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Abstract. We solve an open question in code-based cryptography by
introducing the first provably secure group signature scheme from code-
based assumptions. Specifically, the scheme satisfies the CPA-anonymity
and traceability requirements in the random oracle model, assuming the
hardness of the McEliece problem, the Learning Parity with Noise prob-
lem, and a variant of the Syndrome Decoding problem. Our construc-
tion produces smaller key and signature sizes than all of the existing
post-quantum group signature schemes from lattices, as long as the car-
dinality of the underlying group does not exceed the population of the
Netherlands (≈ 224 users). The feasibility of the scheme is supported by
implementation results. Additionally, the techniques introduced in this
work might be of independent interest: a new verifiable encryption pro-
tocol for the randomized McEliece encryption and a new approach to
design formal security reductions from the Syndrome Decoding problem.

Keywords: code-based cryptography, group signatures, zero-knowledge
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1 Introduction

1.1 Background and Motivation

Group signature [CvH91] is a fundamental cryptographic primitive with two in-
triguing features: On the one hand, it allows users of a group to anonymously
sign documents on behalf of the whole group (anonymity); On the other hand,
there is a tracing authority that can tie a given signature to the signer’s identity
should the need arise (traceability). These two properties make group signatures
highly useful in various real-life scenarios such as controlled anonymous print-
ing services, digital right management systems, e-bidding and e-voting schemes.
Theoretically, designing secure and efficient group signature schemes is of deep
interest since doing so typically requires a sophisticated combination of carefully
chosen cryptographic ingredients. Numerous constructions of group signatures
have been proposed, most of which are based on classical number-theoretic as-
sumptions (e.g., [CS97,ACJT00,BBS04,BW06,LPY12]).



While number-theoretic-based group signatures could be very efficient (e.g.,
[ACJT00,BBS04]), such schemes would become insecure once the era of scalable
quantum computing arrives [Sho97]. The search for post-quantum group signa-
tures, as a preparation for the future, has been quite active recently, with 6 pub-
lished schemes [GKV10,CNR12,LLLS13,LLNW14,LNW15,NZZ15], all of which
are based on computational assumptions from lattices. Despite their theoreti-
cal interest, those schemes involve significantly large key and signature sizes,
and no implementation result has been given. Our evaluation shows that the
lattice-based schemes listed above are indeed very far from being practical (see
Section 1.2). This somewhat unsatisfactory situation highlights two interesting
challenges: First, making post-quantum group signatures one step closer to prac-
tice; Second, bringing in more diversity with a scheme from another candidate for
post-quantum cryptography (e.g., code-based, hash-based, multivariate-based).
For instance, an easy-to-implement and competitively efficient code-based group
signature scheme would be highly desirable.

A code-based group signature, in the strongest security model for static
groups [BMW03], would typically require the following 3 cryptographic layers:

1. The first layer requires a secure (standard) signature scheme to sign messages1.
We observe that the existing code-based signatures fall into two categories.
The “hash-and-sign” category consists of the CFS signature [CFS01] and its
modified versions [Dal08,Fin10,MVR12]. The known security proofs for schemes
in this category, however, should be viewed with skepticism: the assumption
used in [Dal08] was invalidated by distinguishing attacks [FGUO+13], while
the new assumption proposed in [MVR12] lies on a rather fragile ground.
The “Fiat-Shamir” category consists of schemes derived from Stern’s identi-
fication protocol [Ste96] and its variant [Vér96,CVA10,MGS11] via the Fiat-
Shamir transformation [FS86]. Although these schemes produce relatively large
signatures (as the underlying protocol has to be repeated many times to make
the soundness error negligibly small), their provable security (in the random
oracle model) is well-understood.

2. The second layer demands a semantically secure encryption scheme to enable
the tracing feature: the signer is constrained to encrypt its identifying infor-
mation and to send the ciphertext as part of the group signature, so that
the tracing authority can decrypt if and when necessary. This ingredient is
also available in code-based cryptography, thanks to various CPA-secure and
CCA-secure variants of the McEliece [McE78] and the Niederreiter [Nie86] cryp-
tosystems (e.g., [NIKM08,DDMN12,Per12,MVVR12]).

3. The third layer, which is essentially bottleneck in realizing secure code-based
group signatures, requires a zero-knowledge (ZK) protocol that connects the
first two layers. Specifically, the protocol should demonstrate that a given sig-
nature is generated by a certain certified group user who honestly encrypts

1 In most schemes in the [BMW03] model, a standard signature is also employed
to issue users’ secret keys. However, this is not necessarily the case: the scheme
constructed in this paper is an illustrative example.
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its identifying information. Constructing such a protocol is quite challeng-
ing. There have been ZK protocols involving the CFS and Stern’s signatures,
which yield identity-based identification schemes [CGG07,ACM11,YTM+14]
and threshold ring signatures [MCG08,MCGL11]. There also have been ZK
proofs of plaintext knowledge for the McEliece and the Niederreiter cryptosys-
tems [HMT13]. Yet we are not aware of any efficient ZK protocol that simul-
taneously deals with both code-based signature and encryption schemes in the
above sense.

Designing a provably secure group signature scheme, thus, is a long-standing
open question in code-based cryptography (see, e.g., [CM10]).

1.2 Our Contributions

In this work, we construct a group signature scheme which is provably secure
under code-based assumptions. Specifically, the scheme achieves the anonymity
and traceability requirements ([BMW03,BBS04]) in the random oracle model,
assuming the hardness of the McEliece problem, the Learning Parity with Noise
problem, and a variant of the Syndrome Decoding problem.

Contributions to Code-Based Cryptography. By introducing the first prov-
ably secure code-based group signature scheme, we solve the open problem dis-
cussed earlier. Along the way, we introduce two new techniques for code-based
cryptography, which might be of independent interest:

1. We design a ZK protocol for the randomized McEliece encryption scheme, that
allows the prover to convince the verifier that a given ciphertext is well-formed,
and that the hidden plaintext satisfies an additional condition. Such protocols,
called verifiable encryption protocols, are useful not only in constructing group
signatures, but also in much broader contexts [CS03]. It is worth noting that,
prior to our work, verifiable encryption protocols for code-based cryptosystems
only exist in the very basic form [HMT13] (where the plaintext is publicly
given), which seem to have restricted applications.

2. In our security proof of the traceability property, to obtain a reduction from
the hardness of the Syndrome Decoding (SD) problem, we come up with an
approach that, as far as we know, has not been considered in the literature
before. Recall that the (average-case) SD problem with parameters m, r, ω is as

follows: given a uniformly random matrix H̃ ∈ Fr×m2 and a uniformly random
syndrome ỹ ∈ Fr2, the problem asks to find a vector s ∈ Fm2 that has Hamming

weight ω (denoted by s ∈ B(m,ω)) such that H̃ · s> = ỹ>. In our scheme, the
key generation algorithm produces public key containing matrix H ∈ Fr×m2 and
syndromes yj ∈ Fr2, while users are given secret keys of the form sj ∈ B(m,ω)
such that H · s>j = y>j . In the security proof, since we would like to embed an

SD challenge instance (H̃, ỹ) into the public key without being noticed with
non-negligible probability by the adversary, we have to require that H and the
yj ’s produced by the key generation are indistinguishable from uniform.
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One method to generate these keys is to employ the “hash-and-sign” technique
from the CFS signature [CFS01]. Unfortunately, while the syndromes yj ’s could
be made uniformly random (as the outputs of the random oracle), the assump-
tion that the CFS matrix H is computationally close to uniform (for practical
parameters) is invalidated by distinguishing attacks [FGUO+13].
Another method, pioneered by Stern [Ste96], is to pick H and the sj ’s uniformly
at random. The corresponding syndromes yj ’s could be made computationally
close to uniform if the parameters are set such that ω is slightly smaller than the
value ω0 given by the Gilbert-Varshamov bound 2, i.e., ω0 such that

(
m
ω0

)
≈ 2r.

However, for these parameters, it is not guaranteed with high probability that
a uniformly random SD instance (H̃, ỹ) has solutions, which would affect the
success probability of the reduction algorithm.
In this work, we consider the case when ω is moderately larger than ω0, so that
two conditions hold: First, the uniform distribution over the set B(m,ω) has
sufficient min-entropy to apply the left-over hash lemma [GKPV10]; Second,
the SD problem with parameters (m, r, ω) admits solutions with high probabil-
ity, yet remains intractable 3 against the best known attacks [FS09,BJMM12].
This gives us a new method to generate uniformly random vectors sj ∈ B(m,ω)
and matrix H ∈ Fr×m2 so that the syndromes yj ’s corresponding to the sj ’s
are statistically close to uniform. This approach, which somewhat resembles
the technique used in [GPV08] for the Inhomogeneous Small Integer Solution
problem, is helpful in our security proof (and generally, in designing formal
security reductions from the SD problem).

Contributions to Post-Quantum Group Signatures. Our construction
provides the first non-lattice-based alternative to provably secure post-quantum
group signatures. The scheme features public key and signature sizes linear in the
number of group users N , which is asymptotically not as efficient as the recently
published lattice-based counterparts ([LLLS13,LLNW14,LNW15,NZZ15]). How-
ever, when instantiating with practical parameters, our scheme behaves much
more efficiently than the lattice-based ones. Indeed, our estimation shows that,
in comparison with the scheme proposed in [NZZ15] (which is arguably the cur-
rent most efficient lattice-based group signature in the asymptotic sense), our
scheme gives public key and signature sizes that are 2300 times and 540 times
smaller, respectively, for an average-size group of N = 28 users. As N grows,
the advantage lessens, but our scheme remains more efficient even for a huge
group of N = 224 users (which is comparable to the whole population of the
Netherlands). The details of our estimation are given in Table 1.

Furthermore, we give implementation results - the first ones for post-quantum
group signatures - to support the feasibility of our scheme (see Section 5). Our
results, while not yielding a truly practical scheme, would certainly help to bring
post-quantum group signatures one step closer to practice.

2 In this case, the function fH(sj) = H · s>j acts as a pseudorandom generator [FS96].
3 The variant of the SD problem considered in this work are not widely believed to

be the hardest one [Ste96,Meu13], but suitable parameters can be chosen (e.g., see
Section 5) such that the best known attacks run in exponential time.
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Table 1. Efficiency comparison between our scheme and [NZZ15].

N Public Key Size Signature Size ∗

Our Scheme

28 5.13× 106 bits ( 642 KB) 8.57× 106 bits (1.07 MB)

216 4.10× 107 bits (5.13 MB) 1.77× 107 bits (2.21 MB)

224 9.23× 109 bits (1.16 GB) 2.36× 109 bits (294 MB)

[NZZ15] ≤ 224 1.18× 1010 bits (1.48 GB) 4.63× 109 bits (579 MB)

The parameters of our scheme are set as in Section 5. For the [NZZ15] scheme, we
choose the commonly used lattice dimension n = 28, and set parameters m = 29×150
and q = 2150 so that the requirements given in [NZZ15, Section 5.1] are satisfied. Both
schemes achieve the CPA-anonymity notion [BBS04] and soundness error 2−80.
∗ In our implementations presented in Section 5, the actual signature sizes could be
reduced thanks to an additional technique.

1.3 Overview of Our Techniques

Let m, r, ω, n, k, t and ` be positive integers. We consider a group of size N = 2`,
where each user is indexed by an integer j ∈ [0, N − 1]. The secret signing key
of user j is a vector sj chosen uniformly at random from the set B(m,ω). A
uniformly random matrix H ∈ Fr×m2 and N syndromes y0, . . . ,yN−1 ∈ Fr2, such
that H ·s>j = y>j , for all j, are made public. Let us now explain the development
of the 3 ingredients used in our scheme.

The Signature Layer. User j can run Stern’s ZK protocol [Ste96] to prove the
possession of a vector s ∈ B(m,ω) such that H·s> = y>j , where the constraint s ∈
B(m,ω) is proved in ZK by randomly permuting the entries of s and showing that
the permuted vector belongs to B(m,ω). The protocol is then transformed into
a Fiat-Shamir signature [FS86]. However, such a signature is publicly verifiable
only if the index j is given to the verifier.

The user can further hide its index j to achieve unconditional anonymity
among all N users (which yields a ring signature [RST01] on the way), as follows.
Let A =

[
y>0 | · · · |y>j | · · · |y>N−1

]
∈ Fr×N2 and let x = δNj - the N -dimensional unit

vector with entry 1 at the j-th position. Observe that A · x> = y>j , and thus,

the equation H · s> = y>j can be written as

H · s> ⊕A · x> = 0, (1)

where⊕ denotes addition modulo 2. Stern’s framework allows the user to prove in
ZK the possession of (s,x) satisfying this equation, where the condition x = δNj
can be justified using a random permutation.

The Encryption Layer. To enable the tracing capability of the scheme, we
let user j encrypt the binary representation of j via the randomized McEliece
encryption scheme [NIKM08]. Specifically, we represent j as vector I2B(j) =

(j0, . . . , j`−1) ∈ {0, 1}`, where
∑`−1
i=0 ji2

`−1−i = j. Given a public encrypting key
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G ∈ Fk×n2 , a ciphertext of I2B(j) is of the form:

c =
(
u‖ I2B(j)

)
·G⊕ e ∈ Fn2 , (2)

where (u, e) is the encryption randomness, with u ∈ Fk−`2 , and e ∈ B(n, t) (i.e.,
e is a vector in Fn2 , that has weight t).

Connecting the Signature and Encryption Layers. User j must demon-
strate that it does not cheat (e.g., by encrypting some string that does not point
to j) without revealing j. Thus, we need a ZK protocol that allows the user to
prove that the vector x = δNj used in (1) and the plaintext hidden in (2) both
correspond to the same secret j ∈ [0, N − 1]. The crucial challenge is to estab-
lish a connection (which is verifiable in ZK) between the “index representation”
δNj and the binary representation I2B(j). This challenge is well-handled by the
following technique.

Instead of working with I2B(j) = (j0, . . . , j`−1), we consider an extension of
I2B(j), defined as Encode(j) = (1− j0, j0, . . . , 1− ji, ji, . . . , 1− j`−1, j`−1) ∈ F2`

2 .

We then suitably insert ` zero-rows into matrix G to obtain matrix Ĝ ∈ F(k+`)×n
2

such that
(
u ‖Encode(j)

)
· Ĝ =

(
u‖ I2B(j)

)
· G. Let f = Encode(j), then

equation (2) can be rewritten as:

c =
(
u ‖ f

)
· Ĝ⊕ e ∈ Fn2 . (3)

Now, let B2I : {0, 1}` → [0, N −1] be the inverse function of I2B(·). For every
b ∈ {0, 1}`, we carefully design two classes of permutations Tb : FN2 → FN2 and
T ′b : F2`

2 → F2`
2 , such that for any j ∈ [0, N − 1], the following hold:

x = δNj ⇐⇒ Tb(x) = δNB2I(I2B(j)⊕b);

f = Encode(j)⇐⇒ T ′b(f) = Encode(B2I(I2B(j)⊕ b)).

Given these equivalences, in the protocol, the user samples a uniformly ran-
dom vector b ∈ {0, 1}`, and sends b1 = I2B(j) ⊕ b. The verifier, seeing that
Tb(x) = δNB2I(b1)

and T ′b(f) = Encode(B2I(b1)), should be convinced that x

and f correspond to the same j ∈ [0, N − 1], yet the value of j is completely
hidden from its view, because vector b essentially acts as a “one-time pad”.

The technique extending I2B(j) into Encode(j) and then permuting Encode(j)
in a “one-time pad” fashion is inspired by a method originally proposed by
Langlois et al. [LLNW14] in a seemingly unrelated context, where the goal is to
prove that the message being signed under the Bonsai tree signature [CHKP10]
is of the form I2B(j), for some j ∈ [0, N − 1]. Here, we adapt and develop their
method to simultaneously prove two facts: the plaintext being encrypted under
the randomized McEliece encryption is of the form I2B(j), and the unit vector
x = δNj is used in the signature layer.

By embedding the above technique into Stern’s framework, we obtain an
interactive ZK argument system, in which, given the public input (H,A,G), the
user is able to prove the possession of a secret tuple (j, s,x,u, f , e) satisfying (1)
and (3). The protocol is repeated many times to achieve negligible soundness
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error, and then made non-interactive, resulting in a non-interactive ZK argument
of knowledge Π. The final group signature is of the form (c, Π), where c is the
ciphertext. In the random oracle model, the anonymity of the scheme relies
on the zero-knowledge property of Π and the CPA-security of the randomized
McEliece encryption scheme, while its traceability is based on the hardness of
the variant of the SD problem discussed earlier.

1.4 Related Works and Open Questions

A group signature scheme based on the security of the ElGamal signature scheme
and the hardness of decoding of linear codes was given in [MCK01]. In a concur-
rent and independent work, Alamélou et al. [ABCG15] also propose a code-based
group signature scheme. Via a private communication, we obtained a copy of
their article, and noted that their security model and security claims do have se-
rious issues, about which we have already notified the authors. These two works,
thus, have yet to provide a provably secure group signature scheme based solely
on code-based assumptions, which we achieve in the present paper.

Our work constitutes a foundational step in code-based group signatures.
In the next steps, we will work towards improving the current construction in
terms of efficiency (e.g., making the signature size less dependent on the number
of group users), as well as functionality (e.g., achieving dynamic enrollment and
efficient revocation of users). Another interesting open question is to construct
a scheme achieving CCA-anonymity.

2 Preliminaries

Notations. We let λ denote the security parameter and negl(λ) denote a neg-

ligible function in λ. We denote by a
$← A if a is chosen uniformly at random

from the finite set A. The symmetric group of all permutations of k elements is
denoted by Sk. We use bold capital letters, (e.g., A), to denote matrices, and
bold lowercase letters, (e.g., x), to denote row vectors. We use x> to denote
the transpose of x and wt(x) to denote the (Hamming) weight of x. We denote
by B(m,ω) the set of all vectors x ∈ Fm2 such that wt(x) = ω. Throughout
the paper, we define a function I2B which takes a non-negative integer a as an
input, and outputs the binary representation (a0, · · · , a`−1) ∈ {0, 1}` of a such

that a =
∑`−1
i=0 ai2

`−1−i, and a function B2I which takes as an input the binary
representation (a0, · · · , a`−1) ∈ {0, 1}` of a, and outputs a. All logarithms are of
base 2.

2.1 Background on Code-Based Cryptography

We first recall the Syndrome Decoding problem, which is well-known to be NP-
complete [BMvT78], and is widely believed to be intractable in the average case
for appropriate choice of parameters [Ste96,Meu13].
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Definition 1 (The Syndrome Decoding problem). The SD(m, r, ω) prob-
lem is as follows: given a uniformly random matrix H ∈ Fr×m2 and a uniformly
random syndrome y ∈ Fr2, find a vector s ∈ B(m,ω) such that H · s> = y>.

When m = m(λ), r = r(λ), ω = ω(λ), we say that the SD(m, r, ω) problem is
hard, if the success probability of any PPT algorithm in solving the problem is
at most negl(λ).

In our security reduction, the following variant of the left-over hash lemma for
matrix multiplication over F2 is used.

Lemma 1 (Left-over hash lemma, adapted from [GKPV10]). Let D be a
distribution over Fm2 with min-entropy e. For ε > 0 and r ≤ e−2 log(1/ε)−O(1),

the statistical distance between the distribution of (H,H · s>), where H
$←− Fr×m2

and s ∈ Fm2 is drawn from distribution D, and the uniform distribution over
Fr×m2 × Fr2 is at most ε.

In particular, if ω < m is an integer such that r ≤ log
(
m
ω

)
−2λ−O(1) and D

is the uniform distribution over B(m,ω) (i.e., D has min-entropy log
(
m
ω

)
), then

the statistical distance between the distribution of (H,H · s>) and the uniform
distribution over Fr×m2 × Fr2 is at most 2−λ.

The Randomized McEliece Encryption Scheme. We employ a randomized
variant of the McEliece [McE78] encryption scheme, suggested in [NIKM08],
where a uniformly random vector is concatenated to the plaintext. The scheme
is described as follows:

– ME.Setup(1λ): Select parameters n = n(λ), k = k(λ), t = t(λ) for a binary
[n, k, 2t+ 1] Goppa code. Choose integers k1, k2 such that k = k1 + k2. Set the
plaintext space as Fk22 .

– ME.KeyGen(n, k, t): Perform the following steps:

1. Produce a generator matrix G′ ∈ Fk×n2 of a randomly selected [n, k, 2t+ 1]
Goppa code. Choose a random invertible matrix S ∈ Fk×k2 and a random
permutation matrix P ∈ Fn×n2 . Let G = SG′P ∈ Fk×n2 .

2. Output encrypting key pkME = G and decrypting key skME = (S,G′,P).

– ME.Enc(pkME,m): To encrypt a message m ∈ Fk22 , sample u
$←− Fk12 and e

$←
B(n, t), then output the ciphertext c = (u‖m) ·G⊕ e ∈ Fn2 .

– ME.Dec(skME, c): Perform the following steps:

1. Compute c·P−1 = ((u‖m)·G⊕e)·P−1 and then m′ ·S = DecodeG′(c·P−1)
where Decode is an error-correcting algorithm with respect to G′. If Decode
fails, then return ⊥.

2. Compute m′ = (m′S)·S−1, parse m′ = (u‖m), where u ∈ Fk12 and m ∈ Fk22 ,
and return m.

The scheme described above is CPA-secure in the standard model assuming
the hardness of the DMcE(n, k, t) problem and the DLPN(k1, n,B(n, t)) prob-
lem [NIKM08,Döt14]. We now recall these two problems.
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Definition 2 (The Decisional McEliece problem). The DMcE(n, k, t) prob-
lem is as follows: given a matrix G ∈ Fk×n2 , distinguish whether G is a uniformly
random matrix over Fk×n2 or it is generated by algorithm ME.KeyGen(n, k, t) de-
scribed above.

When n = n(λ), k = k(λ), t = t(λ), we say that the DMcE(n, k, t) problem is
hard, if the success probability of any PPT distinguisher is at most 1/2+negl(λ).

Definition 3 (The Decisional Learning Parity with (fixed-weight) Noise
problem). The DLPN(k, n,B(n, t)) problem is as follows: given a pair (A,v) ∈
Fk×n2 ×Fn2 , distinguish whether (A,v) is a uniformly random pair over Fk×n2 ×Fn2
or it is obtained by choosing A

$← Fk×n2 , u
$← Fk2 , e

$← B(n, t) and outputting
(A,u ·A⊕ e).

When k = k(λ), n = n(λ), t = t(λ), we say that the DLPN(k, n,B(n, t))
problem is hard, if the success probability of any PPT distinguisher is at most
1/2 + negl(λ).

2.2 Group Signatures

We follow the definition of group signatures provided in [BMW03] for the case
of static groups.

Definition 4. A group signature GS = (KeyGen, Sign, Verify, Open) is a tuple
of four polynomial-time algorithms:

– KeyGen: This randomized algorithm takes as input (1λ, 1N ), where N ∈ N is
the number of group users, and outputs (gpk, gmsk, gsk), where gpk is the group
public key, gmsk is the group manager’s secret key, and gsk = {gsk[j]}j∈[0,N−1]
with gsk[j] being the secret key for the group user of index j.

– Sign: This randomized algorithm takes as input a secret signing key gsk[j] for
some j ∈ [0, N − 1] and a message M and returns a group signature Σ on M .

– Verify: This deterministic algorithm takes as input the group public key gpk, a
message M , a signature Σ on M , and returns either 1 (Accept) or 0 (Reject).

– Open: This deterministic algorithm takes as input the group manager’s secret
key gmsk, a message M , a signature Σ on M , and returns an index j ∈ [0, N−1]
associated with a particular user, or ⊥, indicating failure.

Correctness. The correctness of a group signature scheme requires that for all
λ,N ∈ N, all (gpk, gmsk, gsk) produced by KeyGen(1λ, 1N ), all j ∈ [0, N − 1],
and all messages M ∈ {0, 1}∗,

Verify
(
gpk,M, Sign(gsk[j],M)

)
= 1; Open

(
gmsk,M, Sign(gsk[j],M)

)
= j.

Security Notions. A secure group signature scheme must satisfy two security
notions:

– Traceability requires that all signatures, even those produced by a coalition of
group users and the group manager, can be traced back to a member of the
coalition.
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– Anonymity requires that, signatures generated by two distinct group users are
computationally indistinguishable to an adversary who knows all the user secret
keys. In Bellare et al.’s model [BMW03], the anonymity adversary is granted
access to an opening oracle (CCA-anonymity). Boneh et al. [BBS04] later pro-
posed a relaxed notion, where the adversary cannot query the opening oracle
(CPA-anonymity).

Formal descriptions of the CPA-anonymity and traceability experiments are pro-
vided in Figure 1.

ExpCPA-anon
GS,A (λ,N)

(gpk, gmsk, gsk)← KeyGen(1λ, 1N )
(st, j0, j1,M

∗)← A(choose, gpk, gsk)
Σ∗ ← Sign(gsk[jb],M

∗)
b′ ← A(guess, st, Σ∗)
Return b′

Exptrace
GS,A(λ,N)

(gpk, gmsk, gsk)← KeyGen(1λ, 1N )
st← (gmsk, gpk)
CU ← ∅;K ← ε;Cont← true
while (Cont = true) do

(Cont, st, j)← AGS.Sign(gsk[·],·)(choose, st,K)
if Cont = true then CU ← CU ∪ {j};

K ← gsk[j]
end if

end while;
(M∗, Σ∗)← AGS.Sign(·,gsk[·],·)(guess, st)
if Verify(gpk,M∗, Σ∗) = 0 then Return 0
if Open(gmsk,M∗, Σ∗) = ⊥ then Return 1
if ∃j∗ ∈ {0, · · · , N −1} such that (Open(gmsk,M∗, Σ∗) = j∗)∧ (j∗ /∈ CU)∧ ((j∗,M∗)

not queried by A) then Return 1 else Return 0

Fig. 1: Random experiments for CPA-anonymity and traceability

Definition 5. Define the advantage of A in the anonymity experiment as

AdvCPA−anon
GS,A (λ,N) =

∣∣∣Pr
[
ExpCPA−anon

GS,A (λ,N) = 1
]
− 1/2

∣∣∣.
We say that GS is CPA-anonymous if for all polynomial N(·) and any PPT
adversary A, we have AdvCPA−anon

GS,A (λ,N) = negl(λ).

Definition 6. Define the advantage of A in the traceability experiment as

Advtrace
GS,A(λ,N) = Pr

[
Exptrace

GS,A(λ,N) = 1
]
.

We say that GS is traceable if for all polynomial N(·) and any PPT adversary
A, we have Advtrace

GS,A(λ,N) = negl(λ).
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3 The Underlying Zero-Knowledge Argument System

Recall that a statistical zero-knowledge argument system is an interactive pro-
tocol where the soundness property holds for computationally bounded cheating
provers, while the zero-knowledge property holds against any cheating verifier.
In this section we present a statistical zero-knowledge argument system which
will serve as a building block in our group signature scheme in Section 4.

Before describing the protocol, we first introduce several supporting notations
and techniques. Let ` be a positive integer, and let N = 2`.

1. For x = (x0, x1, . . . , xN−1) ∈ FN2 and for j ∈ [0, N − 1], we denote by x = δNj if
xj = 1 and xi = 0 for all i 6= j.

2. We define an encoding function Encode : [0, N − 1]→ F2`
2 , that encodes integer

j ∈ [0, N − 1], whose binary representation is I2B(j) = (j0, . . . , j`−1), as vector:

Encode(j) = (1− j0, j0, . . . , 1− ji, ji, . . . , 1− j`−1, j`−1).

3. Given a vector b = (b0, . . . , b`−1) ∈ {0, 1}`, we define the following 2 permuta-
tions:

(a) Tb : FN2 → FN2 that transforms x = (x0, . . . , xN−1) to (x′0, . . . , x
′
N−1), where

for each i ∈ [0, N − 1], we have xi = x′i∗ , where i∗ = B2I
(
I2B(i)⊕ b

)
.

(b) T ′b : F2`
2 → F2`

2 that transforms f = (f0, f1, . . . , f2i, f2i+1, . . . , f2(`−1), f2(`−1)+1)
to (fb0 , f1−b0 , . . . , f2i+bi , f2i+(1−bi), . . . , f2(`−1)+b`−1

, f2(`−1)+(1−b`−1)).

Observe that, for any j ∈ [0, N − 1] and any b ∈ {0, 1}`, we have:

x = δNj ⇐⇒ Tb(x) = δNB2I(I2B(j)⊕b); (4)

f = Encode(j)⇐⇒ T ′b(f) = Encode(B2I(I2B(j)⊕ b)). (5)

Example: Let N = 24. Let j = 6, then I2B(j) = (0, 1, 1, 0) and Encode(j) =
(1, 0, 0, 1, 0, 1, 1, 0). If b = (1, 0, 1, 0), then B2I(I2B(j)⊕ b) = B2I(1, 1, 0, 0) = 12,
and we have:

Tb(δ166 ) = δ1612 and T ′b(Encode(6)) = (0, 1, 0, 1, 1, 0, 1, 0) = Encode(12).

3.1 The Interactive Protocol

We now present our interactive zero-knowledge argument of knowledge (ZKAoK).
Let n, k, t,m, r, ω, ` be positive integers, and N = 2`. The public input consists
of matrices G ∈ Fk×n2 , H ∈ Fr×m2 ; N syndromes y0, . . . ,yN−1 ∈ Fr2; and a vector
c ∈ Fn2 . The protocol allows prover P to simultaneously convince verifier V in
zero-knowledge that P possesses a vector s ∈ B(m,ω) corresponding to certain
syndrome yj ∈ {y0, . . . ,yN−1} with hidden index j, and that c is a correct
encryption of I2B(j) via the randomized McEliece encryption. Specifically, the
secret witness of P is a tuple (j, s,u, e) ∈ [0, N − 1]×Fm2 ×Fk−`2 ×Fn2 satisfying:{

H · s> = y>j ∧ s ∈ B(m,ω);(
u‖ I2B(j)

)
·G⊕ e = c ∧ e ∈ B(n, t).

(6)

11



Let A =
[
y>0 | · · · |y>j | · · · |y>N−1

]
∈ Fr×N2 and x = δNj . We have A · x> = y>j ,

and thus, the equation H · s> = y>j can be written as H · s> ⊕A · x> = 0.

Let Ĝ ∈ F(k+`)×n
2 be the matrix obtained from G ∈ Fk×n2 by replacing its

last ` rows gk−`+1,gk−`+2, . . . ,gk by 2` rows 0n,gk−`+1,0
n,gk−`+2, . . . ,0

n,gk.

We then observe that
(
u ‖ I2B(j)

)
·G =

(
u‖Encode(j)

)
· Ĝ.

Let f = Encode(j), then (6) can be equivalently rewritten as:{
H · s> ⊕A · x> = 0 ∧ x = δNj ∧ s ∈ B(m,ω);(
u ‖ f

)
· Ĝ⊕ e = c ∧ f = Encode(j) ∧ e ∈ B(n, t).

(7)

To obtain a ZKAoK for relation (7) in Stern’s framework [Ste96], P proceeds as
follows:

– To prove that x = δNj and f = Encode(j) while keeping j secret, prover P
samples a uniformly random vector b ∈ {0, 1}`, sends b1 = I2B(j) ⊕ b, and
shows that:

Tb(x) = δNB2I(b1)
∧ T ′b(f) = Encode(B2I(b1)).

By the equivalences observed in (4) and (5), the verifier will be convinced about
the facts to prove. Furthermore, since b essentially acts as a “one-time pad”,
the secret j is perfectly hidden.

– To prove in zero-knowledge that s ∈ B(m,ω), P samples a uniformly random
permutation π ∈ Sm, and shows that π(s) ∈ B(m,ω). Similarly, to prove in
zero-knowledge that e ∈ B(n, t), a uniformly random permutation σ ∈ Sn is
employed.

– Finally, to prove the linear equations in zero-knowledge, P samples uniformly
random “masking” vectors (rs, rx, ru, rf , re), and shows that:{

H · (s⊕ rs)
> ⊕ A · (x⊕ rx)> = H · r>s ⊕ A · r>x ;(

u⊕ ru ‖ f ⊕ rf
)
· Ĝ ⊕ (e⊕ re) ⊕ c =

(
ru ‖ rf

)
· Ĝ ⊕ re.

(8)

Now let COM : {0, 1}∗ → {0, 1}λ be a collision-resistant hash function,
to be modelled as a random oracle. Prover P and verifier V first perform the
preparation steps described above, and then interact as described in Figure 2.

3.2 Analysis of the Protocol

The properties of our protocol are summarized in the following theorem.

Theorem 1. The interactive protocol described in Section 3.1 has perfect com-
pleteness, and has communication cost bounded by β = (N+3 logN)+m(logm+
1) + n(log n + 1) + k + 5λ bits. If COM is modelled as a random oracle, then
the protocol is statistical zero-knowledge. If COM is a collision-resistant hash
function, then the protocol is an argument of knowledge.

12



1. Commitment: P samples the following uniformly random objects:{
b

$← {0, 1}`; π
$← Sm; σ

$← Sn; ρ1, ρ2, ρ3
$← {0, 1}λ;

rs
$← Fm2 ; rx

$← FN2 ; ru
$← Fk−`2 ; rf

$← F2`
2 ; re

$← Fn2 .

It then sends the commitment CMT := (c1, c2, c3) to V, where
c1 = COM

(
b, π, σ, H · r>s ⊕ A · r>x ,

(
ru ‖ rf

)
· Ĝ ⊕ re; ρ1

)
,

c2 = COM
(
π(rs), Tb(rx), T ′b(rf ), σ(re); ρ2

)
,

c3 = COM
(
π(s⊕ rs), Tb(x⊕ rx), T ′b(f ⊕ rf ), σ(e⊕ re); ρ3

)
.

2. Challenge: Receiving CMT, V sends a challenge Ch
$← {1, 2, 3} to P.

3. Response: P responds as follows:
– If Ch = 1: Reveal c2 and c3. Let b1 = I2B(j)⊕ b,{

vs = π(rs),

ws = π(s),
vx = Tb(rx), vf = T ′b(rf ), and

{
ve = σ(re),

we = σ(e).

Send RSP :=
(
b1, vs, ws, vx, vf , ve, we; ρ2, ρ3

)
to V.

– If Ch = 2: Reveal c1 and c3. Let{
b2 = b; π2 = π; σ2 = σ;

zs = s⊕ rs; zx = x⊕ rx; zu = u⊕ ru; zf = f ⊕ rf ; ze = e⊕ re.

Send RSP :=
(
b2, π2, σ2, zs, zx, zu, zf , ze; ρ1, ρ3

)
to V.

– If Ch = 3: Reveal c1 and c2. Let

b3 = b; π3 = π; σ3 = σ; ys = rs; yx = rx; yu = ru; yf = rf ; ye = re.

Send RSP :=
(
b3, π3, σ3, ys, yx, yu, yf , ye; ρ1, ρ2

)
to V.

Verification: Receiving RSP, V proceeds as follows:

– If Ch = 1: Let wx = δNB2I(b1)
∈ FN2 and wf = Encode(B2I(b1)) ∈ F2`

2 . Check that
ws ∈ B(m,ω), we ∈ B(n, t), and that:{

c2 = COM
(
vs, vx, vf , ve; ρ2

)
,

c3 = COM
(
vs ⊕ws, vx ⊕wx, vf ⊕wf , ve ⊕we; ρ3

)
.

– If Ch = 2: Check that{
c1 = COM

(
b2, π2, σ2, H · z>s ⊕ A · z>x ,

(
zu ‖ zf

)
· Ĝ ⊕ ze ⊕ c; ρ1

)
,

c3 = COM
(
π2(zs), Tb2(zx), T ′b2

(zf

)
, σ2(ze); ρ3

)
.

– If Ch = 3: Check that{
c1 = COM

(
b3, π3, σ3, H · y>s ⊕ A · y>x ,

(
yu ‖yf

)
· Ĝ ⊕ ye; ρ1

)
,

c2 = COM
(
π3(ys), Tb3(yx), T ′b3

(yf ), σ3(ye); ρ2
)
.

In each case, V outputs 1 if and only if all the conditions hold. Otherwise, V outputs 0.

Fig. 2: The underlying zero-knowledge argument system of our group signature
scheme.
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Completeness. It can be seen that the given interactive protocol is perfectly
complete, i.e., if P possesses a valid witness (j, s,u, e) and follows the protocol,
then V always outputs 1. Indeed, given (j, s,u, e) satisfying (6), P can always
obtain (j, s,x,u, f , e) satisfying (7). Then, as discussed above, the following are
true:{
∀π ∈ Sm : π(s) ∈ B(m,ω); ∀σ ∈ Sn : σ(e) ∈ B(n, t);

∀b ∈ {0, 1}`: Tb(x) = δNB2I(I2B(j)⊕b) = wx; T ′b(f) =Encode(B2I(I2B(j)⊕b)) = wf .

As a result, P should always pass V’s checks in the case Ch = 1. In the case
Ch = 2, since the linear equations in (8) hold true, P should also pass the
verification. Finally, in the case Ch = 3, it suffices to note that V simply checks
for honest computations of c1 and c2.

Communication Cost. The commitment CMT has bit-size 3λ. If Ch = 1, then
the response RSP has bit-size 3`+N + 2(m+n+λ). In each of the cases Ch = 2
and Ch = 3, RSP has bit-size 2` + N + m(logm + 1) + n(log n + 1) + k + 2λ.
Therefore, the total communication cost (in bits) of the protocol is less than the
bound β specified in Theorem 1.

Zero-knowledge Property. The following lemma says that our interactive
protocol is statistically zero-knowledge if COM is modelled as a random oracle.

Lemma 2. In the random oracle model, there exists an efficient simulator S
interacting with a (possibly cheating) verifier V̂, such that, given only the public
input of the protocol, S outputs with probability negligibly close to 2/3 a simulated
transcript that is statistically close to the one produced by the honest prover in
the real interaction.

The proof of Lemma 2, given in Appendix A.1, employs the standard simulation
technique for Stern-type protocols (e.g., [Ste96,KTX08,LNSW13]).

Argument of Knowledge Property. The next lemma states that our protocol
satisfies the special soundness property of Σ-protocols, which implies that it is
an argument of knowledge [Gro04].

Lemma 3. Let COM be a collision-resistant hash function. Given the public in-
put of the protocol, a commitment CMT and 3 valid responses RSP1,RSP2,RSP3

to all 3 possible values of the challenge Ch, one can efficiently construct a knowl-
edge extractor E that outputs a tuple (j′, s′,u′, e′) ∈ [0, N − 1]×Fm2 ×Fk−`2 ×Fn2
such that: {

H · s′> = y>j′ ∧ s′ ∈ B(m,ω);(
u′ ‖ I2B(j′)

)
·G ⊕ e′ = c ∧ e′ ∈ B(n, t).

The proof of Lemma 3 is provided in Appendix A.2.
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4 Our Code-Based Group Signature Scheme

4.1 Description of the Scheme

Our group signature scheme is described as follows:

KeyGen(1λ, 1N ): On input a security parameter λ and an expected number of
group users N = 2` ∈ poly(λ), for some positive integer `, this algorithm
first selects the following:

– Parameters n = n(λ), k = k(λ), t = t(λ) for a binary [n, k, 2t + 1] Goppa
code.

– Parameters m = m(λ), r = r(λ), ω = ω(λ) for the Syndrome Decoding
problem, such that

r ≤ log

(
m

w

)
− 2λ−O(1). (9)

– Two collision-resistant hash functions, to be modelled as random oracles:
1. COM : {0, 1}∗ → {0, 1}λ, to be used for generating zero-knowledge

arguments.
2. H : {0, 1}∗ → {1, 2, 3}κ (where κ = ω(log λ)), to be used in the Fiat-

Shamir transformation.

The algorithm then performs the following steps:
1. Run ME.KeyGen(n, k, t) to obtain a key pair

(
pkME = G ∈ Fk×n2 ; skME

)
for the randomized McEliece encryption scheme with respect to a binary
[n, k, 2t+ 1] Goppa code. The plaintext space is F`2.

2. Choose a matrix H
$←− Fr×m2 .

3. For each j ∈ [0, N − 1], pick sj
$←− B(m,ω), and let yj ∈ Fr2 be its

syndrome, i.e., y>j = H · s>j .

Remark 1. We note that, for parameters m, r, ω satisfying condition (9),
the distribution of syndrome yj , for all j ∈ [0, N−1], is statistically close
to the uniform distribution over Fr2 (by Lemma 1).

4. Output(
gpk = (G,H,y0, . . . ,yN−1), gmsk = skME, gsk = (s0, . . . , sN−1)

)
. (10)

Sign(gsk[j],M): To sign a message M ∈ {0, 1}∗ under gpk, the group user of
index j, who possesses secret key s = gsk[j], performs the following steps:
1. Encrypt the binary representation of j, i.e., vector I2B(j) ∈ F`2, under

the randomized McEliece encrypting key G. This is done by sampling

(u
$←− Fk−`2 , e

$←− B(n, t)) and outputting the ciphertext:

c =
(
u‖ I2B(j)

)
·G⊕ e ∈ Fn2 .

2. Generate a NIZKAoK Π to simultaneously prove in zero-knowledge the
possession of a vector s ∈ B(m,ω) corresponding to a certain syn-
drome yj ∈ {y0, . . . ,yN−1} with hidden index j, and that c is a correct
McEliece encryption of I2B(j). This is done by employing the interactive
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argument system in Section 3 with public input (G,H,y0, . . . ,yN−1, c),
and prover’s witness (j, s,u, e) that satisfies:{

H · s> = y>j ∧ s ∈ B(m,ω);(
u‖ I2B(j)

)
·G⊕ e = c ∧ e ∈ B(n, t).

(11)

The protocol is repeated κ = ω(log λ) times to achieve negligible sound-
ness error, and then made non-interactive using the Fiat-Shamir heuris-
tic. Namely, we have

Π =
(
CMT(1), . . . ,CMT(κ); (Ch(1), . . . ,Ch(κ)); RSP(1), . . . ,RSP(κ)

)
, (12)

where (Ch(1), . . . ,Ch(κ)) =H
(
M ;CMT(1), . . . ,CMT(κ); gpk, c

)
∈ {1, 2, 3}κ.

3. Output the group signature Σ = (c, Π).

Verify(gpk,M,Σ): Parse Σ as (c, Π) and parse Π as in (12). Then proceed as
follows:

1. If (Ch(1), . . . ,Ch(κ)) 6= H
(
M ;CMT(1), . . . ,CMT(κ); gpk, c

)
, then return 0.

2. For i = 1 to κ, run the verification step of the interactive protocol in
Section 3 with public input (G,H,y0, . . . ,yN−1, c) to check the validity

of RSP(i) with respect to CMT(i) and Ch(i). If any of the verification
conditions does not hold, then return 0.

3. Return 1.
Open(gmsk,M,Σ): Parse Σ as (c, Π) and run ME.Dec(gmsk, c) to decrypt c. If

decryption fails, then return ⊥. If decryption outputs g ∈ F`2, then return
j = B2I(g) ∈ [0, N − 1].

The efficiency, correctness, and security aspects of the above group signature
scheme are summarized in the following theorem.

Theorem 2. The given group signature scheme is correct. The public key has
size nk+(m+N)r bits, and signatures have bit-size bounded by

(
(N+3 logN)+

m(logm+ 1) + n(log n+ 1) + k + 5λ
)
κ+ n. Furthermore, in the random oracle

model:

– If the Decisional McEliece problem DMcE(n, k, t) and the Decisional Learn-
ing Parity with fixed-weight Noise problem DLPN(k − `, n,B(n, t)) are hard,
then the scheme is CPA-anonymous.

– If the Syndrome Decoding problem SD(m, r, ω) is hard, then the scheme is
traceable.

4.2 Efficiency and Correctness

Efficiency. It is clear from (10) that gpk has bit-size nk + (m + N)r. The
length of the NIZKAoK Π is κ times the communication cost of the underlying
interactive protocol. Thus, by Theorem 1, Σ = (c, Π) has bit-size bounded by(
(N + 3 logN) +m(logm+ 1) + n(log n+ 1) + k + 5λ

)
κ+ n.
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Correctness. To see that the given group signature scheme is correct, first
observe that the honest user with index j, for any j ∈ [0, N−1], can always obtain
a tuple (j, s,u, e) satisfying (11). Then, since the underlying interactive protocol
is perfectly complete, Π is a valid NIZKAoK and algorithm Verify(gpk,M,Σ)
always outputs 1, for any message M ∈ {0, 1}∗.

Regarding the correctness of algorithm Open, it suffices to note that, if the
ciphertext c is of the form c =

(
u‖ I2B(j)

)
· G ⊕ e, where e ∈ B(n, t), then,

by the correctness of the randomized McEliece encryption scheme, algorithm
ME.Dec(gmsk, c) will output I2B(j).

4.3 Anonymity

Let A be any PPT adversary attacking the CPA-anonymity of the scheme with
advantage ε. We will prove that ε = negl(λ) based on the ZK property of the
underlying argument system, and the assumed hardness of the DMcE(n, k, t)
and the DLPN(k− `, n,B(n, t)) problems. Specifically, we consider the following

sequence of hybrid experiments G
(b)
0 , G

(b)
1 , G

(b)
2 , G

(b)
3 and G4.

Experiment G
(b)
0 . This is the real CPA-anonymity game. The challenger runs

KeyGen(1λ, 1N ) to obtain(
gpk = (G,H,y0, . . . ,yN−1), gmsk = skME, gsk = (gsk[0], . . . , gsk[N − 1])

)
,

and then gives gpk and {gsk[j]}j∈[0,N−1] to A. In the challenge phase, A outputs
a message M∗ together with two indices j0, j1 ∈ [0, N − 1]. The challenger
sends back a challenge signature Σ∗ = (c∗, Π∗) ← Sign(gpk, gsk[jb]), where

c∗ =
(
u‖ I2B(jb)

)
·G⊕ e, with u

$←− Fk−`2 and e
$←− B(n, t). The adversary then

outputs b with probability 1/2 + ε.

Experiment G
(b)
1 . In this experiment, we introduce the following modification

in the challenge phase: instead of faithfully generating the NIZKAoK Π∗, the
challenger simulates it as follows:

1. Compute c∗ ∈ Fn2 as in experiment G
(b)
0 .

2. Run the simulator of the underlying interactive protocol in Section 3 t =
ω(log λ) times on input (G,H,y0, . . . ,yN−1, c

∗), and then program the ran-
dom oracle H accordingly.

3. Output the simulated NIZKAoK Π∗.

Since the underlying argument system is statistically zero-knowledge, Π∗ is
statistically close to the real NIZKAoK. As a result, the simulated signature

Σ∗ =
(
c∗, Π∗

)
is statistically close to the one in experiment G

(b)
0 . It then follows

that G
(b)
0 and G

(b)
1 are indistinguishable from A’s view.

Experiment G
(b)
2 . In this experiment, we make the following change with re-

spect to G
(b)
1 : the encrypting key G obtained from ME.KeyGen(n, k, t) is replaced

by a uniformly random matrix G
$←− Fk×n2 . We will demonstrate in Lemma 4
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that experiments G
(b)
1 and G

(b)
2 are computationally indistinguishable based on

the assumed hardness of the DMcE(n, k, t) problem.

Lemma 4. If A can distinguish experiments G
(b)
1 and G

(b)
2 with probability non-

negligibly larger than 1/2, then there exists an efficient distinguisher D1 solving
the DMcE(n, k, t) problem with the same probability.

Proof. An instance of the DMcE(n, k, t) problem is a matrix G∗ ∈ Fk×n2 which
can either be uniformly random, or be generated by ME.KeyGen(n, k, t). Distin-
guisher D1 receives a challenge instance G∗ and uses A to distinguish between
the two. It interacts with A as follows.

– Setup. Generate (H,y0, . . . ,yN−1) and (gsk[0], . . . , gsk[N−1]) as in the real
scheme. Then, send the following to A:(

gpk∗ = (G∗,H,y0, . . . ,yN−1), gsk = (gsk[0], . . . , gsk[N − 1])
)
.

– Challenge. Receiving the challenge (M∗, j0, j1), D1 proceeds as follows:

1. Pick b
$←− {0, 1}, and compute c∗ =

(
u‖ I2B(jb)

)
·G∗ ⊕ e, where u

$←−
Fk−`2 and e

$←− B(n, t).
2. Simulate the NIZKAoK Π∗ on input (G∗,H,y0, . . . ,yN−1, c

∗), and out-
put Σ∗ =

(
c∗, Π∗

)
.

We observe that if G∗ is generated by ME.KeyGen(n, k, t) then the view of A in

the interaction with D1 is statistically close to its view in experiment G
(b)
1 with

the challenger. On the other hand, if G∗ is uniformly random, then A’s view

is statistically close to its view in experiment G
(b)
2 . Therefore, if A can guess

whether it is interacting with the challenger in G
(b)
1 or G

(b)
2 with probability

non-negligibly larger than 1/2, then D1 can use A’s guess to solve the challenge
instance G∗ of the DMcE(n, k, t) problem, with the same probability. �

Experiment G
(b)
3 . Recall that in experiment G

(b)
2 , we have

c∗ =
(
u ‖ I2B(jb)

)
·G⊕ e = (u ·G1 ⊕ e)⊕ I2B(jb) ·G2,

where G1 ∈ F(k−`)×n
2 , G2 ∈ F`×n2 such that

[
G1

G2

]
= G; and u

$←− Fk−`2 , e
$←−

B(n, t).

In experiment G
(b)
3 , the generation of c∗ is modified as follows: we instead

let c∗ = v ⊕ I2B(jb) ·G2, where v
$←− Fn2 . Experiments G

(b)
2 and G

(b)
3 are com-

putationally indistinguishable based on the assumed hardness of the DLPN(k −
`, n,B(n, t)) problem, as shown in Lemma 5.

Lemma 5. If A can distinguish experiments G
(b)
2 and G

(b)
3 with probability non-

negligibly larger than 1/2, then there exists an efficient distinguisher D2 solving
the DLPN(k − `, n,B(n, t)) problem with the same probability.
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Proof. An instance of the DLPN(k − `, n,B(n, t)) problem is a pair (B,v) ∈
F(k−`)×n
2 × Fn2 , where B is uniformly random, and v is either uniformly random

or of the form v = u · B ⊕ e, for (u
$←− Fk−`2 ; e

$←− B(n, t)). Distinguisher D2

receives a challenge instance (B,v) and uses A to distinguish between the two.
It interacts with A as follows.

– Setup. Pick G2
$←− F`×n2 and let G∗ =

[
B
G2

]
. Generate (H,y0, . . . ,yN−1)

and (gsk[0], . . . , gsk[N − 1]) as in the real scheme, and send the following
to A:(

gpk∗ = (G∗,H,y0, . . . ,yN−1), gsk = (gsk[0], . . . , gsk[N − 1])
)
.

– Challenge. Receiving the challenge (M∗, j0, j1), D2 proceeds as follows:

1. Pick b
$←− {0, 1}, and let c∗ = v ⊕ I2B(jb) ·G2, where v comes from the

challenge DLPN instance.
2. Simulate the NIZKAoK Π∗ on input (G∗,H,y0, . . . ,yN−1, c

∗), and out-
put Σ∗ =

(
c∗, Π∗

)
.

We observe that if D2’s input pair (B,v) is of the form (B,v = u · B ⊕ e),

where u
$←− Fk−`2 and e

$← B(n, t), then the view of A in the interaction with D2

is statistically close to its view in experiment G
(b)
2 with the challenger. On the

other hand, if the pair (B,v) is uniformly random, then A’s view is statistically

close to its view in experiment G
(b)
3 . Therefore, if A can guess whether it is

interacting with the challenger in G
(b)
2 or G

(b)
3 with probability non-negligibly

larger than 1/2, then D2 can use A’s guess to solve the challenge instance of the
DLPN(k − `,B(n, t)) problem with the same probability. �

Experiment G4. In this experiment, we employ the following modification with

respect to G
(b)
3 : the ciphertext c∗ is now set as c∗ = r

$←− Fn2 . Clearly, the

distributions of c∗ in experiments G
(b)
3 and G4 are identical. As a result, G4 and

G
(b)
3 are statistically indistinguishable. We note that G4 no longer depends on

the challenger’s bit b, and thus, A’s advantage in this experiment is 0.

The above discussion shows that experiments G
(b)
0 , G

(b)
1 , G

(b)
2 , G

(b)
3 , G4 are

indistinguishable, and that AdvA(G4) = 0. It then follows that the advantage

of A in attacking the CPA-anonymity of the scheme, i.e., in experiment G
(b)
0 , is

negligible. This concludes the proof of the CPA-anonymity property.

4.4 Traceability

Let A be a PPT traceability adversary against our group signature scheme,
that has success probability ε. We construct a PPT algorithm F that solves the
SD(m, r, ω) problem with success probability polynomially related to ε.

Algorithm F receives a challenge SD(m, r, ω) instance, that is, a uniformly

random matrix-syndrome pair (H̃, ỹ) ∈ Fr×m2 × Fr2. The goal of F is to find a

vector s ∈ B(m,ω) such that H̃ · s> = ỹ>. It then proceeds as follows:
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1. Pick a guess j∗
$←− [0, N − 1] and set yj∗ = ỹ.

2. Set H = H̃. For each j ∈ [0, N − 1] such that j 6= j∗, sample sj
$← B(m,ω)

and set yj ∈ Fr2 be its syndrome, i.e., y>j = H · s>j .

3. Run ME.KeyGen(n, k, t) to obtain a key pair
(
pkME = G ∈ Fk×n2 ; skME

)
.

4. Send gpk =
(
G,H,y0, . . . ,yN−1

)
and gmsk = skME to A.

We note that, since the parameters m, r, ω were chosen such that r ≤ log
(
m
w

)
−

2λ−O(1), by Lemma 1, the distribution of syndrome yj , for all j 6= j∗, is statisti-
cally close to the uniform distribution over Fr2. In addition, the syndrome yj∗ = ỹ
is truly uniform over Fr2. It then follows that the distribution of (y0, . . . ,yN−1)
is statistically close to that in the real scheme (see Remark 1). As a result, the
distribution of (gpk, gmsk) is statistically close to the distribution expected by A.

The forger F then initializes a set CU = ∅ and handles the queries from A
as follows:

– Queries to the random oracle H are handled by consistently returning uni-
formly random values in {1, 2, 3}κ. Suppose that A makes QH queries, then
for each η ≤ QH, we let rη denote the answer to the η-th query.

– Queries for the secret key gsk[j], for any j ∈ [0, N − 1]: If j 6= j∗, then F
sets CU := CU ∪ {j} and gives sj to A. If j = j∗, then F aborts.

– Queries for group signatures: When A asks for a group signature of user j
on message M , then:
• If j 6= j∗, then F honestly computes a signature, since it has the secret

key sj .
• If j = j∗, then F returns a simulated signature Σ∗ computed as in

Section 4.3 (see Experiment G
(b)
1 in the proof of anonymity).

At some point, A outputs a forged group signature Σ∗ on some message M∗,
where

Σ∗ =
(
c∗,
(
CMT(1), . . . ,CMT(κ); Ch(1), . . . ,Ch(κ); RSP(1), . . . ,RSP(κ)

))
.

By the requirements of the traceability experiment, one has Verify(gpk,M∗, Σ∗) =
1, and for all j ∈ CU , signatures of user j on M∗ were never queried. Now F uses
skME to open Σ∗, and aborts if the opening algorithm does not output j∗. It can
be checked that F aborts with probability at most (N − 1)/N + (2/3)κ, because
the choice of j∗ ∈ [0, N − 1] is completely hidden from A’s view, and A can
violate the soundness of the argument system with probability at most (2/3)κ.
Thus, with probability at least 1/N − (2/3)κ, it holds that

Verify(gpk,M∗, Σ∗) = 1 ∧ Open(skME,M
∗, Σ∗) = j∗. (13)

Suppose that (13) holds. Algorithm F then exploits the forgery as follows. Denote

by ∆ the tuple
(
M∗;CMT(1), . . . ,CMT(κ); G,H,y0, . . . ,yN−1, c

∗). Observe that
if A has never queried the random oracle H on input ∆, then

Pr
[(
Ch(1), . . . ,Ch(κ)

)
= H(∆)

]
≤ 3−κ.
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Therefore, with probability at least ε − 3−κ, there exists certain η∗ ≤ QH such
that ∆ was the input of the η∗-th query. Next, F picks η∗ as the target forking
point and replays A many times with the same random tape and input as in
the original run. In each rerun, for the first η∗ − 1 queries, A is given the same
answers r1, . . . , rη∗−1 as in the initial run, but from the η∗-th query onwards,

F replies with fresh random values r
′

η∗ , . . . , r
′

qH

$←− {1, 2, 3}κ. The Improved
Forking Lemma of Pointcheval and Vaudenay [PV97, Lemma 7] implies that,
with probability larger than 1/2 and within less than 32·QH/(ε−3−κ) executions
of A, algorithm F can obtain a 3-fork involving the tuple ∆. Now, let the answers
of F with respect to the 3-fork branches be

r1,η∗ = (Ch
(1)
1 , . . . ,Ch

(κ)
1 ); r2,η∗ = (Ch

(1)
2 , . . . ,Ch

(κ)
2 ); r3,κ∗ = (Ch

(1)
3 , . . . ,Ch

(κ)
3 ).

Then, by a simple calculation, one has:

Pr
[
∃i ∈ {1, . . . , κ} : {Ch(i)1 ,Ch

(i)
2 ,Ch

(i)
3 } = {1, 2, 3}

]
= 1− (7/9)κ.

Conditioned on the existence of such index i, one parses the 3 forgeries cor-

responding to the fork branches to obtain
(
RSP

(i)
1 ,RSP

(i)
2 ,RSP

(i)
3

)
. They turn

out to be 3 valid responses with respect to 3 different challenges for the same
commitment CMT(i). Then, by using the knowledge extractor of the underlying
interactive argument system (see Lemma 3), one can efficiently extract a tuple
(j′, s′,u′, e′) ∈ [0, N − 1]× Fm2 × Fk−`2 × Fn2 such that:{

H · s′> = y>j′ ∧ s′ ∈ B(m,ω);(
u′ ‖ I2B(j′)

)
·G ⊕ e′ = c∗ ∧ e′ ∈ B(n, t).

Since the given group signature scheme is correct, the equation
(
u′ ‖ I2B(j′)

)
·

G ⊕ e′ = c∗ implies that Open(skME,M
∗, Σ∗) = j′. On the other hand, we

have Open(skME,M
∗, Σ∗) = j∗, which leads to j′ = j∗. Therefore, it holds that

H̃ · s′> = H · s′> = y>j∗ = ỹ>, and that s′ ∈ B(m,ω). In other words, s′ is a valid

solution to the challenge SD(m, r, ω) instance (H̃, ỹ).
Finally, the above analysis shows that, if A has success probability ε and

running time T in attacking the traceability of our group signature scheme, then
F has success probability at least 1/2

(
1/N − (2/3)κ

)(
1 − (7/9)κ

)
and running

time at most 32 · T ·QH/(ε− 3−κ) + poly(λ,N). This concludes the proof of the
traceability property.

5 Implementation Results

This section presents our basic implementation results of the proposed code-
based group signature to demonstrate its feasibility. The testing platform was
a modern PC running at 3.5 GHz CPU with 16 GB RAM. We employed the
NTL library [NTL] and the gf2x library [GF2] for efficient polynomial operations
over a field of characteristic 2. To decode binary Goppa codes, the Paterson
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algorithm [Pat75] was used in our implementation of the McEliece encryption.
We employed SHA-3 with various output sizes to realize several hash functions.
To achieve 80-bit security, we chose the parameters as follows:

– The McEliece parameters were set to (n, k, t) = (211, 1696, 32), as in [BS08].
– The parameters for Syndrome Decoding were set to (m, r, ω) = (2756, 550, 121)

so that the distribution of y0, . . . ,yN−1 is 2−80-close to the uniform distribution
over Fr2 (by Lemma 1), and that the SD(m, r, ω) problem is intractable with
respect to the best known attacks. In particular, these parameters ensure that:

1. The Information Set Decoding algorithm proposed in [BJMM12] has work
factor more than 280. (See also [Sen14, Slide 3] for an evaluation formula.)

2. The birthday attacks presented in [FS09] have work factors more than 280.
– The number of protocol repetitions κ was set to 140 to obtain soundness 1−2−80.

Table 2. Implementation results and sizes

N PK Size
Average

Message KeyGen Sign Verify Open
Signature Size

24

625 KB 111 KB
1 B

14.020
0.045 0.034

0.155
(=16) 1 GB 5.473 5.450

28

642 KB 114 KB
1 B

14.128
0.046 0.036

0.155
(=256) 1 GB 5.459 5.450

212

906 KB 159 KB
1 B

14.255
0.059 0.044

0.155
(=4,096) 1 GB 5.474 5.462

216

5.13 MB 876 KB
1 B

16.302
0.269 0.193

0.161
(=65,536) 1 GB 5.704 5.630

220

72.8 MB 12.4 MB
1 B

52.084
3.734 2.605

0.155
(=1,048,576) 1 GB 9.196 8.055

224

1.16 GB 196 MB
1 B

636.511
58.535 40.801

0.154
(=16,777,216) 1 GB 64.047 46.402
∗ Unit for time: second

Table 2 shows our implementation results, together with the public key and
signature sizes with respect to various numbers of group users and different
message sizes. To reduce the signature size, in the underlying zero-knowledge
protocol, we sent a random seed instead of permutations when Ch = 2. Simi-
larly, we sent a random seed instead of the whole response RSP when Ch = 3.
Using this technique, the average signature sizes were reduced to about 159 KB
for 4, 096 users and 876 KB for 65, 536 users, respectively. Our public key and
signature sizes are linear in the number of group users N , but it does not come
to the front while N is less than 212 due to the size of parameters G and H.

Our implementation took about 0.27 and 0.20 seconds for 1 B message and
about 5.70 and 5.60 seconds for 1 GB message, respectively, to sign a message and
to verify a generated signature for a group of 65, 536 users. In our experiments,
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it takes about 5.40 seconds to hash 1 GB message and it leads to the differences
of signing and verifying times between 1 B and 1 GB messages.

As far as we know, the implementation results presented here are the first
ones for post-quantum group signatures. Our results, while not yielding a truly
practical scheme, would certainly help to bring post-quantum group signatures
one step closer to practice.
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A Supporting Proofs for the Underlying Zero-Knowledge
Argument of Knowledge

In the following, we will provide supporting proofs that the interactive protocol
given in Section 3.1 is a statistical zero-knowledge argument of knowledge.

A.1 Proof of the Zero-Knowledge Property

The proof of Lemma 2 is as follows.

Proof. Simulator S, given the public input (H,A, Ĝ, c), begins by selecting a

random Ch ∈ {1, 2, 3}. This is a prediction of the challenge value that V̂ will not
choose.

Case Ch = 1: S proceeds as follows:
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1. Compute s′ ∈ Fm2 and x′ ∈ FN2 such that H · s′> ⊕A · x′> = 0; and u′ ∈ Fk−`2 ,

f ′ ∈ F2`
2 , e′ ∈ Fn2 such that

(
u′ ‖ f ′

)
·Ĝ⊕e′ = c. This step can be done efficiently

using linear algebra.
2. Sample uniformly random objects, and send a commitment computed in the

same manner as of the real prover. Namely, S samples:{
b

$← {0, 1}`; π
$← Sm; σ

$← Sn; ρ1, ρ2, ρ3
$← {0, 1}λ;

rs
$← Fm2 ; rx

$← FN2 ; ru
$← Fk−`2 ; rf

$← F2`
2 ; re

$← Fn2 ,

and sends the commitment CMT := (c
′

1, c
′

2, c
′

3), where
c
′

1 = COM
(
b, π, σ, H · r>s ⊕ A · r>x ,

(
ru ‖ rf

)
· Ĝ ⊕ re; ρ1

)
,

c
′

2 = COM
(
π(rs), Tb(rx), T ′b(rf ), σ(re); ρ2

)
,

c
′

3 = COM
(
π(s′ ⊕ rs), Tb(x′ ⊕ rx), T ′b(f ′ ⊕ rf ), σ(e′ ⊕ re); ρ3

)
.

(14)

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

(
b, π, σ, s′⊕rs, x′⊕rx, u′⊕ru, f ′⊕rf , e′⊕re; ρ1, ρ3

)
.

– If Ch = 3: Send RSP =
(
b, π, σ, rs, rx, ru, rf , re; ρ1, ρ2

)
.

Case Ch = 2: S samples
j′

$← [0, N − 1]; s′
$← B(m,ω); e′

$← B(n, t);

b
$← {0, 1}`; π

$← Sm; σ
$← Sn; ρ1, ρ2, ρ3

$← {0, 1}λ;

rs
$← Fm2 ; rx

$← FN2 ; ru
$← Fk−`2 ; rf

$← F2`
2 ; re

$← Fn2 ,

and lets x′ = δNj′ and f ′ = Encode(j′). Then S sends the commitment CMT
computed in the same manner as in (14).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send

RSP =
(
I2B(j′)⊕ b, π(rs), π(s′), Tb(rx), T ′b(rf ), σ(re), σ(e′); ρ2, ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP computed as in the case (Ch = 1,Ch = 3).

Case Ch = 3: The simulator performs the preparation as in the case Ch =

2 above. Additionally, it samples u′
$← Fk−`2 . Then it sends the commitment

CMT := (c
′

1, c
′

2, c
′

3), where c
′

2, c
′

3 are computed as in (14), while

c
′

1 =COM
(
b, π, σ, H·(s′⊕rs)

>⊕A·(x′⊕rx)>,
(
u′⊕ru‖f ′⊕rf

)
·Ĝ⊕

(
e′⊕re

)
⊕c; ρ1

)
.

Receiving a challenge Ch from V̂, it responds as follows:
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– If Ch = 1: Send RSP computed as in the case (Ch = 2,Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1,Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since the outputs of
the random oracle COM are assumed to be uniformly random, the distribution
of the commitment CMT and the distribution of the challenge Ch from V̂ are
statistically close to those in the real interaction. Hence, the probability that S
outputs ⊥ is negligibly close to 1/3. Moreover, one can check that whenever the
simulator does not abort, it will provide a successful transcript, the distribution
of which is statistically close to that of the prover in the real interaction. In
other words, we have constructed a simulator that can successfully impersonate
the honest prover, with probability 2/3. �

A.2 Proof of the Argument of Knowledge Property

The proof of Lemma 3 is as follows.

Proof. Assume that we have a commitment CMT = (c1, c2, c3) and 3 responses
RSP1 =

(
b1, vs, ws, vx, vf , ve, we; ρ2, ρ3

)
RSP2 =

(
b2, π2, σ2, zs, zx, zu, zf , ze; ρ1, ρ3

)
RSP3 =

(
b3, π3, σ3, ys, yx, yu, yf , ye; ρ1, ρ2

)
that satisfy all the verification conditions when Ch = 1, Ch = 2, and Ch = 3,
respectively. In other words, we have the following relations:

ws ∈ B(m,ω), wx = δNB2I(b1)
, wf = Encode(B2I(b1)), we ∈ B(n, t),

c1 = COM
(
b2, π2, σ2, H · z>s ⊕ A · z>x ,

(
zu ‖zf

)
· Ĝ ⊕ ze ⊕ c; ρ1

)
,

c1 = COM
(
b3, π3, σ3, H · y>s ⊕ A · y>x ,

(
yu ‖yf

)
· Ĝ ⊕ ye; ρ1

)
,

c2 = COM
(
vs, vx, vf , ve; ρ2

)
=COM

(
π3(ys), Tb3

(yx), T ′b3
(yf ), σ3(ye); ρ2

)
,

c3 = COM
(
vs ⊕ws, vx ⊕wx, vf ⊕wf , ve ⊕we; ρ3

)
,

c3 = COM
(
π2(zs), Tb2

(zx), T ′b2
(zf
)
, σ2(ze); ρ3

)
.

Based on the collision-resistance property of COM, we can deduce that:

b2 = b3; π2 = π3; σ2 = σ3; δNB2I(b1)
= wx = Tb2

(zx)⊕Tb3
(yx) = Tb2

(zx⊕yx);

Encode(B2I(b1)) = wf = T ′b2
(zf )⊕ T ′b3

(yf ) = T ′b2
(zf ⊕ yf );

B(m,ω) 3 ws = π2(zs)⊕ π3(ys) = π2(zs ⊕ ys);

B(n, t) 3 we = σ2(ze)⊕ σ3(ye) = σ2(ze ⊕ ye);

H·(zs ⊕ ys)
> ⊕A·(zx ⊕ yx)> = 0;

(
zu ⊕ yu‖zf ⊕ yf

)
·Ĝ⊕ (ze ⊕ ye) = c.

We now proceed as follows:

– Let j′ = B2I(b1 ⊕ b2) ∈ [0, N − 1].

– Let x′ = zx⊕yx ∈ FN2 , then by (4), we have x′ = δNj′ , and thus, A·x′> = y>j′ .

– Let f ′ = zf ⊕ yf ∈ F`2, then by (5), we have f ′ = Encode(j′).
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– Let s′ = zs ⊕ ys ∈ Fm2 . Then we have s′ = π−12 (ws) ∈ B(m,ω).

– Let e′ = ze ⊕ ye ∈ Fn2 . Then we have e′ = σ−12 (we) ∈ B(n, t).

– Let u′ = zu ⊕ yu ∈ Fk−`2 .

Furthermore, we have the following equations:

H · s′> ⊕A · x′> = 0 and
(
u′‖Encode(j′)

)
· Ĝ⊕ e′ = c,

which imply that H · s′> = A · x′> = y>j′ and
(
u′‖I2B(j′)

)
·G⊕ e′ = c.

To conclude the proof, note that, we have constructed an efficient extractor
E that outputs a tuple (j′, s′,u′, e′) ∈ [0, N − 1]× Fm2 × Fk−`2 × Fn2 such that:{

H · s′> = y>j′ ∧ s′ ∈ B(m,ω);(
u′ ‖ I2B(j′)

)
·G⊕ e′ = c ∧ e′ ∈ B(n, t).

�
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