
More Rounds, Less Security?

Jian Guo1, Jérémy Jean1, Nicky Mouha2,3, and Ivica Nikolić1

1 Nanyang Technological University, Singapore
2 Dept. Electrical Engineering-ESAT/COSIC, KU Leuven, Leuven and

iMinds, Ghent, Belgium
3 Project-team SECRET, Inria, France

xntu.guo@gmail.com,xJean.Jeremy@gmail.com,xnicky@mouha.be,xinikolic@ntu.edu.sgx

Abstract. This paper focuses on a surprising class of cryptanalysis re-
sults for symmetric-key primitives: when the number of rounds of the
primitive is increased, the complexity of the cryptanalysis result de-

creases. Our primary target will be primitives that consist of identical
round functions, such as PBKDF1, the Unix password hashing algorithm,
and the Chaskey MAC function. However, some of our results also ap-
ply to constructions with non-identical rounds, such as the PRIDE block
cipher. First, we construct distinguishers for which the data complexity

decreases when the number of rounds is increased. They are based on
two well-known observations: iterating a random permutation increases
the expected number of fixed points, and iterating a random function
decreases the expected number of image points. We explain that these
effects also apply to components of cryptographic primitives, such as a
round of a block cipher. Second, we introduce a class of key-recovery
and preimage-finding techniques that correspond to exhaustive search,
however on a smaller part (e.g. one round) of the primitive. As the time

complexity of a cryptanalysis result is usually measured by the number of
full-round evaluations of the primitive, increasing the number of rounds
will lower the time complexity. None of the observations in this paper
result in more than a small speed-up over exhaustive search. Therefore,
for lightweight applications, implementation advantages may outweigh
the presence of these observations.

Keywords: Iterated cipher, fixed points, slide attack, PRIDE, Chaskey,
PKCS, PBKDF1, Unix password hashing algorithm, Even-Mansour, FX-
construction.

1 Introduction

How to determine the number of rounds of a symmetric-key primitive, for exam-
ple of an iterated block cipher? O’Connor noted that “Most ciphers are secure
after sufficiently many rounds,” to which Massey replied that “Most ciphers are
too slow after sufficiently many rounds.” From this point of view, the challenge
is to design a cipher that is both fast and secure.

But does increasing the number of rounds always make a primitive more
secure? Although this is generally the case, it is not necessarily true. A common

counterexample are primitives that are vulnerable to slide attacks [8,9]. As stated
by Biryukov in [7], slide attacks “realize the dream of cryptanalysts: if the cipher
is vulnerable to such an attack, the complexity of the attack is independent
of the number of rounds of the cipher.” In that context, this paper describes
what certainly must be the nightmare of any cryptographer. We will discuss
cryptanalysis results where the complexity decreases when the number of rounds
is increased.

Before we continue, let us clarify how we measure complexity in terms of
data complexity and time complexity. In symmetric-key cryptanalysis, the data
complexity commonly refers to the number of input-output pairs of a certain
keyed function, for example the number of plaintext-ciphertext pairs for a block
cipher. The time complexity is usually defined as an equivalent number of full-
round evaluations of a cryptographic primitive. This is a very simplified model,
but nevertheless useful for designers and cryptanalysts as the cost in practice of
an attack is usually very difficult to estimate.

Our basic observations hold for primitives that have identical round func-
tions, such as Unix’s crypt(3) and PKCS #5’s PBKDF1 password hashing
algorithms, or the Chaskey MAC function [31]. But as we will show, our results
also apply to primitives with non-identical round functions, such as the recently
proposed PRIDE block cipher [1].

The very nature of the results in this paper seems to defy logic, however
designers do not need to worry too much: their practical impact is very low, as
all of them are very close to exhaustive search. Nevertheless, this paper should
be interesting from an academic point of view, given the interest in recent years
into “brute-force-like” cryptanalysis. These include, for example, the recently
proposed biclique results for many ciphers, including the full AES [10]. However,
it can be shown that the biclique attacks on AES are thwarted when the number
of rounds is increased. This is an essential difference with the results that we
will introduce in this paper, as they will have an even lower complexity when
the number of rounds is increased.

In this light, this paper is particularly interesting for the domain of lightweight
cryptography. Designers may want to explicitly allow small speed-ups of exhaus-
tive search, if such design choices lead to a more efficient implementation. As
such, we hope that this paper will eventually lead to a better theoretical under-
standing of the design of symmetric-key primitives. It is typically conjectured
that a cipher becomes more secure when the number of rounds is increased.
While a proof of this conjecture remains an open problem for many construc-
tions, this paper will show that there exist constructions for which the conjecture
does not hold.

None of the techniques in this paper will result in a speed-up over exhaustive
search by more than the number of rounds. This is reassuring for designers,
because doubling the number of rounds also roughly doubles the “time” needed
to evaluate the function in a concrete implementation. As this counteracts the
speed-up over exhaustive search, the “real complexity” does not increase when
the number of rounds is increased.

2

Therefore, we do not claim that any of the observations in this paper are “at-
tacks,” and definitely not that any designs are “broken” when they are applica-
ble. Note that there is a large amount of literature on cryptographic observations
that do not affect the security of a design, such as for example reduced-round
attacks. They should nevertheless be interesting and relevant to understand the
security properties of the design.

In fact, the observations in this paper should be seen in a positive light, to
open the way for more efficient designs. A lightweight design with an n-bit block
size that is susceptible to the observations in this paper, may suggest that it
is secure up to 2n round function evaluations, instead of 2n evaluations of the
entire primitive.

For many of the observations in this paper, we can not give exact calculations
of their complexities. One reason is that they have some computational overhead,
which is platform-dependent and therefore difficult to evaluate. But regardless
of this overhead, they will always outperform generic attacks when the number
of rounds is high enough. Another reason that the complexities are difficult
to evaluate, is that we will assume that non-ideal primitives behave as ideal
primitives in order to make an analysis possible. Nevertheless, we should see an
effect if the number of rounds is high enough, otherwise the non-ideal primitives
would have other cryptographic weaknesses.

Our Contributions. In the domain of provable security, it is well-known that
iterating an ideal primitive will result in a loss of security. This is already evident
from the very first results in provable security, so we certainly do not claim a new
result in that area. However, after performing a thorough literature study on the
cryptanalysis of non-ideal primitives, it appears to be a little-known fact that
for certain constructions, the complexity of a cryptanalysis result can decrease
when the number of rounds of the primitive is increased. The goal of this paper is
to perform the first comprehensive study on this subject. We give an overview of
the existing literature, which typically involves ideal primitives. Then, we apply
these insights to non-ideal components (e.g. one round of a block cipher) that
arise in the field of cryptanalysis. We obtain new cryptanalysis results on ciphers
built on the Even-Mansour block cipher and the FX-construction, which we then
apply respectively to Chaskey and PRIDE.

Outline. After discussing related work in Sect. 2, we describe present security
bounds in Sect. 3. We show that these security bounds are tight by providing
matching attacks. In Sect. 4, we argue that these distinguishers also apply when
non-ideal building blocks are iterated. Speed-ups of exhaustive search on iter-
ated primitives are discussed in Sect. 5. We apply these findings to a variety
of primitives, and present new results for Chaskey MAC function, the PRIDE
block cipher and a variant of PBKDF1 without a salt. We conclude the paper
in Sect. 6, where we also provide suggestions for future work.

3

2 Related Work

Wagner and Goldberg [35] performed an analysis of the Unix password hashing
algorithm, which consists of 25 applications of a variant of DES on an all-zero
plaintext. The password of the user is used as the key of the DES variant. Note
that this description omits the salt value, an important feature of the password
hashing algorithm. However, Wagner and Goldberg do not analyze the effect of
the salt in their paper. As the salt value is used to create different variants of the
DES algorithm, their analysis therefore effectively considers the Unix password
hashing algorithm when only one salt value is used.

They analyzed this construction by observing its close relation to the security
of the CBC-MAC algorithm [3, 4]. Their security bound shows that Unix pass-
word hashes may not be uniformly random. However, as their analysis assumes
that the adversary obtains only one password hash, this effect becomes negligi-
ble. The implications of changing the number of iterations is not considered in
their paper.

The same effect was analyzed by Bard et al. [2], when they calculated the
expected number of fixed points of a random permutation that is iterated k ≤ 2n

times. They found that it is equal to τ(k), where τ is the number-of-divisors
function. For example, when this result is applied to Unix password hashing
where k = 25, they calculated that the expected number of fixed points is τ(25) =
3, as 25 has three divisors: 1, 5 and 25. Thus, by counting the number of fixed
points, we can distinguish this construction from random. Note that for the
particular case of Unix password hashing, this distinguisher will have a low, but
nevertheless non-negligible success probability. The reason for the low success
probability is that the length of the password (56 bits) is smaller than the length
of the hash value (64 bits).

Bard et al. did not state that their cryptanalysis result becomes better when
the number of rounds is increased. In fact, strictly speaking, such a statement
would not be correct. There are infinitely many prime numbers, and if the num-
ber of rounds is a prime number, the expected number of fixed points is always
two. However, the limit superior of τ(k) goes to infinity, and τ(k) is strictly
increasing for commonly used subsets of k, such as powers of two: τ(2ℓ) = ℓ+1,
or powers of ten: τ(10ℓ) = (ℓ + 1)2. Under this more narrow interpretation, we
argue that this can be seen as a distinguisher for which the complexity decreases
when the number of rounds is increased.

In subsequent work, Yao and Yin [37, 38] analyzed the two standardized
password-based key derivation functions of PKCS #5: PBKDF1 and PBKDF2.
PBKDF1 concatenates the password and salt, and then iteratively applies a hash
function k times to the result. Note that k is not a fixed parameter, but depends
on the implementation. They argue that PBKDF1 becomes more secure when k
is increased, which they refer to as the effect of “key-stretching.”

However, the numerical examples from which Yao and Yin derive this state-
ment, assume that the adversary performs only a small number of hash function
evaluations. When we consider adversaries that make a very large number of hash
function evaluations, the security bound on PBKDF1 becomes weaker when the

4

iteration count k is increased. We should note that in practice, passwords of-
ten have a very low entropy, in which case adversaries only need to make a
small amount of queries. Nevertheless, it should be interesting to understand
the generic security of iterated constructions for any number of queries.

Gligoroski and Klima [20] showed how this weaker security bound also corre-
sponds to an observation on iterated random functions such as PBKDF1. They
recalled a theorem by Flajolet and Odlyzko [19]: if an n-bit random function is
iterated k times, the expected number of image points is (1− tk) · 2

n (for large
n), where tk satisfies the recurrence relation t0 = 0 and tk+1 = exp(−1 + tk).
From this, it can be shown that the expected number of image points is 2n−i+1

when a random function is iterated k = 2i times. This approximation is valid for
i ≥ 5, and becomes more accurate when i increases. Note that the observations
of Gligoroski and Kilma also hold if k independent random functions are used,
instead of one random function that is iterated k times.

Using this theorem, Gligoroski and Klima constructed distinguishers for sev-
eral iterated constructions, including PBKDF1 and several narrow-pipe hash
functions. From their observations, they argued for wide-pipe instead of narrow-
pipe hash functions. They did not, however, point out that increasing the number
of rounds of a primitive makes their distinguishers more successful. This is of
course evident from the formulas, but it was not part of their story line.

The same “entropy loss” was evaluated in the context of stream ciphers,
for example by Hong and Kim [21] and by Röck [34] for the MICKEY stream
cipher. However, the context is not the same as the one that we consider in this
paper. Their analysis concludes that security decreases when more output bits
are known, whereas we do not increase the number of output bits, but only the
number of rounds of the primitive.

The security of iterated random permutations was studied very recently by
Minaud and Seurin [29] at CRYPTO 2015. When the number of iterations k is
constant, they provide a security bound as well as a simple attack that matches
their bound up to a constant factor. An alternative simple proof was later pro-
vided by Nandi [33]. We will recall their result in this paper, and analyze the
security of an iterated random function in the same setting. We argue that re-
sulting distinguishers also apply when a non-ideal permutation is iterated, and
support this claim by experiments.

At the rump session of the ECRYPT II Hash Function Retreat in 2009 [15],
Dunkelman showed how to speed up preimage search for the ESSENCE hash
function [28] by the number of rounds. Unfortunately, this result was never
published, and appears to be unknown to most of the research community. In
the context of the 3D Cipher, the technique of Dunkelman was independently
rediscovered by Wang et al. [36], who point out that the complexity decreases
when the number of rounds is increased. In Sect. 5, we will recall this observation
and extend it to other constructions.

It should be pointed out that the complexity of typical cryptanalysis attacks
does not always increase monotonically. Biham and Chen found that 82 rounds of
SHA-0 are easier to attack than 80 rounds [6]. For the Whirlpool hash function,

5

Sasaki found that the 6.5 rounds are weaker against a preimage attack than 6
rounds. Similarly, Ma et al. [26] constructed preimage attacks on 5 rounds and
6.5 rounds of the GOST-256 hash function, but could not attack 6 rounds. In this
paper, we will not consider these attacks, as we will only focus on results where
the complexity decreases (monotonically or non-monotonically) as the number
of rounds is increased.

The indifferentiability setting will not be studied in this paper. Of particular
interest in this area, however, is a result by Dodis et al. [14] that show that the
second iterate H2(M) = H(H(M)) of a random oracle H has poor concrete
security in the sense of indifferentiability from a random oracle.

3 Distinguishers on Ideal Iterated Primitives

In this section, we will study the security of iterated primitives. Firstly, we will
look at constructions where an ideal primitive is iterated, which can be a ran-
dom function or a random permutation. Then, we state security bounds for the
resulting constructions. For a fixed number of iterations k, we will explain that
these security bounds are tight. We do this by recalling the cycle distinguisher of
Minaud and Seurin [29] for an iterated random permutation, and by introducing
a collision distinguisher for an iterated random function.

We then recall two other distinguishers on these constructions: entropy-loss
distinguishers and fixed-point distinguishers. As mentioned in Sect. 2, these dis-
tinguishers have been described in existing literature when a random function
or a random permutation is used. We will explain how they also apply to con-
structions with non-ideal primitives, by presenting a fixed-point distinguisher for
the Chaskey MAC function. Interestingly, doubling the number of rounds will
decrease the complexity of this fixed-point distinguisher.

3.1 Security Bounds on Iterated Primitives

Let us assume that adversaries are computationally unbounded, and are only
limited by the number of queries that they make. Without loss of generality, we
assume that all queries made by an adversary are distinct. Let perm(n) denote
the set of all permutations on n bits, and let func(n) be the set of all func-
tions from n to n bits. We then define the advantage of an iterated primitive
distinguisher as follows (see also Fig. 1).

Definition 1 (Iterated Primitive Distinguisher). Let F and f be random
variables over perm(n) (resp. over func(n)). For an adversary A, the advantage
of distinguishing a random function (resp. random permutation) from the k-th
iterate of a random function (resp. random permutation) using at most q queries
is

AdvF,fk(A) =

∣

∣

∣

∣

Pr
[

AF (q) → 1
]

− Pr
[

Afk

(q) → 1
]

∣

∣

∣

∣

, (1)

6

A

...
...

x1 y1f

f

f
g1,2

· · ·
g1,1

f
g1,k

x1 F y1

x2 F y2 x2 y2f f
g2,2

· · ·
g2,1

f
g2,k

xq F yq xq yqf f
gq,2

· · ·
gq,1 gq,k

...
...

Fig. 1. Distinguishing between a random function (resp. permutation) F and a random
function (resp. permutation) f that is iterated k times. The adversary A makes at most
q queries. All queries are assumed to be distinct. In case F and f are permutations, A
can make both forward and inverse queries.

where the adversary can make both forward and inverse queries in case F and f
are permutations. Note that the adversary is only given access to F and fk, and
not to f directly.

For an iterated random function, the maximum adversarial advantage can
be derived from the security bounds of CBC-MAC [3–5, 32], as was done by
Wagner and Goldberg [35]. We will provide a simpler proof and a tighter bound
for this construction. For the security bound for a iterated random permutation,
we recall a recent result of Minaud and Seurin [29]. Theorem 2 considers the
case where both F and f are random functions. In Theorem 1, both F and f
are random permutations.

Theorem 1 (Iterated Random Permutation Security). Let F be a ran-
dom permutation, and fk be a random permutation that is iterated k times. Then
for all A making at most q queries,

AdvF,fk(A) ≤
(2k + 1)q

2n
. (2)

We refer to Minaud and Seurin [29] for a proof of this bound.

Theorem 2 (Iterated Random Function Security). Let F be random func-
tion, and fk be a random function that is iterated k times. Then for all A making
at most q queries,

AdvF,fk(A) ≤
kq(kq − 1)

2n+1
−

q(q − 1)

2n+1
. (3)

7

Proof. Let E1 be the event that there exist gi,j = gi′,j′ such that ¬(i = i′∧j = j′)
(see Fig. 1). Given that E1 does not happen, no input of f will be reused. Note
that trivial reuse occurs when there exist ℓ, ℓ′ : ℓ 6= ℓ′ such that xℓ = xℓ′ , but
we do not have to consider this as we assumed w.l.o.g. that the adversary makes
distinct queries. Under the negation of E1, all queries are independent of each
other, and the reply to every query follows a uniformly random distribution,
so that F and fk are indistinguishable. By the fundamental lemma of game

playing, AdvF,fk ≤ Pr
[

E1

]

. From the union bound, the probability that gi,j =

gi′,j′ where ¬(i = i′ ∧ j = j′), is at most 0/2n+ 1/2n+ · · ·+ (kq − 1)/2n =
kq(kq − 1)/2n+1. In fact, we can construct a tighter upper bound, by noting
that since we assumed that all queries are distinct, we know that gi,1 6= gi′,1 for
i 6= i′. Let us therefore consider the event E2 that there exist gi,j = gi′,j′ such
that ¬(i = i′ ∧ j = j′) and ¬(j = j′ = 1). Using a similar reasoning as before,
F and fk are indistinguishable under the negation of E2. Again by the union
bound, the probability that gi,j = gi′,j′ where ¬(i = i′∧j = j′) and ¬(j = j′ = 1),
is at most q/2n+ (q + 1)/2n+ · · ·+ (kq − 1)/2n. This bound is similar to E1,
but it does not contain the first q terms of E1 as they correspond to the cases
where ¬(i = i′ ∧ j = j′) but j = j′ = 1. This sum is equal to kq(kq − 1)/2n+1 -
q(q − 1)/2n+1, from which the theorem follows. ⊓⊔

3.2 Matching Attacks for Iterated Primitives

Iterated Random Permutation. In [29], Minaud and Seurin proved that the
bound of Theorem 1 is tight. When the number of iterations k is fixed, they
provide a distinguisher that matches this bound up to a constant factor. We
recall their distinguisher in Algorithm 1.

Algorithm 1: Cycle Distinguisher DQ
cycle(q)

s0
$
←− {0, 1}n

for i← 0 to q − 1 do
si+1 ← Q(si)

end

if all si distinct then
return 0

else
return 1

end

Iterated Random Function. In their analysis of CBC-MAC, Mandal and
Nandi [27] provided an attack that also applies to the iterated random function
problem. More specifically, their result shows that when the number of iterations
is k is fixed, the bound of Theorem 2 is matched up to a constant factor.

8

We recall their distinguisher in Algorithm 2. Mandal and Nandi [27] proved
that this distinguisher has an advantage of Ω(kq2/2n). The distinguisher makes
q queries to the interface Q, which can be either F or fk, where F and f are
random functions.

Algorithm 2: Collision Distinguisher DQ

coll(q)

for i← 0 to q − 1 do
si ← Q(i)

end

if all si distinct then
return 0

else
return 1

end

4 Distinguishers on Non-Ideal Iterated Primitives

In Sect. 3, we stated security bounds for iterated permutations and iterated
random functions. Both bounds were shown to be tight. For a fixed value of
the iteration count k, respectively the cycle distinguisher (Algorithm 1) and the
collision distinguisher (Algorithm 2) can be shown to match the bounds up to a
constant factor.

In Sect. 2, we recalled two other distinguishers for iterated primitives, which
we will refer to as the entropy-loss distinguisher for the case of random func-
tions, and as the fixed-point distinguisher when random permutations are con-
sidered. As we explained, these distinguishers have already been applied to sev-
eral iterated constructions, including the Unix password hashing algorithm and
PBKDF1. For each of these constructions, the underlying building blocks were
assumed to be ideal.

We now introduce a new result in this paper, by looking at a non-ideal
building block that is iterated, such as a round of a block cipher. It is clear that
one round of a block cipher cannot be modeled as a random permutation, as it
is often easy to distinguish such a component from random. However, we claim
that the aforementioned distinguishers also apply to the iteration of non-ideal
building blocks, with an advantage that is at least as high as if they were random.

As all of the distinguishers presented in this paper have a very high com-
plexity, it is not feasible to experimentally verify their complexity for real-world
constructions. However, we can back up our claims by performing experiments
on small-scale variants of ciphers. These distinguishers have a lower data com-
plexity when the number of rounds is increased. They apply regardless of the
underlying algorithm, and even when the algorithm is not known to the adver-
sary. In the next section, we show an application of this idea to the Chaskey
MAC function.

9

4.1 Application to Chaskey

≪ 5

v1 v0 v2 v3

v1 v0 v2 v3

≪ 16

≪ 8

≪ 13≪ 7

≪ 16

Fig. 2. One round of the Chaskey permutation π, defined as: v0‖v1‖v2‖v3 ←
π(v0‖v1‖v2‖v3). The values v0 and v1 are intentionally swapped, as this reduces the
number of crossing lines in the figure.

Chaskey [31] is a Message Authentication Code (MAC) algorithm designed
by Mouha et al. as a collaboration between KU Leuven-COSIC and Hitachi YRL.
Soon after its publication, Chaskey entered a study period for standardization
by ISO/IEC JTC 1/SC 27/WG 2. In October 2015, the committee decided to
circulate a first working draft on the new 29192-6 lightweight MAC standard [30].
ITU-T SG17 has recently added new work items related to IoT [39] and ITS [39]
security, for which Chaskey seems to be well-suited.

Although Chaskey uses a dedicated mode of operation to process variable-
length messages, in this paper we will focus only on one-block messages. In that
case, Chaskey uses a 128-bit key K to transform a 128-bit message M into a tag
T of at most 128 bits. It does this using a variant of the Even-Mansour block
cipher [17,18]: C = EK(P) = K1⊕π(P⊕K⊕K1), where K1 is related to K by a

10

number of rounds k
0 4 8 12 16 20 24 28 32

nu
m

be
r

of
 fi

xe
d

po
in

ts

0

4

8

12

16

20

24

experimental
theoretical

Fig. 3. Number of fixed points for 1 ≤ k ≤ 32 rounds of the SmallChaskey permuta-
tion, compared to the expected number of fixed points if every round were a random
permutation.

linear function.4 Here, the plaintext P is equal to the one-block message, and the
ciphertext C corresponds to the (untruncated) tag T . The Chaskey permutation
π consists of eight identical rounds, one of which is shown in Fig. 2.

The derivation of the subkey K1 from K goes as follows. Let us interchange-
ably consider an element a of GF (2128) as the integer 2127a[127] + 2126a[126] +
. . . 20a[0] in decimal notation, and as the polynomial a(x) = a[n − 1]xn−1 +
a[n − 2]xn−2 + . . . + a[0] with binary coefficients. To multiply two elements
a and b, we represent them as two polynomials a(x) and b(x), and calculate
a(x)b(x) mod f(x) where f(x) = x128 +x7+x2+x+1. Using this notation, the
subkey K1 of Chaskey can be defined as K1 = 2K.

Related the Chaskey MAC function, we also define the Chaskey block cipher.
This block cipher is used in Chaskey’s 3PRP security proof [31], and is bench-
marked in the FELICS project [13]. It is defined as C = EK(P) = K⊕π(P⊕K).
A graphic representation of both constructions is given in Fig. 4.

For both the Chaskey MAC function on one-block messages and the Chaskey
block cipher, the claimed security is about T = 2128/D permutation evaluations
when D plaintext-ciphertexts are available. We will refer to T and D as the
time and the data complexity, respectively. The currently best known attack on
Chaskey is by Leurent [25] on 7 rounds out of 8 rounds, with 248 chosen plaintexts
and 267 time. The attack applies to the Chaskey MAC function as well as the
Chaskey block cipher. As a result of this attack, it was decided to introduce

4 Chaskey also uses a subkey K2 to process messages of an incomplete number of
blocks, however this is not relevant to the analysis in this paper as we will only
consider messages of one full block.

11

3K

P

π

2K

C

K

P

π

K

C

Fig. 4. The Chaskey MAC function for a one-block message (left) and the Chaskey
block cipher (right).

the twelve-round variant Chaskey-12 to be considered for the upcoming 29192-6
lightweight MAC standard [30].

In the fixed-point distinguishers that we will now consider, we will have
T = 0. This means that we will not perform a single permutation evaluation:
the distinguisher does not depend on the permutation π, and even works if the
algorithmic description of π is unknown to the adversary. Going back to the
setting of Even-Mansour [17, 18], this means that the entire codebook (all 2128

plaintexts and ciphertexts) should appear as if it was generated by a random
permutation.

Any number of rounds of the Chaskey permutation always has at least one
fixed point: the all-zero input. The search for additional fixed points seems to
be a computationally difficult problem, even for only one round of the Chaskey
permutation. For this reason, we performed some experiments on the Small-
Chaskey permutation, a variant of the Chaskey permutation that we introduce
in this paper. In SmallChaskey, all 32-bit words are replaced by 8-bit words, and
the rotation constants 16, 8, 13, and 7 are replaced by 4, 2, 6, and 3, respectively.

The results are plotted in Fig. 3. As we can see from this figure, the number
of fixed points is significantly higher than one, which is the number of fixed
points expected for a random permutation. It also seems to be sometimes much
higher than expected for an iterated random permutation. We conjecture that
this behavior also holds for the full-size Chaskey block cipher and for other
cryptographic round functions.

If this is the case, an adversary can distinguish the Chaskey block cipher from
a random permutation by collecting close to D = 2128 plaintext-ciphertext pairs
and counting the number of fixed points. This distinguisher has no impact on
the security of the Chaskey MAC function, which restricts the data complexity
available to the adversary to at most 264 plaintext-ciphertexts, because then
a collision in the internal state of the mode of operation has a non-negligible
probability. However, we do not look into the mode of operation, but instead
distinguish the Chaskey block cipher from a random permutation. This problem
may be of independent academic interest.

Note it is also possible to distinguish the Chaskey MAC function from a
random permutation. Because the two keys are different in the Chaskey MAC

12

function, a fixed point for the permutation will not correspond to a fixed point for
the MAC function. However, it is possible to collect all pairs of distinct plaintexts
(Pi, Pj), and count how often Pi ⊕ Ci = Pj ⊕ Cj . If Chaskey’s permutation π
has more fixed points than a random permutation, the aforementioned equation
will also be satisfied more often.

In Sect. 5.2, we will present results on the Chaskey MAC function that also
apply when a low number of plaintext-ciphertexts are available.

5 Speeding Up Exhaustive Search

The distinguishers that we presented in Sect. 3 and 4 have the property that
the data complexity decreases when the number of rounds is increased. The time
complexity was not a parameter, in fact the distinguishers even work if the
underlying algorithm is not known to the adversary.

We now look at cryptanalysis results where the time complexity decreases
when the number of rounds is increased. These results hold in the conventional
model that is used in cryptanalysis: the time complexity is calculated in terms
of the equivalent number of full-round computations.

However, we assume that the time complexity is only determined by the
number of round evaluations. Any other computations that are performed by
the adversary, are not taken into account. As a result of this, the speed-up over
exhaustive search may be less than our simplified model shows. If the overhead
of these other computations is significant, it may even be that there is only a
speed-up over exhaustive search if the cipher uses a sufficiently large number of
rounds.

Note that our analysis uses a computational model that is common for meet-
in-the-middle and biclique-style cryptanalysis. However, those types of crypt-
analysis can be prevented by increasing the number of rounds. This is not the
case for our observations. In fact, our observations have a lower complexity when
the number of rounds is increased.

After recalling an observation by Dunkelman on the ESSENCE hash function,
we will introduce new speed-ups over exhaustive search for the Chaskey MAC
function, for the PRIDE block cipher, and for a variant of PBKDF1 without a
salt.

5.1 ESSENCE

Let us recall the speed-up over exhaustive preimage search by Dunkelman [15]
on the ESSENCE hash function. The ESSENCE compression function consists
of 32 identical rounds, shown in Fig. 5. A preimage for the compression function
(a “pseudo-preimage” for the hash function) can be found as follows. Let X be
the target compression function value, so that we are looking for a message M
and a chaining value CV for which C(CV,M) = X , where C is the ESSENCE
compression function.

1. Initialize the message M and the chaining value CV with random values.

13

F

r7 r6 r5 r4 r3 r2 r1 r0

L F

k7 k6 k5 k4 k3 k2 k1 k0

L

Fig. 5. One round of the ESSENCE hash function. The chaining value CV is loaded
into the ri registers, whereas the message M is loaded into the ki registers. Every
register is either 32 or 64 bits, resulting in a hash value of either 256 or 512 bits.
Function F is a bitwise non-linear function, and L is a linear function operating on an
entire word. ESSENCE consists of 32 rounds, after which a feed-forward is applied.

2. Iterate the ESSENCE round function 32 times, storing all intermediate val-
ues of M and CV .

3. Apply the feed-forward function, and check if the resulting compression out-
put corresponds to the target value X .

4. If not, apply only one additional round of ESSENCE, and return to the
previous step.

For the sake of completeness, we should note that a pseudo-preimage may
not exist for the target value X , in which case this algorithm (and any other
algorithm) will fail. The algorithm will also fail if it cycles back to the initial
(M,CV) without encountering the target value X . This problem can be solved
by selecting a new value of (M,CV) and restarting the algorithm.

If we assume that the ESSENCE round function evaluations dominate any of
the other calculations, then Dunkelman’s observation effectively speeds up the
search for a pseudo-preimage by the number of rounds. In the conventional secu-
rity model where the attack complexity is determined by the equivalent number
of compression function evaluations, this means that the time complexity goes
down when the number of rounds is increased. This observation was indepen-
dently rediscovered by Wang et al. [36] when they analyzed the 3D Cipher.

5.2 Chaskey

We now describe a speed-up of exhaustive search using known plaintexts on the
Chaskey MAC algorithm. In the observation, all messages consist of one block,
and the tags are not truncated. As explained in Sect. 4.1, the Chaskey MAC
function is then equivalent to an Even-Mansour block cipher C = EK(P) =
K1 ⊕ π(P ⊕K ⊕K1), where K1 = 2K. From this, it follows that C = EK(P) =
2K ⊕ π(P ⊕ 3K).

Unfortunately the chosen-plaintext attack by Daemen [12] and the known-
plaintext attacks by Biryukov and Wagner [9] and by Dunkelman et al. [16] do
not seem to apply here. In those attacks, the adversary must be able to evaluate
the permutation π on inputs of its choosing. This is not possible when we apply
the technique explained in Sect. 5.1 to speed up exhaustive search.

14

The observation goes as follows. First, D known plaintexts (Pi, Ci) are ob-
tained, which are encrypted under the secret key K. Each known plaintext can
be transformed into another known plaintext (P ′

i , C
′

i), encrypted under an un-
known key K ′

i, where P ′

i = 0, C′

i = Ci ⊕ 2 · 3−1Pi and K ′

i = K ⊕ 3−1Pi. It is
easy to check from the key schedule that both (Pi, Ci) and (P ′

i , C
′

i) are valid
plaintext-ciphertext pairs (under keys K and K ′ respectively), as input and out-
put to the underlying permutation π remain the same. Then, store (C′

i, Pi) into
a hash table, indexed by the first coordinate.

We then obtain T input-output pairs (xj , yj) of the permutation π. This is
done using the same trick as for ESSENCE (Sect. 5.1): once one input-output
pair of the permutation is calculated, any additional input-output pairs can be
obtained from only one additional round evaluation. If an all-zero plaintext were
encrypted, (xj , yj) would correspond to a plaintext (Pj , Cj) under a known key
Kj , where Pj = 0, Cj = y ⊕ 2 · 3−1x and Kj = 3−1x. We therefore check for
each (xj , yj) if Cj appears as the first element in the hash table. If this is the
case for element i, we can check the guess K = 3−1(Pi ⊕ xj).

The probability that Ci = Cj for any i, j is 2−128. As our data contains
TD = 2128 pairs (Ci, Cj), we will find a match with a non-negligible probability
of success. As each of the T permutation evaluations can be generated with
an equivalent time complexity of T/k, where k is the number of rounds of the
cipher, exhaustive search is effectively sped up with a factor of k. Of course, this
analysis assumes that any other calculations besides the Chaskey round function
evaluations are negligible. If this is not the case, the speed-up over exhaustive
search will be smaller than k. Regardless of this assumption, the time complexity
of our observation will decrease when the number of rounds is increased.

All results in this section were experimentally verified on a Chaskey variant
using the SmallChaskey permutation defined in Sect. 4.1.

5.3 PRIDE

PRIDE is a lightweight block cipher proposed by Albrecht et al. [1]. It pro-
cesses a 64-bit plaintext P using a 128-bit key K, which is split into two 64-bit
keys K0 and K1. Similar to PRINCE [11], PRIDE is also based on the FX-
construction [23, 24] and also claims a security of TD = 2128, where T and D
are again, respectively, the time and data complexity of any cryptanalysis re-
sult. The PRIDE construction is illustrated in Fig. 6. Our description of PRIDE
omits a bit permutation that is applied to the plaintext and ciphertext, and adds
a diffusion layer to the last round, so that every round becomes identical. The
adversary can easily revert the bit permutation, as it does not require knowledge
of the key. The omission of the diffusion layer in the last round is a bit trickier
to deal with, and will be done after explaining the basic attack.

PRIDE has a very simple key schedule. The designers claim no resistance
against related-key attacks, and in fact note that PRIDE can be distinguished
trivially in this setting. For this reason, we will tackle the security bound TD =
2128, by showing a speed-up over exhaustive search to go below this bound in the

15

P

K0

F

K0

C

K1

A B

Fig. 6. The PRIDE block cipher, which processes 64-bit plaintext P using a 128-bit key
K, which is split into two 64-bit keys K0 and K1. Key K0 is used for prewhitening and
postwhitening. The block cipher F is a 20-round Substitution-Permutation Network
(SPN) that uses K1.

cryptanalysis model used in this paper. But first, we describe the round function
and key schedule of PRIDE.

The block cipher F used inside PRIDE is a 20-round Substitution-Permutation
Network (SPN). It consists of a subkey addition (the XOR of fi(K1) for round
i), followed by a substitution layer S and a permutation layer P , as shown in
Fig. 7. The subkeys fi(K1) are derived from K1 as follows. Let ‖ denote the con-
catenation of binary strings. First, we split K1 into eight bytes:K1 = u1‖ . . . ‖u8.
Then,

fi(K1) = u1‖u2 + 193i‖u3‖u4 + 165i‖u5‖u6 + 81i‖u7‖u8 + 197i , (4)

where all operations are performed modulo 28.

K1

S P

fi

Fig. 7. One round of the PRIDE Substitution-Permutation Network (SPN), where S

denotes the substitution layer and P refers to the permutation layer.

This results in the following pair of slid keys K1,K
′

1:

K1 = a1‖a2 ‖a3‖a4 ‖a5‖a6 ‖a7‖a8 , (5)

K ′

1 = a1‖a2 + 193‖a3‖a4 + 165‖a5‖a6 + 81‖a7‖a8 + 197 , (6)

where again all calculations are performed modulo 28.
This observation could be used to construct a slide attack under related keys

K1,K
′

1. However, related-key attacks do not violate the PRIDE design criteria.
We can, however, use this pair of slid keys to speed up exhaustive search. This
can be done as follows.

16

At the core of the attack, we will speed up the generation of (A,B)-values for
the block cipher F , shown in Fig. 6. A full-round encryption is required to obtain
one (A,B)-value under an adversary-chosen key K1, after which each additional
round will result in another (A′, B′), where the relation between K1 and K ′

1 is
given by (5)-(6).

For the FX-construction used in PRIDE, the existing attacks proceed as
follows: iterate over all keys K1, and then apply an attack of the Even-Mansour
block cipher. This strategy is used in the chosen-plaintext attack by Kilian and
Rogaway [23, 24], and in the known plaintext attack for D = 2n/2 by Biryukov
and Wagner [9], where n denotes the block size. In a straightforward way, the
attack by Dunkelman et al. [16] on Even-Mansour also can be turned into a
known plaintext attack on the FX-construction for any value of D.

However, none of these attacks seem to be applicable to speed up exhaustive
search for PRIDE. This is because all of them require a loop over K1, whereas
our speed-up will generate (A,B)-values under random keys K1. For this reason,
we now introduce a new cryptanalysis result on the FX-construction. First, D
known plaintexts (Pi, Ci) are collected, each encrypted under the secret key
K = (K0,K1). The values (Pi ⊕ Ci, Pi) are stored in a hash table, using the
first coordinate as the index. Then, for the inner cipher, we take T different
values of (Aj ,K1,j) and produce the correspondingBj = FK1,j(Aj), j = 1, . . . , T .
Obviously, if for some particular i and j, we got a match Pi ⊕Ci = Aj ⊕Bj and
the inner key K1 was correctly guessed (i.e. K1,j = K1), then we can recover
the outer key K0 as K0 = Pi ⊕ Aj . Thus, we can have a full key recovery5 as
long as we can get the required match on 128 bits (64-bits for K1 and 64-bits
for Pi ⊕K0 = Aj), thus as long as TD ≥ 2128.

The aforementioned related key slid pairs allow the speed-up the complex-
ity of the key recovery. In the above analysis, we have assumed that the time
complexity for producing Bj = FK1,j

(Aj) is equivalent to one full encryp-
tion. However, the complexity can be reduced. Assume, for the inner cipher,
the adversary takes a random key K1,j and a random plaintext Aj and pro-
duces the ciphertext Bj by executing 20 rounds of the cipher. In order to pro-
duce another tuple (Aj+1,K1,j+1, Bj+1) the adversary does not have to execute
again 20 rounds, but only one. To achieve this, the adversary takes K1,j+1 =
K1,j +0||193||0||165||0||81||0||197 (i.e. (K1,j ,K1,j+1) are a slid pair of keys), and
a plaintext Aj+1 = P (S(Aj ⊕ f1(K1,j). Note, the plaintext Aj+1 is in fact the
state after one round of encryption of the previous state and under the previous
key (which can be saved). It is clear that (Aj ,K1,j) and (Aj+1,K1,j+1) for a
perfect slid pair, thus the ciphertext Bj correspond to the exact value of the
state in the encryption of (Aj+1,K1,j+1) after 19 rounds. Hence, to produce
the ciphertext Bj+1 the adversary only has to apply one round (out of 20) of
encryption to Bj . Therefore, the generation of T tuples (Aj ,K1,j , Bj) roughly
requires only T/20 full encryptions of the inner cipher.

So far, we have assumed that all the rounds in PRIDE are equal (except for
the subkeys). However, the last round differs from the remaining rounds as the

5 False positives can easily be filtered out on an additional pair of plaintext-ciphertext.

17

diffusion layer in this round is omitted. Nevertheless, the analysis can still be
applied. The trick is to use two rounds of encryption for checking against entries
in the hash table and for generation of an additional tuple (Aj+1,K1,j+1, Bj+1)
from (Aj ,K1,j, Bj). The adversary applies the last (different) round to Bj to
check against the D matches of the hash table. This way, the adversary can
be sure that the encryption it obtains is the original encryption. However, to
produce Bj+1 the adversary applies a normal encryption round. This assures
that the chain of ciphertext is aligned for sliding. As a result, the adversary
obtains T candidates in time equivalent to T/20 + T/20 = T/10 encryptions.

We have experimentally verified all parts of this observation on a small-scale
variant of PRIDE with a 32-bit block size and a 64-bit key size.

5.4 Password Hashing: PKCS #5’s PBKDF1 Without a Salt

We now show how exhaustive search for password hashing algorithms can be
sped up, in particular for a variant of PKCS #5’s PBKDF1. Recall the PBKDF1
construction from Sect. 2: the password and salt are concatenated, after which
a hash function is iteratively applied k times to obtain the password hash. The
PKCS #5 standard recommends to use at least k = 1000, however in recent real-
world applications, k is often ten or a hundred times higher. More specifically, in
this section we will consider a variant of PBKDF1 that does not use a salt value.
Our findings therefore do not apply to PBKDF1 directly, but may nevertheless
lead to theoretical insights into its construction.

Let n be the output size of the hash function. Given one password hash,
a classical preimage search requires about T = 2n evaluations of PBKDF1 to
obtain a non-negligible success probability. If D password hashes are given, a
straightforward calculation shows that recovering any of these requires about
T = 2n/D PBKDF1 evaluations.

Now observe that the time complexity can be reduced by a factor of k. This
is because evaluating one password guess requires k evaluations of the hash
function used inside PBKDF1, but every additional guess has an additional
cost of only one hash function evaluation. This effectively speeds up exhaustive
search by a factor of k: given D password hashes, recovering any of them has
a time complexity of 2n/(D · k). Yet again, this cryptanalysis result has a time
complexity that decreases when the number of rounds is increased.

We constructed a small-scale variant of this password hashing function with
a 64-bit digest size to verify our results experimentally.

6 Conclusion and Future Work

This paper focused on cryptanalysis results on symmetric-key primitives for
which the complexity goes down when the number of rounds is increased. To
the best of our knowledge, this paper provided the first comprehensive study
of these types of observations. We investigated two classes of observations for

18

iterated symmetric-key constructions: distinguishers and speed-ups of exhaustive
search.

The distinguishers exploited the fact that iterating identical round functions
always leads to security erosion. The expected number of fixed points increases
when a random permutation is iterated, whereas iterating a random function
reduces the expected number of image points. We explained how these effects
also appear for non-ideal primitives, and used this to construct a new observation
for the Chaskey MAC function.

When the underlying primitives are ideal, we recalled the security bounds
of iterated primitives. When the number of iterations k is fixed, there exist
attacks that match the bounds up to a constant factor. The bound for an iterated
permutation is linear in k, whereas the bound for an iterated random function
is quadratic in k. An interesting open problem to prove a linear bound in k for
this case, or to find a better attack.

For ciphers that consist of identical rounds, we recalled an unpublished obser-
vation by Dunkelman, which was later rediscovered by Wang et al. They noted
that one output has been evaluated, any subsequent input-output pairs can be
obtained at the cost of only one additional round evaluation. We showed how
to use this observation to speed up exhaustive search for several algorithms, in-
cluding Chaskey, PRIDE, and an unsalted variant of the PKCS #5’s PBKDF1
password hashing algorithm.

As we explained, the actual complexity of our observations is difficult to
evaluate, but nevertheless decreases when the number of rounds is increased. Our
speed-ups over exhaustive search required the development of two new variants
of existing attacks: one on the Even-Mansour construction, and another on the
FX-construction.

As our analysis of the PRIDE block cipher showed, our results also apply
to a block cipher with non-identical round functions. An interesting direction
for future work is to see if our speed-ups of exhaustive search can be applied to
other ciphers with non-identical rounds. We hope that this will eventually lead
to a better understanding of the security of various symmetric-key primitives,
when small speed-ups over exhaustive search are taken into account.

Acknowledgments. Thanks to the anonymous reviewers and to Ritam Bhau-
mik, Avijit Dutta and Somitra Kumar Sanadhya for their useful comments and
suggestions. We thank Mridul Nandi for pointing out an error in an earlier ver-
sion of this work. Thanks to Atul Luykx, Brice Minaud, Kazuhiko Minematsu,
Yu Sasaki and Yannick Seurin for bringing related work to our attention. This
work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007), by Research Fund KU Leuven, OT/13/071, and by the French
Agence Nationale de la Recherche through the BLOC project under Contract
ANR-11-INS-011. Nicky Mouha is supported by a Postdoctoral Fellowship from
the Flemish Research Foundation (FWO-Vlaanderen), and by a JuMo grant from
KU Leuven (JuMo/14/48CF). Jérémy Jean and Ivica Nikolić are supported by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-
06).

19

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block
Ciphers - Focus on the Linear Layer (feat. PRIDE). In Garay, J.A., Gennaro, R.,
eds.: Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Volume
8616 of LNCS., Springer (2014) 57–76

2. Bard, G.V., Ault, S.V., Courtois, N.T.: Statistics of Random Permutations and
the Cryptanalysis of Periodic Block Ciphers. Cryptologia 36(3) (2012) 240–262

3. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In
Desmedt, Y., ed.: Advances in Cryptology - CRYPTO ’94, 14th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings. Volume 839 of LNCS., Springer (1994) 341–358

4. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. J. Comput. Syst. Sci. 61(3) (2000) 362–399

5. Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining
(January 2005) http://cr.yp.to/antiforgery/easycbc-20050109.pdf.

6. Biham, E., Chen, R.: Near-Collisions of SHA-0. In Franklin, M.K., ed.: Advances
in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference,
Santa Barbara, California, USA, August 15-19, 2004, Proceedings. Volume 3152 of
LNCS., Springer (2004) 290–305

7. Biryukov, A.: Slide Attack. In van Tilborg, H.C.A., Jajodia, S., eds.: Encyclopedia
of Cryptography and Security, 2nd Ed. Springer (2011) 1221–1222

8. Biryukov, A., Wagner, D.: Slide Attacks. In Knudsen, L.R., ed.: Fast Software
Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999,
Proceedings. Volume 1636 of LNCS., Springer (1999) 245–259

9. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In Preneel, B., ed.: Advances
in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-
ceeding. Volume 1807 of LNCS., Springer (2000) 589–606

10. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In Lee, D.H., Wang, X., eds.: ASIACRYPT. Volume 7073 of LNCS.,
Springer (2011) 344–371

11. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In Wang, X., Sako, K., eds.: Advances in Cryp-
tology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings. Volume 7658 of LNCS., Springer (2012) 208–225

12. Daemen, J.: Limitations of the Even-Mansour Construction. [22] 495–498

13. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y.L., Perrin,
L.: FELICS – Fair Evaluation of Lightweight Cryptographic Systems. https:

//www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results (2016)

14. Dodis, Y., Ristenpart, T., Steinberger, J.P., Tessaro, S.: To Hash or Not to
Hash Again? (In)Differentiability Results for H2 and HMAC. In Safavi-Naini, R.,
Canetti, R., eds.: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings.
Volume 7417 of LNCS., Springer (2012) 348–366

20

15. Dunkelman, O.: Preimages for the ESSENCE Compression Function. Presented
at the Rump Session of the ECRYPT II Hash Function Retreat (2009)

16. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In Pointcheval, D., Johansson, T., eds.: EUROCRYPT.
Volume 7237 of LNCS., Springer (2012) 336–354

17. Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom
Permutation. [22] 210–224

18. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptology 10(3) (1997) 151–162

19. Flajolet, P., Odlyzko, A.M.: RandomMapping Statistics. In Quisquater, J., Vande-
walle, J., eds.: Advances in Cryptology - EUROCRYPT ’89, Workshop on the The-
ory and Application of of Cryptographic Techniques, Houthalen, Belgium, April
10-13, 1989, Proceedings. Volume 434 of LNCS., Springer (1989) 329–354

20. Gligoroski, D., Klima, V.: Practical Consequences of the Aberration of Narrow-
Pipe Hash Designs from Ideal Random Functions. In Gusev, M., Mitrevski, P.,
eds.: ICT Innovations 2010. Volume 83 of Communications in Computer and In-
formation Science., Springer (2011) 81–93

21. Hong, J., Kim, W.: TMD-Tradeoff and State Entropy Loss Considerations of
Streamcipher MICKEY. In Maitra, S., Madhavan, C.E.V., Venkatesan, R., eds.:
Progress in Cryptology - INDOCRYPT 2005, 6th International Conference on
Cryptology in India, Bangalore, India, December 10-12, 2005, Proceedings. Vol-
ume 3797 of LNCS., Springer (2005) 169–182

22. Imai, H., Rivest, R.L., Matsumoto, T., eds.: Advances in Cryptology - ASI-
ACRYPT ’91, International Conference on the Theory and Applications of Cryp-
tology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings. In Imai, H., Rivest,
R.L., Matsumoto, T., eds.: ASIACRYPT. Volume 739 of LNCS., Springer (1993)

23. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search.
In Koblitz, N., ed.: Advances in Cryptology - CRYPTO ’96, 16th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings. Volume 1109 of LNCS., Springer (1996) 252–267

24. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). J. Cryptology 14(1) (2001) 17–35

25. Leurent, G.: Differential and Linear Cryptanalysis of ARX with Partitioning –
Application to FEAL and Chaskey. Cryptology ePrint Archive, Report 2015/968
(2015) http://eprint.iacr.org/.

26. Ma, B., Li, B., Hao, R., Li, X.: Improved (Pseudo) Preimage Attacks on Reduced-
Round GOST and Grøstl-256 and Studies on Several Truncation Patterns for AES-
like Compression Functions. In Tanaka, K., Suga, Y., eds.: Advances in Information
and Computer Security - 10th International Workshop on Security, IWSEC 2015,
Nara, Japan, August 26-28, 2015, Proceedings. Volume 9241 of LNCS., Springer
(2015) 79–96

27. Mandal, A., Nandi, M.: An improved collision probability for CBC-MAC and
PMAC. Cryptology ePrint Archive, Report 2007/032 (2007) http://eprint.iacr.
org/.

28. Martin, J.W.: ESSENCE: A Family of Cryptographic Hashing Algorithms. Sub-
mission to the NIST SHA-3 Competition (Round 1) (2008) http://csrc.nist.

gov/groups/ST/hash/sha-3/Round1/submissions_rnd1.html.

29. Minaud, B., Seurin, Y.: The Iterated Random Permutation Problem with Appli-
cations to Cascade Encryption. In Gennaro, R., Robshaw, M., eds.: Advances in

21

Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part I. Volume 9215 of LNCS.,
Springer (2015) 351–367

30. Mouha, N.: Chaskey: a MAC Algorithm for Microcontrollers – Status Update and
Proposal of Chaskey-12 –. Cryptology ePrint Archive, Report 2015/1182 (2015)
http://eprint.iacr.org/.

31. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers.
In Joux, A., Youssef, A.M., eds.: Selected Areas in Cryptography - SAC 2014 - 21st
International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Se-
lected Papers. Volume 8781 of LNCS., Springer (2014) 306–323

32. Nandi, M.: A Simple and Unified Method of Proving Indistinguishability. In
Barua, R., Lange, T., eds.: Progress in Cryptology - INDOCRYPT 2006, 7th In-
ternational Conference on Cryptology in India, Kolkata, India, December 11-13,
2006, Proceedings. Volume 4329 of LNCS., Springer (2006) 317–334

33. Nandi, M.: A Simple Proof of a Distinguishing Bound of Iterated Uniform Random
Permutation. Cryptology ePrint Archive, Report 2015/579 (2015) http://eprint.
iacr.org/.

34. Röck, A.: Stream Ciphers Using a Random Update Function: Study of the Entropy
of the Inner State. In Vaudenay, S., ed.: Progress in Cryptology - AFRICACRYPT
2008, First International Conference on Cryptology in Africa, Casablanca, Mo-
rocco, June 11-14, 2008. Proceedings. Volume 5023 of LNCS., Springer (2008)
258–275

35. Wagner, D., Goldberg, I.: Proofs of Security for the Unix Password Hashing Al-
gorithm. In Okamoto, T., ed.: Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kyoto, Japan, December 3-7, 2000, Proceedings. Volume 1976 of
LNCS., Springer (2000) 560–572

36. Wang, L., Sasaki, Y., Sakiyama, K., Ohta, K.: Polynomial-Advantage Cryptanaly-
sis of 3D Cipher and 3D-Based Hash Function. In Hanaoka, G., Yamauchi, T., eds.:
Advances in Information and Computer Security - 7th International Workshop on
Security, IWSEC 2012, Fukuoka, Japan, November 7-9, 2012. Proceedings. Volume
7631 of LNCS., Springer (2012) 170–181

37. Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation
Functions. In Menezes, A., ed.: Topics in Cryptology - CT-RSA 2005, The Cryp-
tographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14-18, 2005, Proceedings. Volume 3376 of LNCS., Springer (2005) 245–261

38. Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation
Functions. IEEE Transactions on Information Theory 51(9) (2005) 3292–3297

39. Yoshida, H.: ITU-T work programme,X.iotsec-1. ITU-T (2016) https://www.itu.
int/itu-t/workprog/wp_item.aspx?isn=10275.

22

