Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance

Shi Bai ${ }^{1}$, Adeline Roux-Langlois ${ }^{2}$, Tancrède Lepoint ${ }^{3}$, Amin Sakzad ${ }^{4}$, Damien Stehlé ${ }^{1}$, and Ron Steinfeld ${ }^{4}$
${ }^{1}$ ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France.
shi.bai@ens-lyon.fr, damien.stehle@ens-lyon.fr -
http://perso.ens-lyon.fr/shi.bai,http://perso.ens-lyon.fr/damien.stehle
${ }^{2}$ CNRS/IRISA, Rennes, France.
adeline.roux-langlois@irisa.fr -
http://people.irisa.fr/Adeline.Roux-Langlois/
${ }^{3}$ CryptoExperts, France.
tancrede.lepoint@cryptoexperts.com - https://tlepoint.github.io/
${ }^{4}$ Faculty of Information Technology, Monash University, Clayton, Australia.
ron.steinfeld@monash.edu, amin.sakzad@monash.edu -
http://users.monash.edu.au/~rste/

Abstract

The Rényi divergence is a measure of closeness of two probability distributions. We show that it can often be used as an alternative to the statistical distance in security proofs for lattice-based cryptography. Using the Rényi divergence is particularly suited for security proofs of primitives in which the attacker is required to solve a search problem (e.g., forging a signature). We show that it may also be used in the case of distinguishing problems (e.g., semantic security of encryption schemes), when they enjoy a public sampleability property. The techniques lead to security proofs for schemes with smaller parameters, and sometimes to simpler security proofs than the existing ones.

April 25, 2016

1 Introduction

Let D_{1} and D_{2} be two non-vanishing probability distributions over a common measurable support X. Let $a \in(1,+\infty)$. The Rényi divergence [Rén61,vEH14] (RD for short) $R_{a}\left(D_{1} \| D_{2}\right)$ of order a between D_{1} and D_{2} is defined as the $\left((a-1)\right.$ th root of the) expected value of $\left(D_{1}(x) / D_{2}(x)\right)^{a-1}$ over the randomness of x sampled from D_{1}. For notational convenience, our definition of the RD is the exponential of the classical definition [vEH14]. The RD is an alternative to the statistical distance (SD for short) $\Delta\left(D_{1}, D_{2}\right)=\frac{1}{2} \sum_{x \in X}\left|D_{1}(x)-D_{2}(x)\right|$ as measure of distribution closeness, where we replace the difference in SD, by the ratio in RD . RD enjoys several properties that are analogous of those enjoyed by

SD , where the additive property of SD is replaced by a multiplicative property in RD (see Subsection 2.3).

SD is ubiquitous in cryptographic security proofs. One of its most useful properties is the so-called probability preservation property: For any measurable event $E \subseteq X$, we have $D_{2}(E) \geq D_{1}(E)-\Delta\left(D_{1}, D_{2}\right)$. RD enjoys the analogous property $D_{2}(E) \geq D_{1}(E)^{\frac{a}{a-1}} / R_{a}\left(D_{1} \| D_{2}\right)$. If the event E occurs with significant probability under D_{1}, and if the SD (resp. RD) is small, then the event E also occurs with significant probability under D_{2}. These properties are particularly handy when the success of an attacker against a given scheme can be described as an event whose probability should be non-negligible, e.g., the attacker outputs a new valid message-signature pair for a signature scheme. If the attacker succeeds with good probability in the real scheme based on distribution D_{1}, then it also succeeds with good probability in the simulated scheme (of the security proof) based on distribution D_{2}.

To make the SD probability preservation property useful, it must be ensured that the $\mathrm{SD} \Delta\left(D_{1}, D_{2}\right)$ is smaller than any $D_{1}(E)$ that the security proof must handle. Typically, the quantity $D_{1}(E)$ is assumed to be greater than some success probability lower bound ε, which is of the order of $1 / \operatorname{poly}(\lambda)$ where λ refers to the security parameter, or even $2^{-o(\lambda)}$ if the proof handles attackers whose success probabilities can be sub-exponentially small (which we believe better reflects practical objectives). As a result, the SD $\Delta\left(D_{1}, D_{2}\right)$ must be $<\varepsilon$ for the SD probability preservation property to be relevant. In contrast, the RD probability preservation property is non-vacuous when the $\mathrm{RD} R_{a}\left(D_{1} \| D_{2}\right)$ is $\leq \operatorname{poly}(1 / \varepsilon)$. In many cases, the latter seems less demanding than the former: in all our applications, the RD between D_{1} and D_{2} is small enough for RD probability preservation property while their SD is too large for the SD probability preservation to be applicable (see Subsection 2.3). This explains the superiority of the RD in several of our applications.

Although RD seems more amenable than SD for search problems, it seems less so for distinguishing problems. A typical cryptographic example is semantic security of an encryption scheme. Semantic security requires an adversary \mathcal{A} to distinguish between the encryption distributions of two plaintext messages of its choosing: the distinguishing advantage $\operatorname{Adv}_{\mathcal{A}}\left(D_{1}, D_{2}\right)$, defined as the difference of probabilities that \mathcal{A} outputs 1 using D_{1} or D_{2}, should be sufficiently large. In security proofs, algorithm \mathcal{A} is often called on distributions D_{1}^{\prime} and D_{2}^{\prime} that are close to D_{1} and D_{2} (respectively). If the SDs between D_{1} and D_{1}^{\prime} and D_{2} and D_{2}^{\prime} are both bounded from above by ε, then, by the SD probability preservation property (used twice), we have $\operatorname{Adv}_{\mathcal{A}}\left(D_{1}^{\prime}, D_{2}^{\prime}\right) \geq \operatorname{Adv}_{\mathcal{A}}\left(D_{1}, D_{2}\right)-2 \varepsilon$. As a result, SD can be used for distinguishing problems in a similar fashion as for search problems. The multiplicativity of the RD probability preservation property seems to prevent RD from being applicable to distinguishing problems.

We replace the statistical distance by the Rényi divergence in several security proofs for lattice-based cryptographic primitives. Lattice-based cryptography is a relatively recent cryptographic paradigm in which cryptographic primitives are shown at least as secure as it is hard to solve standard problems over lattices
(see the surveys [MR09,Pei15]). Security proofs in lattice-based cryptography involve different types of distributions, often over infinite sets, such as continuous Gaussian distributions and Gaussian distributions with lattice supports. The RD seems particularly well suited to quantify the closeness of Gaussian distributions. Consider for example two continuous Gaussian distributions over the reals, both with standard deviation 1 , but one with center 0 and the other one with center c. Their SD is linear in c, so that c must remain extremely small for the SD probability preservation property to be useful. On the other hand, their RD of order $a=2$ is bounded as $\exp \left(O\left(c^{2}\right)\right)$ so that the RD preservation property remains useful event for slightly growing c.

RD was first used in lattice-based cryptography in [LPR13], in the decision to search reduction for the Ring Learning With Errors problem (which serves as a security foundation for many asymptotically fast primitives). It was then exploited in [LSS14] to decrease the parameters of the Garg et al. (approximation to) cryptographic multilinear maps [GGH13]. In the present work, we present a more extensive study of the power of RD in lattice-based cryptography, by showing several independent applications of RD. In some cases, it leads to security proofs allowing to take smaller parameters in the cryptographic schemes, hence leading to efficiency improvements. In other cases, this leads to alternative security proofs that are conceptually simpler.

Our applications of RD also include distinguishing problems. To circumvent the aforementioned a priori limitation of the RD probability preservation property for distinguishing problems, we propose an alternative approach that handles a class of distinguishing problems enjoying a special property that we call public sampleability. This public sampleability allows to estimate success probabilities via Hoeffding's bound.

The applications we show in lattice-based cryptography are as follows:

- Smaller storage requirement for the Fiat-Shamir BLISS signature scheme [DDLL13,PDG14,Duc14].
- Smaller parameters in the dual-Regev encryption scheme from [GPV08].
- Alternative proof that the Learning With Errors (LWE) problem with noise chosen uniformly in an interval is no easier than the Learning With Errors problem with Gaussian noise [DMQ13]. Our reduction does not require the latter problem to be hard, and it is hence marginally more general as it also applies to distributions with smaller noises. Further, our reduction preserves the LWE dimension n, and is hence tighter than the one from [DMQ13] (the latter degrades the LWE dimension by a constant factor). ${ }^{5}$
- Alternative proof that the Learning With Rounding (LWR) problem [BPR12] is no easier than LWE. Our reduction is the first which preserves the dimension n without resorting to noise flooding (which significantly degrades the noise rate): the reductions from [AKPW13, $\left.\mathrm{BGM}^{+} 16\right]$ do not preserve the dimension, and the one from [BPR12] preserves the dimension but makes

[^0]use of noise flooding. In [AKPW13], the authors can get close to preserve the dimension up to a constant but at a price of larger polynomial modulos. Denoting by \mathbb{Z}_{p} the ring in which we perform rounding, our new reduction also gains extra factors of $p \sqrt{\log n}$ and $p n \sqrt{\log n}$ in the number of LWR samples handled, compared with $\left[\mathrm{BGM}^{+} 16\right]$ and [AKPW13], respectively.

We think RD is likely to have further applications in lattice-based cryptography, for both search and distinguishing problems.
Related works. The framework for using RD in distinguishing problems was used in [LPSS14], in the context of the k-LWE problem (a variant of LWE in which the attacker is given extra information). In [PDG14], Pöpplemann, Ducas and Güneysu used the Kullback-Leibler divergence (which is the RD of order $a=1$) to lower the storage requirement of [DDLL13]. Asymptotically, using the Kullback-Leibler divergence rather than SD only leads to a constant factor improvement. Our approach allows bigger savings in the case where the number of signature queries is limited, as explained in Section 3.

Recently, Bogdanov et al. $\left[\mathrm{BGM}^{+} 16\right]$ adapted parts of (an earlier version of) our RD-based hardness proof for LWE with noise uniform in a small interval, to the LWR problem. In particular, they obtained a substantial improvement over the hardness results of [BPR12,AKPW13]. In this revised and extended version of our earlier conference paper $\left[\mathrm{BLL}^{+} 15\right]$, we show an alternative LWR hardness proof that improves on that of $\left[\mathrm{BGM}^{+} 16\right]$, exploiting the equivalence of LWR to LWE with noise uniform in an interval; an equivalence has also established in $\left[\mathrm{BGM}^{+} 16\right]$ but not used there to relate the hardness of LWE to that of LWR.

After the publication of earlier versions of this article, some of our results have been improved [TT15] and used in $\left[\mathrm{LLM}^{+} 16\right]$ in the context of dynamic group signatures and in [ADPS15] to replace the LWE error distribution by a more efficiently samplable distribution.
Road-map. In Section 2, we provide necessary background on lattice-based cryptography, and on the Rényi divergence. In Section 3, we use RD to improve lattice-based signature scheme parameters via more efficient Gaussian sampling. Section 4 contains the description of the framework in which we can use RD for distinguishing problems, which we apply to improve the parameters of the dual-Regev encryption scheme. In Section 5, we describe an alternative hardness proof for LWE with noise uniformly chosen in an interval. Section 6 shows an application of the previous section to give a new hardness proof for the LWR problem. Finally, Section 7 concludes with open problems.
Notations. If x is a real number, we let $\lfloor x\rceil$ denote a closest integer to x. The notation \ln refers to the natural logarithm and the notation \log refers to the base 2 logarithm. We define $\mathbb{T}=([0,1],+)$. For an integer q, we let \mathbb{Z}_{q} denote the ring of integers modulo q. We let \mathbb{T}_{q} denote the group $\mathbb{T}_{q}=\{i / q \bmod 1: i \in$ $\mathbb{Z}\} \subseteq \mathbb{T}$. Vectors are denoted in bold. If \boldsymbol{b} is a vector in \mathbb{R}^{d}, we let $\|\boldsymbol{b}\|$ denote its Euclidean norm. By default, all our vectors are column vectors.

If D is a probability distribution, we let $\operatorname{Supp}(D)=\{x: D(x) \neq 0\}$ denote its support. For a set X of finite weight, we let $U(X)$ denote the uniform distribution
on X. To ease notation, we let U_{β} denote the distribution $U([-\beta, \beta])$ for a positive real β. The statistical distance between two distributions D_{1} and D_{2} over a countable support X is $\Delta\left(D_{1}, D_{2}\right)=\frac{1}{2} \sum_{x \in X}\left|D_{1}(x)-D_{2}(x)\right|$. This definition is extended in the natural way to continuous distributions. If $f: X \rightarrow$ \mathbb{R} takes non-negative values, then for all countable $Y \subseteq X$, we define $f(Y)=$ $\sum_{y \in Y} f(y) \in[0,+\infty]$. For any vector $\boldsymbol{c} \in \mathbb{R}^{n}$ and any real $s>0$, the (spherical) Gaussian function with standard deviation parameter s and center \boldsymbol{c} is defined as follows: $\forall \boldsymbol{x} \in \mathbb{R}^{n}, \rho_{s, \boldsymbol{c}}(\boldsymbol{x})=\exp \left(-\pi\|\boldsymbol{x}-\boldsymbol{c}\|^{2} / s^{2}\right)$. The Gaussian distribution is $D_{s, \boldsymbol{c}}=\rho_{s, \boldsymbol{c}} / s^{n}$. When $\boldsymbol{c}=\mathbf{0}$, we may omit the subscript \boldsymbol{c}.

We use the usual Landau notations. A function $f(\lambda)$ is said negligible if it is $\lambda^{-\omega(1)}$. A probability $p(\lambda)$ is said overwhelming if it is $1-\lambda^{-\omega(1)}$.

The distinguishing advantage of an algorithm \mathcal{A} between two distributions D_{0} and D_{1} is defined as $\operatorname{Adv}_{\mathcal{A}}\left(D_{0}, D_{1}\right)=\left|\operatorname{Pr}_{x \hookleftarrow D_{0}}[\mathcal{A}(x)=1]-\operatorname{Pr}_{x \hookleftarrow D_{1}}[\mathcal{A}(x)=1]\right|$, where the probabilities are taken over the randomness of the input x and the internal randomness of \mathcal{A}. Algorithm \mathcal{A} is said to be an (ε, T)-distinguisher if it runs in time $\leq T$ and if $\operatorname{Adv}_{\mathcal{A}}\left(D_{0}, D_{1}\right) \geq \varepsilon$.

We say a distribution χ is B-bounded, for some positive real B, if its support be in the interval $[-B, B]$. In the case where χ is over \mathbb{Z}_{q}, we assume that $B \leq$ $(q-1) / 2$. A B-bounded distribution χ is said to be balanced if $\operatorname{Pr}[\chi \leq 0] \geq 1 / 2$ and $\operatorname{Pr}[\chi \geq 0] \geq 1 / 2$.

2 Preliminaries

We assume the reader is familiar with standard cryptographic notions, as well as with lattices and lattice-based cryptography. We refer to [Reg09a,MR09] for introductions on the latter topic.

2.1 Lattices

A (full-rank) n-dimensional Euclidean lattice $\Lambda \subseteq \mathbb{R}^{n}$ is the set of all integer linear combinations $\sum_{i=1}^{n} x_{i} \boldsymbol{b}_{i}$ of some \mathbb{R}-basis $\left(\boldsymbol{b}_{i}\right)_{1 \leq i \leq n}$ of \mathbb{R}^{n}. In this setup, the tuple $\left(\boldsymbol{b}_{i}\right)_{i}$ is said to form a \mathbb{Z}-basis of Λ. For a lattice Λ and any $i \leq n$, the i th successive minimum $\lambda_{i}(\Lambda)$ is the smallest radius r such that Λ contains i linearly independent vectors of norm at most r. The dual Λ^{*} of a lattice Λ is defined as $\Lambda^{*}=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: \boldsymbol{y}^{t} \Lambda \subseteq \mathbb{Z}^{n}\right\}$.

The (spherical) discrete Gaussian distribution over a lattice $\Lambda \subseteq \mathbb{R}^{n}$, with standard deviation parameter $s>0$ and center \boldsymbol{c} is defined as:

$$
\forall \boldsymbol{x} \in \Lambda, D_{\Lambda, s, \boldsymbol{c}}=\frac{\rho_{s, \boldsymbol{c}}(\boldsymbol{x})}{\rho_{s, \boldsymbol{c}}(\Lambda)}
$$

When the center is $\mathbf{0}$, we omit the subscript \boldsymbol{c}.
The smoothing parameter [MR07] of an n-dimensional lattice Λ with respect to $\varepsilon>0$, denoted by $\eta_{\varepsilon}(\Lambda)$, is the smallest $s>0$ such that $\rho_{1 / s}\left(\Lambda^{*} \backslash\{0\}\right) \leq \varepsilon$. We use the following properties.

Lemma 2.1 ([MR07, Le. 3.3]). Let Λ be an n-dimensional lattice and $\varepsilon>0$. Then

$$
\eta_{\varepsilon}(\Lambda) \leq \sqrt{\frac{\ln (2 n(1+1 / \varepsilon))}{\pi}} \cdot \lambda_{n}(\Lambda)
$$

Lemma 2.2 (Adapted from [GPV08, Le. 5.3]). Let $m, n \geq 1$ and q a prime integer, with $m \geq 2 n \ln q$. For $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ we define $\Lambda_{\mathbf{A}}^{\perp}$ as the lattice $\left\{\boldsymbol{x} \in \mathbb{Z}^{m}\right.$: $\mathbf{A x}=\mathbf{0} \bmod q\}$. Then

$$
\forall \varepsilon<1 / 2: \quad \operatorname{Pr}_{\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{n \times m}\right)}\left[\eta_{\varepsilon}\left(\Lambda_{\mathbf{A}}^{\perp}\right) \geq 4 \sqrt{\frac{\ln (4 m / \varepsilon)}{\pi}}\right] \leq q^{-n}
$$

Lemma 2.3 (Adapted from [GPV08, Cor. 2.8]). Let $\Lambda, \Lambda^{\prime}$ be n-dimensional lattices with $\Lambda^{\prime} \subseteq \Lambda$ and $\varepsilon \in(0,1 / 2)$. Then for any $\boldsymbol{c} \in \mathbb{R}^{n}$ and $s \geq \eta_{\varepsilon}\left(\Lambda^{\prime}\right)$ and any $x \in \Lambda / \Lambda^{\prime}$ we have

$$
\left(D_{\Lambda, s, \boldsymbol{c}} \bmod \Lambda^{\prime}\right)(x) \in\left[\frac{1-\varepsilon}{1+\varepsilon}, \frac{1+\varepsilon}{1-\varepsilon}\right] \cdot \frac{\operatorname{det}(\Lambda)}{\operatorname{det}\left(\Lambda^{\prime}\right)}
$$

2.2 The SIS, LWE, and LWR problems

The Small Integer Solution (SIS) problem was introduced by Ajtai in [Ajt96]. It serves as a security foundation for numerous cryptographic primitives, including, among many others, hash functions [Ajt96] and signatures [GPV08,DDLL13].

Definition 2.4. Let $m \geq n \geq 1$ and $q \geq 2$ be integers, and β a positive real. The SIS $_{n, m, q, \beta}$ problem is as follows: given $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{n \times m}\right)$, the goal is to find $\boldsymbol{x} \in$ \mathbb{Z}^{m} such that $\mathbf{A x}=\mathbf{0} \bmod q$ and $0<\|\boldsymbol{x}\| \leq \beta$.

The SIS problem was proven by Ajtai [Ajt96] to be at least as hard as some standard worst-case problems over Euclidean lattices, under specific parameter constraints. We refer to [GPV08] for an improved (and simplified) reduction.

The Learning With Errors (LWE) problem was introduced in 2005 by Regev [Reg05,Reg09b]. LWE is also extensively used as a security foundation, for encryption schemes [Reg09b,GPV08], fully homomorphic encryption schemes [BV11], and pseudo-random functions [BPR12,AKPW13], among many others. Its definition involves the following distribution. Let χ be a distribution over $\mathbb{T}, q \geq 2, n \geq 1$ and $s \in \mathbb{Z}_{q}^{n}$. A sample from $A_{s, \chi}$ is of the form $(\boldsymbol{a}, b) \in$ $\mathbb{Z}_{q}^{n} \times \mathbb{T}$, with $\boldsymbol{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), b=\frac{1}{q}\langle\boldsymbol{a}, \boldsymbol{s}\rangle+e$ and $e \hookleftarrow \chi$.

Definition 2.5. Let χ be a distribution over $\mathbb{T}, q \geq 2$, and $m \geq n \geq 1$. The search variant $\mathrm{sLWE}_{n, q, \chi, m}$ of the LWE problem is as follows: given m samples from $A_{\boldsymbol{s}, \chi}$ for some $\boldsymbol{s} \in \mathbb{Z}_{q}^{n}$, the goal is to find s. The decision variant $\mathrm{LWE}_{n, q, \chi, m}$ consists in distinguishing between the distributions $\left(A_{\boldsymbol{s}, \chi}\right)^{m}$ and $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{T}\right)^{m}$, where $s \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$.

Definition 2.6. The $\operatorname{sbinLWE}_{n, q, \chi, m}$ (resp. $\operatorname{binLWE}_{n, q, \chi, m}$) for any error distribution χ denotes the $\mathrm{sLWE}_{n, q, \chi, m}$ problem (resp. $\mathrm{LWE}_{n, q, \chi, m}$ problem) when the vector \boldsymbol{s} is uniformly sampled in $\{0,1\}^{n}$.

In $\left[\mathrm{BGM}^{+} 16\right]$, the secret s can be drawn from any distribution over $\{0,1\}^{n}$ similar to what we defined above. It would be more consistent with the definition of sLWE to let the secret s be arbitrary, but it does not seem possible to prove equivalence via the random self reducibility property of LWE. A less direct reduction from worst-case sbinLWE to uniform-secret sbinLWE is as follows: worst-case sbinLWE reduces to LWE, then [GKPV10] and [BLP ${ }^{+}$13, Th. 4.1] provide reductions from LWE to binLWE, and finally $\left[\mathrm{BGM}^{+} 16\right]$ contains a reduction from binLWE to uniform-secret sbinLWE. In any case, we will only use uniform-secret sbinLWE so we stick to this variant in the present article.

In some cases, it is convenient to use an error distribution χ whose support is \mathbb{T}_{q}. In these cases, the definition of LWE is adapted that $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{T}\right)$ is replaced by $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{T}_{q}\right)$. Note also that for a fixed number of samples m, we can represent the LWE samples using matrices. The \boldsymbol{a}_{i} 's form the rows of a matrix \mathbf{A} uniform in $\mathbb{Z}_{q}^{m \times n}$, and the scalar product is represented by the product between \mathbf{A} and \boldsymbol{s}.

Regev [Reg09b] gave a quantum reduction from standard worst-case problems over Euclidean lattices to sLWE and LWE, under specific parameter constraints. Classical (but weaker) reductions have later been obtained (see [Pei09, $\left.\mathrm{BLP}^{+} 13\right]$). We will use the following sample-preserving search to decision reduction for LWE.

Theorem 2.7 (Adapted from [MM11, Prop. 4.10]). If $q \leq \operatorname{poly}(m, n)$ is prime and the error distribution χ has support in \mathbb{T}_{q}, then there exists a reduction from $\mathrm{sLWE}_{n, q, \chi, m}$ to $\mathrm{LWE}_{n, q, \chi, m}$ that is polynomial in n and m.

For integers $p, q \geq 2$, the rounding function from \mathbb{Z}_{q} to \mathbb{Z}_{p} is defined by

$$
\lfloor x\rceil_{p}=\lfloor(p / q) \bar{x}\rfloor \quad(\bmod p),
$$

where $\bar{x} \in \mathbb{Z}$ is any integer congruent to x modulo q. This can also be extended component-wise to vectors and matrices.

For a secret vector $s \in \mathbb{Z}_{q}^{n}$, a sample (\boldsymbol{a}, b) from the LWR distribution B_{s} over $\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{p}$ is obtained by choosing a vector $\boldsymbol{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and setting $b=$ $\lfloor\langle\boldsymbol{a}, \boldsymbol{s}\rangle\rceil_{p}$.

Definition 2.8. The decision variant $\mathrm{LWR}_{n, q, p, m}$ of LWR consists in distinguishing between the distributions $\left(B_{s}\right)^{m}$ and $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{p}\right)^{m}$, where $s \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$.

The LWR problem was introduced in [BPR12] and used there and in subsequent works to construct pseudorandom functions (PRFs) based on the hardness of LWE.

2.3 The Rényi divergence

For any two discrete probability distributions P and Q such that $\operatorname{Supp}(P) \subseteq$ $\operatorname{Supp}(Q)$ and $a \in(1,+\infty)$, we define the Rényi divergence of order a by

$$
R_{a}(P \| Q)=\left(\sum_{x \in \operatorname{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{\frac{1}{a-1}}
$$

We omit the a subscript when $a=2$. We define the Rényi divergences of orders 1 and $+\infty$ by
$R_{1}(P \| Q)=\exp \left(\sum_{x \in \operatorname{Supp}(P)} P(x) \log \frac{P(x)}{Q(x)}\right)$ and $R_{\infty}(P \| Q)=\max _{x \in \operatorname{Supp}(P)} \frac{P(x)}{Q(x)}$.
The definitions are extended in the natural way to continuous distributions. The divergence R_{1} is the (exponential of) the Kullback-Leibler divergence.

For any fixed P, Q, the function $a \mapsto R_{a}(P \| Q) \in(0,+\infty]$ is non-decreasing, continuous over $(1,+\infty)$, tends to $R_{\infty}(P \| Q)$ when a grows to infinity, and if $R_{a}(P \| Q)$ is finite for some a, then $R_{a}(P \| Q)$ tends to $R_{1}(P \| Q)$ when a tends to 1 (we refer to [vEH14] for proofs). A direct consequence is that if $P(x) / Q(x) \leq$ c for all $x \in \operatorname{Supp}(P)$ and for some constant c, then $R_{a}(P \| Q) \leq R_{\infty}(P \| Q) \leq c$. In the same setup, we have $\Delta(P, Q) \leq c / 2$.

The following properties can be considered the multiplicative analogues of those of the SD. We refer to [vEH14,LSS14] for proofs.

Lemma 2.9. Let $a \in[1,+\infty]$. Let P and Q denote distributions with $\operatorname{Supp}(P) \subseteq$ $\operatorname{Supp}(Q)$. Then the following properties hold:

- Log. Positivity: $R_{a}(P \| Q) \geq R_{a}(P \| P)=1$.
- Data Processing Inequality: $R_{a}\left(P^{f} \| Q^{f}\right) \leq R_{a}(P \| Q)$ for any function f, where P^{f} (respectively Q^{f}) denotes the distribution of $f(y)$ induced by sampling $y \hookleftarrow P$ (respectively $y \hookleftarrow Q$).
- Multiplicativity: Assume P and Q are two distributions of a pair of random variables $\left(Y_{1}, Y_{2}\right)$. For $i \in\{1,2\}$, let P_{i} (resp. Q_{i}) denote the marginal distribution of Y_{i} under P (resp. $\left.Q\right)$, and let $P_{2 \mid 1}\left(\cdot \mid y_{1}\right)$ (resp. $Q_{2 \mid 1}\left(\cdot \mid y_{1}\right)$) denote the conditional distribution of Y_{2} given that $Y_{1}=y_{1}$. Then we have:
- $R_{a}(P \| Q)=R_{a}\left(P_{1} \| Q_{1}\right) \cdot R_{a}\left(P_{2} \| Q_{2}\right)$ if Y_{1} and Y_{2} are independent for $a \in[1, \infty]$.
- $R_{a}(P \| Q) \leq R_{\infty}\left(P_{1} \| Q_{1}\right) \cdot \max _{y_{1} \in X} R_{a}\left(P_{2 \mid 1}\left(\cdot \mid y_{1}\right) \| Q_{2 \mid 1}\left(\cdot \mid y_{1}\right)\right)$.
- Probability Preservation: Let $E \subseteq \operatorname{Supp}(Q)$ be an arbitrary event. If $a \in$ $(1,+\infty)$, then $Q(E) \geq P(E)^{\frac{a}{a-1}} / R_{a}(P \| Q)$. Further, we have

$$
Q(E) \geq P(E) / R_{\infty}(P \| Q)
$$

Let P_{1}, P_{2}, P_{3} be three distributions with $\operatorname{Supp}\left(P_{1}\right) \subseteq \operatorname{Supp}\left(P_{2}\right) \subseteq \operatorname{Supp}\left(P_{3}\right)$. Then we have:

- Weak Triangle Inequality:

$$
R_{a}\left(P_{1} \| P_{3}\right) \leq\left\{\begin{array}{r}
R_{a}\left(P_{1} \| P_{2}\right) \cdot R_{\infty}\left(P_{2} \| P_{3}\right), \\
R_{\infty}\left(P_{1} \| P_{2}\right)^{\frac{a}{a-1}} \cdot R_{a}\left(P_{2} \| P_{3}\right) \quad \text { if } a \in(1,+\infty) .
\end{array}\right.
$$

Getting back to the setup in which $P(x) / Q(x) \leq c$ for all $x \in \operatorname{Supp}(P)$ and for some constant c, the RD probability preservation property above is relevant even for large c, whereas the analogous SD probability preservation property starts making sense only when $c<2$.

Pinsker's inequality is the analogue of the probability preservation property for $a=1$: for an arbitrary event $E \subseteq \operatorname{Supp}(Q)$, we have $Q(E) \geq P(E)-$ $\sqrt{\ln R_{1}(P \| Q) / 2}$ (see [PDG14, Le. 1] for a proof). Analogously to the statistical distance, this probability preservation property is useful for unlikely events E only if $\ln R_{1}(P \| Q)$ is very small. We refer to Subsection 3 for additional comments on this property.

2.4 Some RD bounds

As we have already seen, if two distributions are close in a uniform sense, then their RD is small. We observe the following immediate consequence of Lemma 2.3, that allows replacing the SD with the RD in the context of smoothing arguments, in order to save on the required parameter s. In applications of Lemma 2.3, it is customary to use $s \geq \eta_{\varepsilon}\left(\Lambda^{\prime}\right)$ with $\varepsilon \leq 2^{-\lambda}$, in order to make the distribution $D_{\Lambda / \Lambda^{\prime}, s, c}=D_{\Lambda, s, c} \bmod \Lambda^{\prime}$ within SD $2^{-\lambda}$ of the uniform distribution $U\left(\Lambda / \Lambda^{\prime}\right)$. This translates via Lemma 2.1 to use $s=\Omega\left(\sqrt{\lambda+\log n} \cdot \lambda_{n}\left(\Lambda^{\prime}\right)\right)$. If using an RD bound, the fact that $R_{\infty}\left(D_{\Lambda / \Lambda^{\prime}, s, c} \| U_{\Lambda / \Lambda^{\prime}}\right)=O(1)$ suffices for the application: one can take $\varepsilon=O(1)$ in the corollary below, which translates to just $s=\Omega\left(\sqrt{\log n} \cdot \lambda_{n}\left(\Lambda^{\prime}\right)\right)$, saving a factor $\Theta(\sqrt{\lambda})$.

Lemma 2.10. Let $\Lambda, \Lambda^{\prime}$ be n-dimensional lattices with $\Lambda^{\prime} \subseteq \Lambda$ and $\varepsilon \in(0,1 / 2)$. Let $D_{\Lambda / \Lambda^{\prime}, s, c}$ for any $\boldsymbol{c} \in \mathbb{R}^{n}$ denote the distribution on $\Lambda / \Lambda^{\prime}$ induced by sampling from $D_{\Lambda, s, c}$ and reducing modulo Λ^{\prime}, and let $U_{\Lambda / \Lambda^{\prime}}$ denote the uniform distribution on $\Lambda / \Lambda^{\prime}$. Then for $s \geq \eta_{\varepsilon}\left(\Lambda^{\prime}\right)$, we have

$$
R_{\infty}\left(D_{\Lambda / \Lambda^{\prime}, s, c} \| U_{\Lambda / \Lambda^{\prime}}\right) \leq \frac{1+\varepsilon}{1-\varepsilon}
$$

In our hardness analysis of the LWR problem, the following Gaussian tailcut lemma is used. It bounds the RD of order ∞ between a continuous Gaus$\operatorname{sian} D_{\alpha}$ and the same Gaussian with its tail cut to be B-bounded, that we denote by $D_{\alpha, B}^{\prime}$. This allows, via an application of the RD probability preservation property, to conclude that any algorithm with success probability ε for m-sample search LWE with noise coordinates sampled from the tail-cut Gaussian $D_{\alpha, B}^{\prime}$, is also an algorithm for LWE with noise coordinates sampled from the true Gaussian D_{α} with success probability $\geq \varepsilon / O(1)$, as long as $B=\Omega(\alpha \cdot \sqrt{\log m})$. This improves upon the bound $B=\Omega\left(\alpha \cdot \sqrt{\log \left(m \cdot \varepsilon^{-1}\right)}\right)$ that one obtains with an application of the SD to get the same conclusion.

Lemma 2.11. Let $D_{\alpha, B}^{\prime}$ denote the continuous distribution on \mathbb{R} obtained from D_{α} by cutting its tail (by rejection sampling) to be B-bounded. Then we have

$$
R_{\infty}\left(D_{\alpha, B}^{\prime} \| D_{\alpha}\right) \leq \frac{1}{1-\exp \left(-\pi B^{2} / \alpha^{2}\right)}
$$

Furthermore, for m independent samples, we have $R_{\infty}\left(\left(D_{\alpha, B}^{\prime}\right)^{m} \|\left(D_{\alpha}\right)^{m}\right) \leq \exp (1)$ if $B \geq \alpha \cdot \sqrt{\ln (2 m) / \pi}$.

Proof. For $x \in \mathbb{R}$, we have $D_{\alpha, B}^{\prime}(x)=c \cdot D_{\alpha}(x)$ for $|x|<B$ and $D_{\alpha, B}^{\prime}(x)=0$ otherwise, where c is a normalization constant such that $\int_{-\infty}^{\infty} D_{\alpha, B}^{\prime}(x) d x=1$. It follows that $c=\frac{1}{1-2 Q_{\alpha}(B)}$, where $Q_{\alpha}(B)=\int_{B}^{\infty} D_{\alpha}(x) d x$ is the tail probability $\operatorname{Pr}_{z \hookleftarrow D_{\alpha}}[z \geq B]$. By a standard Gaussian tail bound, we have $Q_{\alpha}(B) \leq$ $\frac{1}{2} \cdot \exp \left(-\pi B^{2} / \alpha^{2}\right)$, and hence $c \leq \frac{1}{1-\exp \left(-\pi B^{2} / \alpha^{2}\right)}$. The first part of the lemma now follows from the observation that $R_{\infty}\left(D_{\alpha, B}^{\prime} \| D_{\alpha}\right)=\max _{x} \frac{D_{\alpha, B}^{\prime}(x)}{D_{\alpha}(x)}=c$. For the second part of the lemma, observe that $c \leq \exp \left(4 Q_{\alpha}(B)\right)$ if $2 Q_{\alpha}(B) \leq 1 / 2$ using the inequality $1-x \geq \exp (-2 x)$ for $0<x \leq 1 / 2$. It follows by the multiplicativity property of RD that $R_{\infty}\left(\left(D_{\alpha, B}^{\prime}\right)^{m} \|\left(D_{\alpha}\right)^{m}\right) \leq \exp \left(4 m Q_{\alpha}(B)\right) \leq \exp (1)$ if $2 Q_{\alpha}(B) \leq \frac{1}{2 m}$. The latter condition is satisfied by the above tail bound on $Q_{\alpha}(B)$ if $B \geq \alpha \cdot \sqrt{\ln (2 m) / \pi}$.

3 Application to lattice-based signature schemes

In this section, we use the RD to improve the security proofs of the BLISS signature scheme [DDLL13], allowing to take smaller parameters for any fixed security level.

More precisely, we show that the use of RD in place of SD leads to significant savings in the required precision of integers sampled according to a discrete Gaussian distribution in the security analysis of lattice-based signature schemes. These savings consequently lower the precomputed table storage for sampling discrete Gaussians with the method described in [DDLL13,PDG14]. In Table 1, we provide a numerical comparison of RD and SD based on an instantiation of BLISS-I.

Discrete Gaussian sampling. In the BLISS signature scheme [DDLL13] (and similarly in earlier variants [Lyu12]), each signature requires the signing algorithm to sample $O(n)$ independent integers from the 1-dimensional discrete Gaussian distribution $D_{\mathbb{Z}, s}$, where $s=O(m)$ is the standard deviation parameter (here the variable m denotes a parameter related to the underlying lattice dimension, and is typically in the order of several hundreds). ${ }^{6}$

In [DDLL13], a particularly efficient sampling algorithm for $D_{\mathbb{Z}, s}$ is presented. To produce a sample from $D_{\mathbb{Z}, s}$, this algorithm samples about $\ell=\left\lceil\log \left(0.22 s^{2}(1+\right.\right.$

[^1]$2 \tau s)$) \rceil Bernoulli random variables of the form $B_{\exp \left(-\pi 2^{i} / s^{2}\right)}$, where $0 \leq i \leq$ $\ell-1$ and $\tau=O(\sqrt{\lambda})$ is the tail-cut factor for the Gaussian. To sample those Bernoulli random variables, the authors of [DDLL13] use a precomputed table of the probabilities $c_{i}=\exp \left(-\pi 2^{i} / s^{2}\right)$, for $1 \leq i \leq \ell$. Since these probabilities are real numbers, they must be truncated to some bit precision p in the precomputed table, so that truncated values $\tilde{c}_{i}=c_{i}+\varepsilon_{i}$ are stored, where $\left|\varepsilon_{i}\right| \leq 2^{-p} c_{i}$ are the truncation errors.

In previous works, the precision was determined by an analysis either based on the statistical distance (SD) [DDLL13] or the Kullback-Leibler divergence (KLD) [PDG14]. In this section, we review and complete these methods, and we propose an RD-based analysis that leads to bigger savings, asymptotically and in practice (see Table 1). More precisely, we give sufficient lower bounds on the precision p to ensure security on the scheme implemented with truncated values against adversaries succeeding with probability $\geq \varepsilon$ and making $\leq q_{s}$ signing queries. For any adversary, the distributions Φ^{\prime} and Φ denote the signatures in the view of the adversary in the untruncated (resp. truncated) cases.

SD-based analysis [DDLL13]. Any forging adversary \mathcal{A} with success probability $\geq \varepsilon$ on the scheme implemented with truncated Gaussian has a success probability $\varepsilon^{\prime} \geq \varepsilon-\Delta\left(\Phi, \Phi^{\prime}\right)$ against the scheme implemented with perfect Gaussian sampling. We select parameters to handle adversaries with success probabilities $\geq \varepsilon / 2$ against the untruncated scheme; we can set the required precision p so that $\Delta\left(\Phi, \Phi^{\prime}\right) \leq \varepsilon / 2$. Each signature requires $\ell \cdot m$ samples from the Bernoulli random variables $\left(B_{\tilde{c}_{i}}\right)_{i}$. To ensure security against q_{s} signing queries, each of the truncated Bernoulli random variables $B_{\tilde{c}_{i}}$ should be within SD $\Delta\left(\Phi, \Phi^{\prime}\right) /\left(\ell \cdot m \cdot q_{s}\right)$ of the desired $B_{c_{i}}$ (by the union bound). Using $\Delta\left(B_{\tilde{c}_{i}}, B_{c_{i}}\right)=\left|\varepsilon_{i}\right| \leq 2^{-p} c_{i} \leq 2^{-p-1}$ leads to a precision requirement

$$
\begin{equation*}
p \geq \log \left(\ell \cdot m \cdot q_{s} / \Delta\left(\Phi, \Phi^{\prime}\right)\right) \geq \log \left(\ell \cdot m \cdot q_{s} / \varepsilon\right) \tag{1}
\end{equation*}
$$

The overall precomputed table is hence of bit-size $L_{S D}=p \cdot \ell \geq \log \left(\ell \cdot m \cdot q_{s} / \varepsilon\right) \cdot \ell$. Note that in [DDLL13], the authors omitted the term $\ell \cdot m \cdot q_{s}$ in their analysis: they only ensured that $\Delta\left(B_{\tilde{c}_{i}}, B_{c_{i}}\right) \leq \varepsilon$, leading to the requirement that $p \geq$ $\log (1 / \varepsilon)$.

One may also set the precision p_{i} depending on i for $0 \leq i \leq \ell-1$. It is sufficient to set

$$
2^{-p_{i}} c_{i}=2^{-p_{i}} \exp \left(-\pi 2^{i} / s^{2}\right) \leq(\varepsilon / 2) /\left(\ell \cdot m \cdot q_{s}\right)
$$

Hence the precision p_{i} is

$$
\begin{equation*}
p_{i} \geq \log \left(\frac{\ell \cdot m \cdot q_{s}}{\varepsilon} \cdot \exp \left(-\pi 2^{i} / s^{2}\right)\right)+1 \tag{2}
\end{equation*}
$$

The bit-size of the overall precomputed table can be computed as a sum of the above p_{i} 's. Using the symmetry of the Bernoulli variable, we can further decrease the bit-size of the precomputed table.

KLD-based analysis [PDG14]. In [PDG14], Pöppelman, Ducas and Güneysu replace the SD-based analysis by a KLD-based analysis (i.e., using the RD of order $a=1$) to reduce the precision p needed in the precomputed table. They show that any forging adversary \mathcal{A} with success probability ε on the scheme implemented with truncated Gaussian has a success probability $\varepsilon^{\prime} \geq$ $\varepsilon-\sqrt{\ln R_{1}\left(\Phi \| \Phi^{\prime}\right) / 2}$ on the scheme implemented with perfect Gaussian (see remark at the end of Subsection 2.3). By the multiplicative property of the RD over the $\ell \cdot m \cdot q_{s}$ independent samples needed for signing q_{s} times, we get that $R_{1}\left(\Phi \| \Phi^{\prime}\right) \leq\left(\max _{1 \leq i \leq \ell} R_{1}\left(B_{\tilde{c}_{i}} \| B_{c_{i}}\right)\right)^{\ell \cdot m \cdot q_{s}}$. Now, we have:

$$
\begin{aligned}
\ln R_{1}\left(B_{\tilde{c}_{i}} \| B_{c_{i}}\right) & =\left(1-c_{i}-\varepsilon_{i}\right) \ln \frac{1-c_{i}-\varepsilon_{i}}{1-c_{i}}+\left(c_{i}+\varepsilon_{i}\right) \ln \frac{c_{i}+\varepsilon_{i}}{c_{i}} \\
& \leq-\left(1-c_{i}-\varepsilon_{i}\right) \frac{\varepsilon_{i}}{1-c_{i}}+\left(c_{i}+\varepsilon_{i}\right) \frac{\varepsilon_{i}}{c_{i}}=\frac{\varepsilon_{i}^{2}}{\left(1-c_{i}\right) c_{i}}
\end{aligned}
$$

Using $\left|\varepsilon_{i}\right| \leq 2^{-p} c_{i}$ and $1-c_{i} \geq 1 / 2$, we obtain $\ln R_{1}\left(B_{\tilde{c}_{i}} \| B_{c_{i}}\right)=2^{-2 p+1} \frac{c_{i}}{1-c_{i}} \leq$ $2^{-2 p}$. Therefore, we get $\varepsilon^{\prime} \geq \varepsilon-\sqrt{\ell \cdot m \cdot q_{s} \cdot 2^{-2 p}}$. We can select parameters such that $\sqrt{\ell \cdot m \cdot q_{s} \cdot 2^{-2 p+1}} \leq \varepsilon / 2$. This leads to a precision requirement

$$
\begin{equation*}
p \geq \frac{1}{2} \log \left(\frac{\ell \cdot m \cdot q_{s}}{\varepsilon^{2}}\right)+\frac{1}{2} \tag{3}
\end{equation*}
$$

The overall precomputed table is hence of bit-size $L_{\mathrm{KLD}} \geq\left(\log \left(\ell \cdot m \cdot q_{s} / \varepsilon^{2}\right) / 2+\right.$ $1 / 2) \cdot \ell$. This KLD-based analysis may save some storage if ε is not too small. Note that in [PDG14], the authors selected $\varepsilon=1 / 2$ and $\ell \cdot m \cdot q_{s}=2^{\lambda}$ where λ is the desired bit-security, and hence obtained $p \geq \lambda / 2+1$.

One may also set the precision p_{i} depending on i. It is sufficient to set

$$
\begin{equation*}
p_{i} \geq \frac{1}{2} \log \left(\frac{\ell \cdot m \cdot q_{s}}{\varepsilon^{2}} \cdot \frac{c_{i}}{1-c_{i}}\right)+1 \tag{4}
\end{equation*}
$$

Using symmetry, we may assume $c_{i} \leq 1 / 2$.
R_{∞}-based analysis. The probability preservation property of the Rényi divergence from Lemma 2.9 is multiplicative for $a>1$ (rather than additive for $a=1$). Here we use the order $a=\infty$. This property gives that any forging adversary \mathcal{A} having success probability ε on the scheme implemented with truncated Gaussian sampling has a success probability $\varepsilon^{\prime} \geq \varepsilon / R_{\infty}\left(\Phi \| \Phi^{\prime}\right)$ on the scheme implemented with perfect Gaussian. If $R=R_{\infty}\left(\Phi \| \Phi^{\prime}\right) \leq O(1)$, then $\varepsilon^{\prime}=\Omega(\varepsilon)$. By the multiplicative property of the RD (over the $\ell \cdot m \cdot q_{s}$ samples needed for signing q_{s} times), we have $R_{\infty}\left(\Phi \| \Phi^{\prime}\right) \leq R_{\infty}\left(B_{\tilde{c}_{i}} \| B_{c_{i}}\right)^{\ell \cdot m \cdot q_{s}}$. By our assumption that $c_{i} \leq 1 / 2$, we have $R_{\infty}\left(B_{\tilde{c}_{i}} \| B_{c_{i}}\right)=1+\left|\varepsilon_{i}\right| / c_{i} \leq 1+2^{-p}$. Therefore, we get $\varepsilon^{\prime} \geq \varepsilon /\left(1+2^{-p}\right)^{\ell \cdot m \cdot q_{s}}$. We select parameters to get adversaries with success probabilities $\geq \varepsilon / 2$ against the untruncated scheme and set the precision so that $\left(1+2^{-p}\right)^{\ell \cdot m \cdot q_{s}} \leq 2$. Using the inequality $1+x \leq \exp (x)$, this yields a sufficient precision requirement

$$
\begin{equation*}
p \geq \log \left(\ell \cdot m \cdot q_{s}\right)+\log (1 / \ln (2)) \approx \log \left(\ell \cdot m \cdot q_{s}\right) \tag{5}
\end{equation*}
$$

This condition essentially eliminates the term ε in the analogous Equations (1) and (3) of the SD-based and KLD-based analyses. ${ }^{7}$ Overall, we get a precomputed table of bit-size $L_{\mathrm{RD}}=\log \left(\ell \cdot m \cdot q_{s}\right) \cdot \ell$.
R_{a}-based analysis. We may also consider R_{a}-based analysis for general $a>1$. It should be noted that the reductions here are not tight: for R_{a}-based analysis with $a>1$, the probability preservation shows $\varepsilon^{\prime}>\varepsilon^{a /(a-1)} / R_{a}\left(\Phi \| \Phi^{\prime}\right)$. The Rényi divergence can be computed, as follows

$$
\begin{aligned}
\left(R_{a}\left(\Phi \| \Phi^{\prime}\right)\right)^{a-1} & =\frac{\left(1-c_{i}-\varepsilon_{i}\right)^{a}}{\left(1-c_{i}\right)^{a-1}}+\frac{\left(c_{i}+\varepsilon_{i}\right)^{a}}{c_{i}^{a-1}} \\
& =\left(1-c_{i}-\varepsilon_{i}\right)\left(1-\frac{\varepsilon_{i}}{1-c_{i}}\right)^{a-1}+\left(c_{i}+\varepsilon_{i}\right)\left(1+\frac{\varepsilon_{i}}{c_{i}}\right)^{a-1}
\end{aligned}
$$

If a is much smaller than 2^{p}, we obtain

$$
\begin{aligned}
\left(R_{a}\left(\Phi \| \Phi^{\prime}\right)\right)^{a-1} \approx & \left(1-c_{i}-\varepsilon_{i}\right)\left(1-\frac{(a-1) \varepsilon_{i}}{1-c_{i}}+\frac{(a-1)(a-2)}{2} \cdot \frac{\varepsilon_{i}^{2}}{\left(1-c_{i}\right)^{2}}\right) \\
& +\left(c_{i}+\varepsilon_{i}\right)\left(1+\frac{(a-1) \varepsilon_{i}}{c_{i}}+\frac{(a-1)(a-2)}{2} \cdot \frac{\varepsilon_{i}^{2}}{c_{i}^{2}}\right) \\
\approx & 1+\frac{a(a-1)}{2} \cdot \frac{\varepsilon_{i}^{2}}{c_{i}\left(1-c_{i}\right)} \leq 1+\frac{a(a-1)}{2} \cdot 2^{-2 p}
\end{aligned}
$$

For instance, if we take $a=2$, we have $R_{2}\left(\Phi \| \Phi^{\prime}\right) \leq 1+2^{-2 p}$ and hence $\varepsilon^{\prime} \geq$ $\varepsilon^{2} / R_{2}\left(\Phi \| \Phi^{\prime}\right)$. To get a success probability lower bound $\varepsilon^{2} / 2$, it is sufficient to set

$$
\begin{equation*}
p \geq \frac{1}{2} \log \left(\ell \cdot m \cdot q_{s}\right) \tag{6}
\end{equation*}
$$

On the other hand, if a is much larger than 2^{p}, then we have

$$
\begin{aligned}
\left(R_{a}\left(\Phi \| \Phi^{\prime}\right)\right)^{a-1} & =\left(1-c_{i}-\varepsilon_{i}\right)\left(1-\frac{\varepsilon_{i}}{1-c_{i}}\right)^{a-1}+\left(c_{i}+\varepsilon_{i}\right)\left(1+\frac{\varepsilon_{i}}{c_{i}}\right)^{a-1} \\
& \approx\left(c_{i}+\varepsilon_{i}\right) \exp \left(\frac{(a-1) \varepsilon_{i}}{c_{i}}\right)
\end{aligned}
$$

Hence the Rényi divergence satisfies

$$
R_{a}\left(\Phi \| \Phi^{\prime}\right) \approx\left(c_{i}+\varepsilon_{i}\right)^{1 /(a-1)} \exp \left(\frac{\varepsilon_{i}}{c_{i}}\right) \approx 1+\frac{\varepsilon_{i}}{c_{i}}
$$

As $a \rightarrow \infty$, we have $R_{a}\left(\Phi \| \Phi^{\prime}\right) \rightarrow 1+2^{-p}$.
Thus if the tightness of the reduction is not a concern, using R_{a} with small a reduces the precision requirement. Subsequent work [TT15] shows that by choosing an adequate a, tightness can be reached $\left(\varepsilon^{\prime} \approx \varepsilon\right)$ for the same number of queries. This may however lead to a slightly larger precision (compared to the case of using a tiny Rényi order a).

[^2]Numerical examples. In Table 1, we consider a numerical example which gives the lower bound on the precision for the scheme BLISS-I (with $\varepsilon=2^{-128}$) when allowing up to $q_{s}=2^{64}$ sign queries to the adversary. For the BLISS-I parameters, we use $m=1024, \ell=29, s=\lceil\sqrt{2 \pi} \cdot 254 \cdot \sqrt{1 /(2 \ln 2)}\rceil=541$ and $\tau=13.4 / \sqrt{2 \pi} \approx 5.4$.

Table 1. Comparison of the precision to handle adversaries with success probability $\geq \varepsilon$ making $\leq q_{s}$ sign queries to BLISS-I. Our Rényi-based parameters are on the last two lines.

	Lower bound on the precision p	Example p	Table bit-size
SD (Eq. (1))	$p \geq \log \left(\ell \cdot m \cdot q_{s} / \varepsilon\right)$	$p \geq 207$	6003
SD (Eq. (2))	$p_{i} \geq \log \left(\ell \cdot m \cdot q_{s} \cdot e^{-\pi 2^{i} / s^{2}} / \varepsilon\right)+1$	-	4598
KLD (Eq. (3))	$p \geq \log \left(\ell \cdot m \cdot q_{s} / \varepsilon^{2}\right) / 2+1 / 2$	$p \geq 168$	4872
KLD (Eq. (4)) $p_{i} \geq \log \left(\ell \cdot m \cdot q_{s} / \varepsilon^{2} \cdot c_{i} /\left(1-c_{i}\right)\right) / 2+1$	-	3893	
R_{∞} (Eq. (5))	$p \geq \log \left(\ell \cdot m \cdot q_{s}\right)$	$p \geq 79$	2291
R_{2} (Eq. (6))	$p \geq \log \left(\ell \cdot m \cdot q_{s}\right) / 2$	$p \geq 40$	1160

When instantiating BLISS-I with the parameters of Table 1, the table bit-size can be reduced from 6003 bits to 1160 bits by using R_{2} in place of SD. Note here the reduction is not tight as ε^{\prime} in the reduction is quadratic in ε. If the tightness of the reduction is a concern, we may use R_{∞} instead which gives $\varepsilon^{\prime} \geq \varepsilon / 2$ for the same number of queries. This leads to a table of about 2300 bits.

4 Rényi divergence and distinguishing problems

In this section, we prove Theorem 4.1 which allows to use the RD for distinguishing problems, and we show how to apply it to the dual-Regev encryption scheme.

4.1 Problems with public sampleability

A general setting one comes across in analyzing the security of cryptographic schemes has the following form. Let P denote a decision problem that asks to distinguish whether a given x was sampled from distribution X_{0} or X_{1}, defined as follows:

$$
X_{0}=\left\{x: r \hookleftarrow \Phi, x \hookleftarrow D_{0}(r)\right\}, \quad X_{1}=\left\{x: r \hookleftarrow \Phi, x \hookleftarrow D_{1}(r)\right\} .
$$

Here r is some parameter that is sampled from the same distribution Φ in both X_{0} and X_{1}. The parameter r then determines the conditional distributions $D_{0}(r)$ and $D_{1}(r)$ from which x is sampled in X_{0} and X_{1}, respectively,
given r. Now, let P^{\prime} denote another decision problem that is defined similarly to P, except that in P^{\prime} the parameter r is sampled from a different distribution Φ^{\prime} (rather than Φ). Given r, the conditional distributions $D_{0}(r)$ and $D_{1}(r)$ are the same in P^{\prime} as in P. Let X_{0}^{\prime} (resp. X_{1}^{\prime}) denote the resulting marginal distributions of x in problem P^{\prime}. Now, in the applications we have in mind, the distributions Φ^{\prime} and Φ are "close" in some sense, and we wish to show that this implies an efficient reduction between problems P^{\prime} and P, in the usual sense that every distinguisher with efficient run-time T and non-negligible advantage ε against P implies a distinguisher for P^{\prime} with efficient run-time T^{\prime} and nonnegligible advantage ε^{\prime}. In the classical situation, if the $\mathrm{SD} \Delta\left(\Phi, \Phi^{\prime}\right)$ between Φ^{\prime} and Φ is negligible, then the reduction is immediate. Indeed, for $b \in\{0,1\}$, if p_{b} (resp. p_{b}^{\prime}) denotes the probability that a distinguisher algorithm \mathcal{A} outputs 1 on input distribution X_{b} (resp. X_{b}^{\prime}), then we have, from the SD probability preservation property, that $\left|p_{b}^{\prime}-p_{b}\right| \leq \Delta\left(\Phi, \Phi^{\prime}\right)$. As a result, the advantage $\varepsilon^{\prime}=\left|p_{1}^{\prime}-p_{0}^{\prime}\right|$ of \mathcal{A} against P^{\prime} is bounded from below by $\varepsilon-2 \Delta\left(\Phi, \Phi^{\prime}\right)$ which is non-negligible (here $\varepsilon=\left|p_{1}-p_{0}\right|$ is the assumed non-negligible advantage of \mathcal{A} against P).

Unfortunately, for general decision problems P, P^{\prime} of the above form, it seems difficult to obtain an RD-based analogue of the above SD-based argument, in the weaker setting when the $\mathrm{SD} \Delta\left(\Phi, \Phi^{\prime}\right)$ is non-negligible, but the $\mathrm{RD} R=R\left(\Phi \| \Phi^{\prime}\right)$ is small. Indeed, the probability preservation property of the RD in Lemma 2.9 does not seem immediately useful in the case of general decision problems P, P^{\prime}. With the above notations, it can be used to conclude that $p_{b}^{\prime} \geq p_{b}^{2} / R$ but this does not allow us to usefully relate the advantages $\left|p_{1}^{\prime}-p_{0}^{\prime}\right|$ and $\left|p_{1}-p_{0}\right|$.

Nevertheless, we now make explicit a special class of "publicly sampleable" problems P, P^{\prime} for which such a reduction can be made. In such problems, it is possible to efficiently sample from both distributions $D_{0}(r)$ (resp. $D_{1}(r)$) given the single sample x from the unknown $D_{b}(r)$. This technique is implicit in the application of RD in the reductions of [LPR13]: we abstract it and make it explicit in the following.

Theorem 4.1. Let Φ, Φ^{\prime} denote two distributions with $\operatorname{Supp}(\Phi) \subseteq \operatorname{Supp}\left(\Phi^{\prime}\right)$, and $D_{0}(r)$ and $D_{1}(r)$ denote two distributions determined by some parameter $r \in$ $\operatorname{Supp}\left(\Phi^{\prime}\right)$. Let P, P^{\prime} be two decision problems defined as follows:

- Problem P: Distinguish whether input x is sampled from distribution X_{0} or X_{1}, where

$$
X_{0}=\left\{x: r \hookleftarrow \Phi, x \hookleftarrow D_{0}(r)\right\}, \quad X_{1}=\left\{x: r \hookleftarrow \Phi, x \hookleftarrow D_{1}(r)\right\} .
$$

- Problem P^{\prime} : Distinguish whether input x is sampled from distribution X_{0}^{\prime} or X_{1}^{\prime}, where

$$
X_{0}^{\prime}=\left\{x: r \hookleftarrow \Phi^{\prime}, x \hookleftarrow D_{0}(r)\right\}, \quad X_{1}^{\prime}=\left\{x: r \hookleftarrow \Phi^{\prime}, x \hookleftarrow D_{1}(r)\right\} .
$$

Assume that $D_{0}(\cdot)$ and $D_{1}(\cdot)$ satisfy the following public sampleability property: there exists a sampling algorithm S with run-time T_{S} such that for all (r, b), given any sample x from $D_{b}(r)$:

- $\mathrm{S}(0, x)$ outputs a fresh sample distributed as $D_{0}(r)$ over the randomness of S , - $\mathrm{S}(1, x)$ outputs a fresh sample distributed as $D_{1}(r)$ over the randomness of S .

Then, given a T-time distinguisher \mathcal{A} for problem P with advantage ε, we can construct a distinguisher \mathcal{A}^{\prime} for problem P^{\prime} with run-time and distinguishing advantage respectively bounded from above and below by (for any $a \in(1,+\infty])$:

$$
O\left(\frac{1}{\varepsilon^{2}} \log \left(\frac{R_{a}\left(\Phi \| \Phi^{\prime}\right)}{\varepsilon^{a /(a-1)}}\right) \cdot\left(T_{S}+T\right)\right) \text { and } \frac{\varepsilon}{4 \cdot R_{a}\left(\Phi \| \Phi^{\prime}\right)} \cdot\left(\frac{\varepsilon}{2}\right)^{\frac{a}{a-1}}
$$

Proof. Distinguisher \mathcal{A}^{\prime} is given an input x sampled from $D_{b}(r)$ for some r sampled from Φ^{\prime} and some unknown $b \in\{0,1\}$. For an ε^{\prime} to be determined later, it runs distinguisher \mathcal{A} on $N=O\left(\varepsilon^{-2} \log \left(1 / \varepsilon^{\prime}\right)\right)$ independent inputs sampled from $D_{0}(r)$ and $D_{1}(r)$ calling algorithm S on $(0, x)$ and $(1, x)$ to obtain estimates \hat{p}_{0} and \hat{p}_{1} for the acceptance probabilities $p_{0}(r)$ and $p_{1}(r)$ of \mathcal{A} given as inputs samples from $D_{0}(r)$ and $D_{1}(r)$ (with the r fixed to the value used to sample the input x of $\left.\mathcal{A}^{\prime}\right)$. By the choice of N and the Hoeffding bound, the estimation errors $\left|\hat{p}_{0}-p_{0}\right|$ and $\left|\hat{p}_{1}-p_{1}\right|$ are $<\varepsilon / 8$ except with probability $<\varepsilon^{\prime}$ over the randomness of S . Then, if $\hat{p}_{1}-\hat{p}_{0}>\varepsilon / 4$, distinguisher \mathcal{A}^{\prime} runs \mathcal{A} on input x and returns whatever \mathcal{A} returns, else distinguisher \mathcal{A}^{\prime} returns a uniformly random bit. This completes the description of distinguisher \mathcal{A}^{\prime}.

Let \mathcal{S}_{1} denote the set of r 's such that $p_{1}(r)-p_{0}(r) \geq \varepsilon / 2, \mathcal{S}_{2}$ denote the set of r 's that are not in \mathcal{S}_{1} and such that $p_{1}(r)-p_{0}(r) \geq 0$, and \mathcal{S}_{3} denote all the remaining r 's. Then:

- If $r \in \mathcal{S}_{1}$, then except with probability $<\varepsilon^{\prime}$ over the randomness of S, we will have $\hat{p}_{1}-\hat{p}_{0}>\varepsilon / 4$ and thus \mathcal{A}^{\prime} will output $\mathcal{A}(x)$. Thus, in the case $b=1$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{1}\right] \geq p_{1}(r)-\varepsilon^{\prime}$ and in the case $b=0$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{1}\right] \leq p_{0}(r)+\varepsilon^{\prime}$.
- Assume that $r \in \mathcal{S}_{2}$. Let $u(r)$ be the probability over the randomness of S that $\hat{p}_{1}-\hat{p}_{0}>\varepsilon / 4$. Then \mathcal{A}^{\prime} will output $\mathcal{A}(x)$ with probability $u(r)$ and a uniform bit with probability $1-u(r)$. Thus, in the case $b=1$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{2}\right]=u(r) \cdot p_{1}(r)+(1-u(r)) / 2$, and in the case $b=0$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{2}\right]=u(r) \cdot p_{0}(r)+(1-u(r)) / 2$.
- If $r \in \mathcal{S}_{3}$, except with probability $<\varepsilon^{\prime}$ over the randomness of S, we have $\hat{p}_{1}-\hat{p}_{0}<\varepsilon / 4$ and \mathcal{A}^{\prime} will output a uniform bit. Thus, in the case $b=1$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{3}\right] \geq 1 / 2-\varepsilon^{\prime}$, and in the case $b=0$, we have $\operatorname{Pr}\left[\mathcal{A}^{\prime}(x)=1 \mid r \in \mathcal{S}_{3}\right] \leq 1 / 2+\varepsilon^{\prime}$.

Overall, the advantage of \mathcal{A}^{\prime} is bounded from below by:

$$
\begin{array}{r}
\sum_{r \in \mathcal{S}_{1}} \Phi^{\prime}(r)\left(p_{1}(r)-p_{0}(r)-2 \varepsilon^{\prime}\right)+\sum_{r \in \mathcal{S}_{2}} \Phi^{\prime}(r) u(r)\left(p_{1}(r)-p_{0}(r)\right)-\sum_{r \in \mathcal{S}_{3}} \Phi^{\prime}(r) 2 \varepsilon^{\prime} \\
\geq \Phi^{\prime}\left(\mathcal{S}_{1}\right) \cdot \frac{\varepsilon}{2}-2 \varepsilon^{\prime}
\end{array}
$$

Without loss of generality, we may assume that the advantage of \mathcal{A} is positive. By an averaging argument, the set \mathcal{S}_{1} has probability $\Phi\left(\mathcal{S}_{1}\right) \geq \varepsilon / 2$ under distribution Φ. Hence, by the RD probability preservation property (see Lemma 2.9),
we have $\Phi^{\prime}\left(\mathcal{S}_{1}\right) \geq(\varepsilon / 2)^{\frac{a}{a-1}} / R_{a}\left(\Phi \| \Phi^{\prime}\right)$. The proof may be completed by setting $\varepsilon^{\prime}=(\varepsilon / 8) \cdot(\varepsilon / 2)^{\frac{a}{a-1}} / R_{a}\left(\Phi \| \Phi^{\prime}\right)$.

4.2 Application to dual-Regev encryption

Let m, n, q, χ be as in Definition 2.5 and Φ denote a distribution over $\mathbb{Z}_{q}^{m \times n}$. We define the LWE variant $\operatorname{LWE}_{n, q, \chi, m}(\Phi)$ as follows: Sample $\mathbf{A} \hookleftarrow \Phi, s \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{n}\right), \boldsymbol{e} \hookleftarrow \chi^{m}$ and $\boldsymbol{u} \hookleftarrow U\left(\mathbb{T}^{m}\right)$; The goal is to distinguish between the distributions $\left(\mathbf{A}, \frac{1}{q} \mathbf{A} \boldsymbol{s}+\boldsymbol{e}\right)$ and $(\mathbf{A}, \boldsymbol{u})$ over $\mathbb{Z}_{q}^{m \times n} \times \mathbb{T}^{m}$. Note that standard LWE is obtained by taking $\Phi^{\prime}=U\left(\mathbb{Z}_{q}^{m \times n}\right)$.

As an application to Theorem 4.1, we show that LWE with non-uniform and possibly statistically correlated \boldsymbol{a}_{i} 's of the samples $\left(\boldsymbol{a}_{i}, b_{i}\right)$'s (with b_{i} either independently sampled from $U(\mathbb{T})$ or close to $\left\langle\boldsymbol{a}_{i}, \boldsymbol{s}\right\rangle$ for a secret vector $\left.\boldsymbol{s}\right)$ remains at least as hard as standard LWE, as long as the RD $R(\Phi \| U)$ remains small, where Φ is the joint distribution of the given \boldsymbol{a}_{i} 's and U denotes the uniform distribution.

To show this result, we first prove in Corollary 4.2 that there is a reduction from $\operatorname{LWE}_{n, q, \chi, m}\left(\Phi^{\prime}\right)$ to $\mathrm{LWE}_{n, q, \chi, m}(\Phi)$ using Theorem 4.1 if $R_{a}\left(\Phi \| \Phi^{\prime}\right)$ is small enough. We then describe in Corollary 4.3 how to use this first reduction to obtain smaller parameters for the dual-Regev encryption. This allows us to save an $\Omega(\sqrt{\lambda / \log \lambda})$ factor in the Gaussian deviation parameter r used for secret key generation in the dual-Regev encryption scheme [GPV08], where λ refers to the security parameter.

Corollary 4.2. Let Φ and Φ^{\prime} be two distributions over $\mathbb{Z}_{q}^{m \times n}$ with $\operatorname{Supp}(\Phi) \subseteq$ $\operatorname{Supp}\left(\Phi^{\prime}\right)$. If there exists a distinguisher \mathcal{A} against the $\operatorname{LWE}_{n, q, \chi, m}(\Phi)$ with runtime T and advantage $\varepsilon=o(1)$, then there exists a distinguisher \mathcal{A}^{\prime} against the $\operatorname{LWE}_{n, q, \chi, m}\left(\Phi^{\prime}\right)$ with run-time $T^{\prime}=O\left(\varepsilon^{-2} \log \frac{R_{a}\left(\Phi \| \Phi^{\prime}\right)}{\varepsilon^{a /(a-1)}} \cdot(T+\operatorname{poly}(m, \log q))\right)$ and advantage

$$
\Omega\left(\frac{\varepsilon^{1+a /(a-1)}}{R_{a}\left(\Phi \| \Phi^{\prime}\right)}\right)
$$

for any $a \in(1,+\infty]$.
Proof. Apply Theorem 4.1 with $r=\mathbf{A} \in \mathbb{Z}_{q}^{m}, x=(\mathbf{A}, \boldsymbol{b}) \in \mathbb{Z}_{q}^{m \times n} \times \mathbb{T}^{m}, D_{0}(r)=$ $(\mathbf{A}, \mathbf{A} \cdot \boldsymbol{s}+\boldsymbol{e})$ with $\boldsymbol{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $\boldsymbol{e} \hookleftarrow \chi^{m}$, and $D_{1}(r)=(\mathbf{A}, \boldsymbol{u})$ with $\boldsymbol{u} \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{m}\right)$. The sampling algorithm S is such that $\mathrm{S}(0, x)$ outputs $\left(\mathbf{A}, \mathbf{A} \cdot \boldsymbol{s}^{\prime}+\boldsymbol{e}^{\prime}\right)$ for $\boldsymbol{s}^{\prime} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $\boldsymbol{e}^{\prime} \hookleftarrow \chi^{m}$, while $\mathrm{S}(1, x)$ outputs $\left(\mathbf{A}, \boldsymbol{u}^{\prime}\right)$ with $\boldsymbol{u}^{\prime} \hookleftarrow U\left(\mathbb{Z}_{q}^{m}\right)$.

We recall that the dual-Regev encryption scheme has a general public parameter $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$, a secret key of the form $s k=\boldsymbol{x}$ with $\boldsymbol{x} \hookleftarrow D_{\mathbb{Z}^{m}, r}$ and a public key of the form $\boldsymbol{u}=\mathbf{A}^{t} \boldsymbol{x} \bmod q$. A ciphertext for a message $M \in\{0,1\}$ is obtained as follows: Sample $\boldsymbol{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \boldsymbol{e}_{1} \hookleftarrow \chi^{m}$ and $e_{2} \hookleftarrow \chi$; return ciphertext

$$
\left(\boldsymbol{c}_{1}, c_{2}\right)=\left(\frac{1}{q} \mathbf{A} \boldsymbol{s}+\boldsymbol{e}_{1}, \frac{1}{q}\langle\boldsymbol{u}, \boldsymbol{s}\rangle+e_{2}+\frac{M}{2}\right) \in \mathbb{T}^{m} \times \mathbb{T} .
$$

Corollary 4.3. Suppose that q is prime, $m \geq 2 n \log q$ and $r \geq 4 \sqrt{\log (12 m) / \pi}$. If there exists an adversary against the IND-CPA security of the dual-Regev encryption scheme with run-time T and advantage ε, then there exists a distinguishing algorithm for $\mathrm{LWE}_{n, q, \chi, m+1}$ with run-time $O\left(\left(\varepsilon^{\prime}\right)^{-2} \log \left(\varepsilon^{\prime}\right)^{-1} \cdot(T+\operatorname{poly}(m))\right)$ and advantage $\Omega\left(\left(\varepsilon^{\prime}\right)^{2}\right)$, where $\varepsilon^{\prime}=\varepsilon-2 q^{-n}$.
Proof. The IND-CPA security of the dual-Regev encryption scheme as described above is at least as hard as $\operatorname{LWE}_{n, q, \chi, m+1}(\Phi)$ where Φ is obtained by sampling $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \boldsymbol{u} \hookleftarrow \mathbf{A}^{t} \cdot D_{\mathbb{Z}^{m}, r} \bmod q$ and returning the $(m+1) \times n$ matrix obtained by appending \boldsymbol{u}^{t} at the bottom of A. We apply Corollary 4.2 with $\Phi^{\prime}=U\left(\mathbb{Z}_{q}^{(m+1) \times n}\right)$.

Since q is prime, if \mathbf{A} is full rank, then the multiplication by \mathbf{A}^{t} induces an isomorphism between the quotient group $\mathbb{Z}^{m} / \Lambda_{\mathbf{A}}^{\perp}$ and \mathbb{Z}_{q}^{n}, where $\Lambda_{\mathbf{A}}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}^{m}\right.$: $\left.\mathbf{A}^{t} \cdot \boldsymbol{x}=\mathbf{0} \bmod q\right\}$. By Lemma 2.2, we have $\eta_{1 / 3}\left(\Lambda_{\mathbf{A}}^{\perp}\right) \leq 4 \sqrt{\log (12 m) / \pi} \leq r$, except for a fraction $\leq q^{-n}$ of the A's. Let Bad denote the union of such bad A's and the A's that are not full rank. We have $\operatorname{Pr}[\mathrm{Bad}] \leq 2 q^{-n}$.

By the multiplicativity property of Lemma 2.9, we have:

$$
R_{\infty}\left(\Phi \| \Phi^{\prime}\right) \leq \max _{\mathbf{A} \notin \mathrm{Bad}} R_{\infty}\left(D_{\mathbb{Z}^{m}, r} \bmod \Lambda_{\mathbf{A}}^{\perp} \| U_{\mathbb{Z}^{m} / \Lambda_{\mathbf{A}}^{\perp}}\right)
$$

Thanks to Lemma 2.10, we know that the latter is ≤ 2. The result now follows from Corollary 4.2.

In all applications we are aware of, the parameters satisfy $m \leq \operatorname{poly}(\lambda)$ and $q^{-n} \leq 2^{-\lambda}$, where λ refers to the security parameter. The $r=\Omega(\sqrt{\log \lambda})$ bound of our Corollary 4.3, that results from using $\delta=1 / 3$ in the condition $r \geq$ $\eta_{\delta}\left(\Lambda_{\mathbf{A}}^{\perp}\right)$ in the RD-based smoothing argument of the proof above, improves on the corresponding bound $r=\Omega(\sqrt{\lambda})$ that results from the requirement to use $\delta=$ $O\left(2^{-\lambda}\right)$ in the condition $r \geq \eta_{\delta}\left(\Lambda_{\mathbf{A}}^{\perp}\right)$ in the SD-based smoothing argument of the proof of [GPV08, Th. 7.1], in order to handle adversaries with advantage $\varepsilon=$ $2^{-o(\lambda)}$ in both cases. Thus our RD-based analysis saves a factor $\Omega(\sqrt{\lambda / \log \lambda})$ in the choice of r, and consequently of a^{-1} and q. (The authors of [GPV08] specify a choice of $r=\omega(\sqrt{\log \lambda})$ for their scheme because they use in their analysis the classical "no polynomial attacks" security requirement, corresponding to assuming attacks with advantage $\varepsilon=\lambda^{-O(1)}$, rather than the stronger $\varepsilon=$ $\omega\left(2^{-\lambda}\right)$ but more realistic setting we take.)

5 Application to LWE with uniform noise

The LWE problem with noise uniform in a small interval was introduced first in [DMQ13]. In that article, the authors exhibit a reduction from LWE with Gaussian noise, which relies on a new tool called lossy codes. The main proof ingredients are the construction of lossy codes for LWE (which are lossy for the uniform distribution in a small interval), and the fact that lossy codes are pseudorandom.

We note that the reduction from [DMQ13] needs the number of LWE samples to be bounded by poly (n) and that it degrades the LWE dimension by a constant factor. The parameter β (when the interval of the noise is $[-\beta, \beta]$) should be at least $m n^{\sigma} \alpha$ where α is the LWE Gaussian noise parameter and $\sigma \in(0,1)$ is an arbitrarily small constant.

We now provide an alternative reduction from the $\mathrm{LWE}_{n, q, D_{\alpha}, m}$ distinguishing problem to the $\operatorname{LWE}_{n, q, U([-\beta, \beta]), m}$ distinguishing problem, and analyze it using RD. Our reduction preserves the LWE dimension n, and is hence tighter than the one from [DMQ13]. We also require that $\beta=\Omega(m \alpha / \log n)$.

We remark that the search-decision equivalence idea in the proof of Theorem 5.1 could be extended to show the hardness of the decision LWE problem with any noise distribution ψ, with respect to the hardness of LWE with Gaussian noise D_{α} if either ψ is 'close' to D_{α} in the sense of RD (i.e., $R\left(\psi \| D_{\alpha}\right)$ is 'small'), or (as below) if ψ is sufficiently 'wider' than a D_{α} so that $R\left(\psi \| \psi+D_{\alpha}\right)$ is 'small'. The first generalization could be applied to prove the IND-CPA security of LWEbased encryption schemes (such as Regev [Reg05] and Dual-Regev [GPV08]) schemes with low-precision Gaussian sampling, as used for signature schemes in Section 3.

Theorem 5.1. Let $\alpha, \beta>0$ be real numbers with $\beta=\Omega(m \alpha / \log n)$ for positive integers m and n. Let $m>\frac{n \log q}{\log (\alpha+\beta)^{-1}} \geq 1$ with $q \leq \operatorname{poly}(m, n)$ prime. Then there is a polynomial-time reduction from $\mathrm{LWE}_{n, q, D_{\alpha}, m}$ to $\mathrm{LWE}_{n, q, \phi, m}$, with $\phi=$ $\frac{1}{q}\left\lfloor q U_{\beta}\right\rceil$.

Proof. Our reduction relies on five steps:

- A reduction from $\mathrm{LWE}_{n, q, D_{\alpha}, m}$ to $\mathrm{LWE}_{n, q, \psi, m}$ with $\psi=D_{\alpha}+U_{\beta}$,
- A reduction from $\operatorname{LWE}_{n, q, \psi, m}$ to $\operatorname{sLWE}_{n, q, \psi, m}$,
- A reduction from $\operatorname{sLWE}_{n, q, \psi, m}$ to $\operatorname{sLWE}_{n, q, U_{\beta}, m}$,
- A reduction from $\operatorname{sLWE}_{n, q, U_{\beta}, m}$ to $\operatorname{sLWE}_{n, q, \phi, m}$, with $\phi=\frac{1}{q}\left\lfloor q U_{\beta}\right\rceil$,
- A reduction from $\operatorname{sLWE}_{n, q, \phi, m}$ to $\mathrm{LWE}_{n, q, \phi, m}$.

First step. The reduction is given m elements $\left(\boldsymbol{a}_{i}, b_{i}\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{T}$, all drawn from $A_{\boldsymbol{s}, D_{\alpha}}$ (for some \boldsymbol{s}), or all drawn from $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{T}\right)$. The reduction consists in adding independent samples from U_{β} to each b_{i}. The reduction maps the uniform distribution to itself, and $A_{\boldsymbol{s}, D_{\alpha}}$ to $A_{\boldsymbol{s}, \psi}$.

Second step. Reducing the distinguishing variant of LWE to its search variant is direct. In particular, suppose that there exists a solver, which finds the secret for $\operatorname{sLWE}_{n, q, \psi, m}$ with advantage ε. We use this solver to construct a distinguisher for $\operatorname{LWE}_{n, q, \psi, m}$. Let $(\mathbf{A}, \boldsymbol{b})$ be the input the distinguisher, which comes from either the LWE distribution or the uniform distribution. Let s be the output of the solver on input $(\mathbf{A}, \boldsymbol{b})$. Given $\boldsymbol{s}, \mathbf{A}$, and \boldsymbol{b}, we compute $\left\|\boldsymbol{b}-\frac{1}{q} \mathbf{A} \boldsymbol{s}\right\|_{\infty}$. If this quantity is smaller than

$$
\begin{equation*}
t_{0}=\beta+2 \pi \alpha \sqrt{\log \left(4 \varepsilon^{-1}\right)} \tag{7}
\end{equation*}
$$

then the distinguisher outputs 1 ; otherwise it outputs 0 . We now analyze the advantage $\varepsilon_{\text {adv }}$ of such a distinguisher. On the one hand, if the input to the distinguisher comes from the LWE distribution, the probability that the distinguisher outputs 1 is bounded from below by

$$
\varepsilon-\operatorname{Pr}_{e \hookleftarrow \psi}\left(\|\boldsymbol{e}\|_{\infty} \geq t_{0}\right)
$$

On the other hand, when the input comes from the uniform distribution, the probability of having 1 as the output of the constructed distinguisher is bounded from above by

$$
\operatorname{Pr}_{\boldsymbol{b} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)}\left[\exists \boldsymbol{s} \in \mathbb{Z}_{q}^{n}:\left\|\boldsymbol{b}-\frac{1}{q} \mathbf{A} \boldsymbol{s}\right\|_{\infty} \leq t_{0}\right] .
$$

Hence the overall distinguishing advantage satisfies

$$
\begin{equation*}
\varepsilon_{\text {adv }} \geq\left(\varepsilon-\operatorname{Pr}_{\boldsymbol{e} \hookleftarrow \psi}\left[\|\boldsymbol{e}\|_{\infty} \geq t_{0}\right)\right]-\operatorname{Pr}_{\boldsymbol{b} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)}\left[\exists \boldsymbol{s} \in \mathbb{Z}_{q}^{n}:\left\|\boldsymbol{b}-\frac{1}{q} \mathbf{A} \boldsymbol{s}\right\|_{\infty} \leq t_{0}\right] . \tag{8}
\end{equation*}
$$

Since

$$
\operatorname{Pr}_{\boldsymbol{e} \hookleftarrow \psi}\left[\|\boldsymbol{e}\|_{\infty} \geq t_{0}\right] \leq \operatorname{Pr}_{\boldsymbol{e} \hookleftarrow D_{\alpha}}\left[\|\boldsymbol{e}\|_{\infty} \geq t\right]
$$

where t is defined to be $2 \pi \alpha \sqrt{\log \left(4 \varepsilon^{-1}\right)}$, the lower bound on $\varepsilon_{\text {adv }}$ given in (8) can be re-written as

$$
\begin{equation*}
\varepsilon-\operatorname{Pr}_{\boldsymbol{e} \hookleftarrow D_{\alpha}}\left[\|\boldsymbol{e}\|_{\infty} \geq t\right]-\operatorname{Pr}_{\boldsymbol{b} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)}\left[\exists \boldsymbol{s} \in \mathbb{Z}_{q}^{n}\left\|\boldsymbol{b}-\frac{1}{q} \mathbf{A} \boldsymbol{s}\right\|_{\infty} \leq t_{0}\right] . \tag{9}
\end{equation*}
$$

If both the above probabilities are $\leq \varepsilon / 4$, then $\varepsilon_{\text {adv }}$ is at least $\varepsilon / 2$. We now give an upper bound to each probability and enforce the parameters to satisfy these bounds. For the first probability, since $e \hookleftarrow D_{\alpha}$, a standard Gaussian tail bound follows

$$
\operatorname{Pr}_{\boldsymbol{e} \hookleftarrow D_{\alpha}}\left[\|\boldsymbol{e}\|_{\infty} \geq t\right] \leq \exp \left(-\left(\frac{2 \pi \alpha}{t}\right)^{2}\right)
$$

To ensure that the latter is less than $\varepsilon / 4$, we need $t \geq 2 \pi \alpha \sqrt{\log \left(4 \varepsilon^{-1}\right)}$. Our t_{0} defined in (7) satisfies the latter condition. For the second probability, by using a union bound argument, we have that

$$
\operatorname{Pr}_{\boldsymbol{b} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)}\left[\exists \boldsymbol{s} \in \mathbb{Z}_{q}^{n}:\|\boldsymbol{b}-\mathbf{A} \boldsymbol{s}\|_{\infty} \leq t_{0}\right] \leq q^{n}\left(\frac{2\left\lfloor t_{0} q\right\rfloor+1}{q}\right)^{m} \leq\left(q^{n / m}\left(4 t_{0}\right)\right)^{m}
$$

To ensure that the right hand side of the above inequality is less that $\varepsilon / 4$, we require to satisfy two conditions. First, we impose that $q^{n / m}\left(4 t_{0}\right)<1 / 2$, which is equivalent to $(n \log q) / m \leq \log \left(\frac{1}{8 t_{0}}\right)$. Now that $q^{n / m}\left(4 t_{0}\right)<1 / 2$, we impose $(1 / 2)^{m} \leq \varepsilon / 4$ to enforce the second constraint, that is $m \geq \log \left(4 \varepsilon^{-1}\right)$. Combining the above two conditions, it suffices to have

$$
m \geq \max \left(\frac{n \log q}{\log \left(\frac{1}{8 t_{0}}\right)}, \log \left(4 \varepsilon^{-1}\right)\right)
$$

By replacing t_{0} from (7) and inserting $\varepsilon^{-1}=O(\operatorname{poly}(n))$, we get

$$
m \geq \frac{n \log q}{\log (\alpha+\beta)^{-1}}
$$

if $(\alpha+\beta)^{-1}=2^{o\left(\frac{n \log q}{\log n}\right)}$.
Third step. The reduction from $\operatorname{sLWE}_{n, q, \psi, m}$ to $\operatorname{sLWE}_{n, q, U_{\beta}, m}$ is vacuous: by using the RD (and in particular the probability preservation property of Lemma 2.9), we show that an oracle solving $\operatorname{sLWE}_{n, q, U_{\beta}, m}$ also solves $\operatorname{sLWE}_{n, q, \psi, m}$.
Lemma 5.2. Let α, β be real numbers with $\alpha \in(0,1 / e)$ and $\beta \geq \alpha$. Let $\psi=$ $D_{\alpha}+U_{\beta}$. Then

$$
R_{2}\left(U_{\beta} \| \psi\right)=1+\frac{1}{1-e^{-\pi \beta^{2} / \alpha^{2}}} \frac{\alpha}{\beta}<1+1.05 \cdot \frac{\alpha}{\beta}
$$

Proof. The density function of ψ is the convolution of the density functions of D_{α} and U_{β} :

$$
f_{\psi}(x)=\frac{1}{2 \alpha \beta} \int_{-\beta}^{\beta} e^{\frac{-\pi(x-y)^{2}}{\alpha^{2}}} d y
$$

Using Rényi of order 2, we have:

$$
R_{2}\left(U_{\beta} \| \psi\right)=\int_{-\beta}^{\beta} \frac{\frac{1}{(2 \beta)^{2}}}{\frac{1}{2 \alpha \beta} \int_{-\beta}^{\beta} e^{\frac{-\pi(x-y)^{2}}{\alpha^{2}}} d y} d x=\frac{\alpha}{\beta} \int_{0}^{\beta} \frac{1}{\int_{-\beta}^{\beta} e^{\frac{-\pi(x-y)^{2}}{\alpha^{2}}} d y} d x
$$

The denominator in the integrand is a function for $x \in[0, \beta]$.

$$
\phi(x)=\alpha-\int_{\beta+x}^{\infty} \exp \left(\frac{-\pi y^{2}}{\alpha^{2}}\right) \mathrm{d} y-\int_{\beta-x}^{\infty} \exp \left(\frac{-\pi y^{2}}{\alpha^{2}}\right) \mathrm{d} y
$$

For standard Gaussian, we use the following tail bound [CDS03]:

$$
\frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-x^{2} / 2} d x \leq \frac{1}{2} e^{-z^{2} / 2}
$$

Then we have

$$
\phi(x) \geq \alpha\left(1-\frac{1}{2} \exp \left(\frac{-\pi(\beta+x)^{2}}{\alpha^{2}}\right)-\frac{1}{2} \exp \left(\frac{-\pi(\beta-x)^{2}}{\alpha^{2}}\right)\right)
$$

Taking the reciprocal of above, we use the first-order Taylor expansion. Note here

$$
t(x)=\frac{1}{2} \exp \left(\frac{-\pi(\beta+x)^{2}}{\alpha^{2}}\right)+\frac{1}{2} \exp \left(\frac{-\pi(\beta-x)^{2}}{\alpha^{2}}\right) .
$$

We want to bound the function $t(x)$ by a constant $c \in(0,1)$. Here $t(x)$ is not monotonic. We take the maximum of the first-half and the maximum of the
second-half of $t(x)$. Let $\sigma_{\alpha, \beta}$ denotes $\frac{1}{2} e^{-\pi \beta^{2} / \alpha^{2}}$, then an upper bound $(\beta \geq \alpha)$ is:

$$
t(x) \leq \frac{1}{2} e^{-\pi \beta^{2} / \alpha^{2}}+\frac{1}{2}=\sigma_{\alpha, \beta}+\frac{1}{2}<1 .
$$

We then use the fact that $\frac{1}{1-t(x)}=1+\frac{1}{1-t(x)} t(x) \leq 1+\frac{1}{1-2 \sigma_{\alpha, \beta}} t(x)$ to bound the Rényi divergence of order 2 .

$$
\begin{aligned}
R_{2}\left(U_{\beta} \| \psi\right)= & \frac{\alpha}{\beta} \int_{0}^{\beta} \frac{1}{\phi(x)} \mathrm{d} x \\
& \leq \frac{1}{\beta} \int_{0}^{\beta} \frac{1}{1-\frac{1}{2} \exp \left(\frac{-\pi(\beta+x)^{2}}{\alpha^{2}}\right)-\frac{1}{2} \exp \left(\frac{-\pi(\beta-x)^{2}}{\alpha^{2}}\right)} \mathrm{d} x \\
\leq & \frac{1}{\beta} \int_{0}^{\beta}\left(1+\frac{1}{1-2 \sigma_{\alpha, \beta}} \exp \left(\frac{-\pi(\beta+x)^{2}}{\alpha^{2}}\right)\right. \\
& \left.+\frac{1}{1-2 \sigma_{\alpha, \beta}} \exp \left(\frac{-\pi(\beta-x)^{2}}{\alpha^{2}}\right)\right) \mathrm{d} x \\
= & 1+\frac{1}{\left(1-2 \sigma_{\alpha, \beta}\right) \beta} \int_{0}^{2 \beta} \exp \left(\frac{-\pi x^{2}}{\alpha^{2}}\right) \mathrm{d} x \\
= & 1+\frac{1}{2\left(1-2 \sigma_{\alpha, \beta}\right) \beta} \int_{-2 \beta}^{2 \beta} \exp \left(\frac{-\pi x^{2}}{\alpha^{2}}\right) \mathrm{d} x \\
= & 1+\frac{\alpha}{\left(1-2 \sigma_{\alpha, \beta}\right) \beta}\left(1-2 D_{\alpha}(2 \beta)\right) \leq 1+\frac{1}{1-2 \sigma_{\alpha, \beta}} \frac{\alpha}{\beta}
\end{aligned}
$$

Hence we have the bound

$$
R_{2}\left(U_{\beta} \| \psi\right) \leq 1+\frac{1}{1-e^{-\pi \beta^{2} / \alpha^{2}}} \frac{\alpha}{\beta}
$$

The second bound in the lemma statement follows from the fact that

$$
\frac{1}{1-e^{-\pi \beta^{2} / \alpha^{2}}}<1.05
$$

for $\beta \geq \alpha$.
The RD multiplicativity property (see Lemma 2.9) implies that for m independent samples, we have $R_{2}\left(U_{\beta}^{m} \| \psi^{m}\right) \leq R_{2}\left(U_{\beta} \| \psi\right)^{m}$. To ensure that the latter m th power is polynomial in n, we use Lemma 5.2 with $\beta=\Omega(m \alpha / \log n)$; with this choice, we have $R_{2}\left(U_{\beta} \| \psi\right)=1+O\left(\frac{\alpha}{\beta}\right) \leq \exp \left(O\left(\frac{\alpha}{\beta}\right)\right)$ and $R_{2}\left(U_{\beta} \| \psi\right)^{m}=n^{O(1)}$. The RD probability preservation and data processing properties (see Lemma 2.9) now imply that if an oracle solves $\operatorname{sLWE}_{n, q, U_{\beta}, m}$ with probability ε, then it also solves sLWE ${ }_{n, q, \psi, m}$ with probability $\varepsilon^{\prime} \geq \varepsilon^{2} / R_{2}\left(U_{\beta} \| \phi\right)^{m} \geq \varepsilon^{2} / n^{O(1)}$.

Fourth step. We reduce $\operatorname{sLWE}_{n, q, U_{\beta}, m}$ with continuous noise U_{β} to $\operatorname{sLWE}_{n, q, \phi, m}$ with discrete noise $\phi=\frac{1}{q}\left\lfloor q U_{\beta}\right\rceil$ with support contained in \mathbb{T}_{q}, by rounding to the nearest multiple of $\frac{1}{q}$ any provided $b_{i}($ for $i \leq m)$.

Fifth step. We reduce $\operatorname{sLWE}_{n, q, \phi, m}$ to $\mathrm{LWE}_{n, q, \phi, m}$ by invoking Theorem 2.7.

6 Application to Learning With Rounding (LWR)

In this section, we first review (in Theorem 6.1) and combine with other results (in Theorem 6.2) the recent hardness result of $\left[\mathrm{BGM}^{+} 16\right]$ for the Learning With Rounding (LWR) problem introduced in [BPR12], based on the hardness of the standard LWE problem. This result of $\left[\mathrm{BGM}^{+} 16\right]$ makes use of RD (inspired by an earlier version of our work) within a proof that can be seen as a variant of the Micciancio-Mol search to decision reduction for LWE [MM11]. Then, we show (in Theorem 6.4) a new dimension-preserving hardness result for LWR, obtained by composing our RD-based hardness result for LWE with uniform noise from the previous section with another reduction from $\left[\mathrm{BGM}^{+} 16\right]$ (which we rephrase in Theorem 6.3) that reduces LWE with uniform noise to LWR. Interestingly, our new reduction for LWR also makes use of the Micciancio-Mol reduction [MM11], but unlike the LWR reduction in Theorem 6.1, ours uses [MM11] as a black box within the reduction of Theorem 5.1.

6.1 Adapted results from [BGM+16]

We first recall the main hardness result on LWR from $\left[\mathrm{BGM}^{+} 16\right]$.
Theorem 6.1 ([$\mathbf{B G M}^{+} \mathbf{1 6}$, Th. 3]). For every $\varepsilon>0$, $n, m, q>2 p B$, and algorithm Dist such that

$$
\left|\operatorname{Pr}_{\mathbf{A}, \boldsymbol{s}}\left[\operatorname{Dist}\left(\mathbf{A},\lfloor\mathbf{A} \boldsymbol{s}\rceil_{p}\right)=1\right]-\operatorname{Pr}_{\boldsymbol{u}}\left[\operatorname{Dist}\left(\mathbf{A},\lfloor\boldsymbol{u}\rceil_{p}\right)=1\right]\right| \geq \varepsilon
$$

where $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \boldsymbol{s} \hookleftarrow U\left(\{0,1\}^{n}\right)$ and $\boldsymbol{u} \hookleftarrow U\left(\mathbb{Z}_{q}^{m}\right)$ there exists an algorithm Learn that runs in time polynomial in n, m, the number of divisors of q, and the running time of Dist such that

$$
\begin{equation*}
\operatorname{Pr}_{\mathbf{A}, \boldsymbol{s}}[\operatorname{Learn}(\mathbf{A}, \mathbf{A} \boldsymbol{s}+\boldsymbol{e})=\boldsymbol{s}] \geq\left(\frac{\varepsilon}{4 q m}-\frac{2^{n}}{p^{m}}\right)^{2} \cdot \frac{1}{\left(1+\frac{2 B p}{q}\right)^{m}} \tag{10}
\end{equation*}
$$

for any noise distribution \boldsymbol{e} that is B-bounded and B-balanced in each coordinate.
We now combine Theorem 6.1 with other results to state it as a reduction from the standard LWE problem, so that it would be comparable with our alternative reduction.
Theorem 6.2. Let $q m=O(\operatorname{poly}(n))$, and $n \leq m \leq O\left(\frac{\sqrt{\log n}}{p \alpha}\right)$. Then there is a polynomial-time reduction from $\mathrm{LWE}_{n / \log q, q, D_{\alpha}, m}$ to $\mathrm{LWR}_{n, q, p, m}$.

Proof. The reduction can be obtained in the following five steps:

- A reduction from $\mathrm{LWE}_{n / \log q, q, D_{\alpha}, m}$ to $\operatorname{binLWE}_{n, q, D_{\alpha}, m}$,
- A trivial reduction from binLWE ${ }_{n, q, D_{\alpha}, m}$ to $\operatorname{sbinLWE} E_{n, q, D_{\alpha}, m}$,
- A reduction from sbinLWE $E_{n, q, D_{\alpha}, m}$ to $\operatorname{sbinLWE} E_{n, q, D_{\alpha, B^{\prime}}^{\prime}, m}$, with $D_{\alpha, B^{\prime}}^{\prime}$ the distribution D_{α} truncated (by rejection) to the interval $\left[-B^{\prime}, B^{\prime}\right]$,
- A reduction from sbinLWE ${ }_{n, q, D_{\alpha, B^{\prime}}^{\prime}, m}$ to sbinLWE ${ }_{n, q, \phi, m}$, with $\phi=\frac{1}{q}\left\lfloor q D_{\alpha, B^{\prime}}^{\prime}\right\rceil$,
- A reduction from sbinLWE ${ }_{n, q, \phi, m}$ to $\mathrm{LWR}_{n, q, p, m}$ via Theorem 6.1.

The first reduction is taken from $\left[\mathrm{BLP}^{+} 13\right]$. The second one is just the trivial decision to search reduction for binary secret LWE. Note that we provided such a reduction (see the second step of proof of Theorem 5.1) for a more general setting. In fact, there we had binary secret LWE with $\psi=D_{\alpha}+U_{\beta}$ as the error distribution while we have non-binary secret LWE and Gaussian noise D_{α} here. If we simplify the constraints appeared there, we simply get $m \geq n / \log \left(\alpha^{-1}\right)$, which can be further relaxed to $m \geq n$. The third reduction is vacuous and consists in applying the R_{∞} probability preservation property from Lemma 2.9 and the m-sample Gaussian tail-cut Lemma 2.11 that ensures that this reduction preserves success probability up to a constant factor by setting $B^{\prime}=\alpha q \sqrt{\ln (2 m) / \pi}$. The fourth reduction consists of applying $\left.\frac{1}{q} L q(\cdot)\right\rceil$ to all samples. With this, we have only changed the noise distribution from Gaussian D_{α} with standard deviation αq to its quantized version ϕ. This only adds a rounding error of magnitude $\leq 1 / 2$. The last step is exactly Theorem 6.2 mentioned above. The last step reduction holds if (i) the distribution ϕ be B-bounded, and, to ensure the reduction is probabilistic polynomial-time, we need that ($i i$) the right hand side of (10) is at least $\varepsilon^{O(1)} / n^{O(1)}$. The obtained distribution ϕ in (i) is both B-bounded and B-balanced with $B=\alpha q \sqrt{\ln (2 m) / \pi}+1 / 2$. For the second condition (ii), we note that there are two terms in the right hand side of (10). We first claim that

$$
\frac{\varepsilon}{8 q m}>\frac{2^{n}}{p^{m}}
$$

for $q=\operatorname{poly}(n)$ and $\varepsilon^{-1}=2^{o(n)}$. To prove this claim, first note that

$$
\begin{aligned}
\frac{\varepsilon}{8 q m}>\frac{2^{n}}{p^{m}} & \Leftrightarrow n-m \log p<\log \left(\frac{\varepsilon}{8 q m}\right) \\
& \Leftrightarrow m>\frac{n+\log \left(8 q m \varepsilon^{-1}\right)}{\log p} .
\end{aligned}
$$

Now, $q m=\operatorname{poly}(n)$ and $\varepsilon^{-1}=n^{O(1)}$ and the assumption $m \geq n \geq 2 n / \log (p)$ imply the above condition for sufficiently large n. Hence, for the first term we get

$$
\left(\frac{\varepsilon}{4 q m}-\frac{2^{n}}{p^{m}}\right)^{2}>\left(\frac{\varepsilon}{8 q m}\right)^{2}
$$

which is $\geq \varepsilon^{O(1)} / n^{O(1)}$ using $q m=O(\operatorname{poly}(n))$. For the second term, we get

$$
\begin{equation*}
\left(1+\frac{2 B p}{q}\right)^{m} \leq \exp \left(\frac{2 B p m}{q}\right) \tag{11}
\end{equation*}
$$

since for positive x and y, we have $(1+x)^{y} \leq \exp (x y)$. The right hand side of (11) is less than $n^{O(1)}$ if $2 B p m / q \leq O(\log n)$. Replacing B by the value derived from condition in (i), and using that $m \geq n$, we get that some $m=O(\sqrt{\log n} /(p \alpha))$ suffices.

Below, we will give a tighter reduction than above from LWE to LWR. We will make use of the theorem below.

Theorem 6.3 (Adapted from [$\left.\left.\mathbf{B G M}^{+} \mathbf{1 6}, \mathbf{T h} .13\right]\right)$. Let p and q be two integers such that p divides q and let $\beta=q /(2 p)$. If we have a T-time distinguisher for $\operatorname{LWR}_{n, q, p, m}$ with advantage ε, then we can construct a $T^{\prime}=$ $O\left(T+m^{\prime} n \cdot \operatorname{poly}(\log q)\right)$ time distinguisher for $\operatorname{LWE}_{n, q, U_{\beta}, m^{\prime}}$ with $m^{\prime}=m \cdot q / p$ and advantage $\varepsilon^{\prime} \geq \varepsilon / 2$.

Proof. The proof follows the steps of the proof of Theorem 13 in $\left[\mathrm{BGM}^{+} 16\right]$. Suppose that we have access to a T-time distinguisher which runs over m samples $(\boldsymbol{a}, b)=(\boldsymbol{a},\langle\boldsymbol{a}, \boldsymbol{s}\rangle+e)$ for $\boldsymbol{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$, and

$$
e \hookleftarrow\left[-\frac{q}{2 p}, \ldots, \frac{q}{2 p}\right) \subseteq \mathbb{Z}_{q}
$$

The authors of $\left[\mathrm{BGM}^{+} 16\right]$ run the LWE oracle until they hit a 'good' sample (\boldsymbol{a}, b) with $b \in(q / p) \mathbb{Z}_{p}$ and output the LWR sample $(\boldsymbol{a},(p / q) b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{p}$. Since the LWE error e is distributed uniformly in U_{β}, each sample output by the LWE oracle is 'good' with probability p / q, and the expected number of LWE samples needed by this reduction to produce m LWR samples is therefore $m^{\prime}=m \cdot q / p$. Instead, here we modify the reduction to work with a fixed number $m^{\prime}=m \cdot q / p$ of LWE samples. Namely, if the $m^{\prime}=m \cdot q / p$ given LWE samples contain at least m 'good' samples (which we call event Good), the modified reduction uses them to compute m LWR samples and runs the LWR distinguisher on them, outputting whatever it outputs, as in $\left[\mathrm{BGM}^{+} 16\right]$. Else, if the m^{\prime} given LWE samples contain $<m$ 'good' samples, the LWE distinguisher outputs 0 . The proof of Theorem 13 in $\left[\mathrm{BGM}^{+} 16\right]$ shows that conditioned on event Good, the input samples to the LWR distinguisher come from the LWR distribution (resp. uniform distribution) if the LWE oracle generates samples from the LWE distribution (resp. uniform distribution). It follows that the advantage of our LWE distinguisher is $\geq \operatorname{Pr}[\operatorname{Good}] \cdot \varepsilon \geq \varepsilon / 2$, where we have used the fact that $\operatorname{Pr}[\operatorname{Good}] \geq 1 / 2$, since the number of 'good' samples is binomially distributed with parameters $\left(m^{\prime}, p / q\right)$ and has median $m^{\prime} \cdot p / q=m$.

6.2 New results

One can compose the reduction in Theorem 6.3 with ours from LWE with Gaussian noise to LWE with uniform noise (Theorem 5.1) to get a new reduction from LWE to LWR. Hence, this combination can be summarized as:

Theorem 6.4. Let p divide $q, m^{\prime}=m \cdot q / p$ with $m=O(\log n / \alpha)$ for $m^{\prime} \geq m \geq$ $n \geq 1$. There is polynomial-time reduction from $\operatorname{LWE}_{n, q, D_{\alpha}, m^{\prime}}$ to $\operatorname{LWR}_{n, q, p, m}$.

Proof. Let $\beta=q /(2 p)$. The reduction has two steps:

- A reduction from $\mathrm{LWE}_{n, q, D_{\alpha}, m^{\prime}}$ to $\mathrm{LWE}_{n, q, U_{\beta}, m^{\prime}}$,
- A reduction from $\mathrm{LWE}_{n, q, U_{\beta}, m^{\prime}}$ to $\mathrm{LWR}_{n, q, p, m}$.

On the one hand, $\operatorname{LWE}_{n, q, U_{\beta}, m^{\prime}}$ is at least as hard as $\mathrm{LWE}_{n, q, D_{\alpha}, m^{\prime}}$ where $\beta=$ $\Omega\left(m^{\prime} \alpha / \log n\right)$ (see Theorem 5.1). On the other hand, the second phase of the reduction follows from Theorem 6.3; namely we have a reduction from $\mathrm{LWE}_{n, q, U_{\beta}, m^{\prime}}$ to $\mathrm{LWR}_{n, q, p, m}$ subject to the condition that p divides q and $m^{\prime}=m \cdot q / p$. Combining these two reductions completes the proof. Note that, by putting all the conditions together, it turns out that

$$
\beta=\Omega\left(\frac{m^{\prime} \alpha}{\log n}\right) \Leftrightarrow \frac{q}{2 p} \geq \frac{\frac{m q}{p} \alpha}{\log n} \Leftrightarrow m=O\left(\frac{\log n}{\alpha}\right),
$$

where the first equivalence is derived by replacing β and m^{\prime}, by $q /(2 p)$ and $m q / p$.

Table 2 compares the parameters of Theorems 6.2 and 6.4 , and a reduction from [AKPW13]. The reduction in Theorem $6.2 \operatorname{loses}$ a $\log q$ factor in dimension, while our uniform-noise reduction preserves the dimension, which is the first of its kind without resorting to noise-flooding technique (as [BPR12]). On the downside, our reduction does not preserve the number of samples.

Table 2. Comparing the main parameters of different reductions from $\operatorname{LWE}_{n^{\prime}, q, D_{\alpha}, m^{\prime}}$ to $\operatorname{LWR}_{n, q, p, m}$ for a fixed n and $\gamma \geq 1$ be another flexible parameter.

Param.	[AKPW13, Th. 4.1]	Th. $6.2\left(\left[\mathrm{BGM}^{+} 16\right]\right)$	Th. 6.4
n^{\prime}	$O\left(\frac{n \log (2 \gamma)}{\log q}\right)$	$\frac{n}{\log q}$	n
m	$O\left(\frac{\sqrt{\log n}}{\gamma n p \alpha}\right)$	$O\left(\frac{\sqrt{\log n}}{p \alpha}\right)$	$O\left(\frac{\log n}{\alpha}\right)$
m^{\prime}	m	m	$m \cdot \frac{q}{p}$

Note that setting $\gamma=1$ gives n^{\prime} equal to that of Theorem 6.2 , while it loses an extra factor n in the denominator of m. On the other hand, setting $\gamma=q$ allows for approximately $n=n^{\prime}$, however for an expense of much smaller m. The reduction in Theorem 6.2 also restricts the number of LWR samples m by a further $O(p \sqrt{\log n})$ factor in comparison to our results. This factor is equal to $O(\gamma p n \sqrt{\log n})$ if we compare our result with that of Theorem 4.1 from [AKPW13].

7 Open problems

Our results show the utility of the Rényi divergence in several areas of latticebased cryptography. A natural question is to find further new applications of

RD to improve the efficiency of cryptosystems. Our results suggest some natural open problems, whose resolution could open up further applications. In particular, can we extend the applicability of RD to more general distinguishing problems than those satisfying our 'public sampleability' requirement? This may extend our results further. For instance, can we use RD-based arguments to prove the hardness of LWE with uniform noise without using the search to decision reduction of [MM11]? This may allow the proof to apply also to Ring-LWE with uniform noise and Ring-LWR. Another open problem will be discussed in the next subsection.

7.1 GPV signature scheme

The RD can also be used to reduce the parameters obtained via the SD-based analysis of the GPV signature scheme in [GPV08].

In summary, the signature and the security proof from [GPV08] work as follows. The signature public key is a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ with n linear in the security parameter $\lambda, q=\operatorname{poly}(n)$, and $m=O(n \log q)$. The private signing key is a short basis matrix \mathbf{T} for the lattice $\Lambda_{\mathbf{A}}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \boldsymbol{x}=\mathbf{0} \bmod q\right\}$, whose last successive minimum satisfies $\lambda_{m}\left(\Lambda_{\mathbf{A}}^{\perp}\right) \leq O(1)$ when $m=\Omega(n \log q)$ (see [GPV08]). A signature ($\boldsymbol{\sigma}, s$) on a message M is a short vector $\boldsymbol{\sigma} \in \mathbb{Z}^{m}$ and a random salt $s \in\{0,1\}^{\lambda}$, such that $\mathbf{A} \cdot \boldsymbol{\sigma}=H(M, s) \bmod q$, where H is a random oracle hashing into \mathbb{Z}_{q}^{n}. The short vector $\boldsymbol{\sigma}$ is sampled by computing an arbitrary vector \boldsymbol{t} satisfying $\mathbf{A} \cdot \boldsymbol{t}=H(M, s) \bmod q$ and using \mathbf{T} along with a Gaussian sampling algorithm (see [GPV08, $\left.\mathrm{BLP}^{+} 13\right]$) to produce a sample from $\boldsymbol{t}+D_{\Lambda_{\mathrm{A}}^{\perp}, r,-\boldsymbol{t}}$.

The main idea in the security proof from the SIS problem [GPV08] is based on simulating signatures without \mathbf{T}, by sampling $\boldsymbol{\sigma}$ from $D_{\mathbb{Z}^{m}, r}$ and then programming the random oracle H at (M, s) according to $H(M, s)=\mathbf{A} \cdot \boldsymbol{\sigma} \bmod q$. As shown in [GPV08, Le. 5.2], the conditional distribution of $\boldsymbol{\sigma}$ given $\mathbf{A} \cdot \boldsymbol{\sigma} \bmod q$ is exactly the same in the simulation and in the real scheme. Therefore, the SD between the simulated signatures and the real signatures is bounded by the SD between the marginal distribution D_{1} of $\mathbf{A} \cdot \boldsymbol{\sigma} \bmod q$ for $\boldsymbol{\sigma} \hookleftarrow D_{\mathbb{Z}^{m}, r}$ and $U\left(\mathbb{Z}_{q}^{m}\right)$. This SD for one signature is bounded by ε if $r \geq \eta_{\varepsilon}\left(\Lambda_{\mathbf{A}}^{\perp}\right)$. This leads, over the q_{s} sign queries of the attacker, in the SD-based analysis of [GPV08], to take $\varepsilon=O\left(2^{-\lambda} q_{s}^{-1}\right)$ and thus $r=\Omega\left(\sqrt{\lambda+\log q_{s}}\right)$ (using Lemma 2.2), in order to handle attackers with success probability $2^{-o(\lambda)}$.

Now, by Lemma 2.10, we have that the $\mathrm{RD} R_{\infty}\left(D_{1} \| U\right)$ is bounded by $1+$ $c \cdot \varepsilon$ for one signature, for some constant c. By the multiplicativity property of Lemma 2.9, over q_{s} queries, it is bounded by $(1+c \varepsilon)^{q_{s}}$. By taking $\varepsilon=O\left(q_{s}^{-1}\right)$, we obtain overall an RD bounded as $O(1)$ between the view of the attacker in the real attack and simulation, leading to a security proof with respect to SIS but with a smaller $r=\Omega\left(\sqrt{\log \left(n q_{s}\right)}\right)=\Omega\left(\sqrt{\log \lambda+\log q_{s}}\right)$. When the number of sign queries q_{s} allowed to the adversary is much smaller than 2^{λ}, this leads to significant parameter savings, because SIS's parameter β is reduced and hence n, m, q may be set smaller for the same security parameter λ.

The above analysis indeed reduces the smoothing condition in the security proof from $r=\Omega(\sqrt{\lambda})$ to $r=\Omega(\sqrt{\log \lambda})$. But to make Gaussian sampling on $\Lambda_{\mathbf{A}}^{\perp}$ efficient in signature generation, we also need r lower bounded by the Euclidean norm of the trapdoor basis for $\Lambda_{\mathbf{A}}^{\perp}$. The latter is lower bounded by $\lambda_{1}\left(\Lambda_{\mathbf{A}}^{\perp}\right)$, which is $\Omega(\sqrt{m}) \geq \Omega(\sqrt{\lambda})$ with high probability. That is actually similar to (or even larger than) the old SD-based smoothing condition. Overall, we relaxed the smoothing condition while the sampling condition remained unchanged. Hence, relaxing both conditions together is left as an open problem.

Acknowledgments. We thank Léo Ducas, Vadim Lyubashevsky and Fabrice Mouhartem for useful discussions. We thank Katsuyuki Takashima and Atsushi Takayasu for informing us about an error in the conference version of this work, and another one in the computations of the R_{a}-based analysis of Subsection 3.

This work has been supported in part by ERC Starting Grant ERC-2013-StG-335086-LATTAC, an Australian Research Fellowship (ARF) from the Australian Research Council (ARC), ARC Discovery Grants DP0987734, DP110100628 and DP150100285, and the European Union's H2020 Programme under grant agreement number ICT-644209.

References

[ADPS15] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - a new hope. Cryptology ePrint Archive, Report 2015/1092, 2015. http://eprint.iacr.org/.
[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc. of STOC, pages 99-108. ACM, 1996.
[AKPW13] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited - new reduction, properties and applications. In Proc. of CRYPTO, volume 8042 of LNCS, pages 57-74. Springer, 2013.
$\left[\mathrm{BGM}^{+} 16\right]$ A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen. On the hardness of learning with rounding over small modulus. In Proc. of TCC A, volume 9562 of LNCS, pages 209-224. Springer, 2016.
[$\left.\mathrm{BLL}^{+} 15\right]$ S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In Proc. of ASIACRYPT, Part I, volume 9452 of $L N C S$, pages 3-24. Springer, 2015.
$\left[\mathrm{BLP}^{+} 13\right]$ Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning with errors. In Proc. of STOC, pages 575-584. ACM, 2013.
[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In Proc. of EUROCRYPT, volume 7237 of LNCS, pages 719-737. Springer, 2012.
[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In Proc. of FOCS, pages 97-106. IEEE Computer Society Press, 2011.
[CDS03] M. Chiani, D. Dardari, and M. K. Simon. New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Trans. Wireless. Comm., 2(4):840-845, July 2003.
[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal Gaussians. In Proc. of CRYPTO, volume 8042 of $L N C S$, pages 40-56. Springer, 2013.
[DMQ13] N. Döttling and J. Müller-Quade. Lossy codes and a new variant of the learning-with-errors problem. In Proc. of EUROCRYPT, LNCS, pages 18-34. Springer, 2013.
[Duc14] L. Ducas. Accelerating Bliss: the geometry of ternary polynomials. Cryptology ePrint Archive, Report 2014/874, 2014. http://eprint.iacr.org/.
[vEH14] T. van Erven and P. Harremoes. Rényi divergence and Kullback-Leibler divergence. IEEE Transactions on Information Theory, 60(7):3797-3820, July 2014.
[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In Proc. of EUROCRYPT, volume 7881 of $L N C S$, pages 1-17. Springer, 2013.
[GKPV10] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with errors assumption. In Proc. of ICS, pages 230-240. Tsinghua University Press, 2010.
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Proc. of STOC, pages 197-206. ACM, 2008.
$\left[L L M^{+} 16\right]$ B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. Cryptology ePrint Archive, Report 2016/101, 2016. http:// eprint.iacr.org/.
[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. J. ACM, 60(6):43, 2013.
[LPSS14] S. Ling, D. H. Phan, D. Stehlé, and R. Steinfeld. Hardness of k-LWE and applications in traitor tracing. In Proc. of CRYPTO, Part I, volume 8616 of $L N C S$, pages 315-334. Springer, 2014. Full version available at http:// eprint.iacr.org/2014/494.
[LSS14] A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps from ideal lattices. In Proc. of EUROCRYPT, LNCS, pages 239-256. Springer, 2014. Full version available at http://eprint.iacr.org/2014/487.
[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Johansson, editors, Proc. of EUROCRYPT, volume 7237 of LNCS, pages 738-755. Springer, 2012.
[MM11] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of lwe search-to-decision reductions. In Proc. of CRYPTO, volume 6841 of LNCS, pages 465-484. Springer, 2011.
[MP13] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In Proc. of CRYPTO, volume 8042 of LNCS, pages 21-39. Springer, 2013.
[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput, 37(1):267-302, 2007.
[MR09] D. Micciancio and O. Regev. Lattice-based cryptography. In Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann, E. Dahmen (Eds), pages 147191. Springer, 2009.
[PDG14] T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced lattice-based signatures on reconfigurable hardware. In Proc. of CHES, pages 353-370, 2014.
[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proc. of STOC, pages 333-342. ACM, 2009.
[Pei15] C. Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939, 2015. http://eprint.iacr.org/.
[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proc. of STOC, pages 84-93, 2005.
[Reg09a] O. Regev. Lecture notes of lattices in computer science, taught at the Computer Science Tel Aviv University. Available at http://www.cims.nyu.edu/ ~regev, 2009.
[Reg09b] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. $A C M, 56(6), 2009$.
[Rén61] A. Rényi. On measures of entropy and information. In Proc. of the Fourth Berkeley Symposium on Math. Statistics and Probability, volume 1, pages 547561, 1961.
[TT15] K. Takashima and A. Takayasu. Tighter security for efficient lattice cryptography via the rényi divergence of optimized orders. In Proc. of ProvSec, volume 9451 of $L N C S$, pages 412-431. Springer, 2015.

[^0]: ${ }^{5}$ Note that LWE with uniform noise in a small interval is also investigated in [MP13], with a focus on the number of LWE samples. The reduction from [MP13] does not preserve the LWE dimension either.

[^1]: ${ }^{6}$ Note that [Lyu12,DDLL13] consider the unnormalized Gaussian function $\rho_{\sigma, c}^{\prime}(\boldsymbol{x})=$ $\exp \left(-\|\boldsymbol{x}-\boldsymbol{c}\| /\left(2 \sigma^{2}\right)\right)$ instead of $\rho_{s, \boldsymbol{c}}$. We have $\rho_{s, \boldsymbol{c}}=\rho_{\sigma, \boldsymbol{c}}^{\prime}$ when $\sigma=s / \sqrt{2 \pi}$.

[^2]: ${ }^{7}$ Note that the resulting precision is not independent of ε. The parameters $m=m(\varepsilon)$ and $\ell=\ell(\varepsilon)$ are chosen in [DDLL13] so that any forging adversary has success probability at most ε on the scheme implemented with perfect Gaussian sampling.

