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Abstract. Time-lock encryption is a method to encrypt a message such that it can
only be decrypted after a certain deadline has passed. A computationally powerful
adversary should not be able to learn the message before the deadline. However,
even receivers with relatively weak computational resources should immediately
be able to decrypt after the deadline, without any interaction with the sender,
other receivers, or a trusted third party.
Our idea is to realize this strong notion of secure encryption is to make the ad-
ditional, very realistic assumption that intermediate results of an iterative, pub-
lic, large-scale computation are publicly available — like the computations per-
formed by users of the popular cryptocurrency Bitcoin. We use these computa-
tions as a “computational reference clock”, which mimics a physical clock in a
computational setting, and show how the computations performed by the refer-
ence clock can be “reused” to build secure time-lock encryption. A nice feature of
this approach is that it can be based on a public computation which is performed
“anyway”, independently of the time-lock encryption scheme.
We provide the first formal definitions of computational reference clocks and
time-lock encryption, and give a proof-of-concept construction which combines a
computational reference clock with witness encryption (Garg et al., STOC 2013).
We also explain how to construct a computational reference clock based on Bit-
coins.

1 Introduction

Time-lock encryption. Alice has a document that she wants to make public in, say, a
couple of days, but she is not willing to hand it out to anybody before this deadline.
Therefore she puts the document into a box and attaches a time-lock. The lock keeps
the box securely sealed, and thus the document confidential, for the determined period
of time. It will unlock automatically when the deadline has passed, which makes it
possible for everyone to access the document easily, without any further interaction
with Alice. Time-lock encryption is a digital equivalent of such time-locked boxes. It
allows to encrypt data for a period of time, up to a certain deadline, such that even
a computationally powerful adversary is not able to learn any non-trivial information
about the data before the deadline. However, when the time is over, even parties with
relatively weak computational resources should immediately be able to decrypt easily.

Essentially, time lock encryption allows to send a message “into the future”. The
key novelty of time-lock encryption is that it achieves the following properties simulta-
neously:



1. Decryption is non-interactive. That is, the sender Alice is not required to be avail-
able for decryption.

2. Time lock encryption does not rely on trusted third parties. Thus, the sender is not
required to trust any (set of) third parties to keep decryption keys (or shares of
decryption keys) secret until the deadline has passed.

3. Parties interested in decrypting a ciphertext are not forced to perform expensive
computations until decryption succeeds. This means that a party which simply waits
till the decryption deadline has passed will be able to decrypt the ciphertext at about
the same time as another party who attempts to decrypt the ciphertext earlier by
performing a large (but reasonably bounded) number of computations. Thus, all
reasonably bounded parties will be able to decrypt a ciphertext at essentially the
same time, regardless of their computational resources.

These fact that these features are achieved simultaneously makes time-lock encryption
a fascinating primitive, which enables applications that seem impossible to achieve with
classical encryption schemes.

Efficient decryption and no trusted third parties. Time-lock encryption is related to
timed-release encryption, investigated by Rivest, Shamir, and Wagner [33] and many
follow-up works [17, 11, 10, 14, 15, 36]. It is a useful tool for applications like secure
auctions, mortgage payment, key escrow [33], or fair multiparty computation [11, 1].
The main difference is that timed-release encryption suffers from the following short-
comings.

One line of research [33, 17, 11, 10, 15] realizes timed-release encryption by assum-
ing a trusted third party (TTP), which reveals decryption keys at the right time. There-
fore security relies crucially on the assumption that the TTP is trustworthy. In particular,
it must not use its ability to allow decryption of ciphertexts earlier than desired by the
sender in any malicious way, for instance by revealing a decryption key before the
deadline. Some constructions share the decryption key among several (trusted) parties.
However, a collusion of some (or in the worst case all) parties against the encrypter will
always be able to decrypt before the deadline in the trusted third party approach. For
some applications this may not be desirable for the encrypter.

The other line of research [33, 11, 36] considers constructions that require the re-
ceiver of a ciphertext to perform a feasible, but computationally expensive search for a
decryption key. This puts a considerable computational overhead on the receiver. Sup-
pose a sender wants that a ciphertext must only be decrypted in, say, ten days (a rela-
tively short period of time). In order to make this work, the sender would have to be able
to predict the computational resources available to the receiver relatively exactly, and
the receiver would have to dedicate all these computational resources for ten days to the
search, in order to be able to decrypt immediately after the deadline. This is not very
practical. Particularly challenging in this setting are situations where the ciphertext is
made public and there are many different receivers. For instance, suppose the ciphertext
is posted on the Internet, and everybody should be able to decrypt immediately after the
deadline. Then there are many receivers with different computational resources. The
sender may not even know all of them. It seems impossible to encrypt with any known
timed-release encryption scheme in a way, such that all receivers are able to decrypt at
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the same time, unless one relies on trusted third parties. Moreover, even if we assume
that all parties are able to solve the computational problem within (relatively exactly)
the same time, note that this would still force that all parties to begin their computations
at (relatively exactly) the same time, and that all parties are able to dedicate resources
to the search for the decryption key. We think it an interesting theoretical question in its
own to ask if it is possible to avoid this.

Contributions. We construct encryption schemes where a sender is able to encrypt a
ciphertext, such that not even a computationally powerful (but reasonably bounded) ad-
versary is able to learn any non-trivial information about the message before the dead-
line. Once the deadline has passed, even receivers with relatively limited computational
resources are immediately able to decrypt. Decryption is non-interactive, in the sense
that there is no communication between the sender and receivers except for the initial,
unidirectional transmission of the ciphertext, or among receivers. We call encryption
schemes with these properties time-lock encryption schemes.

Essentially, instead of assuming trusted third parties, we show how to “emulate”
real-world time in a computational model, by basing security on a large-scale, itera-
tive, public computation, which may be performed independently and for a completely
different purpose than realizing time-lock encryption. We show how this effort can be
“reused” to realize time-lock encryption.

Computational reference clocks. A first challenge in constructing time-lock encryption
is to find a reasonable equivalent of real-world time in a computational model. Real-
world time is usually determined by some physical reference, like the current state of
atomic reference clocks. We do not see any reasonable way to mimic this notion of time
in a computational model without trusted third parties.

Our main idea is to use the current state of an iterative, public computation as what
we call a computational reference clock. The abstract notion of computational refer-
ence clocks stems from the concrete idea of using the popular digital cryptocurrency
Bitcoin [32] as a reference clock, therefore let us explain the idea with this concrete
example. The Bitcoin system performs an iterative, very large-scale, public computa-
tion, where so-called miners are contributing significant computational resources to the
gradual extension of the Bitcoin block chain. Essentially, this block chain contains a
sequence of hash values B1, . . . , Bτ that satisfy certain conditions.1 These conditions
determine the difficulty of finding new blocks in the chain. The Bitcoin system fre-
quently adjusts the difficulty, depending on the computational resources currently con-
tributing to the Bitcoin network, such that about every 10 minutes a new block Bτ+1

is appended to the chain. Thus, the block chain can serve as a reference clock, where
the current length τ of the chain tells the current “time”, and there are about 10 minutes
between each “clock tick”.

Witness encryption. In order to be able to sketch our construction of time-lock encryp-
tion from computational reference clocks, let us briefly recap witness encryption [24].
A witness encryption scheme is associated with an NP-relationR (cf. Definition 1). For

1 Section 3.1 contains a more detailed background on Bitcoins.
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(x,w) ∈ R we say that x is a “statement” and w is a “witness”. A witness encryption
scheme for relation R allows to encrypt a message m with respect to statement x as
c

$← EncR(x,m). Any witness w which satisfies (x,w) ∈ R can be used to decrypt
this ciphertext c as m = DecR(c, w). Intuitively, one may think of a statement x as a
“public key”, such that any witness w with (x,w) ∈ R can be used as a correspond-
ing “secret key”. A secure witness encryption scheme essentially guarantees that no
adversary is able to learn any non-trivial information about a message encrypted for
statement x, unless it already “knows” a witness w for (x,w) ∈ R. Witness encryption
schemes with this property are called extractable [27, 7, 13].

Time-lock encryption. The key idea behind our construction is to combine a compu-
tational reference clock with witness encryption. For this introduction, let us consider
time-lock encryption based on Bitcoins as one specific instantiation of a reference clock
(we will consider more general constructions in the body of the paper). We define an
NP-relation R such that

1. For x ∈ N, statements have the form 1x, that is, x in unary representation.
2. Any valid Bitcoin block chain w = (B1, . . . , Bx) of length at least x is a witness

for (1x, w) ∈ R.

Let (EncR,DecR) be a witness encryption scheme for this particular relation R.
Suppose the current state of the Bitcoin block chain isB1, . . . , Bτ . Then the block chain
contains a witness w for (1x, w) ∈ R for all x ≤ τ . The Bitcoin block chain is public.
Therefore everybody is immediately able to decrypt any ciphertext c $← EncR(1

x,m)
with x ≤ τ , by using the witness from the public block chain as the “decryption key”.

Security of this construction. Let c = EncR(1
x,m) be a ciphertext with x > τ . Un-

der the assumption that the witness encryption scheme is secure, we will show that an
adversary has only two possibilities to learn any non-trivial information about m.

1. The adversary waits until the public Bitcoin block chain has reached length x. Then
the chain contains a witness w for (1x, w) ∈ R, which immediately allows to
decrypt. However, note that then not only the adversary, but also everybody else is
able to decrypt, by reading w from the public Bitcoin block chain and computing
m = DecR(c, w). Speaking figuratively, “the time-lock has opened”.

2. The adversary tries to “put forward” the computational reference clock provided
by the Bitcoin block chain, by computing the missing blocks Bτ+1, . . . , Bx of the
chain secretly on its own, faster than the public computation performed by the
collection of all Bitcoin miners. Note that this means that the adversary would
have to outperform the huge computational resources gathered in Bitcoin, which
currently (May 2015) perform more than 350 · 1015 ≈ 258 hash computations
per second. Assuming that no adversary is able to perform this large amount of
computation to learn the encrypted message earlier, the scheme is secure.
A particularly interesting case is when the value of learning the message earlier
than others is below the value of the computations an adversary would have to
perform. For instance, in our Bitcoin-based instantiation, an adversary would earn
Bitcoins for contributing its resources to the network. Then security is provided
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simply by the fact that there is no incentive for the adversary to attack the time-lock
encryption.

The above description is slightly simplified. The actual Bitcoin block chain (de-
scribed in Section 3.1) and our construction (in Section 3.3) are more complex, but the
underlying principle is the same. In particular, we will have to describe slightly more
complex relations, because of the variable difficulty parameter in Bitcoin.

We stress that we do not have to put any form of trust in Bitcoin miners. The inter-
mediate states of their computations can be completely public, and they do not have to
store any secrets.

Further and future examples of computational reference clocks. It is possible to think
of other instantiations of such computational reference clocks, like for instance other
decentralized cryptocurrencies,2 or possibly completely different iterative, public com-
putations. We will therefore develop a more abstract view on computational reference
clocks and time-lock encryption.

Our example construction of time lock encryption based on witness encryption for
all NP-relations should rather be seen as a first proof-of-concept construction. We stress
that we see the main contribution of this paper in the novel concept of extending the
classical computational model with an iterative, public, large-scale computation, like
the computations performed in Bitcoin, as a basis for realizing time-lock encryption.

We stress also that our application actually does not require the full strength of wit-
ness encryption for all NP-relations, a scheme for a certain, specific, clock-dependent
relation would suffice. Note that constructing witness encryption schemes for specific
relations should be much simpler than constructing witness encryption schemes for
all NP-relations. For example, very efficient witness encryption schemes are known
for relations describing languages which are compatible with hash proof systems [16].
Therefore we envision future constructions of alternate cryptocurrencies (or other types
of computational reference clocks), possibly based on more algebraic computational
hardness assumption giving rise to hash proof systems, that allow for truly practical
instantiations of time-lock encryption via practical witness encryption for a suitable
relation.

Related work and further applications of time-lock encryption. Timed-release encryp-
tion was introduced by Rivest, Shamir, and Wagner [33] and considered in many follow-
up works, including [17, 10, 14, 15, 36]. Our approach is fundamentally different from
theirs. In particular, we neither need trusted third parties, nor have a considerable
computational overhead for decryption. Time-lock puzzles and proofs of (sequential)
work [18, 33, 19, 30, 31] are computational problems that can not be solved without run-
ning a computer continuously for a certain time. In a sense, our computational reference
clocks can be seen as algorithms that continuously and publicly solve publicly verifi-
able [31] instances of an infinite sequence of time-lock puzzles. Essentially, we show
how this computational effort, performed independently of any time-lock encryption
scheme, can be “reused” to construct time-lock encryption with efficient decryption.

2 See http://altcoins.com/ for an overview of Bitcoin alternatives.
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A clever idea to use Bitcoin deposits to facilitate fairness in multiparty computa-
tion was presented by Andrychowicz et al. [3, 2, 1]. Essentially, the idea is that a party
involved in a multiparty computation publishes a commitment along with a Bitcoin “de-
posit”. If the party plays fair, by opening the commitment before a certain deadline, then
it is able to reclaim the deposit. If the party does not open the commitment, then it is not
able to reclaim. Thus, the loss of the deposit serves as a penalty for unfairness. See also
Bentov and Kumaresan [9]. Time-lock encryption can be seen as a different approach
to enforce fairness such a setting. It can be used to construct the first timed commitment
scheme in the sense of Boneh and Naor [11] that does not require an inefficient forced
opening. The commitment would “open” efficiently after a certain time, regardless of
whether the committing party likes to play fair or not.3

Very recently, Azar, Goldwasser, and Park [4] construct “timed-delay” multi-party
computation (MPC) protocols, where participating parties obtain the result of the com-
putation only after a certain time, possibly some parties earlier than others. The con-
struction described in [4] is based on time-lock puzzles where, essentially, for each
participating party the result of the computation is “encrypted” with a time-lock puzzle,
such that each party has to solve the computationally expensive but feasible puzzle be-
fore it is able to learn the result. This is similar to the timed-release schemes of [33, 11,
36], in particular it inherits the drawback of inefficient decryption and the assumption
that all parties are able to solve the puzzles in about the same time. Our notion of time-
lock encryption gives rise to a different approach for constructing timed-delay MPC,
with efficient decryption and based on a public computational reference clock. The idea
is to simply encrypt the output of the computed function with a time-lock encryption
scheme.

Garay et al. [21] analyze the Bitcoin “backbone” protocol, and show how to realize
Byzantine agreement on top of this protocol. Another recent work, which shows how to
construct useful cryptographic primitives under the assumption that no adversary is able
to outperform the huge computational resources of the collection of all Bitcoin miners,
is due to Katz et al. [29], who show how to obtain secure computation and so-called
pseudonymous authenticated communication from time-lock puzzles.

Formal computational models capturing “real-world time” were described for in-
stance by Cathalo et al. [14], who gave a security model for timed-release encryption
with a “time oracle” that sequentially releases specific information, and recently by
Schwenk [34], who described a security model for time-based key exchange protocols.
Both works [14, 34] may assume that the party implementing the clock is honest. In con-
trast, we will have to deal with adversaries that may want to “put the clock forward”,
therefore we need to model the computational hardness of doing so in our setting.

3 If the time-lock encryption scheme is used directly as a commitment scheme, then it follows
immediately from the security of the encryption scheme that the commitment is “hiding”.
However, for the commitment to be “binding” we yet have to prove (or assume) that a sender
is not able to generate a “non-binding” ciphertext, which can efficiently be opened to more
than one unique message. Alternatively, one can combine any binding commitment scheme
with time-lock encryption, by committing to a message with the commitment scheme, and
encrypting the opening of the commitment with time-lock encryption.
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Witness encryption for all NP-relations was introduced by Garg et al. [24]. Known
constructions [24, 23, 25, 7, 13] are based on multilinear maps [12, 22], or obfusca-
tion [5, 6, 23]. We will use extractable witness encryption. This notion was introduced
by Goldwasser et al. [27], who justify the assumption that the scheme of [24] is ex-
tractable by a proof in the generic group model. Further constructions of extractable
witness encryption schemes [7, 13] are based on variants of extractability obfusca-
tion [5, 6]. We also note that extractability is only required to make our security proof
go through, but not for functionality of the system. It is therefore conceivable that our
constructions remain secure when instantiated with a witness encryption scheme which
is not extractable, albeit we do not know yet how to prove it formally secure.

Other approaches for time-lock encryption. Bitcoin-incentivized timed-release encryp-
tion appears in a software published at Github [35]. Even though their scheme is called
“time-lock encryption”, the approach and the functionality are completely different to
ours. First and foremost, the scheme in [35] requires expensive exhaustive-search com-
putations for both encryption and decryption, where encryption can be parallelized, but
decryption (most likely) not. Moreover, their scheme essentially encrypts the message
along with a secret key, which allows to retrieve Bitcoins published in a public deposit.
A party which successfully decrypts the ciphertext is able to collect the deposited coins,
which serves as an additional incentive to perform expensive computations to decrypt
the message (at least for the first successfully-decrypting party). Therefore, in our termi-
nology, the scheme from [35] is a timed-release encryption scheme in the classical sense
of Rivest, Shamir, and Wagner [33], where decryption is additionally incentivized by a
Bitcoin deposit, but not a time-lock encryption scheme in our sense, where ciphertexts
essentially decrypt “automatically” (given the public computational reference clock)
and the plaintext becomes publicly available.

Among many examples of timed-release encryption schemes in the sense of Rivest,
Shamir, and Wagner [33], the survey in [28] (referring to [26]) describes the idea to
combine “public keys”, which are generated from a public seed with a pseudorandom
number generator, with a special-purpose cryptocurrency where “mining” of coins cor-
responds to computing the corresponding secret keys. As already mentioned in [26],
we do not know how to make this idea work. The reason is that cryptocurrencies and
time-lock encryption inherently require that progress in the underlying computations
can be made only sequentially (in [26] this is called “progress-free”). For example, Bit-
coin achieves sequentiality by making each block in the block chain dependent on all
previous blocks. Thus, the approach of [26] requires the existence of “progress-free se-
quences of public keys”. We are not aware of any proof-of-concept construction of such
sequences, and it is unclear whether these objects exists. Moreover, in order to encrypt
with the approach described in [28, 26] for “time τ”, one would already need to know
at least the τ -th public key in the sequence, which clearly contradicts sequentiality.

2 Time-Lock Encryption

In this section we will first formally define secure time-lock encryption, computational
reference clocks, and their associated relations. Then we describe a generic construction
of time-lock encryption from witness encryption.
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On formally defining time-lock encryption. Defining security of time-lock encryption
schemes will require a slightly more fine-grained notion of “computational hardness”
than most other cryptographic primitives. We will consider two Turing machinesA and
C, which both attempt to solve the same polynomial-time solvable computational prob-
lem. We will assume that C has access to significantly more computational resources
than A, such that it is infeasible for A to solve the problem faster than C. Clearly, mod-
eling both A and C simply as polynomial-time algorithms is not useful here, because
then both will able to solve the computational problem easily. We will overcome this
by making the concrete bounds on the running times of algorithms A and C explicit.

A remark on nomenclature. We will have to deal with two different notions of “time”.
First, the running time of algorithms, usually measured in the number of computational
steps an algorithm performs. Second, our computational equivalent of physical time,
measured in some abstract discrete time unit. To avoid ambiguity, we will use the word
“time” only for our computational equivalent of physical time. Rather than specifying
the “running time” of an algorithm, we will specify the “number of operations” per-
formed by the algorithm, assuming that all algorithms are executed on universal Turing
machines with identical instruction sets. For example, we will write “algorithm A per-
forms t operations” instead of “algorithm A runs in time t”.

2.1 Definitions

Definition 1. Let R be a relation. We say that R is an NP-relation, if there exists a
deterministic polynomial-time (in |x|) algorithm that, on input (x,w), outputs 1 if and
only if (x,w) ∈ R.

Computational reference clocks. The concepts of computational reference clocks and
their associated relations will be necessary to define time-lock encryption.

Definition 2. A computational reference clock is a stateful probabilistic machine C that
outputs an infinite sequence w1, w2, . . . in the following way. The initial state of C is
w0. On input a symbol ⊥, it runs a probabilistic algorithm fC which computes wτ =
fC(wτ−1) and outputs wτ .

We write wτ
$← C(τ) for τ ∈ N to abbreviate the process of executing the clock τ

times in a row on input ⊥, starting from initial state w0, and outputting the state wτ of
C after τ executions.

Intuition for Definition 2. The intuition behind this definition is that the machine C
performs an iterative, public computation, which iteratively computes fC . C outputs its
complete internal state after each execution, therefore no secret keys or other secret
values can be hidden inside C. Algorithm fC is public, too.

When executed for the τ -th time, the machine responds with the current state of the
computation at “time” τ . Intuitively, wτ serves as a “witness” that the current time is
“at least τ”.

Definition 2 will be useful for the construction of secure time-lock encryption,
whenever it is computationally very hard, but not completely infeasible, to compute
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wτ from wτ−1. Think of C as a very fast machine that works on solving an infinite
sequence of computational puzzles. Jumping slightly ahead, we will later instantiate
C with the collection of all Bitcoin miners that contribute to expanding the publicly
known Bitcoin block chain. When executed for the τ -th time, the machine returns the
block chain of length τ .

Definition 3. We say that relation R is associated to C, if R is an NP-relation, and for
all x ≤ τ holds that

Pr
[
(1x, wτ ) ∈ R : wτ

$← C(τ)
]
= 1

Intuition for Definition 3. The purpose of the relation is to describe which values wτ
are acceptable as a “witness for time τ”. Note that it makes sense to accept a witness
wτ with “for time τ” also as a witness for any “earlier time” x with x ≤ τ . Hence we
require that (1x, wτ ) ∈ R holds for all x ≤ τ .

Definition 4. We say that a computational reference clock C is (R, t, ε)-secure, if for all
τ ∈ N and all adversaries A that have access to computational reference clock C and
perform at most t operations holds that Pr[ExpC,R,Aclk (1λ) = 1] ≤ ε, where ExpC,R,Aclk is
the following experiment.

ExpC,R,Aclk (1λ) :

(1τ , wτ )
$← AC(1λ)

Return (1τ , wτ ) ∈ R

A may query C at most τ(λ)− 1 times.

Intuition for Definition 4. Definition 4 essentially requires a lower bound on the number
of operations that have to be performed in order to perform the same computations as C.
For certain choices of C andR it will be reasonable to assume that breaking the security
of (C, R) with success probability at least ε requires to perform at least t′ operations,
where t′ may be a (large) polynomial with t < t′. This will be useful when we consider
a particular instantiation of C that gathers huge computational resources, such that it is is
able to perform t′ operations in reasonable time, and adversaries for which performing
t operations within the same time is infeasible.

For concreteness, think of C as the collection of all Bitcoin miners, which are able
to perform a very large number t′ of operations within a certain period of time. We will
consider adversaries which will only be able to perform t � t′ operations within the
same time.

Remark 1. In our Bitcoin-based instantiation of a computational reference clock C, the
adversary will also be able to modify the state of C to a certain degree (for instance, by
executing Bitcoin transactions). The above definition can easily be extended to capture
this, see Appendix 2.3 for details.
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Time-lock encryption. Based on the notion of computational reference clocks, we can
now define time-lock encryption schemes and their security.

Definition 5. A time-lock encryption scheme for computational reference clock C with
message spaceM consists of two polynomial-time algorithms (EncTL,DecTL).

Encryption. The encryption algorithm c
$← EncTL(1

λ, τ,m) takes as input the se-
curity parameter λ, an integer τ ∈ N, and a message m ∈ M. It computes and
outputs a ciphertext c.

Decryption. The decryption algorithm DecTL(w, c) takes as input w ∈ {0, 1}∗ and
ciphertext c, and outputs a message m ∈M or a distinguished error symbol ⊥.

Correctness. For correctness we require that

Pr

m = m′ :
c

$← EncTL(1
λ, τdec,m)

wτ
$← C(τ)

m′ := DecTL(wτ , c)

 = 1

for all λ ∈ N, all τ ∈ N with τ ≥ τdec, and all m ∈M.

Definition 6. We say that a time-lock encryption scheme Π = (EncTL,DecTL) for C
is (t, ε)-secure, if for all adversaries A = (A0,A1) performing at most t operations
holds that Pr[ExpΠ,Atl (1λ) = 1] ≤ ε, where ExpΠ,Atl (1λ) is the following experiment.

ExpΠ,Atl (1λ) :

(m0,m1, 1
τ , st)

$← AC0 (1λ); b
$← {0, 1}

c
$← EncTL(1

λ, τ,mb); b′
$← AC1 (1λ, c, st)

Return b = b′

We require that |m0| = |m1|. The adversary is allowed to make at most τ − 1 queries
to C in total.

Intuition for Definition 6. The intuition behind this security definition is essentially that
no adversary should be able to distinguish an encryption of m0 from an encryption of
m1 before C has output w with (1τ , w) ∈ R. At a first glance it might appear that secu-
rity in this sense is impossible to achieve whenever C is a polynomial-time algorithm,
because the adversary could simply perform the same computations as C. However, re-
call that we put an explicit bound t on the number of operations that A may perform.
This makes this definition useful when it is reasonable to assume that the number of op-
erations t that can be performed within a certain time by the adversary is much smaller
than the (also polynomially bounded, but much larger) number of operations t′ required
to compute w with (1τ , w) ∈ R.

Remark 2. Note that we require the adversary A0 in Definition 6 to output τ in unary.
This implicitly forces A to output τ ∈ N with is not too large (of exponential size,
for instance), which would not be achievable by our construction described below. We
do not see this as a restriction, because a time-lock encryption scheme that allows a
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polynomially-bounded number of “time slots” appears sufficient for all conceivable
applications.

Note also that (m0,m1, 1
τ ) may depend on the responses of clock C. One may

define weaker security notions, however, we think that this form of adaptive security is
the “right” one for time-lock encryption.

2.2 Constructing Time-Lock Encryption from Witness Encryption

Witness encryption. Witness encryption schemes were introduced by Garg et al. [24],
and extended to extractable witness encryption in [27, 7, 13]. The following definition
is based on [7].

Definition 7. A witness encryption scheme for relation R with message space M ⊆
{0, 1}∗ consists of two polynomial-time algorithms (EncR,DecR).

Encryption. The encryption algorithm c
$← EncR(1

λ, x,m) takes as input the security
parameter λ, a string x ∈ {0, 1}∗, and a message m ∈M. It outputs ciphertext c.

Decryption. The decryption algorithm DecR(w, c) takes as input w ∈ {0, 1}∗ and
ciphertext c, and outputs a message m ∈M or a distinguished error symbol ⊥.

Correctness. For correctness we require that

Pr
[
m = m′ : c

$← EncR(1
λ, x,m),m′ = DecR(w, c)

]
= 1

for all λ ∈ N, all (x,w) ∈ R, and all m ∈M.

Following [27, 7, 13], we will say that a witness encryption scheme is secure, if
the only way for an adversary to learn any non-trivial information about a message
encrypted for statement x is to “know” a witness w for (x,w) ∈ R. This is formalized
in the following definition.

Definition 8. We say that a witness encryption schemeΠ = (EncR,DecR) for relation
R is (R, twe, text, ε)-secure, if for all adversariesA = (A0,A1) performing at most twe
operations there is an extractor algorithm E that performs at most text operations such
that Pr[ExpΠ,Awe (1λ) = 1] ≤ ε, where ExpΠ,Awe is the following experiment.

ExpΠ,Awe (1λ) :

(x,m0,m1, st)
$← A0(1

λ); b
$← {0, 1}; c

$← EncR(1
λ, x,mb)

b′
$← A1(1

λ, st , c); w
$← E(1λ, x,m0,m1, st , c)

Return (b = b′ ∧ (x,w) 6∈ R)

We require that |m0| = |m1|.

Time-lock encryption from witness encryption. Let C be a computational reference
clock and let R be an NP-relation, such that R is associated to C. Let (EncR,DecR)
be a witness encryption scheme for R. Define algorithms (EncTL,DecTL) of a time-
lock encryption scheme as

EncTL(1
λ, τ,m) := EncR(1

λ, 1τ ,m) and DecTL(w, c) := DecR(w, c) (1)

11



Let us first prove correctness. We have to show that

Pr

m = m′ :
c

$← EncR(1
λ, 1τdec ,m)

wτ
$← C(τ)

m′ := DecR(wτ , c)

 = 1

holds for all λ ∈ N, all τ ≥ τdec, and all m ∈ {0, 1}. The correctness of the witness
encryption scheme guarantees that

Pr
[
m = m′ : c

$← EncR(1
λ, 1τdec ,m),m′ = DecR(w, c)

]
= 1

for all λ ∈ N, all w with (1τdec , w) ∈ R, and all m ∈M. Thus, it remains only to show
that

Pr[(1τdec , wτ ) ∈ R : wτ
$← C(τ)] = 1

holds for all τ ≥ τdec. Since R is associated to C, this follows by Definition 2.

Theorem 1. Algorithms (EncTL,DecTL) form a (ttl, εtl)-secure time-lock encryption
scheme for computational reference clock C with

εtl ≤ εclk + εwe

provided that the witness encryption scheme is (R, ttl + t′, text, εwe)-secure, and refer-
ence clock C is (R, 2 · ttl + text + t′′, εclk)-secure with respect to Definition 4, where t′

and t′′ are small, the concrete values will become clear in the proof.

Intuition for the proof of Theorem 1. We reduce security of the time-lock encryption
scheme to the security of the underlying witness encryption scheme and the security of
the computational reference clock. Intuitively, we want to use the existence of an ex-
tractor E , which is guaranteed by the security of the witness encryption scheme, to turn
any adversary Atl on the time-lock encryption scheme into an adversary Aclk against
the security of the computational reference clock. This contradicts the assumption about
the security of C. Adversary Aclk essentially works as follows.

1. First, Aclk constructs a witness encryption adversary Awe from time-lock encryp-
tion adversary Atl.

2. Then it runs the witness encryption extractor E for Awe, to extract a witness wτ
from Atl.

3. Finally, it uses the witness wτ extracted from Awe to break the security of C.

We will then bound the success probability of Aclk, and use this to derive a bound on
the success probability of Atl.

Note that in Step 1 we have to turn the algorithm Atl into an algorithm Awe, such
that we can run extractor E on Awe. However, Atl is an oracle machine, which expects
access to an oracle C and the witness encryption extractor E is not guaranteed to work
for oracle machines. We show that it is possible to overcome this issue by letting EC
query its oracle on all required values τ in advance, and then hard-coding the responses
into adversary Awe.

12



Proof. Assume towards contradiction that there exists an adversary Atl which breaks
the security of the time-lock encryption scheme by performing at most ttl operations,
but with success probability

εtl > εclk + εwe

Consider the following adversary Aclk against C, which runs Atl as a subroutine.

1. ACclk runs (m0,m1, τ, st)
$← Atl

C
0 (1

λ) by relaying all oracle queries and the re-
sponses betweenAtl

C
0 and C. Let cnt denote the number of oracle queries issued by

Atl0. Then ACclk defines Awe0 as the algorithm which outputs (1τ ,m0,m1, st) on
input 1λ. Clearly, Awe0 does not issue any queries to C.

2. ThenACclk continues to query C further τ−1−cnt times, until C was queried exactly
τ − 1 times in total (including Step 1). For i ∈ {cnt+ 1, . . . , τ − 1} let wi denote
the i-th response of C.

3. ACclk creates a procedure Csim which takes as input a symbol ⊥ and outputs wcnt+i

when queried for the i-th time. Then ACclk defines Awe1 := Atl
Csim
1 and Awe :=

(Awe0,Awe1). Note that Awe1 does not issue any oracle queries, because it is pro-
vided with procedure Csim instead of oracle C. Note also that procedure Csim is able
to simulate C perfectly for all at most τ − 1− cnt queries issued by Atl1.

4. Then Aclk computes c $← EncR(1
λ, 1τ ,mb) for uniformly random b

$← {0, 1}.
5. Finally, ACclk runs the extractor w $← E(1τ ,m0,m1, st , c) for Awe, and returns

whatever E returns.
6. (Only for the analysis: ACclk executes b′ $← Awe1(1

λ, st , c).)

The rigorous analysis of the success probability of this adversary Aclk requires to
add the last step to Aclk. We stress that this last step is never executed by Aclk, we
include it only for the analysis of its success probability.

Overview. Note that Pr[ExpC,R,Aclk

clk (1λ) = 1] is the probability thatACclk outputsw with
(1τ , w) ∈ R in the experiment from Definition 4. Therefore we have

Pr[ExpC,R,Aclk

clk (1λ) = 1] = Pr [(1τ , w) ∈ R]
≥ Pr [(1τ , w) ∈ R ∧ b = b′]

= Pr [b = b′]− Pr [(1τ , w) 6∈ R ∧ b = b′] (2)

From here, we will proceed in three steps.

1. We will first show that Pr [(1τ , w) ∈ R ∧ b = b′] in (2) is at most εwe.
2. Then we will show that the term Pr [b = b′] in (2) is at least εtl.
3. Finally, we show that these bounds contradict our initial assumption that the success

probability of Atl satisfies εtl > εclk + εwe.

Step 1: an upper bound on Pr [(1τ , w) ∈ R ∧ b = b′]. Note that Awe is a witness en-
cryption adversary, which performs at most ttl + t′ operations. Here t′ is the number of
operations required to execute procedure Awe0 once and procedure Csim at most τ − 1
times. Note that both procedures simply output hard-coded values, therefore t′ is rela-
tively small.
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By the (R, ttl + t′, text, εwe)-security of the witness encryption scheme, there exists
an extractor E that performs at most text operations and outputs a witness w such that

εwe ≥ Pr [b = b′ ∧ (1τ , w) 6∈ R] (3)

Step 2: a lower bound on Pr [b = b′]. Note thatAclk simulates the time-lock encryption
security experiment for Atl perfectly. In particular, it relays all oracle queries between
Atl0 and C. The only difference is that instead of executing Atl

C
1 , it executes Awe1 =

Atl
Csim
1 . But, by construction of Csim, the responses of Csim are distributed identically to

the responses of C. Thus, the probability thatAwe1 outputs b′ with b = b′ is equal to the
success probability of the time-lock encryption adversary, which yields

Pr[b = b′] = εtl (4)

Step 3: a contradiction. Note that Aclk runs Atl0 once, which costs at most ttl oper-
ations. Then it issues exactly τ − 1 < ttl queries to C, performs a minor amount of
t′′ operations to create procedure Csim, and finally performs at most text operations to
execute E . Thus, Aclk performs at most 2 · ttl + text + t′′ operations in total. By the
assumed (R, 2 · ttl + text + t′′, εclk)-security of the computational reference clock C, it
must hold that Pr[ExpC,R,Aclk

clk (1λ) = 1] ≤ εclk.
Plugging this bound and the bounds from (5) and (4) into Inequality (2), we obtain

εclk ≥ Pr[ExpC,R,Aclk

clk (1λ) = 1] ≥ Pr [b = b′]− Pr [(1τ , w) 6∈ R ∧ b = b′]

≥ εtl − εwe

which yields

εtl ≤ εclk + εwe

However, this contradicts the assumption that Atl breaks the security of the time-lock
encryption scheme with success probability εtl > εclk + εwe. ut

2.3 Extension to Adaptively-Secure Computational Reference Clocks

In our Bitcoin-based instantiation of a computational reference clock C described below,
the adversary will also be able to modify the state of C to a certain degree (for instance,
by executing Bitcoin transactions). This is not yet captured by Definitions 2 and 4 and
the proof of Theorem 1. In this section, we extend the definitions and the security proof
from the Section 2 to this case.

Definition 9. A computational reference clock with auxiliary input is a stateful prob-
abilistic machine C that outputs an infinite sequence w1, w2, . . . in the following way.
The initial state of C is w0. On input a string aux ∈ {0, 1}∗, it runs a probabilistic
algorithm fC which computes wτ = fC(wτ−1, aux) and outputs wτ .
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Intuition for Definition 9. The main difference to Definition 2 is that now we allow the
output wτ to depend on some auxiliary input aux, which is motivated by the specific
computational reference clock given by the Bitcoin block chain. In Bitcoin the auxil-
iary input will consist of a list of Bitcoin transactions broadcasted by Bitcoin users in
the network. An adversary may influence this list of transactions to some degree, by
performing and broadcasting transactions. We will reflect this in the security definition
given below, by letting the adversary choose the entire auxiliary input for each iteration
of the fC-function.

Definition 10. We say that a computational reference clock C is (R, t, ε)-adaptively se-
cure, if for all τ ∈ N and all adversariesA that have access to computational reference
clock C and perform at most t operations holds that Pr[ExpC,R,Aclk (1λ) = 1] ≤ ε, where
ExpC,R,Aclk is the following experiment.

ExpC,R,Aclk (1λ) :

w := w0; (1
τ , wτ )

$← AO(·)(1λ)
Return (1τ , wτ ) ∈ R

O(aux) :
w := fC(w, aux)
Return w

A may query O at most τ(λ)− 1 times.

Intuition for Definition 10. The main difference to Definition 4 is that now the adversary
has access to a stateful oracle O, which takes as input aux chosen by the adversary
(possibly adaptively and depending on previous oracle responses). The initial state of
the oracle is equal to the initial state w0 of reference clock C. When queried on input
aux, the oracle computes fC(w, aux), using its internal state w and the adversarially-
provided input aux. It updates its internal state by assigning w = fC(w, aux), and
returns w.

Remark 3. Note that we do not have to adapt the security definition for time-lock en-
cryption (Definition 6) to adaptive computational reference clocks, because Definition 6
already fits to the adaptive setting. Technically, we would have to adopt the correctness
requirement in Definition 5 by adding the additional auxiliary inputs aux1, . . . , auxτ of
each clock iteration. However, this is straightforward and therefore omitted. We only
note that correctness should hold for all possible auxiliary inputs, of course.

Theorem 2. Algorithms (EncTL,DecTL) from Section 2.2 form a (ttl, εtl)-secure time-
lock encryption scheme for computational reference clock C with

εtl ≤ εclk + εwe

provided that the witness encryption scheme is (R, ttl + t′, text, εwe)-secure, and ref-
erence clock C is adaptively (R, 2 · ttl + text, εclk)-secure with respect to Definition 4,
where t′ is the time required to evaluate fC at most τ − 1 times.

Proof outline for Theorem 2. The proof of Theorem 2 is nearly identical to the proof
of Theorem 1. The only difference is that now we have to treat the fact that the ad-
versary Aclk in the adaptive clock security experiment is allowed to submit (possibly
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adaptively-chosen) auxiliary input values to the clock. Therefore the step from the proof
of Theorem 1, whereAclk constructs the simulated clock Csim by querying C on all pos-
sible inputs in advance, to turn oracle-machine Atl = (Atl0,Atl1) into a machine Awe

without oracle access, fails. To overcome this difficulty, we prove Theorem 2 by provid-
ingAtl1 with an algorithm Cfsim, which computes function fC (rather than just returning
hard-coded constants).

Proof. Again we assume towards contradiction that there exists an adversaryAtl which
breaks the security of the time-lock encryption scheme by performing at most ttl oper-
ations, but with success probability

εtl > εclk + εwe

Consider the following adversary Aclk against C, which runs Atl as a subroutine.

1. ACclk runs (m0,m1, τ, st)
$← Atl

C
0 (1

λ) by relaying all oracle queries and the re-
sponses between Atl

C
0 and C. Let w denote the state returned by C in response to

the last query issued by Atl0. Then ACclk defines Awe0 as the algorithm which out-
puts (1τ ,m0,m1, st) on input 1λ. Clearly, Awe0 does not issue any queries to C.

2. Next, ACclk creates a procedure Cfsim. On input aux ∈ {0, 1}∗, Cfsim computes an
updated state w := fC(w, aux) and outputs w. Then ACclk defines Awe1 := Atl

Csim
1

and Awe := (Awe0,Awe1). Note that Awe1 does not issue any oracle queries, be-
cause function fC is computed by procedure Csim instead of oracle C. Note also that
procedure Csim is able to simulate C perfectly for all queries issued by Atl1.

3. Then Aclk computes c $← EncR(1
λ, 1τ ,mb) for uniformly random b

$← {0, 1}.
4. Finally, ACclk runs the extractor w $← E(1τ ,m0,m1, st , c) for Awe, and returns

whatever E returns.
5. (Only for the analysis: ACclk executes b′ $← Awe1(1

λ, st , c).)

The rigorous analysis of the success probability of this adversary Aclk is nearly
identical to the proof of Theorem 1. The only difference is in Step 1 of the proof. As in
Equation (2), we have

Pr[ExpC,R,Aclk

clk (1λ) = 1] ≥ Pr [b = b′]− Pr [(1τ , w) 6∈ R ∧ b = b′]

Step 1: an upper bound on Pr [(1τ , w) ∈ R ∧ b = b′]. Note that Awe is a witness en-
cryption adversary, which performs at most ttl + t′ operations. Here t′ is the number of
operations required to execute procedure Awe0 once and procedure Cfsim at most τ − 1
times. Note that t′ may become relatively large, compared to the value of t′ from the
proof of Theorem 1, but it is still polynomially-bounded.

By the (R, ttl + t′, text, εwe)-security of the witness encryption scheme, there exists
an extractor E that performs at most text operations and outputs a witness w such that

εwe ≥ Pr [b = b′ ∧ (1τ , w) 6∈ R] (5)

Step 2: a lower bound on Pr [b = b′]. With exactly the argument from Step 2 of the
proof of Theorem 1, we obtain Pr[b = b′] = εtl (cf. Equation 4).
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Step 3: a contradiction. With exactly the argument from Step 3 of the proof of Theo-
rem 1, we obtain εtl ≤ εclk + εwe, which contradicts the assumption that Atl breaks the
security of the time-lock encryption scheme with success probability εtl > εclk + εwe.

ut

3 Time-Lock Encryption based on Bitcoins

In this section, we will first describe the necessary background on Bitcoins. Then we
explain how the scheme from Section 2.2 can be instantiated based on Bitcoins. Finally,
we discuss some engineering tasks that arise in the context of Bitcoin-based time-lock
encryption.

3.1 The Bitcoin Block Chain

Cryptocurrencies are a cryptographic equivalent of regular currencies. The concept of
decentralized cryptocurrencies has recently received a lot of attention, mostly moti-
vated by the tremendous success of the most prominent decentralized cryptocurrency
Bitcoin [32] and the emerge of a large number of alternative decentralized cryptocur-
rencies.4

Using Bitcoin as an example, we will show how decentralized cryptocurrencies can
be used as a concrete instantiation of the abstract concept of computational reference
clocks. We stress, however, that Bitcoin serves merely as one concrete example. For
instance, other decentralized cryptocurrencies also provide mechanisms that may be
used to instantiate such reference clocks.

A complete description of the full Bitcoin system is out of scope of this paper.
In particular, we omit all details about Bitcoin transactions, and give only a simplified
description that captures the relevant features of Bitcoins. In the sequel we focus on one
central building block of Bitcoin, the so-called Bitcoin block chain. We refer to [32] for
a description of the full system.

The Bitcoin block chain. The block chain is used in Bitcoin to prevent double-spending
of Bitcoins.5 It is a sequence of tuples

(T1, r1, D1, B1), . . . , (Ts, rs, Ds, Bs)

that satisfies
Bi := H(Ti, ri, Di, Bi−1)

whereH is a cryptographic hash function based on SHA-256 andB1, . . . , Bs are called
blocks. B0 is a distinguished value, called the genesis block, which is a hard-coded
constant in the Bitcoin software. The values Ti, ri, Di are described below.

Bitcoin users may attempt to find the next block Bs+1 in the chain, which is a com-
putationally expensive (but feasible) task, because Bs+1 must meet certain conditions

4 See http://altcoins.com/ for an overview of Bitcoin alternatives.
5 For readers not familiar with digital currencies, we give additional background information in

Appendix A.
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that we will describe below. Users contributing to this search are called miners. The
main incentive to contribute significant computational resources to the progress of the
block chain is that for each new block the respective miner is rewarded with a certain
amount of Bitcoins.6

Each miner keeps a full local copy of the block chain, and collects all recent trans-
actions broadcasted by other Bitcoin peers. For each transaction, the miner first checks
if it is “malicious”, that is, if it contains any coins that, according to the transaction
ledger, are not in possession of the spending party. These transactions are discarded.
Ts+1 denotes the list of new transactions which are not discarded. The miner now at-
tempts to approve these transactions, by finding that a new block Bs+1 in the block
chain which includes these transactions. To this end, the miner increments a counter
value rs+1, until the hash

Bs+1 := H(Ts+1, rs+1, Ds+1, Bs)

satisfies Bs+1 ≤ Ds+1, where the binary string Bs+1 is interpreted canonically as an
integer, and Ds+1 is the current value of a variable public system parameter called the
target. The size of the target determines the computational hardness of finding new
blocks. It is related to the Bitcoin difficulty by the definition

difficulty :=
σ

target

where σ = (216 − 1) · 2208 is a constant, called the Bitcoin maximum target. Each new
block Bs+1 serves as a proof of work for the computational resources contributed by
the miner that foundBs+1. New blocks are broadcasted to all other Bitcoin peers, along
with their associated data (Ts+1, rs+1, Ds+1, Bs). All miners receiving the new block
Bs+1 will then turn to searching for the next block Bs+2.

It may happen that at some point the block chain forks (for instance, if it happens
that two miners simultaneously find a new block Bs+1), such that different miners con-
tinue their work on different branches of the fork. This problem is resolved in Bitcoin by
considering only these transactions as valid, which correspond to the longest branch of
the fork. Only newly mined blocks that correspond to the longest branch are rewarded.
This provides an incentive for miners to contribute only to the longest branch.

Remark 4. Actually, the “length” of a chain in Bitcoin is not determined by the number
of blocks, but by sum of the difficulty of all blocks in the chain. This is done to pre-
vent that an adversary forks the chain by appending some low-difficulty blocks.7 This
distinction is not relevant for our paper. As in [3, 1], we will therefore assume that the
longest chain also corresponds to the chain with the largest sum of difficulties. When
referring to “the Bitcoin block chain” in the sequel, we will mean the longest chain.

Note that the complexity of the problem of finding a new block Bs+1 with Bs+1 ≤
Ds+1 grows with decreasing Ds+1.8 This allows to dynamically modify the complex-
ity of finding a new block by modifying the difficulty. The Bitcoin system frequently

6 25 Bitcoins per block, at a value of approximately 235 US-$ per Bitcoin, in May 2015.
7 See https://en.bitcoin.it/wiki/Block_chain.
8 Under the assumption that H is a sufficiently secure hash function.
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adjusts the difficulty, depending on the computational power contributed by miners to
the progress of the Bitcoin block chain,9 such that about every 10 minutes a new block
is appended to the block chain.

Important properties of the Bitcoin block chain. The Bitcoin block chain has the fol-
lowing two properties, which are particularly relevant to our work.

– Bitcoin miners have an incentive to contribute significant computational resources
to the progress of the block chain, and to publish their solutions in order to get
rewarded for their effort.
The total computing power contributed to the Bitcoin block chain is huge, as of
May 2015 the network computes more than 350 · 1015 ≈ 258 hashes per second.

– The Bitcoin block chain grows constantly and with predictable progress. The diffi-
culty, and thus the size of the target, is frequently adjusted (about every two weeks)
to the computational power currently available in the Bitcoin network, such that
about every 10 minutes a new block is appended to the chain.

3.2 NP-Relations Based on Hash Block Chains

Let H : {0, 1}∗ → {0, 1}d be a hash function for some constant d. Let β ∈ {0, 1}d,
and let δ : N → [0, 2d − 1] be a function with polynomially-bounded description. We
will call β the starting block and δ the target bound function.

Definition 11. Let Rβ,δ be the relation where (1x, w) ∈ Rβ,δ if and only if

w = ((T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ ))

and w satisfies all the following properties:

– |Ti| and |ri| are polynomially bounded, and Di ∈ [0, 2d − 1]
– w contains at least x tuples (Ti, ri, Di, Bi)
– B1 = H(T1, r1, D1, β)
– Bi = H(Ti, ri, Di, Bi−1) for all i ∈ [2, x]
– δ(i) ≥ Bi for all i ∈ [1, x], where we interpret bit strings B1, . . . , Bx canonically

as integers.

Note that Rβ,δ is an NP-relation, because there is an efficient deterministic algo-
rithm that, given (1x, w), β, and δ, verifies that (1x, w) ∈ Rβ,δ by checking the condi-
tions from Definition 11. Note also that the problem of finding a witness w for a given
statement 1x corresponds to the problem of finding a valid block chain w of length x
with respect to (β, δ), which gets increasingly difficult with decreasing δ.

3.3 Time-Lock Encryption from Bitcoins

We will now describe the Bitcoin-based computational reference clock Cbtc along with a
suitable associated relation Rβ,δ , such that we may assume that Cbtc is (Rβ,δ, t)-secure
for reasonable t. As described in Section 2.2, we can then combine these building blocks
with witness encryption, to obtain a Bitcoin-based time-lock encryption scheme.

9 See https://bitcoinwisdom.com/bitcoin/difficulty for a chart depicting
the recent development of the difficulty in Bitcoin.
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NP-relations based on the Bitcoin block chain. Let H : {0, 1}∗ → {0, 1}256 be the
hash function used in Bitcoin. Let Rβ,δ be the relation from Definition 11, instantiated
with H and the following parameters β and δ.

– Set β := B0, where B0 is the Bitcoin genesis block.
– Fix a target bound function δ : N→ [0, 2256 − 1].

Bitcoin-based computational reference clock. Let fbtc be the function that expands the
Bitcoin block chain. That is, on input

wτ−1 = (T1, r1, D1, B1), . . . , (Tτ−1, rτ−1, Dτ−1, Bτ−1)

and auxiliary input aux = Tτ , it computes and outputs the new state wτ such that
wτ = (T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ ) with H(Tτ , rτ , Dτ , Bτ−1) = Bτ ≤ Dτ ,
where Dτ is the current Bitcoin target.

Let Cbtc denote the computational reference clock that computes fbtc. Then the state
of Cbtc at “time” τ consists of the first τ tuples of the Bitcoin block chain. Recall that
the progress of the chain is relatively predictable. Assuming that the current length
of the chain is τ tuples, and that new blocks will continuously be found at a rate of
approximately one block every 10 minutes, then we know that in approximately 10 · x
minutes the block chain will contain τ + x tuples. x Note that the relations Rβ,δ from
Definition 11 are associated to Cbtc in the sense of Definition 3, provided that β = B0

and δ satisfies δ(i) ≥ Bi for all i ∈ N. Unfortunately, the latter is not guaranteed, as it
depends on the choice of the target bound function δ and the future development of the
size of the Bitcoin target. Therefore δ must be chosen carefully.

Choosing δ carefully. Let x such that x > τ , that is, no witness w for (1x, w) ∈ Rβ,δ
is yet contained in the Bitcoin block chain. We note that any sequence

w = ((T1, r1, D1, B1), . . . , (Tx, rx, Dx, Bx)

computed by the Bitcoin network in the future is only a potential witness for (1x, w) ∈
Rβ,δ . This is because relation Rβ,δ depends on the target bound function δ. By defini-
tion, w will only be a witness for (1x, w) ∈ Rβ,δ , if Bi ≤ δ(i) holds for all i ∈ [1, x]. It
might happen that at some point γ ∈ [τ +1, x] in the future the Bitcoin target increases
to a value Dγ such that Dγ ≥ δ(γ). In this case we will have (1x, w) 6∈ Rβ,δ .

It is possible to overcome this by choosing δ carefully. To this end, consider the
following observations.

– First, note that we must not choose δ too small. More precisely, we must not choose
δ such that there exists i ∈ N with δ(i) < Bi. This is because then our reference
clock Cbtc would not provide suitable witness wi for (1i, wi) ∈ Rβ,δ . Thus, the
time-lock encryption scheme would not be correct.

– Observe also that δ must not be too large. For instance, recall that Bi ∈ {0, 1}d.
Thus, we could try to simply set δ such that δ(i) = 2d for all i ∈ N. Then δ(i) > Bi
holds trivially for all i ∈ N.
However, then it becomes very easy to compute witnesses wi for (i, wi) ∈ Rβ,δ ,
by simply evaluating the hash function H i-times to build a chain of length i. Es-
sentially, we have eliminated the size restriction on the Bi values, such that clock
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Cbtc is clearly not (Rβ,δ, t)-secure for any such relation Rβ,δ and any reasonable t.
The resulting time-lock encryption scheme would be trivially insecure.

Ideally, δ is chosen such that δ(i) = Di matches the Bitcoin target parameter Di

for all future i > τ . However, since Di depends on the computational resources that
currently contribute to the Bitcoin network, this would require to predict the amount
of these resources. Therefore it seems impossible to predict Di exactly. But we can try
to approximate Di with δ as closely as possible, such that it always holds that δ(i) =
Di − εi for small values εi.

Dependence on the sender’s preferences. Note that the “right” choice of δ depends on
the preference of the sender, which one of the following options is more desirable for
the encrypted message.

– If δ is chosen too small, then the witness required to decrypt the message may never
be contained in the public Bitcoin block chain. This may happens if the Bitcoin
difficulty decreases faster than expected by the encrypting party choosing δ. Thus,
it may be infeasible to decrypt the ciphertext in reasonable time, such that nobody
will ever learn the message (at least not within close time distance to the desired
deadline).

– If δ is chosen too large, then an adversary that is able to perform a very large number
of computations within a short time may be able to decrypt the message before
the deadline, even though its computational resources are significantly below the
resources of all Bitcoin miners.

Since it is not clear which of the above options is preferable in general, we think it
makes most sense to let the sender choose δ application-dependent, or possibly even in-
dividually for each encrypted message. If it is more desirable that an encrypted message
remains secret (possibly for a much longer time than originally desired by the sender),
rather than being decrypted before the deadline, then one would choose a very small
target bound function δ. If it is preferred that the message is rather decrypted earlier
than possibly never, then one would choose δ larger. The substantial computational re-
sources currently contributed to the Bitcoin network provide a generous margin of error
for the choice of δ.

We consider the “right” choice of δ as an application-dependent engineering prob-
lem, which we will discuss in Section 3.4, along with other engineering questions aris-
ing from the Bitcoin-based instantiation of time-lock encryption.

Security of the Bitcoin-based time-lock encryption scheme. The following theorem fol-
lows from Theorem 2 (the adaptive variant of Theorem 1, see Appendix 2.3).

Theorem 3. Let (EncTL,DecTL) be the time-lock encryption scheme obtained from
combining computational reference clock Cbtc with a witness encryption scheme for
relations Rβ,δ by applying the construction from Section 2.2. Then (EncTL,DecTL) is
a (ttl, εtl)-secure time-lock encryption scheme for computational reference clock C with

εtl ≤ εclk + εwe
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provided that the witness encryption scheme is (Rβ,δ, ttl + t′, text, εwe)-secure, and ref-
erence clock C is (Rβ,δ, 2 · ttl + text, εclk)-secure, where t′ is as in Theorem 2.

The assumption that Cbtc is (Rβ,δ, t, ε)-secure for the relations Rβ,δ defined above
and reasonable t and ε, can be analyzed in the Random Oracle Model [8]. To this end,
consider the following lemma.

Lemma 1. Let Rβ,δ be a relation according to Definition 11, instantiated with a ran-
dom oracle H : {0, 1}∗ → {0, 1}d. Let AH be an adversary, which receives as input
(β, δ) and (1τ , wτ ) with (1τ , wτ ) ∈ Rβ,δ , and issues at most t random oracle queries.
Then for all x ∈ N holds that

Pr
[
(1τ+x, w) ∈ R : w

$← AH(1λ, δ, β, 1τ , wτ )
]
≤
(
e · (t+ x) · δmax

x · 2d

)x
where e is Euler’s number and δmax := maxi∈{1,...,x}{δ(τ + i)}.

Proof. We have to bound the probability that AH outputs

w = ((T1, r1, D1, B1), . . . , (Tτ+x, rτ+x, Dτ+x, Bτ+x)

such that w satisfies all conditions of Definition 11. Note that A receives as input
(1τ , wτ ) with (1τ , wτ ) ∈ Rβ,δ , which corresponds to a chain

wτ = ((T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ )

A has to find at least the remaining x tuples (Tτ+i, rτ+i, Dτ+i, Bτ+i), such that

Bτ+i = H(Tτ+i, rτ+i, Dτ+i, Bτ+i−1) ≤ δ(τ + i)

holds for all i ∈ {1, . . . , x}. A necessary condition for this is that A outputs at least
x values whose random oracle hash is smaller than or equal to δmax, where δmax =
maxi∈{1,...,x}{δ(τ + i)}. Note also thatA is able to output at most t+x, namely the at
most t queries h1, . . . , ht to the random oracle, plus the values ht+1, . . . , ht+x returned
by A, where

ht+i := (Tτ+i, rτ+i, Dτ+i, Bτ−1+i)

We will bound the probability that at least x of these t+x values satisfyH(hj) ≤ δmax,
j ∈ {1, . . . , t+ x}.

Each output hj corresponds to an independent Bernoulli experiment, which evalu-
ates to 1 if and only if H(hj) ≤ δmax. Let

Xj :=

{
1, if H(hj) ≤ δmax

0, otherwise

be random variables, and let X denote the random variable X :=
∑t+x
j=1Xj . In order

to bound the probability that X ≥ x, we will apply the Chernoff bound. Note that
the the probability that a single Bernoulli experiment outputs 1 is at most δmax/2

d,
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and the expected number X of experiments that output 1 after (t + x) trials is µ :=
(t+ x) · δmax/2

d. Then we have

Pr[X ≥ x] ≤ exµx

eµxx
=

1

eµ
·
(eµ
x

)x
≤
(
e · (t+ x) · δmax

x · 2d

)x
where e is Euler’s number, the first inequality is the Chernoff bound,10 and the second
inequality uses that µ > 0. ut

Example applications of Lemma 1. To consider some applications of Lemma 1, let
d := 256 to match the output length of the hash function used in Bitcoin, and assume
the current length of the block chain is τ . Let Rβ,δ be a relation with β equal to the
Bitcoin genesis block and constant target bound function δ := 2190.11

As a first example, suppose a time-lock encrypted ciphertext

c = EncTL(1
λ, τ + 6,m)

is given. Note that c can be decrypted when the Bitcoin block chain has reached length
τ + 6, which will most likely happen in about 60 minutes. According to Lemma 1, an
adversary which is capable of evaluating the hash function t = 250 − 1 times is able to
find witness w with (1τ+6, w) ∈ Rβ,δ with probability at most(

e(t+ 1)δ

x2d

)x
≈
(
250+190

2256

)6

=
1

296

Thus, even an adversary which is able to evaluate the hash function about 250 times
within minutes would only have a very small probability of being able to decrypt the
ciphertext before the deadline, provided that the witness encryption scheme is secure.

As another example, suppose a time-lock encrypted ciphertext

c = EncTL(1
λ, τ + 144,m)

is given. Note that c can be decrypted when the block chain has reached length τ +144,
which will most likely happen in about 24 hours. By Lemma 1, an adversary which is
able to evaluate the hash function t = 260−1 times finds a witnessw with (1τ+144, w) ∈
Rβ,δ with probability at most(

e(t+ 1)δ

x2d

)x
≈
(
260+190

2256

)144

=
1

2864

Thus, even an adversary which is able to evaluate the hash function about 260 times
within a few hours would only have a very small probability of being able to decrypt
the ciphertext before the deadline, unless it finds an attack on the witness encryption
scheme.
10 Obtained from the classical formulation Pr[X ≥ (1+`)µ] ≤ e`µ/(1+`)µ(1+`) by substituting
x := (1 + `)µ and ` := x/µ− 1.

11 The current Bitcoin target value on February 11, 2015 is about 2188.63.
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Remark 5. Note that we silently assume in this analysis that the adversary performs its
computations “secretly”, without publishing found blocks in the block chain. Alterna-
tively, an adversary may contribute its resources to the block chain. The analysis of such
adversaries is more involved. We explain this in Section 3.4.

3.4 Variants and Further Analysis

In this section, we will discuss several ideas for solving the engineering tasks and further
questions related to the Bitcoin-based instantiation of time-lock encryption.

Choosing δ for short time periods. Let Rβ,δ for some particular choice of δ, and let

c = EncR(1
λ, 1τdec ,m)

be a time-lock encryption with a witness encryption scheme for R = Rβ,δ . Observe
that for this particular ciphertext we do not need δ(i) ≥ Bi for all i ∈ N in order to be
able to use a witnesses provided by Cbtc to decrypt c. It suffices if δ(i) ≥ Bi holds for
all i ≤ τdec.

Given that the computational resources available in the Bitcoin network were rel-
atively predictable in the past, and that the huge computational power gathered in the
network provides a generous margin of error, we think that it is relatively easy to deter-
mine a suitable target bound function δ for all ciphertexts which should be decrypted
within a short period of time. By “short” we mean hours, days, or a few weeks.

More robust relations and time-lock encryption for long time periods. The longer the
time between encryption and decryption of a ciphertext is, the more difficult it becomes
to find a suitable target bound function δ. One could, however, instead use relations
which are more “robust” than the ones described in Definition 11. For example, a sender
may choose a relation Rβ,δ,ω , which is defined almost identical to the relations Rβ,δ
defined above, with the exception that Rβ,δ,ω accepts

w = (T1, r1, D1, B1), . . . , (Tτ , rτ , Dτ , Bτ )

as a witness for (1τ , w) ∈ Rβ,δ,ω , even if δ(i) ≤ Bi holds at most ω times for i ∈
{1, . . . , τ}. More generally, if a witness encryption scheme for all NP-relations is used
as a building block, then a sender could in principle choose any NP-relation it considers
reasonable here.

On the difficulty of advancing the Bitcoin block chain faster. Note that an adversary
A has two options to advance the Bitcoin block chain faster than one block every ten
minutes.

The first option is that A performs all its computations secretly. This means that
it does not contribute any blocks to the public Bitcoin block chain, but instead keeps
all newly found block secret. This is the approach of an adversary which wants to be
exclusively able to decrypt the ciphertext before the deadline. Note that in this case
the adversary would have to compute all missing blocks to decrypt a ciphertext on its
own. If the target bound function δ is chosen well, such that it closely approximates
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the actual Bitcoin target, then this essentially means that the adversary would have to
perform about the same amount of computations as all Bitcoin miners together (unless
it finds a better algorithm for solving the computational problem processed by the min-
ers). Assuming that no single adversary is capable of performing this large amount of
computations, this is infeasible.

Alternatively, an adversary might not be interested in being exclusively able to de-
crypt the ciphertext before the deadline. Instead, it might simply want that the ciphertext
can be publicly decrypted earlier than desired by the sender. In this case, the adversary
could contribute its computational resources to the public Bitcoin block chain. Even
though the Bitcoin system adjusts the difficulty of advancing the block chain frequently
by modifying the size of the target, note that this happens only relatively slowly, every
2016 blocks. Therefore the difficulty adjustment in Bitcoin is not able to completely
prevent such attacks, it may only cushion its effectiveness. However, an adversary that
aims at a speed-up by, say, 10% would have to contribute additional resources in the
order of 10% of the resources of all other Bitcoin miners together. Thus, the larger the
speedup desired by the adversary, the larger are the computational resources it would
have to contribute. Moreover, the incentive of other Bitcoin miners to contribute their
resources depends on the current difficulty. If this difficulty is too high, then the cost
of contributing resources to Bitcoin mining exceeds the revenue obtainable from Bit-
coin mining. This would deter other Bitcoin miners from further contributing to the
Bitcoin block chain, which cushions the effectiveness of the resources contributed by
the adversary further.

A detailed analysis of adversarial strategies to advance the Bitcoin block chain sig-
nificantly faster than one block every ten minutes therefore needs to take such game-
theoretic aspects into account, it is therefore out of scope of this paper. See [20] for a
related work.

Further game-theoretic aspects. Ideally, the target bound function δ is chosen such
that decrypting the ciphertext earlier would require so many computational resources,
that from a game-theoretic perspective it is more reasonable to use these resources to
perform a different computation. This is always the case when the value of learning
the encrypted message before the deadline is below the revenue obtainable from the
different computation.

In particular, an adversary might gain more revenue from mining Bitcoins directly
than from trying to learn the time-lock encrypted message earlier than others. The rev-
enue obtainable from Bitcoin mining is easily quantifiable, we think this is a very nice
aspect of the Bitcoin-based instantiation of time-lock encryption.

Time-lock encryption beyond Bitcoins. In order to obtain a stable and robust time-lock
encryption scheme from Bitcoin, it is required that Bitcoin miners will continue to con-
tribute significant computational resources to the progress of the Bitcoin block chain.
It is conceivable that Bitcoin will be discontinued at some point in the future. This
may happen, for instance, due to a market crash making Bitcoins worthless, or simply
because its popularity decreases over time, possibly replaced by a different cryptocur-
rency. This is of course unpredictable.
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We stress that the approach for constructing time-lock encryption described in Sec-
tion 2 is general. That is, it is motivated by, but not reliant on Bitcoins. In principle, our
approach can be used with completely different types of iterative, public, large-scale
computations. For instance, time-lock encryption could be based on other decentral-
ized cryptocurrencies, or even on completely different types of public computations.
The construction from Section 3.3 is only one concrete application of the techniques
developed in Section 2, motivated by the fact that Bitcoins currently seem to be the
most interesting candidate instantiation, in particular due to their wide adoption and the
significant computational resources contributed to the Bitcoin network.
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A The double-spending problem in cryptocurrencies

A central problem that a secure digital currency has to solve is to prevent double-
spending of digital coins. It seems that this is only achievable by somehow keeping
track of all previous transactions, in order to be able to determine whether a malicious
party tries to spend the same digital coin more than once. There are essentially two
approaches to prohibit double-spending:

1. A central trusted third party (“the bank”) keeps a ledger, which contains all trans-
actions executed in the past. This allows the trusted third party to keep track of
which party is in possession of which coin. Coins can only be transferred from one
party to another if the trusted third party approves the transaction. Note that this
approach is inherently centralized, as it requires a central trustworthy instance that
keeps track of all transactions.

2. The approach used by decentralized cryptocurrencies, like Bitcoin, is somewhat
similar, however, the trusted third party is implemented by all (or most) parties
simultaneously. Instead of a centralized ledger, the transaction ledger is distributed
among all (or many) parties. Essentially, all transactions are broadcasted to all other
parties and stored in the ledger, such that each party is able to check whether a given
coin already appeared in a previous transaction, and if the claimed owner of a coin
is still in possession of this coin. Thus, all parties jointly implement “the bank”. All
the recently successful cryptocurrencies, in particular Bitcoin, are decentralized.
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The decentralized approach requires a mechanism that allows to find a mutual agree-
ment on the sequence of approved transactions. In Bitcoin, this mechanism is imple-
mented by the Bitcoin block chain.
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