions SRTP as an example of a protocol fulfilling the guidelines for short tags.
Two of these guidelines are:

– There should not be feedback of whether a forgery attempt is successful or
unsuccessful.

– The AAD within packets should be limited to the necessary header informa-
tion.

Analysis of GCM usage in IPsec ESP. RFC 4106 [15] specifies the use
of GCM with 64, 96, and 128 bit tags. The specification does not discuss the
problems with short tags and does not require implementations to restrict the
maximum message length L or the maximum number of invocations q of the au-
thenticated decryption function. While ESP limits the AAD to necessary header
information and silently discards datagrams that fail the integrity check, ESP
does not silently discard datagrams that passes the integrity check and informa-
tion leakage regarding the integrity of individual packets is therefore possible in
many deployments.



– If any request-response protocol is sent over an IPsec protected path, an
attacker can attempt forgery by modifying a datagram containing a request
(e.g. HTTP GET). If integrity fails, the IPsec implementation will silently
discard the datagram. If the datagram passes the integrity check, a response
(e.g. 200 OK) will be sent. The datagram containing the response will also
be encrypted, but assuming small amounts of other traffic (the attacker may
e.g. block certain traffic) the attacker can see that a response was sent and
conclude that the forgery was successful.

– If tunnel mode is used, the attacker may modify the inner destination IP
address so that the packet in case of a successful forgery is routed to the
adversary himself/herself.

If multicast is used [37], the attacker may attempt forgery towards several in-
stances of the GCM decryption function in parallel, and the maximum number
of invocations q of the decryption function would need to be calculated over all
instances of the decryption function. Theoretically this could be done with syn-
chronization, but in practice the only solution would be to restrict the number
of invocations of each instance to q/r where r is the total number of receivers.
This makes q/r impractically small and makes the system vulnerable to denial-
of-service attacks.

IPsec ESP with GCM and 64-bit tags offers 64 bits of security against online
authentication key recovery and IPsec ESP with GCM and 96-bit tags offers 96
bits of security. A probable attack could be detected by an intrusion detection
system by identifying a large number of messages only differencing in blocks Bi

where i is a power two according to (4).

Analysis of GCM usage in SRTP. The Real-time Transport Protocol (RTP)
[38] is a network protocol for transmitting real-time data, such as audio, video,
and text. RTP is used in conjunction with the RTP Control Protocol (RTCP) to
specify quality of service feedback and synchronization between media streams.
The Secure Real-time Transport Protocol (SRTP) [39] provides encryption, mes-
sage authenticity, and replay protection to RTP and RTCP. While RTP and
SRTP are standardized in RFC 3550 [38] and RFC 3711 [39], there are nu-
merous extensions to both protocols. In Appendix C of [1], NIST makes the
statement:

“An example of a protocol that meets these guidelines is Secure Real-time
Transport Protocol carrying Voice over Internet Protocol, running over
User Datagram Protocol”.

This is not a correct statement and SRTP does in fact violate both of the guide-
lines mentioned before.

– The AAD is not at all limited. In RTP, the associated data consists of the
RTP header, which is not limited as e.g. the header in the TLS record layer.
The RTP header is extensible with proprietary header extensions carrying
any type of information. In RTCP, the scope of the AAD depends on the



encryption flag E. If the encryption flag is ‘1’, the AAD data is limited
to necessary header information, but if the encryption flag is ‘0’, the AAD
consists of the entire RTCP packet.

– RTCP receiver reports (RR) provide a wealth of information that can be used
to determine the integrity of individual forged RTP packages, e.g. SSRC of
the source, cumulative number of packets lost, extended highest sequence
number received, last sender report (SR) timestamp, and delay since last
SR. The RTCP extension for port mapping [40] is even worse as it echoes
back the 64-bit nonce received in the request.

– RTP Rapid Synchronisation [41] is used; a forged Rapid Resynchronisation
Request results in a RTP header extension with sync information sent from
the sender.

– If the RTP header extension Client-to-Mixer Audio Level Indication [42] is
used, a forged RTP packet with a high audio level will result in the Multipoint
Control Unit (MCU) forwarding the SSRC. As the SSRC is not encrypted,
this is easily detected by the attacker.

Even if encryption of RTCP is mandated and specific RTP header extensions
and RTCP packets types are forbidden, an attacker may still in many cases
determine whether a forgery was successful by looking at the length of packets.
Either by looking at the length of RTCP packets from the sender or by looking
at the length of RTP packets forwarded by an MCU.

A further problem with SRTP and GCM is that SRTP is very often used in
one-to-many scenarios. The maximum number of invocations of each instance of
the authenticated decryption function would have to be restricted to q/r, where
q is the maximum total number of invocations of the authenticated decryption
function, and r is the total number of receivers, including any late joiners.

All in all, SRTP does absolutely not meet the NIST guidelines for usage of
GCM with short tags.

Summary. While many protocols silently discard packets with failed integrity
check, very few are totally silent when the integrity check is valid. Even if the
security protocol itself does not provide feedback, the higher level messages pro-
tected by the security protocol likely do. We believe that feedback of successful
or unsuccessful forgery attempt is almost always possible. The NIST guideline is
therefore unrealistic, and the authentication key recovery attacks practically pos-
sible. Analyzing the possibility of information feedback from successful forgeries
is not trivial and the NIST statement regarding SRTP is obviously incorrect.
We strongly recommend NIST to remove short tags from SP 800-38D [1].

4 Conclusions

The security levels of GCM and GMAC against authentication key recovery are
for many tag sizes far below, not only the current NIST requirement of 112-bit
security, but also the old NIST requirement of 80-bit security. With our improved



authentication key recovery method, the security levels are 62–67 bits for the
NIST approved usage of 32-bit tags and 70–75 bits for the NIST approved usage
of 64-bit tags. For larger tags the security levels are as previously known t bits
for t-bit tags where t = 96, 104, 112, 120, or 128. It seems infeasible to increase
the low security levels to 112 bits, as this would either restrict the message length
too much or make deployments vulnerable to denial-of-service attacks.

We note that as the authentication key is always 128 bits, the security level
against authentication key recovery is never more than 128 bits, even if block
ciphers with larger key sizes like AES-192 or AES-256 are used. Other AEAD
schemes like CCM and OCB give a security level equal to the encryption key
size.

One might argue that it is acceptable to allow a lower security level against
authentication key recovery than encryption key recovery, especially if authen-
tication key recovery requires online access to the hopefully short-lived GCM
instances. With this arguing, 96-bit tags could be acceptable, even if they only
offer 96 bits of security against online authentication key recovery. We do not
take a stance on this, but note that the current NIST requirements in NIST SP
800-57 Part 3 [43] states that the authentication key strength shall be equal or
greater than 112 bits and that less than 112 bits of security shall not be used.

NIST states that implementations should not provide feedback on the in-
tegrity of individual packets and then nevertheless heavily restricts the number
of invocations of the decryption function. We have illustrated that feedback on
the integrity of individual packets is almost always possible. The NIST guideline
is therefore unrealistic, and the authentication key recovery attacks practically
possible. Analyzing the possibility of information feedback of successful forgeries
is not trivial and the NIST statement regarding SRTP is obviously incorrect. We
therefore strongly recommend NIST to remove short tags from SP 800-38D [1].

Furthermore, we recommend that such analysis is never left to the user, and
we strongly recommend against standardizing any cryptographic algorithms that
relies on the assumption of no information feedback from successful forgeries.

We strongly recommend NIST to make a revise SP 800-38D [1] so that the
security levels of all allowed options are clearly stated, that short tags are re-
moved, and that it is explained why any options offering less than 112-bit security
against online attacks are acceptable. We do however fully recommend GCM for
usage with 128-bit tags, especially with AES-128. In fact we believe that with
its excellent performance and proven security, it should be the first choice for
everybody wanting an AEAD algorithm. We note that the design choices causing
the security problems with truncated tags are also responsible for the excellent
performance of GCM.

References

1. NIST SP 800-38D.: Recommendations for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. November 2007. http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf



2. NSA.: Suite B Cryptography. https://www.nsa.gov/ia/programs/suiteb cryptography/
3. CAESAR.: Competition for Authenticated Encryption: Security, Applicability, and

Robustness. http://competitions.cr.yp.to/caesar.html
4. IETF RFC 4543.: The Use of Galois Message Authentication Code (GMAC) in

IPsec ESP and AH’. May 2006. https://tools.ietf.org/html/rfc4543
5. IETF RFC 5288.: AES Galois Counter Mode (GCM) Cipher Suites for TLS. August

2008. https://tools.ietf.org/html/rfc5288
6. IETF RFC 5647.: AES Galois Counter Mode for the Secure Shell Transport Layer

Protocol. August 2009. https://tools.ietf.org/html/rfc5647
7. IETF RFC 7518.: JSON Web Algorithms (JWA). May 2015.

https://tools.ietf.org/html/rfc7518
8. IEEE 802.1AE-2006.: Media Access Control (MAC) Security. August 2006.

http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf
9. IEEE 802.11ad-2012.: Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications - Amendment 3: Enhancements for Very High
Throughput in the 60 GHz Band. October 2012.
http://standards.ieee.org/getieee802/download/802.11ad-2012.pdf

10. IEEE 802.11ac-2013.: Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications - Amendment 4: Enhancements for Very High
Throughput for Operation in Bands below 6 GHz. December 2013.
http://standards.ieee.org/getieee802/download/802.11ac-2013.pdf

11. IEEE 1619.1-2007.: IEEE Standard for Cryptographic Protection of Data on Block-
Oriented Storage Devices. May 2008.

12. ANSI INCITS 496-2012.: Information technology - Fibre Channel Security Protocol
2 (FC-SP-2).

13. IETF RFC 7714.: AES-GCM Authenticated Encryption in Secure RTP (SRTP).
December 2015. https://tools.ietf.org/html/rfc7714

14. Kim, Lee, Kim, Park, Kwon.: The ARIA Algorithm and Its Use with the Secure
Real-time Transport Protocol (SRTP). (IETF work in progress). November 2015.
https://tools.ietf.org/html/draft-ietf-avtcore-aria-srtp-09

15. IETF RFC 4106.: The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
Security Payload (ESP). June 2005. https://tools.ietf.org/html/rfc4106

16. IETF RFC 5084.: Using AES-CCM and AES-GCM Authenticated Encryption in
the Cryptographic Message Syntax (CMS). November 2007.
https://tools.ietf.org/html/rfc5084

17. ECMA-409.: NFC-SEC-02: NFC-SEC Cryptography Standard using ECDH-256
and AES-GCM. December 2014.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-409.pdf

18. ECMA-411.: NFC-SEC-04: NFC-SEC Entity Authentication and Key Agreement
using Symmetric Cryptography. December 2014.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-411.pdf

19. Langley, Chang.: QUIC Crypto. July 2015. https://docs.google.com/document/
d/1g5nIXAIkN Y-7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/edit

20. W3C.: Web Cryptography API. December 2014.
http://www.w3.org/TR/WebCryptoAPI/

21. Oracle.: Java Platform, Standard Edition 8 API Specification.
https://docs.oracle.com/javase/8/docs/api/index.html

22. OASIS.: PKCS #11 Cryptographic Token Interface Current Mechanisms Speci-
fication Version 2.40. September 2014. http://docs.oasis-open.org/pkcs11/pkcs11-
curr/v2.40/cs01/pkcs11-curr-v2.40-cs01.pdf



23. Microsoft.: Cryptography API: Next Generation. https://msdn.microsoft.com/en-
us/library/windows/desktop/aa376210

24. Ferguson.: Authentication weaknesses in GCM. May 2005.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-
GCM/Ferguson2.pdf

25. Kabatianskii, Smeets, Johansson.: On the Cardinality of Systematic Authentica-
tion Codes Via Error-Correcting Codes. IEEE Transactions on Information Theory,
Vol. 42, No 2. March 1996

26. McGrew, Viega.: The Galois/Counter Mode of Operation (GCM). May 2005.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/
gcm-revised-spec.pdf

27. McGrew, Viega.: The Security and Performance of the Galois/Counter Mode of
Operation. October 2004. http://eprint.iacr.org/2004/193.pdf

28. ISO/IEC 9772:2009.: Information technology – Security techniques – Authenti-
cated encryption. July 2008.
http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber
=46345

29. Joux.: Authentication Failures in NIST version of GCM. 2006.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-
38 Series-Drafts/GCM/Joux comments.pdf

30. Handschuh, Preneel.: Key-recovery attacks on universal hash function based MAC
algorithms. CRYPTO 2008.
http://www.cosic.esat.kuleuven.be/publications/article-1150.pdf

31. Saarinen.: GCM, GHASH and Weak Keys. 2011.
http://www.iacr.org/archive/fse2012/75490220/75490220.pdf

32. Procter, Cid.: On Weak Keys and Forgery Attacks Against Polynomial-Based MAC
Schemes. FSE 2013. https://eprint.iacr.org/2013/144.pdf

33. Abdelraheem, Beelen, Bogdanov, Tischhauser.: Twisted Polynomials and Forgery
Attacks on GCM. EUROCRYPT 2015. https://eprint.iacr.org/2015/1224.pdf

34. CRYPTREC TR No. 2012.: Evaluation of Some Blockcipher Modes of Operation.
February 2011. http://www.cryptrec.go.jp/estimation/techrep id2012 2.pdf

35. McGrew, Viega.: GCM Update. May 2005.
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-
GCM/gcm-update.pdf

36. McGrew, Fluhrer.: Multiple forgery attacks against Message Authentication Codes.
May 2005. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
CWC-GCM/multi-forge-01.pdf

37. IETF RFC 5374.: Multicast Extensions to the Security Architecture for the Inter-
net Protocol. November 2008. https://tools.ietf.org/html/rfc5374

38. IETF RFC 3550.: RTP: A Transport Protocol for Real-Time Applications. July
2003. https://tools.ietf.org/html/rfc3550

39. IETF RFC 3711.: The Secure Real-time Transport Protocol (SRTP). March 2004
https://tools.ietf.org/html/rfc3711

40. IETF RFC 6284.: Port Mapping between Unicast and Multicast RTP Sessions.
June 2011. https://tools.ietf.org/html/rfc6284

41. IETF RFC 6051.: Rapid Synchronisation of RTP Flows. November 2010.
https://tools.ietf.org/html/rfc6051

42. IETF RFC 6464.: A Real-time Transport Protocol (RTP) Header Extension for
Client-to-Mixer Audio Level Indication. December 2011.
https://tools.ietf.org/html/rfc6464



43. NIST SP 800-57 Part 3-Rev.1.: Recommendation for Key Management: Part 3 -
Application-Specific Key Management Guidance. January 2015.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf


