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Abstract. We propose a new witness encryption based on Subset-Sum
which achieves extractable security without relying on obfuscation and
is more efficient than the existing ones. Our witness encryption employs
multilinear maps of arbitrary order and it is independent of the imple-
mentations of multilinear maps. As an application, we construct a new
timed-release encryption based on the Bitcoin protocol and extractable
witness encryption. The novelty of our scheme is that the decryption
key will be automatically revealed in the bitcoin block-chain when the
block-chain reaches a certain length.
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1 Introduction

Timed-release crypto aims to “send information into the future”. This primi-
tive, which was first suggested by May [36] in 1993 and then further studied by
Rivest, Shamir and Wagner [34], enjoys many applications (electronic auctions,
scheduled payment methods, sealed-bid auctions, lotteries). For example, this
primitive can be used for responsible disclosure of vulnerabilities. Assume Alice
wants to publish a paper about security flaws of some product, but the vendor
of the product tries to prevent this publication. To mitigate this issue, Alice can
publish an encrypted version of her paper by using a timed-release encryption
scheme. In this way, her paper is only made available to the public after a cer-
tain period which gives the vendor a grace period to fix their products. After
the grace period passed, the decryption key will be made available to the pub-
lic and everyone can decrypt. During this waiting period, Alice cannot change
her paper, and the vendor cannot prevent recovery of the decryption key and
therefore the release of her findings.

Two distinct approaches have been used to solve the problem, one based
on computational complexity [34, 6, 10] and another that uses a trusted third
party (TTP) [21, 34, 9, 15, 33]. Informally, the latter approach relies on a strong
trust assumption, the existence of a TTP who releases secrets at a specified time
in the future. The former approach does not depend on any TTP but requires
(whoever wants to decrypt) to spend a certain amount of computational effort
to obtain the decryption key.



The main conceptual contribution of this paper is a novel timed-release en-
cryption which eliminates the shortcomings of the aproaches above. Specifically,
we do not require a trusted third party yet the decryption key will be (unavoid-
ably) realeased at a later time. The trick is that we rely on an existing system,
namely Bitcoin and employ the computational effort spent by miners towards
releasing decryption keys. Roughly speaking, the encryption key is the state of
the Bitcoin ledger at the moment of encryption; the decryption key is any valid
extension of this ledger with transaction blocks. Notice that on one hand the en-
crypted information is never lost as anyone with sufficient computational power
can recover a decryption key. On the other hand, such a key will eventually be
released by the Bitcoin miner community.

Our timed-release encryption scheme is built on top of the Bitcoin mecha-
nism and a generic witness encryption scheme that is extractable. To the best
of our knowledge, existing WE schemes [25, 27, 38] do not have efficient extrac-
tion methods (extractors for these schemes appear to be super-polynomial). An
exception is the scheme of Bellare and Hoang [7] which defers the issue of ex-
tractability to its underlying obfuscation scheme. Our second main contribution
is a new witness encryption scheme, which achieves extractable security without
using obfuscation and which is more efficient than the previously known schemes.

1.1 Related Work

Witness encryption Witness encryption, originally proposed in [25], allows one
to encrypt to an instance, x, of an NP language and decrypt using any witness w
that x is in the language. The construction in [25] for witness encryption is based
on the Exact-Cover problem and multilinear maps [11]. The security of the
construction in [25] is called soundness security and is based on the “Decision
Graded Encoding No-Exact-Cover Problem”. Informally soundness security says
that if the instance has no exact-cover, the ciphertext reveals no information
about the plaintext. A proof framework is proposed in [26] for proving soundness
security under instance independent assumptions.

Soundness security has several interesting applications [25, 7], but it is not
sufficient for the general applications and in particular it is not sufficient for
our application of timed-release encryption. A stronger notion called extractable
security proposed in [27] informally says that when the adversary can distin-
guish two ciphertext encrypted with the same problem instance but different
messages, then it must know a witness of the instance. A uniform variant of
extractable security without auxiliary inputs is given in [7], but it is also not
sufficient for our application of timed-release encryption. An extractable witness
PRF is constructed in [38] by assuming the underlying Subset-Sum encoding
is extractable.

Concurrent work The idea of building time-lock encryption from Bitcoin and
witness encryption was described in Jager’s concurrent work [28]. There are two
key differences between our work and that of Jager [28]:



1. The security of the time-lock encryption in [28] is based on the definition
of extractable witness encryption given in [7]. However, the extractable wit-
ness encryption in [7] considers a uniform adversary without any auxiliary
input. This definition appears not to suffice for the security of the time-lock
encryption [28] because the adversary of the time-lock encryption has access
to an external oracle. This has been pointed out to Jager through a private
communication in September 2015.

2. The extractable witness encryption [27, 7] has no known instantiations except
it is shown in [7] that the extractable obfuscation implies the extractable
witness encryption. We construct a new witness encryption scheme and prove
its extractable security in the generic model of the multilinear maps.

We note that our timed-release encryption scheme as well as and Jager’s time-
lock encryption is based on the security of Bitcoin backbone protocol. Both our
security proofs and the proof of [28] rely on a similar security model for the
Bitcoin block-chain.

Other work on Bitcoin Several papers [3, 4, 39, 8, 30] use Bitcoin deposits as a
penalty to facilitate fairness in multiparty computation. Security properties of
Bitcoin backbone protocol, such as common prefix and chain quality, are formally
analysed in [22]. The use of Bitcoin as a source of publicly-verifiable randomness
is formalised in [13].

1.2 Our Contribution

Extractable witness encryption We first propose a new extractable wit-
ness encryption scheme based on Conjunctive Normal Form Satisfiability (CNF-
SAT). We prove the extractable security of this in the Idealised Graded Encod-
ing Model [14, 5, 40], with an intermediate reduction to a special Subset-Sum
problem. To the best of our knowledge, this is the first construction of witness
encryption to achieve extractable security, without the use of obfuscation.

This special Subset-Sum problem is: given a multi-set of positive integer
vectors ∆ = {(vi : `i)}i∈I where (vi : `i) means vi occurs `i times in the multiset
and a target sum-vector s such that (`i+1)vi 6≤ s and vi are pairwise-distinct, to
decide whether there exists a subset of∆ that can sum up to s. The side condition
(`i + 1)vi 6≤ s is to guarantee the encoding of each integer vector vi can only be
used for at most `i times, in order to keep consistency between the encoding of
the Subset-Sum and the original Subset-Sum problem. Our encoding is based
on an asymmetric variant of multilinear maps where the groups are indexed
by the integer vectors [23, 5, 12, 40]. Suppose a u-linear map on groups {Gw}w
with w ≤ u (component-wise comparison). The pairing operation ew,w′ maps
Gw ×Gw′ into Gw+w′ with w + w′ ≤ u by computing ew,w′

(
gaw, g

b
w′

)
= gabw+w′ .

The vectors in ∆ = {(vi : `i)}i∈I is encoded as
{
gα

vi

vi

}
i∈I and the target vector

is encoded as gα
s

s . Suppose the subset-sum exists, that is
∑
i∈I bivi = s with bi

positive integers and bi ≤ `i. Then we compute the encoding of the target sum



as below

gα
s

s = e(gα
v1

v1
, · · · , gα

v1

v1︸ ︷︷ ︸
b1

, gα
v2

v2
, · · · , gα

v2

v2︸ ︷︷ ︸
b2

, · · · , gα
v|I|

v|I|
, · · · , gα

v|I|

v|I|︸ ︷︷ ︸
b|I|

)

In this way, each vector vi only needs to be encoded once and the multiplication
of the same encoding is in logarithm time which gains efficiency. To encrypt
with any NP language, we present a reduction from CNF-SAT to our special
Subset-Sum problem.

We prove our encoding achieves extractability in the generic model of multi-
linear maps. The main technique is to construct an efficient extractor to extract
a witness from the adversary’s group operations. Constructing a witness ex-
tractor for the existing witness encryption schemes [25, 27, 38] appears to be
super-polynomial because of the expansion of adversary’s query polynomial. In-
terestingly extractable witness encryption with arbitrary auxiliary inputs might
be unattainable [24]. The counter example is constructed as follows: suppose the
sampler has (x,w) ∈ R, then the sampler obfuscates the decryption algorithm
of witness encryption z = O(WE.Dec(w, ·)) and gives z to the adversary; the
adversary can decrypt WE.Enc(x,m) by using the backdoor z and does not have
to know w. However, for our application of timed-release encryption, we do not
need the extractable security with arbitrary auxiliary inputs. Instead, we define
extractable security in an oracle model. The oracle is used to model the Bitcoin
block-chain. The extractability is possible to achieve for most of the non-artificial
oracles. In particular, when the oracle is instantiated with a decentralised cryp-
tocurrency such as Bitcoin, this kind of backdoor is unlikely to exist since it
is believed that no one can have a witness w in advance for each instance x.
After all, the Bitcoin block-chain has been publicly available since 2009 and any
adversary of any crypto scheme in the real world actually has access to it.

Efficiency comparison Assume a CNF formula has n variables and k clauses,
and each clause Cj contains mj literals. Let m =

∑k
j=1mj be the total number

of literals occurred. The ciphertext size of our witness encryption scheme is 2n+
2k+1 group elements. The evaluation time is n+O

(
klogm2k

)
. The multilinearity

level is n+m− k and can be optimised to n+O
(
klogm2k

)
.

The efficiency of encoding CNF-SAT in [25] depends on the reduction which
is unspecified in [25]. As far as we know, the best reductions from CNF-SAT
to Exact-Cover is CNF-SAT → 3-CNF-SAT → Exact-Cover (The details
of the second reduction can be found in Appendix E). However, the reduction
from CNF-SAT to 3-CNF-SAT increases the number of variables and clauses by
the size of the original CNF formula, that is n′ = O(m) and k′ = O(m) while
m is n · k in the worst case. The reduction from 3-CNF-SAT to Exact-Cover
generates an instance of size 2n′ + 7k′ + 1. Hence the encoding produces O(m)
group elements and the evaluation time and multilinearity level are also O(m)
with m = n · k in the worst case.

There are three instantiations of witness encryption for CNF formulas in [26].
Two of them are specific to the composite order multilinear groups. The prime-



order groups are usually more natural and result in simpler security assumptions.
The conversion from composite-order construction to prime-order multilinear
groups (or more generally, groups of arbitrary order) is very expensive and results
in a ciphertext of O(n5k2) group elements.

A direct encoding for Subset-Sum is given in [38] which encodes every in-
teger vector in a different group. In comparison, our encoding for Subset-Sum
only encodes the same integer vector once. As a result, the encoding of the CNF
formula is of the size of n+m− k group elements which is O(n · k) in the worst
case. The multilinearity level and the evaluation time are both n+m− k.

Timed-release encryption from Bitcoin Having built our witness encryp-
tion scheme, we propose a new timed-release encryption based on the Bitcoin
protocol and witness encryption. The novelty of our protocol is that the Bitcoin
network does the required amount of computational work to recover the decryp-
tion key and the decryptor in our protocol does not have to invest the computa-
tional effort. In the traditional timed-release crypto, the actual decryption time
depended on the moment at which the decryption starts and the computational
power the decryptor owns. The decryption will be delayed if the decryptor starts
late. In comparison, in our protocol, when the time is up, the decryption key will
be publicly available in the Bitcoin block-chain. Moreover, we do not modify the
existing Bitcoin protocol. The integration with the Bitcoin protocol is seamless
and the Bitcoin protocol functions like a public time clock.

The basic idea of our timed-release encryption is to extract a “public key”
from Bitcoin block-chain for encryption today; the decryption key consists of
the unpredictable information in the Bitcoin blocks (e.g., transactions, nonces,
hashes) that will only be determined in future. Clearly, the difficulty of building
such a protocol is that the decryption key is unpredictable. However, among all
of those unpredictable information, there is one thing that is actually predictable
and can be used as a public key for encryption. That is the Bitcoin proof-of-work
constraints:

SHA256(SHA256(block header)) ≤ target

The block-chain in the Bitcoin protocol is an ordered, back-linked list of blocks
of transactions. Each block is identified by a hash, generated using the SHA256
cryptographic hash algorithm on the header of the block. For a new block to
be accepted by the Bitcoin network as the next head of block-chain, its block
header must satisfy the above constraint.

Our timed-release encryption encrypts to a recent block t and a length `
of proof-of-work constraints. The ` subsequent valid blocks of t will provide a
solution to the constraints. A new block in the Bitcoin network is created every
10 minutes on average. Thus encrypting with ` blocks will give roughly 10 · `
minutes delay before the release of the information. After those blocks are gen-
erated, everyone can decrypt by using the information from those blocks. Hence
the “public key” for encryption is the proof-of-work constraints. Technically we
instantiate our timed-release encryption by our witness encryption which allows
us to encrypt with such a constraint and decrypt with its solution.



1.3 Outline

The rest of this paper proceeds as follows. In Section 2, we propose our new wit-
ness encryption scheme. In Section 3, we provide a short overview of the Bitcoin
protocol and analyse the success rate of Bitcoin mining. In Section 4, we pro-
pose our new timed-release encryption from the Bitcoin and witness encryption.
The paper concludes in Section 5. The discussion about the instantiation of our
timed-release encryption can be found in Appendix F.

2 Extractable witness encryption

2.1 Witness encryption

Witness encryption was originally proposed by Garg, Gentry, Sahai and Waters
[25]. It provides a means to encrypt to an instance, x, of an NP language and to
decrypt by a witness w that x is in the language.

Definition 1 (Witness encryption (WE) [25]). A witness encryption scheme
for an NP language L with corresponding witness relation RL consists of the fol-
lowing two polynomial-time algorithms:

– WE.Enc
(
1λ, x,m

)
is an encryption algorithm that takes as input a security

parameter 1λ, an unbounded-length string x, and a message m ∈ M, and
outputs a ciphertext c.

– WE.Dec(c, w) is an decryption algorithm that takes as input a ciphertext c
and a bit-vector w, and outputs a message m or the symbol ⊥.

– Correctness. For any x ∈ L such that (x,w) ∈ RL, we have that

Pr
[
WE.Dec

(
WE.Enc

(
1λ, x,m

)
, w
)

= m
]

= 1

The correctness states that an algorithm can decrypt if the instance x is in
the language L (i.e., x ∈ L), and it knows a witness w such that (x,w) ∈ RL.

A strong security notion for witness encryption is called extractable security
which is originally proposed in [27]. The extractability says that when the ad-
versary can distinguish two ciphertext encrypting different messages by using
the same instance, then it must know a witness of the instance. Below we give
a uniform variant of extractable security in an oracle model. We will show that
this definition is sufficient for our application of timed-release encryption. In the
next Section 2, we propose a novel witness encryption scheme and we prove our
new scheme achieves the extractable security.

Definition 2 (Extractable security). A witness encryption scheme for a lan-
guage L ∈ NP is (t, t′, q, q′; ε, ε′)-secure w.r.t. an oracle O(x, ·) if for any adver-
sary A = (A0,A1) that run in time t and queries O(x, ·) for at most q times,
there exists an extractor E that runs in time t′ and queries O(x, ·) for at most



q′ times, such that for all x ∈ {0, 1}∗, the following holds:

if Pr

 (m0,m1, St)←− AO(x,·)
0

(
1λ, x

)
b←− {0, 1} ; c←−WE.Enc

(
1λ, x,mb

)
b′ ←− AO(x,·)

1 (x,m0,m1, c, St)

: b = b′

 > ε

then Pr
[
w ←− EO(x,·)(1λ, x) : (x,w) ∈ RL

]
> ε′

The above definition states that if an adversary that runs in time t and
queries the oracle for at most q times can break the encryption scheme with
probability more than ε, then there exists an extractor E that runs in time t′

and extracts a witness with probability more than ε′.
In the above definition, we give the adversary access to an oracle O(x, ·). We

do not specify what the oracle does except it is related to the instance x. In
the next section, we shall prove the extractable security w.r.t. an oracle in the
generic model of multilinear maps. This is due to the fact that we have our proof
in an idealised model, which allows us to circumvent the impossibility result [24].

2.2 Extractable witness encryption from Subset-Sum

In this section, we propose a construction for extractable witness encryption
from a special Subset-Sum problem and we prove the extractable security in
the generic model of multilinear maps. We will show that the CNF-SAT can be
reduced to this special Subset-Sum problem in the next section.

We use notations u,v,w to represent integer vectors. We call a vector of n
elements the n-vector. We define u ≤ v as the component-wise comparison. We
denote by {(vi : `i)}i∈I a multi-set in which the element vi occurs `i times and
v1, · · · ,v|I| are pairwise-distinct. Let α := (α1, · · · , αd) and v := (v1, · · · , vd).
We write αv for αv11 α

v2
2 · · ·α

vd
d .

Our witness encryption scheme makes use of asymmetric multilinear maps
in which groups are indexed by integer vectors [23, 12, 40]. Suppose we have
a s-multilinear group family consisting of groups {Gv}v of the same order p
and v ≤ s, where s,v ∈ Z` are positive integer vectors and the comparison
between the vectors holds component-wise. The groups are equipped with a
set of multilinear maps, eu,v : Gu × Gv → Gu+v for u + v ≤ s, satisfying

eu,v

(
gαu , g

β
v

)
= gαβu+v. We often omit the subscripts and just write e.

The original Subset-Sum problem is: given a (multi)set of integer vectors
and a target integer vector s, does there exist a subset of the integer vectors such
that the sum of its elements is equal to s? To achieve extractability in witness
encryption, our encoding will be performed on a special Subset-Sum problem
defined as below:

– Instance: given a multi-set of d-vectors ∆ = {(vi : `i)}i∈I of positive inte-
gers, and a sum d-vector s of positive integers such that (`i + 1)vi 6≤ s for
each i ∈ I.



– Decide: is
∑
i∈I bivi = s for some integers 0 ≤ bi ≤ `i with i ∈ I?

Construction 1 (Extractable witness encryption) Suppose x is an instance
of the above special Subset-Sum problem and we use the above notations in the
following discussion. We construct a witness encryption scheme as below:

– WE.Enc
(
1λ, x,m

)
: run param←− G

(
1λ, ∆, s

)
to get the description of a set of

multilinear maps eu,v : Gu×Gv → Gu+v for u + v ≤ s, together with group
generators {gv}v≤s. Choose a vector of randoms α := 〈α1, · · · , αd〉 and a

random r. The ciphertext is c :=
(
param,

{
gα

vi

vi

}
i∈I ,m · g

αs

s

)
.

– WE.Dec(c,w): let w := (b1, b2, · · · , b|I|). Compute the decryption key by

K := e(gα
v1

v1
, · · · , gα

v1

v1︸ ︷︷ ︸
b1

, gα
v2

v2
, · · · , gα

v2

v2︸ ︷︷ ︸
b2

, · · · , gα
v|I|

v|I|
, · · · , gα

v|I|

v|I|︸ ︷︷ ︸
b|I|

)

If
∑
i∈I bivi = s, then K = gα

∑
i∈I bivi∑
i∈I bivi

= gα
s

s .

In the above construction, each vector vi is only encoded once as a group
element gα

vi

vi . The multiple usage of vi corresponds to the multiple pairing of

gα
vi

vi . However, we cannot allow the encoded element to be used for more than `i
times. This is why we have the side condition (`i + 1)vi 6≤ s. If gα

vi

vi is paired for
more than `i times, then the group index will be no longer smaller than the index
of the target group s. Note that the encoding described above does not directly
work for the general Subset-Sum problem. For example, given {1}, there is no

subset-sum for 3, but we can obtain the encoding gα
3

3 for the sum by computing

e
(
gα

1

1 , gα
1

1 , gα
1

1

)
. The problem is caused by the fact that the encoding gα

1

1 can

be used for multiple times but the element 1 can only be used for at most once
in the Subset-Sum instance.

Theorem 1. Our Construction 1 of witness encryption achieves extractable se-
curity with t′ = poly(t · λ) and ε′ = 2ε − 1 and q′ ≤ q in the generic model of
multilinear maps.

Proof (Sketch). Due to the space limitation, the full proof can be found in
Appendix C. The multilinear map oracle gives the adversary the handles for{
gα

vi

vi

}
i∈I in order to track the adversary’s group operations. The oracle an-

swers the queries for adding two handles on the groups of the same index level
and for pairing two handles into a new group with an index level lower or equal
to the top index level s. Note that the Subset-Sum instance is encoded in the
index of the group which enables us to efficiently extract a subset sum from the
adversary’s query polynomial of the handles without expanding the polynomial
into monomials. (The expansion of a polynomial is in general super-polynomial
which seems to be the reason that extracting a witness for the existing schemes
[25, 27, 38] is difficult.) If the adversary can construct an element from group
Gs by using elements in group {Gvi}i∈I , then we can efficiently extract a wit-

ness; otherwise the elements
{
gα

vi

vi

}
i∈I and the element gα

s

s are independently
distributed from the adversary’s point of view.



Our special Subset-Sum problem can directly encode the Exact-Cover
problem by representing each set of the instance of Exact-Cover as a vector
and the side condition holds because each set can be used for at most once. This
encoding converts the witness encryption scheme [25] into an extractable witness
encryption scheme.

A weaker security guarantee for witness encryption is the soundness security.
The soundness security states that if x /∈ L then no polynomial-time algorithm
can decrypt. An alternative definition for soundness security called adaptive
soundness is given in [7]. In fact, the extractable security implies the soundness
security since the probability that the extractor can extract a witness is 0 when
x /∈ L. We also give a discussion about the soundness security of our witness
encryption scheme in the Appendix D.

Since the breakthrough construction of Garg, Gentry and Halevi [23] in 2013,
multilinear maps [23, 19, 31, 20] becomes a very active research area, as well as
its cryptanalysis [16, 29, 37, 17]. Our design of witness encryption is independent
of the underlying implementations of multilinear maps. In particular, our scheme
is not susceptible to the zeroising attacks, as we do not publish low level zero
encodings.

2.3 Reducing CNF-SAT to Subset-Sum

In this section, we show how to construct an extractable witness encryption for
any NP language. This is achieved by constructing an intuitive reduction from an
instance of CNF-SAT to an instance of our special Subset-Sum. This results
in a more efficient encoding for CNF formulas compared to the encoding in the
existing witness encryption schemes.

The Boolean satisfiability problem (SAT) is, given a formula, to check whether
it is satisfiable. Let B be a Boolean formula. A literal is either a variable x or
the negation of a variable x. A clause is a disjunction of literals, e.g., C =
x1∨x2∨x3∨x4. The formula B is said to be in conjunctive normal form (CNF)
if it is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cm. The SAT problem for CNF
formulas is called CNF-SAT.

Definition 3 (Reduction from CNF-SAT to special Subset-Sum). As-
sume a CNF formula has n variables x1, x2, · · · , xn, and k clauses C1, C2, · · · , Ck,
each clause Cj contains mj literals. The reduction to an instance of special
Subset-Sum is performed as below:

1. For each variable xi with 1 ≤ i ≤ n, construct two vectors ui,0 and ui,1 of
(n+ 2k) integers as follows:
– The i-th element of ui,0 and ui,1 is 1
– For 1 ≤ j ≤ k, the (n+ j)-th element of ui,0 is 1 if xi is in clause Cj
– For 1 ≤ j ≤ k, the (n+ j)-th element of ui,1 is 1 if xi is in clause Cj
– All other elements of ui,0 and ui,1 are 0

2. For each clause Cj with 1 ≤ j ≤ k, assume there are mj literals in the clause
Cj, construct vectors vj,1,vj,2, · · · ,vj,mj−1 of n+ 2k integers:



– The (n+ j)-th element and the (n+ k + j)-th element of vj,1,vj,2, · · · ,vj,mj−1
are equal to 1

– All other elements of vj,1,vj,2, · · · ,vj,mj−1 are 0
3. For each clause Cj, we construct vectors zj,1, zj,2, · · · , zj,mj−1 of n + 2k

integers as counters:
– The (n+ k + j)-th element of zj,1, zj,2, · · · , zj,mj−1

is equal to 1
– All other elements of zj is 0

4. Finally, construct a target sum vector s of n+ 2k integers:
– For 1 ≤ j ≤ n, the j-th element of s is equal to 1
– For 1 ≤ j ≤ k, the (n+ j)-th element of s is equal to mj.
– For 1 ≤ j ≤ k, the (n+ k + j)-th element of s is equal to mj − 1.

Intuitively, the vector ui,0 corresponds to the negative occurrences of variable
xi in the formula while the vector ui,1 corresponds to its positive occurrences.
The vectors vj,1,vj,2, · · · ,vj,mj−1 for each clause Cj will sum to mj−1 at most,
but to complete the sum mj at least one will have to come from one of the ui,0
or ui,1 for 1 ≤ i ≤ n, which means the clause has to be satisfied by some literals.
An example for explaining this reduction is given in the following example.

Example 1. (x1 ∨ x2)∧(x1 ∨ x2 ∨ x3 ∨ x4)∧(x1 ∨ x2 ∨ x3) is encoded in Figure 1.
The assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0 evaluates the formula to true,
and it corresponds to the subset sum u1,1 + u2,0 + u3,1 + u4,0 + v2,1 + v2,2 +
v3,1 + z1,1 + z2,1 + z2,2 + z3,1 = s.

We shall analyse that the above reduction transforms an instance of CNF-
SAT into an instance of our special Subset-Sum, that is the side-condition
(`i + 1)vi 6≤ s is satisfied. Each vector ui,b can occur for at most once in the
sum, otherwise the i-th element of the sum will be bigger than 1. The vectors
vj,1, · · · ,vj,mj−1 are the same vectors and at most mj − 1 of them can occur
in the sum, otherwise the n + k + j-th element of the sum will be bigger than
mj − 1. Similarly the vectors zj,1, · · · , zj,mj−1 are the same and at most mj − 1
of them can be used in the sum otherwise the n + k + j-th element of the sum
will be bigger than mj − 1.

Theorem 2. The CNF formula is satisfiable iff subset sum exists.

Proof. If there is a subsequence of integer vectors summing to the sum vector s,
this must use exactly one of each of the pairs (ui,0,ui,1) (corresponding to each
variable xi being either false or true but not both) to make the first n elements
of the sum correct. Also, each clause of Cj must have been satisfied by at least
one variable, or the next k elements of the sum cannot be big enough. The last k
elements of the vectors are the auxiliary counters that will be used for encoding.
Therefore, there is a satisfying assignment to C1 ∧ C2 ∧ · · · ∧ Ck if and only if
there is a subsequence of the numbers that sums to s.

The reduction of the CNF formula to an instance of the special Subset-Sum
consists of 2n+m vectors. However, when we encrypt with Construction 1, the
vectors vj,1, · · · ,vj,mj−1 are encoded as one group element gα

vj,1

vj,1 since they are



Variables Clauses Counter

x1 x2 x3 x4 C1 C2 C3

u1,0 1 1
u1,1 1 1 1
u2,0 1 1 1
u2,1 1 1
u3,0 1
u3,1 1 1 1
u4,0 1 1
u4,1 1

v1,1 1 1
v2,1 1 1
v2,2 1 1
v2,3 1 1
v3,1 1 1
v3,2 1 1

z1,1 1
z2,1 1
z2,2 1
z2,3 1
z3,1 1
z3,2 1

s 1 1 1 1 2 4 3 1 3 2

Fig. 1: Reducing (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) to an instance
in special Subset-Sum.

the same vectors. Similarly, the vectors zj,1, · · · , zj,mj−1 are encoded as gα
zj,1

zj,1 .
The ciphertext for encrypting a message m is{

gα
ui,0

ui,0 , gα
ui,1

ui,1

}
1≤i≤n

∪
{
gα

vj,1

vj,1 , gα
zj,1

zj,1

}
1≤j≤k

∪
{
m · gα

s

s

}
Hence the size of the ciphertext for the CNF formula is of 2n+ 2k+ 1 group

elements. The decryption involves n+m− k mapping operations, that is the n

maps to compute gα
∑n
i=1 ui,xi∑n
i=1 ui,xi

, andm−k maps for gα
δjvj,1

δjvj,1
, gα

(mj−δj)zj,1

(mj−δj)zj,1 for 1 ≤ j ≤

k which can be done in time O
(∑k

j=1 (log(δi) + log(mj − δi))
)
≤ O

(
klogm2k

)
.

Hence the decryption has time complexity n + O
(
klogm2k

)
. The multilinearity

level is n+m− k and can be optimised to n+O
(
klogm2k

)
(see Appendix F for

details).

3 Bitcoin protocol

In this section we first provide a short overview of the Bitcoin protocol. Then
we discuss the probability of solving the proof-of-work puzzle used in Bitcoin.
This gives a security basis for using Bitcoin to build a timed-release encryption.



3.1 Overview of Bitcoin protocol

Bitcoin [35] is a peer-to-peer electronic cash which allows users to directly trans-
act without going through any central authority or financial institution. Every-
one can take part in managing transactions and issuing bitcoins. Transactions
are broadcast to and verified by Bitcoin network nodes, and are stored in a public
distributed ledger called the block-chain.

The block-chain is an ordered, back-linked list of blocks of transactions, as
shown in Figure 3. Each block is identified by a hash, generated using the SHA256
cryptographic hash algorithm on the header of the block. The data structure of
block header is given in Figure 2. Each block references a previous block through
the “hashPreBlock” field in the block header. The fields of difficulty, timestamp,
and nonce in Figure 2 are related to the mining competition. The merkle tree
root is a data structure used to efficiently summarize all the transactions in the
block.

Field Size Description

Version 4 bytes Block version number

hashPrevBlock 32 bytes Reference to the hash of the previous block header

hashMerkleRoot 32 bytes The root of the merkle tree of all of the
transactions in the block

Timestamp 4 bytes The approximate creation time of this block

Bits 4 bytes The proof-of-work difficulty target for this block

Nonce 4 bytes A counter used for the proof-of-work

Fig. 2: The structure of the block header

Block

Prev Hash

Transactions

Nonce

Block

Prev Hash

Transactions

Nonce

Block

Prev Hash

Transactions

Nonce

Fig. 3: Bitcoin block chain

To generate the next block, Bitcoin peers compete to solve a proof-of-work
puzzle based on identifying specific SHA256 preimages, specifically to find a
nonce, as part of the Bitcoin block header, hashes below a certain value:

SHA256(SHA256(block header)) ≤ 0d‖1256−d (1)

When mining Bitcoin, the proof-of-work algorithm repeatedly hashes the
block header while incrementing the counter Nonce. Whenever Nonce overflows,
an extra nonce portion of the generation transaction is incremented, which



changes the Merkle root. The value d is the number of leading zeroes which
represents the difficulty of Bitcoin mining. The difficulty is selected by a peri-
odic network vote to ensure that on average a block is created every 10 minutes.
When a peer generates a valid solution, it broadcasts the new block to all nodes
in the network. If the block is valid, then the new block is accepted as the head
of the block-chain.

hash1 = SHA256
(
SHA256

(
ver1, hash0,merkle1, time1, bit1, nonce1

))
≤ target

hash2 = SHA256
(
SHA256

(
ver2, hash1,merkle2, time2, bit2, nonce2

))
≤ target

hash3 = SHA256
(
SHA256

(
ver3, hash2,merkle3, time3, bit3, nonce3

))
≤ target

· · · · · · · · · · · ·
hashk = SHA256

(
SHA256

(
verk, hashk−1,merklek, timek, bitk, noncek

))
≤ target

Fig. 4: Proof-of-work constraints

3.2 Analysis of proof-of-work puzzle

We shall discuss the probability of finding a solution for the proof-of-work puzzle
in Bitcoin mining. For simplicity, we analyse the case when the target is of the
form 0d1256−d with d a positive integer. The calculation of the actual target is
more complex. The current target value is around 2188.53 (i.e., d ≈ 67) in Aug
2015 [2]. Our method is also suitable for the case when the target is any other
number.

Suppose the goal of Bitcoin mining is to find an auxiliary bit string w ∈
{0, 1}384 (including the nonce, transaction data etc., as described in the previous

section) which hashes the hash of previous block-header x ∈ {0, 1}256 to a value

under a target Ed. Let H : {0, 1}∗ → {0, 1}256 be the double hash used in the
Bitcoin protocol. Assume the output of the hash function is uniformly distributed
on {0, 1}256.

The following Proposition 1 gives the average number of trials for finding the
first w such that H(x,w) ≤ Ed.

Proposition 1. Let X be a random variable that denotes the number of trials
for finding the first w ∈ {0, 1}384 such that H(x,w) ≤ Ed where x ∈ {0, 1}256
and the target Ed = 0d1256−d and H is a hash function whose output is uniformly
distributed on {0, 1}256. Then the expectation E[X] ≈ 2d.

Proof. See Appendix A.

The next proposition gives the probability of finding at least one solution w
within n trials.

Proposition 2. Let P (d, n) be the probability of finding at least one w such
that H(x,w) ≤ Ed within n trials with x,w, Ed, H defined similar as in above
proposition. Then



1. P (d, n) = 1−
(

1− 1

2d

)n
;

2. 1− e−
n

2d < P (d, n) <
n

2d
.

Proof. See Appendix A.

The following proposition gives an upper bound on the probability of com-
puting ` continuous blocks within n trials in total.

Proposition 3. Given a pair (x0, w0) such that H(x0, w0) ≤ Ed, let P (d, n, `) be
the probability of finding ` continuous pairs (xi, wi) such that H(xi, wi) = xi+1

and H(xi+1, wi+1) ≤ Ed within n trials in total. Then P (d, n, `) ≤ n`/(` · 2d)`.

Proof. See Appendix A.

4 Timed-release encryption from Bitcoin and witness
encryption

We design a new timed-release encryption by using Bitcoin block-chain as a
public time clock. Bitcoin network is decentralised and there is no trusted third
party involved in our protocol. We use Bitcoin proof-of-work constraints as a
“public key”, encrypt with witness encryption [25] and decrypt with any solution
of the constraint.

4.1 Building blocks

In this section, we formally define the notion of timed-release encryption (TRE).
Our TRE scheme consists of two building blocks: a timer for modelling the
Bitcoin block-chain, and witness encryption. Below we give the primitives for
modelling Bitcoin blockchain as a timer and then give the intuitive explanations:

Definition 4 (Timer). A timer is a 3-tuple (T,≺,Tick) where T ⊂ {0, 1}∗ is a
time-point space, ≺ is a NP relation on T , and Tick is a probabilistic algorithm
that takes a time-point τ ∈ T as input and outputs τ ′ with τ ≺ τ ′ or an error
⊥. We denote by τ ≺k τ ′ for k ≥ 1 when there are τ1, · · · , τk such that τ ≺ τ1 ≺
τ2 ≺ · · · ≺ τk = τ ′. We require a timer to be live:

– Liveness: there exists a negligible function µ(·) such that for any t ∈ T ,

Pr [τ ′ ←− Tick(τ) : τ ≺ τ ′] ≥ 1 − µ(|τ |)

By using the notation in Section 3.2, when the timer is instantiated with
bitcoin protocol, a time-point τ can be a pair (x,w), and τ ≺ τ ′ when τ ′ =
(H(x,w), w′) and H(H(x,w), w′) ≤ Ed. The liveness states that the Tick al-
gorithm proceeds to the next time-point with a overwhelming probability. The
timer might not be able to continue with negligible probability. This is the exact
case for the bitcoin mining procedure as we analysed in Proposition 2.



The goal of timed-release encryption is to delay the decryption for a certain
period of time. It is computationally feasible for the adversary to decrypt as long
as it puts in enough computational work. Hence the concrete security is more
suitable than the asymptotic security.

We define a time-oracle T (τ, ·) for τ ∈ T on a timer (T,≺,Tick). The oracle
creates an internal list L and initialises it as L := {τ}. The adversary can make
the update queries and the oracle responses as follows: the oracle retrieves the
last entry in the list, say τ , and runs τ ′ ←− Tick(τ). The oracle gives τ ′ to the
adversary. If τ ≺ τ ′ (which implies τ ′ 6= ⊥), then the oracle appends τ ′ to the
list.

Definition 5 ((t, q, `; ε)-security for the timer). A timer (T,≺,Tick) is (t, q, `; ε)-
secure if for each adversary A that runs in time t, query time-oracle at most q
times with q < `, for any τ ∈ T , it holds that

Pr
[
(τ1, · · · , τ`)←− AT (τ,·)(τ, `) : τ ≺ τ1 ≺ · · · ≺ τ`

]
≤ ε

We allow the adversary to query the oracle for at most q (q < `) times. If the
adversary queries the oracle for ` times, then it becomes trivial since it means the
adversary honestly waits for the sufficient amount of time to pass and wins with
probability 1. The adversary tries to compute a chain of time-points of length `
starting from τ . The winning probability depends on the length ` of the required
time-points, as demonstrated in Proposition 3. The more computational work the
adversary put in, the bigger probability the adversary find the solution. In the
bitcoin network, the Bitcoin peers, i.e., the “adversaries”, compete to compute
the proof-of-work to generate the next block and the fastest “adversary” wins
the bonus.

Definition 6 (Timed-release encryption (TRE)). A timed-release encryp-
tion TRE on a timer (T,≺,Tick) consists of two polynomial-time algorithms:

– TRE.Enc
(
1λ, (τ, `),m

)
is an encryption algorithm that takes as input a start-

ing time-point τ ∈ T and an integer `, and a message m ∈ M, and outputs
a ciphertext c.

– TRE.Dec(c, k) is a decryption algorithm that takes as input a ciphertext c
and a string k ∈ {0, 1}∗, and outputs m ∈M ∪ {⊥}.

– Correctness. If τ ≺ τ1 ≺ · · · ≺ τ` then

Pr
[
TRE.Dec

(
TRE.Enc

(
1λ, (τ, `),m

)
, {τj}`j=1

)
= m

]
= 1

The timed-release encryption is defined on a timer. The ciphertext is en-
crypted to a starting point τ for timing, and the expected decryption time is
after the ` ticks of the timer. The correctness states that the algorithm can
decrypt when the ` continuous time-points starting from τ are found.

Definition 7 ((t, q, `; ε)-security for TRE). A timed-release encryption on a
timer (T,≺,Tick) is (t, q, `; ε)-secure if for every adversary A run in time t and



makes at most q (q < `) times update queries, for any τ ∈ T it holds that

Pr

 (m0,m1, St)←− AT (τ,·)
0

(
1λ, τ, `

)
b←− {0, 1} , c←− TRE.Enc

(
1λ, (τ, `),mb

)
b′ ←− AT (τ,·)

1

(
1λ, τ, `,m0,m1, c, St

) : b = b′

 ≤ ε
The above security definition measures the probability that the adversary

can decrypt within time t. The more computational work the adversary puts in,
the bigger probability that he can decrypt with.

Construction 2 (Timed-release encryption) We now present the construc-
tion of timed-release encryption. What we do is we encrypt our messages using a
witness encryption scheme relative to the NP relation for our timer. The witness
would be a valid chain of ` time points.

TRE.Enc
(
1λ, (τ, `),m

)
:= WE.Enc

(
1λ, x,m

)
with x := (τ, `)

TRE.Dec(c, k) := WE.Dec(c, k)

Based on the security of the timer and the witness encryption, we can prove
the security of the time-release encryption:

Theorem 3. Given access to a time-oracle, our construction for timed-release
encryption is (t, q, `; ε)-secure if the witness encryption is (t, q, t′, q′; ε, ε′)-secure
and the timer is (t′, q′, `; ε′)-secure.

Proof. For a timed-release encryption adversary A that breaks the (t, q, `; ε)-
security of encryption on (τ, `) and has access to a time-oracle T (τ, ·), it gives
a witness encryption adversary that runs in time t and has access to the oracle
O(x, ·) := T (τ, ·) with x = (τ, `) and guesses b correctly with probability more
than ε. If the witness encryption is (t, q, t′, q′; ε, ε′)-secure, this gives an extractor
that runs in time t′ and queries the oracle for at most q′ times and extracts a
witness with probability more than ε′. Recall that this witness is a continuous
chain of time-points into the future, which contradicts the assumption that the
timer is (t′, `; ε′)-secure.

5 Conclusion

We have proposed a new witness encryption based on Subset-Sum which achieves
extractable security without relying on obfuscation and is more efficient than
the existing ones. Our witness encryption employs multilinear maps of arbitrary
order and it is independent of the implementations of multilinear maps. For
encoding a CNF formula of n variables and k clauses, our witness encryption
achieves ciphertext of 2n+2k+1 group elements, as compared with other known
approaches for which the size is poly(n, k).

As an application, we construct a new timed-release encryption based on
the Bitcoin protocol and our extractable witness encryption. The public key



for encryption is the proof-of-work constraints and the decryption key are the
unpredictable values in the future blocks. The novelty of our protocol is that the
decryption key will be automatically revealed in the bitcoin block-chain when
the block-chain reaches a certain length.
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APPENDIX

A Proofs in Section 3

Proposition 1. Let X be a random variable that denotes the number of trials
for finding the first w ∈ {0, 1}384 such that H(x,w) ≤ Ed where x ∈ {0, 1}256 and
the target Ed = 0d1256−d and H is a hash function whose output is uniformly
distributed on {0, 1}256. Then the expectation E[X] ≈ 2d.

Proof. Let Pr [X = j] be the probability of finding the first w at the j-th at-
tempts. For each attempt w, the probability Pr [H(x,w) ≤ E ] = 2256−d/2256 =
1/2d. Then

E[X] =

2384∑
j=1

jP (X = j) =

2384∑
j=1

P (X ≥ j) =

2384∑
j=1

(
1− 1

2d

)j−1

= 2d

(
1−

(
1− 1

2d

)2384
)

Since limm→∞(1 − 1
m )m = 1/e and d is at most 256, we have (1 − 1/2d)2

384 ≤
(1− 1/2256)2

384 ≈ (1/e)
2128 ≈ 0. Hence E[X] ≈ 2d.

Proposition 2. Let P (d, n) be the probability of finding at least one w such
that H(x,w) ≤ Ed within n trials with x,w, Ed, H defined similar as in above
proposition. Then

1. P (d, n) = 1−
(

1− 1

2d

)n
;

2. 1− e−
n

2d < P (d, n) <
n

2d
.

Proof. we shall use the upper bound of the series (1 − 1
m )m for m ≥ 1. Since

e−x ≥ 1− x for x ∈ (0, 1], we have 1/e ≥ (1− x)1/x. Replacing x with 1/m, we
get 1/e ≥ (1− 1/m)m for any m ≥ 1.

1. The probability of finding no solution in n trials is (1 − 1/2d)n as shown
in Proposition 1. Hence the probability of finding at least one solution is

P (d, n) = 1−
(

1− 1

2d

)n
.



2. – For the upper bound, clearly sampling with replacement gives smaller
probability compared to sampling without replacement:

P (d, n) = 1−
(

1− 1

2d

)n
< 1−

(
1− 1

2d

)(
1− 1

2d − 1

)
· · ·
(

1− 1

2d − n+ 1

)
= 1− 2d − n

2d
=

n

2d

– For the lower bound, since
(
1− 1/2d

)n
=

((
1− 1/2d

)2d)n/2d ≤ e−n/2d ,

we have P (d, n) ≥ 1− e−n/2d .

Proposition 3. Given a pair (x0, w0) such that H(x0, w0) ≤ Ed, let P (d, n, `) be
the probability of finding ` continuous pairs (xi, wi) such that H(xi, wi) = xi+1

and H(xi+1, wi+1) ≤ Ed within n trials in total. Then P (d, n, `) ≤ n`/(` · 2d)`.

Proof. Since we assume the output of the hash function is uniformly distributed,
the probability of finding each following pair is independent of each other. Hence
P (d, n, `) = P (d, n1) · · ·P (d, n`) with nj the number of trials used for computing
the j-th pair and n1 + n2 + · · ·+ n` = n.

P (d, n, `) =

(
1−

(
1−

1

2d

)n1
)
· · ·

(
1−

(
1−

1

2d

)n`)

≤ n1
2d
· · · n`

2d
≤
(n
`

)`
·
(

1

2d

)`
=
( n

` · 2d
)`

The first inequality is by Proposition 2 and the second inequality is because of

x1 · · ·x` ≤
(
x1+···+x`

`

)`
.

B Generic multilinear map model

We will make use of asymmetric multilinear maps in which groups are indexed
by integer vectors [23, 12, 40].

Given a ring R and a universe multi-set U , an element is [x]S where x ∈ R
is the value of the element and S ⊆ U is the index of the element. The binary
operations over elements are defined as follows:

– For two elements e1 := [x1]S and e2 := [x2]T such that S = T , e1 + e2 is
defined as [x1 + x2]S , and e1 − e2 is defined as [x1 − x2]S .

– For two elements e1 := [x1]S and e2 := [x2]T , e1·e2 is defined as (x1x2, S ] T )
for S ] T ⊆ U where ] is the multi-set union.



A generic multilinear map oracle [5, 40] is a stateful oracleM that responds
to queries as follows:

– Initialization. M will be initialized with a ring R, a universe set U , and
a list L of initial elements. For every [x]S ∈ L, M generates a handle h.
The value of the handles are chosen to be independent of the elements being
encoded, and the handles are distinct. M outputs the handles generated
for all the elements in L. After the initialisation, all subsequent calls to
initialization queries fail.

– Algebraic operations. Given two input handles h1, h2 and an operation
◦ ∈ (+,−, ·),M first locates the relevant elements e1, e2 in the handle table.
If any of the input handles does not appear in the handle table, the call to
M fails. Then M computes e1 ◦ e2; the call fails if e1 ◦ e2 is undefined. M
generates a new handle for e1 ◦ e2, saves this element and the new handle in
the handle table, and returns the new handle.

– Zero-test. Given an input handle h, M first locates the relevant element
[x]S in the handle table. If h does not appear in the handle table, the call
fails. If S 6= U the call fails. ThenM returns 1 if x = 0, otherwise returns 0.

The zero-test is only available on the top-level index. The zeros on different
index levels are different.

C Extractability Security

Theorem 1. Our Construction 1 of witness encryption achieves extractable
security with t′ = poly(t · λ) and ε′ = 2ε− 1 and q′ ≤ q in the generic model of
multilinear maps.

Proof of Theorem 1 Assume an adversary A = (A0,A1) that run in time t, and
an instance x ∈ {0, 1}∗

Pr

 (m0,m1, St)←− AO(x,·)
0

(
1λ, x

)
b←− {0, 1} ; c←−WE.Enc

(
1λ, x,mb

)
b′ ←− AO(x,·)

1

(
1λ, x,m0,m1, c, St

) : b = b′

 > ε

Then we shall prove there exists an extractor E that run in time Θ(t · λ2) such
that

Pr
[
w ←− EO(x,·)(1λ, x) : (x,w) ∈ RL

]
> 2ε− 1

To ease the discussion, we consider the instances of the special Subset-Sum
problem defined in Definition 9, rather than the original SAT problem.

We construct an extractor E by using A as subroutine to extract a witness.
E queries to the oracle O(x, ·) and forwards the responses to the adversary
whenever the adversary queries to O(x, ·). E gives x to A. A chooses (m0,m1)
and sends them to E. Let x be the instance of special Subset-Sum: given a



multi-set of d-vectors ∆ = {(vi : `i)}i∈I of positive integers and a target sum
vector s of positive integers such that (`i + 1)vi 6≤ s for each i ∈ I.

E chooses b←− (0, 1) uniformly at random. E encodes the instance x accord-
ing to our witness encryption scheme as

{
gα

vi

vi

}
i∈I ∪

{
gα

s

s

}
where α is chosen

uniformly at random. E chooses d fresh formal symbols X = (X1, · · · , Xd) and
creates an initial list L :=

{
hi 7→ [yi]Vi

}
i∈I ∪ {h 7→ [y]T , h

′ 7→ [y′]T , h
′′ 7→ [y′′]T }

where

– Vi := X vi and T := X s.
– The handles hi, h are chosen uniformly at random.
– yi, y are fresh variables.

Intuitively, yi represents αvi , y represents mb + αs, y′ represents m0 and y′′

represents m1. Those variables are used to keep track of adversary’s computa-
tion. E gives those handles {hi}i∈I ∪{h, h′, h′′} to A. E answers the multilinear
maps oracle queries for addition, subtraction and multiplication as defined in Ap-
pendix B. To answer the zero-test queries, E instantiates those variables with
its real values and test whether the results are zeros.

Note that our proof also works when the handles for group generators ĥ 7→
[1]T and ĥi 7→ [1]Vi) for i ∈ I are given to the adversary, although our scheme
itself does not need to give the group generators. The elements of the other index
level are hidden.

We define an extraction function ext over the polynomials z produced by the
adversary. The ext(z) returns an |I|-vector of integers as follows:

For i ∈ I, ext(yi) = u with u a |I|-vector of 0 except a 1 on its i-th element

ext(y) = ext(y′) = ext(y′′) = 0

ext(z1 · z2) = ext(z1) + ext(z2)

ext(z1 + z2) =

{
ext(z1) if ext(z1) 6= 0
ext(z2) otherwise

ext(z1 − z2) =

{
ext(z1) if ext(z1) 6= 0
ext(z2) otherwise

Apparently this extraction function can be efficiently computed for any poly-
nomial z.

Lemma 1. For any formal polynomials z produced by A at an index level U :=
Xu with U ⊆ T for some d-vector u (u ≤ s). Let ext(z) =

(
δ1, · · · , δ|I|

)
.

1. ext(z) = 0 iff z is constructed by only using variable y, y′, y′′.
2. If ext(z) 6= 0, then

∑
i∈I δivi = u and 0 ≤ δi ≤ `i for each i ∈ I.

Proof. The proof of the two results goes by induction on the structure of z.

1. if z = yi, its index level is X vi and ext(z) = (δ1, · · · , δ|I|) with δi = 1 and
δj = 0 for j 6= i. Clearly we have

∑
j∈I δjvj = vi.

2. if z is y, y′, or y′′, we have ext(z) = 0.



3. if z = z1 + z2, according to the definition ofM, we know z1, z2 are both the
polynomials of the same index level Xu. By induction hypothesis, ext(z1) = 0
(ext(z2) = 0) iff z1 (z2) is constructed by only using y. By definition of ext,
for ext(z) to be 0, it must be ext(z1) and ext(z2) are both 0, i.e., both z1
and z2 are constructed by only using y, y′, y′′. That is to say ext(z) = 0 iff z
is constructed by only using y, y′, y′′. Hence the first result holds.
W.l.o.g., assume ext(z1) 6= 0. Let ext(z1) =

(
δ1, · · · , δ|I|

)
. By induction

hypothesis, we have
∑
i∈I δivi = u, and δi ≤ `i for each i ∈ I. By definition,

ext(z) = (δ1, · · · , δ|I|), and hence the second result holds.
4. if z = z1 − z2, simiar as above.
5. if z = z1 · z2, by definition of ext, for ext(z) to be 0, it must be ext(z1) and

ext(z2) are both 0, i.e., both z1 and z2 are constructed by only using y, y′, y′′.
That is to say ext(z) = 0 iff z is constructed by only using y, y′, y′′. Hence
the first result holds.
Let ext(z1) =

(
δ′1, · · · , δ′|I|

)
and ext(z2) =

(
δ′′1 , · · · , δ′′|I|

)
. Assume z1 is a

polynomial on index level Xu and z2 is a polynomial on index level Xw.
Then z is a polynomial on index level Xu+w. By induction hypothesis, we
know that

∑
i∈I δ

′
ivi = u and δ′i ≤ `i for each i ∈ I, and

∑
i∈I δ

′′
i vi = w

and δ′′i ≤ `i for each i ∈ I. Since ext(z) =
(
δ′1 + δ′′1 , · · · , δ′|I| + δ′′|I|

)
, we have∑

i∈I(δ
′
i + δ′′i )vi = u + w.

We are now left to show that for any i ∈ I, δ′i + δ′′i ≤ `i. Assume for some
i ∈ I, δ′i + δ′′i > `i. We shall show that U 6⊆ T . From the condition `ivi 6≤ s,
we know that (u1, · · · , ud) 6≤ s. But this multiplication will be rejected by
the multilinear map oracle. This contradicts the assumption.

Lemma 2. A formal polynomial z produced by the adversary A on the top index
level s can be rewritten into z = f(y1, · · · , y|I|) + a · y + a′ · y′ + a′′ · y′′ for
some integers a, a′, a′′ by only collecting the like terms of y, y′, y′′. Moreover the
polynomial f(y1, · · · , y|I|) is on the top index level and does not contain y, y′, y′′

and can also be computed by the adversary.

Proof. The initial top index level elements h 7→ [y]T , h
′ 7→ [y′]T , h

′′ 7→ [y′′]T
can only be added and subtracted. No multiplication is allowed on the top level.
Even if the polynomial only contains z′ − z′ with z′ on the top index level, this
polynomial cannot be multiplied since z′−z′ is a zero on the top index level. That
is to say y, y′, y′′ do not occur inside of any multiplication operations. Hence we
can separate y, y′, y′′ by using communicative and associative rules on +. After
collecting the like terms of y (no expansion or cancellation of the other terms),
z can be rewritten as z = f(y1, · · · , y|I|) + ay+ a′y′+ a′′y′′ for some polynomial
f (which does not contain y, y′, y′′) and some integers a, a′, a′′. Clearly for any
polynomial produced by A, its communicative and associative equivalence can
also be computed efficiently by A by simply changing the order of addition and
subtraction on the top level.

Let Good be an event that the adversary can construct such a z = f(y1, · · · , y|I|)+
ay + a′y′ + a′′y′′ with f(y1, · · · , y|I|) 6= 0 (note that we didn’t cancel terms



in f . So f(y1, · · · , y|I|) can only be 0 when it does not exist at all. Even if
f only contains terms like z′ − z′, f is not 0). If Good occurs, by definition
ext
(
f(y1, · · · , y|I|)

)
6= 0. Assume ext

(
f(y1, · · · , y|I|)

)
= (δ1, · · · , δ|I|), then from

Lemma 1, we have
∑
i∈I δivi = s and 0 ≤ δi ≤ `i for i ∈ I. In other words, we

get a subset sum for s. If Good does not occur, this means the adversary is not
able to construct any polynomial that contains elements from both

{
y1, · · · , y|I|

}
and {y, y′, y′′}, hence the adversary can only constructs the polynomial of the
form f1

(
y1, · · · , y|I|

)
and f2(y, y′, y′′). Recall that y represents mb + αs, y′ rep-

resents m0 and y′′ represents m1. In any polynomial f2(mb + αs,m0,m1), the
distribution of mb + αs is exactly the same as any uniform random in the ring
because α is chosen uniformly at random. Hence the adversary can only guess
the value of b and we have

Pr [b = b′] = Pr [b = b′ ∧ Good] + Pr [b = b′ ∧ ¬Good] ≤ Pr [Good] +
1

2
Pr [¬Good]

=
1

2
+

1

2
Pr [Good]

Since Pr [b = b′] > ε, we have Pr [Good] > 2ε− 1. And the event Good is in fact
the event the extractor can extract a witness for the instance of Subset-Sum.

The extractor initialises the multilinear map oracle and it takes time poly(λ).
The extractor performs the group operations of addition, subtraction, multipli-
cation and zero-testing queried by the adversary and it takes t·poly(λ) time since
the addition, subtraction and multiplication take time poly(λ) and zero-testing
is in time t · poly(λ) since polynomial produced by the adversary is of depth at
most Θ(t). The extraction algorithm is in time Θ(t). Hence it takes the extractor
poly(t · λ) times in total. This concludes the proof.

D Soundness security

Definition 8 (Soundness security [25] for WE). A witness encryption scheme
for a NP language L is (t, ε)-secure if for any adversary A that runs in time t,
for any x 6∈ L, we have:∣∣Pr[A(WE.Enc

(
1λ, x, 0

))
= 1
]
− Pr

[
A
(
WE.Enc

(
1λ, x, 1

))
= 1
]∣∣ ≤ ε

The soundness security states that if x /∈ L then no adversary that runs
in time t can break the scheme with probability more than ε. An alternative
definition for soundness security called adaptive soundness is given in [7].

The soundness security of our scheme will be based on the following multi-
linear counting subset-sum Diffie-Hellman (mCSDH) assumption:

Definition 9 ((t, ε)-secure mCSDH Assumption). Given a multi-set of d-
vectors ∆ = {(vi : `i)}i∈I of positive integers and a sum d-vector s of positive
integers such that (`i + 1)vi 6≤ s for each i ∈ I.



Let param ←− G
(
1λ, ∆, s

)
be a description of a multilinear group family with

a set of multilinear maps eu,v : Gu × Gv → Gu+v for u + v ≤ s, together with
group generators {gv}v≤s. Choose a vector of randoms α := 〈α1, · · · , αd〉 and a
random r. If s cannot be represented as a subset-sum of elements from set ∆,
then for any distinguisher D that runs in time t,∣∣∣∣Pr

[
D

(
param,

{
gα

vi

vi

}
i∈I

, gα
s

s

)
= 1

]
− Pr

[
D

(
param,

{
gα

vi

vi

}
i∈I

, grs

)
= 1

]∣∣∣∣ ≤ ε
Theorem 4. Our Construction 1 for witness encryption is (t, ε)-secure scheme
under (t′, ε)-mCSDH assumption where t′ = t+poly(λ) where poly(λ) is the time
for setting up the game and computing the challenge ciphertext.

Proof. Let x be an instance of our special Subset-Sum: given a multi-set of
d-vectors ∆ = {(vi : `i)}i∈I of positive integers and a target sum d-vector s of
positive integers such that `ivi 6≤ s for each i ∈ I.

Suppose an adversary A breaks the (t, ε)-security on x, then we can construct
a distingusher to break Assumption 9. Let param←− G

(
1λ, ∆, s

)
be a description

of a multilinear group family. Choose a vector of randoms α := 〈α1, · · · , αd〉.
D is given U0 :=

(
param,

{
gα

vi

vi

}
i∈I , g

αs

s

)
or U1 :=

(
param,

{
gα

vi

vi

}
i∈I , g

r
s

)
as

input. We denote this input by
(
param,

{
gα

vi

vi

}
i∈I ,K

)
where K = gα

s

s or grs .

D chooses b ←− {0, 1} and encrypts as cb =
(
param,

{
gα

vi

vi

}
i∈I , g

b
s ·K

)
. D gives

cb to A. A outputs its guess b′ for b. If b = b′ then D outputs 1; otherwise
outputs 0. When D gets U1, K is uniformly at random and hence c contains no
information about b. In this case,A can only guess. That is Pr [D(U1) = 1] = 1/2.
When D gets U0, from A’s view, A is playing the perfect soundness security
game. Hence Pr [D(U0) = 1] = 1

2 · Pr [A(c0) = 0] + 1
2 · Pr [A(c1) = 1] = 1

2 −
1
2 ·

(Pr [A(c0) = 1]− Pr [A(c1) = 1]). We have |Pr [D(U0) = 1]− Pr [D(U1) = 1]| =
1
2 |Pr [A(c0) = 1]− Pr [A(c1) = 1]|. Hence if A breaks the (t, ε)-security, then D
breaks the (t′, ε)-mCSDH assumption, where t′ = t+poly(λ) and poly(λ) denotes
a constant number of steps used for computing the challenge ciphertext.

Theorem 5. The mCSDH assumption achieves (t, ε)-security with t = poly(λ)
and ε = 0 in the generic model of multilinear maps.

Proof. The proof is similar to the analysis in Appendix C. In fact, the extractable
security implies the soundness security since the probability that the extractor
can extract a witness is 0 when the subset sum does not exist. The main difference
is that if the target encoding gα

s

s can be constructed then the subset-sum for
s exists which contradicts with the fact that x /∈ L. We can easily see that

Pr
[
D
(
param,

{
gα

vi

vi

}
i∈I , g

αs

s

)
= 1
]

= Pr
[
D
(
param,

{
gα

vi

vi

}
i∈I , g

r
s

)
= 1
]
.

E 3SAT to Exact-Cover

We give the textbook reduction from 3SAT to Exact-Cover (the best reduction
we can find) for the convenience of reader.



Definition 10 (Exact-Cover).
– Instance: a set X and a family A of subsets of X
– Decide: Is there an exact cover of X by A?

Reducing 3SAT to Exact-Cover Let f be an instance of 3SAT, with variables
x1, · · · , xn and clauses f1, · · · , fk. We first construct a graph G from f by setting:

V (G) = {xi | 1 ≤ i ≤ n } ∪ {xi | 1 ≤ i ≤ n } ∪ { fj | 1 ≤ j ≤ k }
E(G) = {xixi | 1 ≤ i ≤ n } ∪ {xifj | xi ∈ fj } ∪ {xifj | xi ∈ fj }

where the notation xi ∈ fj (resp. xi ∈ fj) signifies that xi (resp. xi) is a literal of
the clause fj . We then obtain an instance (X,A) of the Exact-Cover problem
from this graph G by setting:

X = { fj | 1 ≤ j ≤ k } ∪ E(G)

A = {E(xi) | 1 ≤ i ≤ n } ∪ {E(xi) | 1 ≤ i ≤ n } ∪ { {fj} ∪ Fj | Fj ⊂ E(fj), 1 ≤ j ≤ k }

where E(x) denotes the set of edges incident to vertex x in the graph G.
It can be verified that the formula f is satisfiable if and only if the set X has

an exact cover by the familiy of A.

Remark Although the above reduction does not explicitly refer to 3SAT, for a
clause of length `, the reduction would generate 2` sets. Hence, the CNF formula
has to be reduced into 3CNF first to keep it as an polynomial reduction. Clearly,
the number of sets in A is 2n+ 7k.

F Instantiation and Plausibility

In order to encrypt with witness encryption, we write C program for bitcoin
mining procedure, translate the C program into CNF clauses by using the tool
CBMC [18]. Then we can use the witness encryption to encode the CNF clauses
to produce a ciphertext. Our C program (about 300 loc) implements SHA256 and
proof-of-work constraints (as described in Figure 4) for 5 linked block headers. In
the “hashPrevBlock” field of the first block header, we put the hash value of the
Block 350108 [1]. The value of “hashPrevBlock” field of the second block header
is the hash of the first block header, and so on. The other fields are unpredictable,
so they are initialised with a nondeterministic value “nondet uint()” which are
handled as input variables in CBMC. Those nondeterministic values are the
decryption key that will be generated by bitcoin network in future.

The size of the resulting CNF formula is given in Figure 5. We use the tool
Coprocessor [32], a CNF simplifier, for a quick simplification. We can see that the
number of variables and clauses of the CNF formula increases linearly with the
number of blocks. For the mining difficulty, the number of leading zeroes of the
hash of block header is checked in an assertion statement. From the comparison
of Figure 5a and Figure 5b, we can see that the change of mining difficulty does
not affect the size of CNF formula. These figures will be useful for the plausibility



discussion later. We also use the Coprocessor [32], a CNF simplifier, to quickly
simplify the CNF formula generated from CBMC. Coprocessor has a function
that can exclude specified variables from the simplification, which preserves the
equality of the formula w.r.t. those variables during the simplification.

CNF generated by CBMC Simplified by Coprocessor

#blocks #vars #clauses #vars #clauses time(s)

1 205, 679 1, 015, 943 135, 628 915, 243 3.17
2 412, 663 2, 041, 922 271, 092 1, 813, 510 7.07
3 619, 647 3, 067, 901 408, 547 2, 733, 842 10.58
4 826, 631 4, 093, 880 545, 973 3, 654, 405 14.96
5 1, 033, 615 5, 119, 859 683, 452 4, 574, 855 18.19

(a) Bitcoin mining difficulty: 64-bit leading zeroes

CNF generated by CBMC Simplified by Coprocessor

#blocks #vars #clauses #vars #clauses time(s)

1 205, 689 1, 016, 025 135, 429 916, 279 3.16
2 412, 683 2, 042, 086 272, 764 1, 824, 906 7.01
3 619, 677 3, 068, 147 410, 180 2, 745, 325 10.56
4 826, 671 4, 094, 208 547, 661 3, 671, 326 12.60
5 1, 033, 665 5, 120, 269 685, 198 4, 595, 175 15.84

(b) Bitcoin mining difficulty: 128-bit leading zeroes

Fig. 5: Size of CNF clauses for bitcoin mining procedure

Since the breakthrough construction of Garg, Gentry and Halevi [23] in 2013,
multilinear maps [23, 19, 31, 20] becomes a very active research area, as well as
its cryptanalysis [16, 29, 37, 17]. Our design of witness encryption is independent
of the underlying implementations of multilinear maps. In particular, our scheme
is not susceptible to the zeroising attacks, as we do not publish low level zero
encodings.

We instantiate our witness encryption with CLT13 multilinear maps [19] in
order to justify the plausibility of our timed-release encryption. We show that
the time-delay caused by efficiency of current candidate multilinear maps is
essentially different and independent of the time-delay of bitcoin mining proce-
dure. The attacks [16] on CLT13 maps heavily rely on a sufficient amount of
low-level encodings of zero and level-0 encodings which are not explicitly pub-
lished in applications like witness encryption and program obfuscation because
these applications do not need the re-randomisation of the encodings. Our de-
sign of witness encryption is independent of the underlying implementations
of multilinear maps. This means whenever there is a better implementation of
multilinear maps (for better security assurances or better efficiency), we can
simply swap it in. The CLT13 maps generates n secret primes pi and publishes
x0 =

∏n
i=1 pi, and also generates n small secret primes gi. The message space

is R = Zg1 × · · · × Zgn . For implementing the asymmetric multilinear maps, we



select a series of random secret integers zj mod x0, j = 1, · · · , `. For an index
vector v = (v1, · · · , v`), the encoding of a message m = (mi) ∈ R relative to the
index is then an integer c such that for all 1 ≤ i ≤ n:

c ≡ ri · gi +mi

zv11 z
v2
2 · · · z

v`
`

(mod pi)

for some small random integers ri. Encodings can then be added and multiplied
modulo x0, as long as the noise ri is such that ri · gi + mi < pi for each i.
The encodings of group elements are noised and thus not unique. Suppose the
top-level index is s := (s1, · · · , s`). To enable the zero-testing on the top level,
CLT13 scheme publishes a zero-testing parameter

Pzt =

n∑
i=1

hi ·
(
zs11 · · · z

s`
` · g

−1
i mod pi

)
·
∏
j 6=i

pj mod x0

for some small integers hi. Based on the zero-testing procedure, one can define
an extractor Extracts(msbsν(c · Pzt mod x0)) to extract a random function of the
vector m encoded in the level-s encoding c. This extraction procedure outputs
a canonical representation from the encoding and actually gives the symmetric
encryption key.

The decryption involves n+m−k mapping operations as analysed in Section
2.3, hence the multilinearity level is also n+m−k. When the instantiations of the
multilinear maps are not compact, e.g., [23, 19, 31], that is, the size of elements
in the groups depends on the multilinearity κ, we can balance the size of the ring
elements and the number of the ring elements in the encoding as below. Instead
of encoding vj,1 as gα

vj,1

vj,1 , we can encode vj,1 as 2blog(mj)c elements:

gα
vj,1

vj,1 , gα
2vj,1

2vj,1 , gα
4vj,1

4vj,1 , · · · , gα
dvj,1

dvj,1

where d = 2blog(mj)c. As a result, this will keep the multilinearity as n +∑k
j=1 log(mj), instead of n +

∑k
j=1 (mj − 1), while the size of the encoding

is of 2n + 2
∑k
i=1blog(mj)c group elements. However, this optimisation intro-

duces some encodings of zeroes. We leave it as a future work to see whether this
optimisation is secure in the current instantiations of multilinear maps.

According to the suggestions of parameters settings for CLT13 maps [19], we
can take the size of group elements asΩ

(
κ2λ3

)
for λ-bit security. The multilinear-

ity κ equals to the number of multiplication operations. The current multilinear
maps are not yet practical. For the application of witness encryption, the time
for encryption and decryption is astronomical. However, this time-delay is inde-
pendent of the time-delay introduced in bitcoin mining procedure. Essentially,
the efficiency of the encryption and decryption algorithm is in (big) polynomial
time while the Bitcoin mining is in exponential time. The former is due to the
state-of-art technology which will be improved in future, while the latter can be
tuned by hand. That is, the time for encryption and decryption is not necessarily
longer than the time of bitcoin mining. To illustrate this point, assume there is



only one block involved in our timed-release encryption. According to Figure 5
and the above analysis, the multilinearity κ is around 106. Let λ = 256. Then the
size of group elements is around 1019. The modulo multiplication a · b(mod x0)
has time complexity O

(
log2(x0)

)
. Hence we estimate the time for multiplications

in group of size 1019 from the time for multiplications in group of size 106 by the
implementation in [19]. One multiplication in the group of size 1019 takes around
1024 seconds and the total decryption time is around 106 · 1024 = 1030(≈ 2100)
seconds. Regardless of future scientific improvement of multilinear maps, just
imaging our computing power is 1030 times faster at some point in future, then
the decryption time will become 1 second, while the bitcoin mining difficulty
(which is currently 64-bit leading zeroes) can be adjust to 164-leading zeroes in
order to keep the speed of block generation at 10 minutes per block. The change
of mining difficulty will not change the size of CNF formula as demonstrated in
Figure 5, which will not affect the decryption time.


