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Abstract. CAESAR has caused a heated discussion regarding the merits of one-pass encryption and online
ciphers. The latter is a keyed, length preserving function which outputs ciphertext blocks as soon as the respec-
tive plaintext block is received. The immediacy of an online cipher gives a clear performance advantage, yet it
comes at a price. Since ciphertext blocks cannot depend on later plaintext blocks, diffusion and hence security
is limited. We show how one can attain the best of both worlds by providing provably secure constructions,
achieving full cipher security, based on applying an online cipher and reordering blocks.
Explicitly, we show that with just two calls to the online cipher, security up to the birthday bound is both at-
tainable and maximal. Moreover, we demonstrate that three calls to the online cipher suffice to obtain beyond
birthday bound security, and (for suitably long messages) arbitrarily strong security. As part of our investi-
gation, we extend an observation by Rogaway and Zhang, highlighting the close relationship between online
ciphers and tweakable blockciphers with variable-length tweaks.

Keywords: beyond birthday bound, online ciphers, modes of operation, provable security, pseudorandom per-
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1 Introduction

Modern understanding of symmetric cryptology has come a long way from a straightforward adaptation
(cf. [24, Def. 3.30]) of the seminal definitions of probabilistic [public key] encryption [18]. Both au-
thenticated encryption and variable input length ciphers have emerged as noteworthy primitives. From
an efficiency perspective, a scheme is ideally one-pass and online, outputting ciphertexts as plaintext
comes in. For nonce-based authenticated encryption, online schemes do not suffer in security, as long
as nonces are indeed unique (and decryption of invalid ciphertexts only produces a single error mes-
sage [2, 8, 21]). Once nonces do repeat, prefix patterns start leaking; the same is true for online ciphers.
Two pass schemes become a necessity. This raises the question how easily one can boost the security
of an online scheme. In this paper, we concentrate on turning online ciphers into fully fledged ciphers
using only two or three passes (depending on the desired security level).

The original goal of cryptography was data confidentiality. From a modern perspective, this is ad-
dressed by authenticated encryption (AE), which provides both confidentiality and integrity (including
of associated data [31]). Modern AE schemes are deterministic and rely on a nonce to ensure that en-
crypting the same message twice produces two unrelated ciphertexts: as long as nonces do not repeat,
security is guaranteed. Once nonces do repeat, leaking plaintext equality patterns is inevitable, but for
many schemes the damage is much worse [22,25]. The security goal of misuse resistant AE [32] consid-
ers whether and how the security of an AE scheme degrades when a nonce is no longer used just once.
There are many ways to construct authenticated encryption schemes [7, 29], but the number of options
reduces drastically when misuse resistance is required. One approach is the encode-then-encipher (or
pad-then-encipher) paradigm [6, 32, 36], where (public) redundancy is added to the message before it is
being enciphered using a variable input length strong pseudorandom permutation (±PRP cipher).

Variable input length ciphers (either ±prp or prp secure) are interesting in their own right, espe-
cially in scenarios where encryption has to occur in situ [5]. One example is adding confidentiality to an
existing networking standard, where packet sizes are fixed and the expansion implicit when using au-
thenticated encryption cannot be afforded; another application is disk encryption (possibly using tweaks
so sectors can still be accessed independently).

A prp cipher will yield completely different ciphertexts if there is any difference between plaintexts.
This forces at least two-passes, one to read the plaintext and one to write the ciphertext. Once the length
of the input increases, a one-pass or online cipher might strike a better balance between the conflicting
goals of efficiency and robust security. An online cipher [4] is a variable input length keyed permutation
based on a blockcipher that outputs a ciphertext block as soon as it receives a plaintext block (but still
based on all preceding plaintext blocks). In other words, it allows instant processing of plaintext and
outputting ciphertext on the fly. Since online ciphers cannot be prp secure, relaxed security notions exist
that capture “best possible” security. Online ciphers play a key role in achieving a similarly relaxed
notion of online authenticated encryption with graceful security degradation against nonce reuse [15].

We believe there are many scenarios where an online cipher’s security limitations are outweighed
by their efficiency, but at the same time there will be situations where full cipher security is paramount.
One could create tailor-made solutions for each of the primitives, but often it is more desirable to share
components. This could be solved by using two modes of operation on say AES, but we imagine an
environment where black-box use of an online cipher is already available (such as by API), and we are
tasked to create a true cipher based on the access to the online cipher only.3

Our contribution. We consider schemes formed by composing calls to an online cipher around a
simple (publicly known) mixing layer, and aim to minimize the number of calls made to the online
cipher (Def. 4). We restrict the mixing layer to be blockwise-linear (defined in Sec. 2), with particular
focus on linear layers that simply reorder the blocks, since these can be implemented most efficiently.

3 Obviously if one would have direct access to whatever primitive underlies the online cipher, more efficient (and known)
variable input length ciphers could be constructed. Nonetheless, minimizing the number of calls as imposed by an API is a
metric that has previously shown its worth in the context of authenticated encryption [10].
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Fig. 1. Examples of the construction. On the left is the two layer reversing scheme, and on the right the three layer right shift
instantiated with independent ciphers.

Fig. 1 highlights two typical constructions under consideration. Note that neither reversing the blocks
nor cycling the final block to the front in itself is novel: both ideas have been suggested in one way or the
other using more traditional IV-based encryption schemes [5] or in the context of key-wrap schemes [14].
Our novelty resides in using an online cipher as underlying primitive, and what we are able to prove as
a result. Table 1 provides a summary of our results. The security bounds are simplifications of those in
the paper, compromising tightness in favour of clarity (for stricter bounds please refer to the relevant
theorems). As a boon, we describe an explicit correspondence between tweakable blockciphers and
online ciphers (Thm. 7), extending an observation by Rogaway and Zhang [34].

We prove that only two calls to the online cipher are required to achieve security up to the birthday
bound, in terms of indistinguishability from a random permutation. Even when the adversary is allowed
to make inverse queries, this can be achieved by using a linear layer that reverses the message (Thm. 11).
If one is not concerned about an adversary making queries of the construction’s inverse, it suffices for
the linear layer to move the final block to the start (Thm. 17), as long as the map remains invertible.

If one requires security beyond the birthday bound (something most symmetric schemes do not
provide), one must make at least three queries to the online cipher (Thm. 10). Perhaps surprisingly, we
find that three suffices: security is provided up until almost the blocksize by the construction making
three calls to the online cipher around two calls to a linear layer that reverses the message (Thm. 13).
We are not aware of any matching attacks against this construction, however the longer messages are,
the higher the security guarantee the scheme provides (Thm. 14), defeating a number of common attack
strategies. If one does not mind about inverse queries, simply moving the final block to the start suffices
(Thm. 19).

Applications. We provide a concrete way for converting an online cipher into a true cipher. Our methods
can trivially be extended to form tweakable ciphers from tweakable online ciphers with the tweaks and
bounds of the non-tweak setting, or indeed from a non-tweakable online cipher to a tweakable cipher.
There exist many ways to turn a true cipher into a secure AE scheme (e.g. Encode-then-Encipher [6,36]).
Moreover, Hoang et al. demonstrate that with a tweakable cipher one may achieve the even stronger goal
of Robust Authenticated Encryption [21, Thm. 5] (itself implying full misuse-resistant security [32]).
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Construction Input Security

Linear Layer Cipher calls Goal Lengths Advantage Proof Tight?

1 block Right-shift 2 PRP Any 3
2
q2/2n Thm. 17 Thm. 10

1 block Right-shift 3 PRP Any q2/22n Thm. 19 Lem. 18 (†)

Blockwise Reverse 2 ±PRP Any 4q2/2n Thm. 11 Thm. 10

Blockwise Reverse 3 ±PRP

 Any

m ≥ 2kn

 nq/2n

4q2/2kn

Thm. 13

Thm. 14

(†) (*)

Table 1. Simplified upper bounds on adversarial advantage against our constructions, where a small advantage implies a secure
scheme. Results are paramaterised by the maximum number of queries q, the blocksize n and an arbitrary integer k > 0. The
input length column provides any limitations on the input length m (in bits). A bound is “tight” if there exists an attack that
asymptotically (in q, n) matches the security bound. Notes: (†) Security proof requires independent ciphers (see note in section
1); (*) The simplification requires n ≥ 4 (full result does not, see theorem).

Incorporating our results plugs the gap to turn a secure online cipher into an Authenticated Encryption
scheme meeting the strongest of security bounds.

For example, when instantiated with POE[AES4], the recommended online cipher of the POET
CAESAR candidate [1], one can use the two layer reversal structure to build a RAE (or MRAE) scheme,
against which the adversarial advantage is less than l2/2111, where the total number of blocks queried
is l. This means the scheme is secure until at least 250 blocks are queried, with the bound dominated by
the difference between AES4 and an ideal AXU. Note that, although the RAE game allows decryption
leakage from the final buffer, it would not be secure to leak between the online cipher calls: to do
this would provision an indifferentiability attack on the construction, something that can be readily
constructed (see App. A).

This further reinforces the assertion that online ciphers are an interesting object, meriting future
study. As discussed by Hoang et al., there exist times when a user has to compromise security in re-
turn for other savings [21, Sec. 1: “Ciphertext Expansion”] such as reduced power consumption. Our
construction provides a method by which real world devices may do this without requiring multiple
primitives. This reduces the number of possible failure points and saves chip area. When optimal secu-
rity is not required, the online cipher may be used directly. However, when security must be maximised,
one may instead use our construction to provide Robust AE security.

Related work. The concept of an online cipher was first studied by Bellare et al. [4], providing the initial
security definitions, against which they investigate some CBC variants. The security definitions and their
relationships were developed through a number of papers [9, 16, 17, 23]. Later, Rogaway and Zhang
exposed the close relationship between tweakable blockciphers and online ciphers [34], an observation
that has since been exploited by others, yielding several explicit constructions (e.g. McOE [15]). There
now exist a wide range of online cipher constructions, such as COPE [3], POE [1] and ELmE [12],
the majority of which achieve birthday bound security. We are not aware of any online ciphers whose
security might extend beyond the birthday bound.

One of our two-layer constructions is similar to CMC-core [20], but by building around an online
cipher rather than CBC mode we achieve provable security without the need for a masking layer. The
original AESKW algorithm [14] follows a similar design, since it can be decomposed into a series of
calls to an online cipher and a linear layer, but is provided without proof; the KW1 algorithm [14] uses
the cyclic shift instead. Our results are a next step towards proving the security of these standardized key
wrap mechanisms.

As an alternative to our approach based on an online cipher, one can build a variable length cipher
directly from a blockcipher (as TET [19] or AEZ [21] do), or extend the domain of a tweakable blockci-
pher (e.g. Minematsu’s construction [28]). One could use an online cipher to emulate the blockcipher or
tweakable blockcipher in these constructions but this would require excessively many calls to the online
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cipher, considerable less efficient than the three calls of our construction. Arguably a fairer comparison
is possible in terms of blockcipher calls and overhead if the online cipher itself is bootstrapped from a
blockcipher.

Context and caveats. We will model the online cipher used as having ideal properties, leading to an
information-theoretic proof. Instantiating the scheme with any specific online cipher construction incurs
an extra term (expressing the online-cipher security of the specific construction).

We express our results in terms of the blocks {0, 1}n of a blockcipher, since most online ciphers are
built around some internal block cipher, which is explicitly reflected in their syntax and security notions.
For schemes built around AES, this means n = 128, which implies that our cipher only operates on
input sizes a multiple of 128 bits. Essentially, we consider ciphers with domain ({0, 1}n)∗, as opposed
to the preferable {0, 1}∗. We ignore this subtle (but practically relevant) shortcoming, that has haunted
other work on online ciphers as well [30, 34], and remark that existing domain completion techniques
are not without issue.

Some of our results require independent online ciphers for every layer. These independent ciphers
can be easily implemented with a single online cipher, courtesy of the close relationship we expose
between tweakable blockciphers with arbitrary length tweaks and online ciphers (e.g. by prefixing each
call with a marker corresponding to the appropriate cipher). Alternatively, keying or tweaking the ciphers
independently suffices.

2 Preliminaries

Notation. Arrays and lists are indexed from 1. Within proofs and explanations, X := Y means that
X is defined to be Y . In the context of pseudocode, T ← U means variable T takes value U , X ←$ Y
means that the variable X samples uniformly from the set Y , and L←∪ x means the set L← L ∪ {x}.

A world is a collection of oracles, interfaces provided by a security game. For any set X of maps
with the same interface, the world W[X] samples an element π←$X uniformly, and provides access
to π. The world ±W[X] does the same, but also provides an interface to π−1. Adversaries are infor-
mation theoretic, being computationally unbounded. They make limited number of queries to a world
W∗ provided by the game, before outputting a value x, which we denote by AW∗ → x. Without loss of
generality, we assume they are deterministic and minimal (so do not make queries equivalent to those
already made, such as repeating queries). The distinguishing advantage between worlds W0 and W1

within q queries ∆W1
W0

(q) corresponds to the maximum distinguisher. Formally,

∆W1
W0

(q) := max
A∈Adversaries
A makes q queries

∣∣P [AW0 → 1
]
− P

[
AW1 → 1

]∣∣ .

Blocks and strings. As discussed in Sec. 1, we constrain ourselves to working within ({0, 1}n)∗ rather
than the more general {0, 1}∗, and allow this to guide our definitions. The set of blocks is {0, 1}n,
parametrised by n, the blocksize – usually n = 128 is inherited from an underlying blockcipher. A
string of blocks (or simply string) is an element of S ∈ ({0, 1}n)∗– the length of a string |S| is its length
in blocks. We identify ({0, 1}n)l with {0, 1}ln in the obvious way, allowing us to treat a string of blocks
as a single bitstring, and vice versa. For a string (of blocks) X , denote by X[i] the ith block of X . Let
X[i..j] := X[i]|| . . . ||X[j], or the empty string ε if j < i, where || denotes the concatenation of strings.

For any x ∈ {0, . . . , 2mn − 1}, denote by 〈x〉m an m block string that unambiguously encodes x
as an (m · n)-bit number (the choice of encoding is not important, as long as it is injective). A function
f : ({0, 1}n)∗ → ({0, 1}n)∗ is length preserving if |f(X)| = |X| for any stringX . It is blockwise linear
if each output block is a linear combination of the input blocks.
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2.1 Primitives

We use a number of standard primitives, in particular the notions of a cipher, tweakable blockcipher [26]
and online cipher [4]. The keyspace (which we will assume to be the same for all our ciphers) is denoted
by K, and we assume all ciphers C to be length preserving.

Definition 1 (Cipher). A cipher E is a family of permutations E· on inputs X ∈ X ⊂ {0, 1}∗ indexed
by a key k ∈ K. If X = {0, 1}n, we say it is a block cipher. If X = ({0, 1}n)+ and the construction is
length preserving, it is a true cipher acting on blocks.

So, a true cipher is a family of length-preserving permutations that contains an element for each
length, also known as a VIL cipher (e.g. [5]).

Definition 2 (Tweakable blockcipher). A tweakable blockcipher (a TBC) Ẽ is a family of permutations
of {0, 1}n, indexed by a key k ∈ K and a tweak T ∈ T , where T is the tweak space. We denote applying
this permutation to block M ∈ {0, 1}n by M ′ ← ẼTk (M), and its inverse by M ← D̃T

k (M ′).

Thus a tweakable blockcipher can be thought of as a collection of blockciphers, the appropriate one
of which is chosen by the tweak. Finally, we move on to the definition of an online cipher:

Definition 3 (Online cipher). An online cipher is a cipher for which the ith block of ciphertext depends
only on the first i blocks of plaintext. Thus it is a family E of permutations on ({0, 1}n)+ indexed by
some k ∈ K, where for any m > 0 and A ∈ {0, 1}mn, Ek(A||B)[1..m] = Ek(A) for all B ∈ ({0, 1}n)∗.

This formalisation of an online cipher (due to Bellare et al. [4]) describes a construction that can
outputs ciphertext blocks as soon as the corresponding message blocks arrive. It does not necceserily
define an online algorithm, since it imposes no limitations on the size of the internal state the construction
may utilize, although in practice most schemes can be efficiently realised by an online algorithm.

Security notions. Intuitively, a cipher is secure if even given a large number of input–output pairs, vir-
tually nothing is known about its behaviour on other values: every permutation that does not contradict
already known information is equally likely. Motivated by this, let Perm(l) be the set of all permuta-
tions on l bits, meaningW[Perm(l)] corresponds to the ideal cipher, since every possible permutation is
equally likely. The actual security of a cipher E is measured by the likelihood an adversary can distin-
guish a randomly keyed instance of it from the ideal cipher (based on oracle access only).

Similarly, we define the ideal primitives for random function with inverse, TBC and online cipher by
first defining the set of all such objects, following standard terminology neatly coalated by Halevi and
Rogaway [20]. Define Func(l) to be the set of all functions from l bits to l-bit, Perm(T , n) the set of
functions f : T × {0, 1}n → {0, 1}n where for any T ∈ T the map M → f(T,M) is a permutation,
and OPerm(l) the set of all online permutations on l bit blocks. Thus W[Perm(T , n)] corresponds to
the ideal TBC andW[OPerm(l)] to the ideal online cipher.

Slightly more involved is the ideal random function with inverse, in which the encryption and decryp-
tion interfaces are instantiated with independently sampled random functions, subject to the condition
that they never contradict oneanother. Commonly this is done by “lazy sampling”, where values for the
function (or its inverse) are selected as required: with each query, if the value is already defined it is
returned, and if not a value is uniformly sampled and recorded (see Alg. C).

The security notions of PRF, PRP, TPRP and OPRP are defined by the adversarial advantage in
distinguishing a primitive from the ideal random function, ideal cipher, ideal tweakable blockcipher
and ideal online cipher respectively (when provided with oracle access to just the encryption interface).
Analogously, we define ±PRF, ±PRP, ±TPRP, ±OPRP by providing oracle access to both the forward
and inverse interfaces. The complete list is provided in Appendix B, but as an example,

Advoprp
E (A) := P

[
k←$K : AEk → 1

]
− P [π∗←$ OPerm(n) : Aπ∗ → 1] .
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The goals above are defined for primitives of just a single length, and we generalise to allow variable
length constructions by providing an equivalent interface for every requested length. As previously, for
some goal xxx, Advxxx

P (q) is defined as the maximum across all adversaries making q queries. We say a
scheme P is a secure xxx if Advxxx

P (q) is sufficiently small. At times we use the term ±PRP to refer to a
secure ±prp, and similarly for any other goals.

Use of ideal primitives. For conciseness, let E be the encryption routine of the ideal online cipher, with
inverse D. This means that (E ,D) = ±W[OPerm], and our proofs will be constructed around this ideal
primitive. Application of our results to real constructions requires swapping out the real online cipher for
the ideal primitive. The cost of this switch depends on the overall objective, since the online cipher need
only be secure under the equivalent notion to the overall construction. For example, for ±prp security
the online cipher must be a secure ±oprp, but for prp security the online cipher need just be an oprp.

2.2 Constructions

We seek a framework for efficiently converting an online cipher into a true cipher, ideally using only
a small number of calls to the online cipher, sandwiched together by some highly efficient (invertible)
mixing layer(s). Restricting to linear mixing layers leads us to the following definition.

Definition 4 (The ΠL
i construction). Define ΠL

i to be the composition of i calls to an online cipher E
around (i− 1) applications of a public family of blockwise linear layers L.

So, for example, ΠL
2 (M) = E ◦ L ◦ E(M). We will consider various combinations of (L, i) and

observe that some combinations lead to schemes with PRP or ±PRP security. When clear, we omit the
linear layer or number of rounds from the notation.

Blockwise linear layers. The first and most obvious candidates for linear layers are blockwise per-
mutations: maps that simply reorder the blocks. In this paper we will focus on the blockwise reversal
map, rev, and swap, the map the exchanges the first and last blocks of a message, and (pre-empting
ourselves slightly) will show they suffice to obtain full ±prp security. Later, inspired by the choices
of AESKW [14], we will consider the right circular shift right, and by association its inverse, the left
circular shift left.

Formally, for any M ∈ ({0, 1}n)m, these maps are defined by:

right(M) := M [m]||M1|| . . . ||M [m− 1] rev(M) := M [m]||M [m− 1]|| . . . ||M [2]||M [1]

left(M) := M [2]|| . . . ||M [m]||M [1] swap(M) := M [m]||M [2]||M [3]|| . . . ||M [m− 1]||M [1]

2.3 Standard results

The ±PRP–±PRF switching lemma, for which a proof is given by Halevi and Rogaway [20, App. C],
will be used in several proofs to switch the ideal world from a random permutation to a random function
with inverse. To bound final collision events, we use the well known birthday bounds.

Lemma 5 (±PRP–±PRF switch). One cannot distinguish a random permutation from a random func-
tion with inverse any better than achieving collisions in the random function, even when given access to
both interfaces. Therefore, if the shortest queries are m blocks long, ∆W[Perm]

W[Func] (q) ≤ q(q − 1)/2mn+1.

Lemma 6 (Birthday Bound). The probability that a list of q independent random variables (each of t
bits) contains a repeat is bounded. Explicitly,

q(q − 1)

2t+2
≤ P

[
a1, . . . , aq←$ {0, 1}t : ∃i 6= j s.t. ai = aj

]
≤ q(q − 1)

2t+1

where the lower bound requires q ≤ 2(t+1)/2, and the upper bound holds for all q.
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3 Equating Online Ciphers and Tweakable Block Ciphers

Online ciphers can be formed from a chain of TBCs, an observation that allowed Rogaway and Zhang to
simplify the analysis of online ciphers [34]. We observe that an even closer relationship exists: an online
cipher is a TBC with variable length tweak.

The link between online ciphers and TBCs can be best understood by considering how online ciphers
act on strings of blocks. Let E(·) be the encryption function of an online cipher and A,B ∈ ({0, 1}n)∗,
then we define EA(B) := E(A||B)[x..m], where x = |A|+ 1 and m = |A|+ |B|. So, EA(B) returns
the output blocks corresponding to B when processed with a prefix of A. Then, by the online property,
E(A||B) = Eε(A)||EA(B). In the tweakable context, A is the tweak under which B is encrypted, and
in the online context, we refer to A as the prefix under which B is encrypted. Thus the prefix is similar
to the state in the incremental online cipher characterisation [33], except that prefixes may be arbitrarily
large, whereas states have fixed length.

Similar to the encryption case, we define D̂A(B) := D(A||B)[x..m]. By settingDA(B) := D̂E(A)(B),
we obtain the inverse of EA, as DA(EA(B)) = B. This is not a problem to compute, since to calculate
D(A||B) one first calculates M = D(A), then D(A||B) = M ||DM (B), something the online cipher
does internally anyway. Our notation emphasises the correspondence with TBCs, since is A the tweak
under which B is decrypted.

Theorem 7. There is a security preserving one-to-one correspondence between online ciphers on blocks
{0, 1}n and tweakable blockciphers on {0, 1}n with tweak space ({0, 1}n)∗.

Proof. We begin by defining a map f from the set of online ciphers to the set of such TBCs. The
tweakable blockcipher will call the online cipher on T ||M , before throwing away all but the final block,
effectively using the bulk of the cipher call preprocessing the tweak. So, if E is an online cipher then
f(E) is the TBC f(E)Tk (M) := ETk (M) for any M ∈ {0, 1}n and T ∈ ({0, 1}n)∗.

Conversely, the map g from TBCs to online ciphers will call the TBC on each block, using previous
blocks as the tweak. So, for TBC Ẽ, the online cipher g(Ẽ) is defined for all M ∈ ({0, 1}n)∗ with
m = |M | by

g(Ẽ)k(M) := Ẽεk(M [1])||ẼM [1]
k (M [2])|| . . . ||ẼM [1..(m−1)]

k (M [m]).

We observe that for any TBC Ẽ and online cipher E we have f(g(Ẽ))k = Ẽk and g(f(E))k = Ek.
Thus the maps are in fact inverses, defining a correspondence.

With the correspondence established, we move on to proving it preserves security. The key observa-
tion is that, because the map defines a correspondence between elements it must map the set of all TBCs
onto the set of all online ciphers, and vice versa. That is, f(OPerm(n)) = Perm(({0, 1}n)∗, n) and
g(Perm(({0, 1}n)∗, n)) = OPerm(n). So, if an online cipher is distinguishable from the ideal online
cipher, by applying the f we see that the corresponding TBC is distinguishable from the ideal tweakable
block cipher, and vice versa. Thus, security of one implies security of the other. ut

Viewing an online cipher as a tweakable blockcipher, it is clear that after processing fresh prefixes,
only uniform randomness will be output. In particular, we can ensure two calls to E ·(·) are independent
by taking care with the length of tweaks: as long as |t| ≥ |u|+ |y|, E t(x) is independent of Eu(y).

Corollary 8. If no call to E has been made beginning or explicitly tweaked by A, then EA(B) is uni-
formly sampled from all strings of length |B|.

Finally, we provide a similar result about just the final block. Explicitly, when called with distinct
inputs the final output blocks collide with probability at most that of colliding two blocks sampled
uniformly at random.

Lemma 9. Let R = (R1, . . . , Rq) be a list of q blocks, where each Ri = Esi(ti) is the output of the
encryption of a unique input, meaning si||ti 6= sj ||tj for any i 6= j. Then, the probability of a collision
in the list (that Ri = Rj for i 6= j) is bounded, with P [CollideR] ≤ 1

2q(q − 1)2−n.
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Proof. Let i 6= j. Then, by construction, Ri = Rj ⇐⇒ E ti(si) = E tj (sj). If ti = tj , then Ri =
Rj implies that si = sj , which contradicts the assumption that all inputs were unique, and so cannot
happen. If ti 6= tj , the tweakable cipher has different tweaks in instance, and so the two distributions
are independent. Thus Ri and Rj are both sampled uniformly at random and independently, and so
collide with probability 2−n. So, taking the maximum of these probabilities, P [Ri = Rj | i 6= j] ≤ 2−n.
Applying the union bound, we get the required result. ut

4 Reversing into a ±PRP

Any scheme with a single layer (and thus one call to the online cipher), can be trivially distinguished
from a PRP with two queries. Explicitly, after queryingOEnc(〈0〉1||〈i〉1) for i = 0, 1, the two ciphertexts
always agree on the first block of output for an online cipher, yet rarely for a true prp. In this section
we investigate what can be done by using two or three layers of an online cipher when using blockwise
reversal as the linear layer. In Thm. 10 we show that using two calls to the online cipher (and irrespective
of the mixing layer), the best one can achieve is security up to the birthday bound. Effectively we
reverse the logic of the attack, moving from guaranteed collisions in the first block of output for the
construction to a scenario where the construction never collides on those blocks. We complement this
result in Thm. 11, showing that two calls of an online cipher with reversal yields a ±prp up to the
birthday bound, and extend further in Thm. 13, proving that an additional layer (and online cipher call)
comes close to providing ±prp security up to the blocksize itself.

= = = !

= = = !

! ? ? ?

! $ $ $

M

X

Y

C

E

L

E

Key:

= Blocks that are the same across all queries.

! Blocks that are unique across all queries.

$ Blocks that are uniformly sampled.

? Blocks whose distribution is unknown/irrelevant.

Intuition: Since the first block output by L depends linearly on
the final input block, varying only this block ensures that for the
construction the first block of all ciphertexts will be distinct.

1

Fig. 2. An attack against PRP security of ΠL
2 (Theorem 10)

Theorem 10. The Π = ΠL
2 construction cannot achieve beyond birthday bound security for message

lengths greater than 1, no matter what map is chosen for the blockwise linear layer L. In particular,
Advprp

Π (q) ≥ q(q−1)
8·2n for all q ≤ 2 · 2n/2.

Proof. Any construction where L(X)[1] is independent of X[m] (where |X| = m), can trivially be dis-
tinguished, by two messages differing only in the final block (as they will share the same first ciphertext
block). Henceforth, we assume that L(X)[1] depends on X[m].

Let M t := 〈0〉m−1||〈t〉, where m ≥ 2 is chosen arbitrarily. The adversary A will vary t to make
q ≤ 2n queries of this form, and A → 1 if all q ciphertexts have distinct first blocks.

We begin by calculating P
[
AΠ → 1

]
, following the logic shown in Figure 2, and label the internal

variables as M,X, Y,C as per the diagram. By the online property, Xt = E(M t) begins with a blocks
that are the same across all queries. Since the final block is encrypted under the same prefix each time, the
values ofXt[m] are distinct between queries. By assumption onL, Y t[1] is linearly dependent onXt[m].
Since the other blocks of Xt are constant through all queries, we must have that Y t[1] = A⊕Xt[m] for
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some A that is independent of t. Since online cipher called on just one block is a permutation, equality
in C[1] blocks implies equality in Y [1] variables. Overall then,

t = u ⇐⇒ M t = Mu ⇐⇒ Xt[m] = Xu[m] ⇐⇒ Y t[1] = Y u[1] ⇐⇒ Ct[1] = Cu[1].

So, if t 6= u the first blocks of the ciphertexts will differ, and thus P
[
AΠ → 1

]
= 1.

On the other hand, one expects collisions on the first output block of an ideal cipher onm > 1 blocks
after enough queries. In particular, the probability all q ciphertexts have distinct first blocks is simply the
product of the probabilities that the first block of each ciphertext is distinct from those calculated before
it. Thus

P
[
AW[Perm] → 1

]
=

q∏
i=1

(
1− (i− 1)(2(m−1)n − 1)

2mn − (i− 1)

)
≤

q−1∏
i=0

(
1− i

2n+1

)
≤ 1− q(q − 1)

8 · 2n .

It is for the final inequality, that we require the bound on q. Combining, we have Advprp
Π (q) ≥ q(q−1)

8·2n ,
which yields the stated bound. ut

4.1 Two layer ±PRP security to the birthday bound

We move on to considering a positive result: what are the minimum properties required of the linear
layer to meet this bound? To prevent a similar attack to the one round construction, where there were
elements of the message that could be changed without affecting large portions of the ciphertext, the
linear layer must move blocks to and from each end of its input. This means that both L(M)[1] and
L−1(M)[1] must depend on M [m]. Though this condition appears to suffice, for clarity we will prove
a slightly weaker result, instead assuming L(M)[1] = L−1(M)[1] = M [m]. The intuition behind the
proof is represented in Figure 3.

One possible instantiation of this form, the Π rev
2 construction, bears similarities to CMC mode [20],

which combines two passes of CBC-mode requiring a masking layer—the “M” in the acronym—in
between. Both CMC and our construction Π rev

2 provide security up to the birthday bound, which is
asymptotically optimal due to the attack in Theorem 10. We reduce the amount of computation required
outside the cipher call, plus we believe that when considering a single pass only, an online cipher pro-
vides a better security–efficiency tradeoff than CBC.

? ? ? ?

? ? ? $→ !

! ? ? ?

! $ $ $

E

L

E

Key:

? Blocks whose distribution is unknown/irrelevant.

! Blocks that are unique across all queries.

$ Blocks that are uniformly sampled.

$→ ! Block takes different values with high probability.

Intuition: Inputs must be distinct, so with high probability the fi-
nal block from the first layer is unique. If so, the first input block
to the second layer is unique, and so the remaining output is sam-
pled uniformly. By symmetry, a similar argument can be applied for
inverse queries, checking for collisions in the same place.

1

Fig. 3. Intuition behind the PRP and ±PRP security of ΠL
2 (Theorem 11)

Theorem 11. Let L be a blockwise linear function that swaps the first and last blocks (i.e. L(M)[1] =

L−1(M)[1] = M [m]) such as rev or swap. Then Π = ΠL
2 is a secure ±PRP, with Adv±prpΠ (q) ≤ 4q2

2n .
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Proof. We use domain separation to split the adversary’s oracles into two pairs: the first two answering
single block messages and the other two answering longer queries. The triangle inequality allows us to
rewrite the advantage as

Adv±prpΠ (q) = ∆Π,Π−1,Π,Π−1

$ , $ , $ , $ (q) ≤ ∆Π,Π−1,Π,Π−1

Π,Π−1, $ , $
(q) +∆Π,Π, $ ,$

$ , $ , $ ,$(q) .

The second term relates just to messages of length 1, in which case the construction results in composing
an ±prp with itself. This composition does not reduce security, and so the two worlds are indistinguish-
able, meaning the second term is zero.

To bound the first term, we must be aware of the single block oracles, as they are present. However,
we choose to focus on distributions (and events) that are necessarily independent of them, meaning they
do not help the adversary distinguish between the worlds, and so for conciseness are omitted. The proof
itself consists of a sequence of games,W1 toW7, code for which is provided in Appendix C.1.

We know that m ≥ 2, allowing us to consider a “first” and a “final” block. Define the operator ·̄ on
strings such that for any X,Y ∈ {0, 1}n and A ∈ {0, 1}n∗, we have L(X||A||Y ) = Y ||A||X . That
is, A is the image of the central blocks under L. For completeness, our notation ought to expose the
possible dependency of A on X and Y , yet this dependency does not affect our proofs and so is omitted
for clarity. We let badj denote the event that game j sets flag bad.

The first world,W0, directly encodes the Π2 construction, whilstW1 is adversarially indistinguish-
able fromW0, since it just expands out some of the function calls for later use. Clearly, WorldsW1 and
W2 are identical untilW2 triggers bad2, because the only difference between them is a resampling any
prefixes that may repeat, which is in the same branch as (and so must set) the bad flag.
W2 andW3 are identical until bad3 occurs. This is because their only differences are on Line 5.14

and Line 5.30, where an online cipher call is converted into a uniformly sampling. This is valid because,
until bad3, the prefix to this call is unique.

More obviously,W3 andW4 are identical until bad4, since again the only change (the removal of a
resampling) occurs within the same branch that sets bad.

Transitioning from W4 to W5 is merely notational. Combining these, we observe that each world
W0 toW5 is indistinguishable from the next, until the latter sets bad. As such,W0 is indistinguishable
fromW5 untilW5 sets bad.

WorldsW5 andW6 differ by a ±PRP–±PRF switch to the first online cipher call. Any strategy that
can trigger bad5 may also be used to trigger bad6, since the switch from an ±PRP to an ±PRF makes it
easier for the adversary to generate internal collisions, the event required for bad6.

Now, W7 is a ±PRF, and is indistinguishable from W6 until bad7. This is because P contains all
values that the random function has been queried on, as well as all outputs from its inverse. Thus if a
value R2 /∈ P , we have not yet evaluated F (R2), and thus this value is uniformly sampled. Similarly for
L1 in the decryption case.

As before, strategies triggering bad6 may be used to set bad7, since until either game sets bad they
are equivalent. Combining all such results, we see that P

[
bad5

]
≤ P

[
bad7

]
. Finally, we complete the

series of games with a ±PRP–±PRF switch on the overall construction. Thus,

Adv±prpΠ2
(q) ≤ P

[
bad5

]
+∆±prf±prp(q) + P

[
bad7

]
+∆±prf±prp(q)

≤ 2
q(q − 1)

2n+1
+ 2

q(3q + 1)

2n+1
=

4q2

2n

Where we bound P
[
bad5

]
≤ P

[
bad7

]
and P

[
bad7

]
using Lemma 12. ut

Lemma 12. Continuing the notation of Theorem 11, P
[
bad7 | q queries

]
≤ q(3q+1)

2n+1 .

Proof. We now depart from the indistinguishability game, and switch to games in which the adversary
interacts with a single oracle, trying to trigger the bad event, which are again presented in Appendix C.1.

Since the output from both oracles in W7 is uniformly sampled, it does not help the adversary in
trying to set bad. Thus we may remove it, and any code that is then superfluous, to produce a new pair
of oracles,W8, such that P

[
bad7

]
= P

[
bad8

]
.
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Now consider the difference between the oracles inW8 andW9. The decryption oracle ofW8 calcu-
lated L3 as function of the input (input which is otherwise irrelevant), using the inverse cipher call Dε.
W9 replaces this by allowing the adversary to directly select L3. To allow them to simulateW8, the ad-
versary would require access to aDε oracle. However, no other calls are made to eitherDε or Eε: all other
block cipher calls are made to EL1||A1 , which has a prefix length of at least one block. Thus access toDε
does not help the adversary in any way, and so can be omitted. The only other changes are the removal
of new lines and splitting of P into 3 lists for notational reasons. Overall then, P

[
bad8

]
≤ P

[
bad9

]
,

since any strategy triggering bad8 also triggers bad9.
Since the adversary receives no output from W9, adaptivity does not help forcing bad9, thus we

may restrict ourselves to non-adaptive adversaries. We extend the adversaries control by allowing them
to directly submit P independent of their message requests (rather than half of it being blocks M [0]).
Having done this, there is no input required for a decryption query, so we drop this. Thus the adversary
submits the list P , along with each of his encryption challenges. bad9 is triggered when new elements
(R2 for encryption queries, L1 for decryption queries) collide with previous elements, a check W10

makes at the end. Thus any strategy setting bad9 may be used to set bad10.
So, it remains just to bound this probability explicitly. Since L is uniformly sampled, the probability

of a collision between its elements is 2−n for each pair. Similarly, the probability of an element of L
colliding with one inR is |R| · 2−n. The event that two elements ofR collide is precisely that discussed
in Lemma 9, and thus is at most 2−n. Let Collide X be the event that list X contains the same element
twice. Then,

P [Repeats in (L||R)] = P [Collide L] + P [∃i, j s.t. Li = Rj ] + P [CollideR]

≤
(
qE
2

)
2−n + qD · qE · 2−n +

(
qD
2

)
2−n.

Let us now consider the probability that bad is set on Line 10.16 or Line 10.21. For each i such that
order[i] = E, we have the probability of this being set is simply that a single output from an encryption
oracle collides with a list of length i. So, the probability of this occurring for the first time on the ith

query to the construction, itself the eth encryption query, is i/(2n−e). Conversely, if order[i] = D, this
is the probability that a uniformly sampled element (Ld) is in a list of length i, which again occurs with
probability i2−n. The sum of these two bounds is maximized by making all Dec-queries first, and so

P [bad set here] ≤
qD∑
i=1

i

2n
+

qE∑
i=1

qD + i

2n − i ≤
qD∑
i=1

i

2n
+

q∑
i=qD+1

i

2n−1
≤ q(q + 1)

2n
.

Where we have assumed qE ≤ 2n−1. Since these cover all possibilities,

P
[
bad7

]
≤ P

[
bad10

]
≤ 1

2n

[(
qE
2

)
+ qD · qE +

(
qD
2

)
+ q(q + 1)

]
≤ q(3q + 1)

2n+1
.

To generalize this result, we drop the requirement bounding qE (and thus q) by observing that if qE >
2n−1, this bound is greater than 1 and so vacuously true. ut

4.2 Three layer reverse: ±PRP beyond the birthday bound

We have shown that birthday bound security is both achievable and the best possible with just two
layers. A natural question is whether security increases with more calls to the online cipher. We find in
the affirmative: the Π rev

3 achieves security up until almost the blocksize, requiring just three calls to the
online cipher.

The key observation behind the proof is that, until certain pairs of blocks repeat, the online ciphers act
like tweakable random functions, which themselves act like independent uniform samplers. We provide
a series of worlds that are perfectly indistinguishable until one of six bad events occurs. Each of these
events is a collision, occurring across at least two blocks. The logic and variable naming scheme are
represented in Figure 4.
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? ? ? ?

? ? $→ ! $→ !

! ! ? ?

! $ $ $

$ $ $ !

$ $ $ $

E1

L

E2

L

E3

X1 A1 B1

X2 A2 B2

B3 A3
X3

X4 A4 B4

Key:

? Strings of blocks whose distribution is unknown/irrelevant.

! Strings of k blocks that do not repeat too frequently.

$ Strings of blocks that are uniformly sampled.

$→ ! Strings of blocks that are uniformly sampled and so don’t re-
peat too frequently.

Intuition: The key observation behind the proof is that, until cer-
tain pairs of blocks repeat, the online ciphers act like tweakable ran-
dom functions, which themselves act like independent uniform sam-
plers. To formalise this, we use a series of worlds that are perfectly
indistinguishable until one of six collision events occurs.

The diagram to the left provides a representation of this, and il-
lustrates the naming system used in the proof. Each Ai, Bi is a single
block, Xi a string of blocks of length |Xi| = |M | − 2. Explicitly,
the collision events are on the prefix–value pairs (A2, B2), (A2, B3),
(X1||A1, B1) and (X3||A3, B4), with some tested during both en-
cryption and decryption. Finally, we prove it is hard for an adversary
to trigger one of these events.

1

Fig. 4. Intuition behind the ±PRP security of Π rev
3 (Theorem 13)

Theorem 13. Let L be any blockwise linear function that when |M | = m ≥ 2 satisfies L(M)[1..2] =
L−1(M)[1..2] = M [m]||M [m − 1], such as the rev map. Then, the adversarial advantage in distin-
guishing the ΠL

3 construction from an ±PRP within q ≤ 2n queries is

Adv±prpΠ3
(q) ≤ 1.5

q(q − 1)

22n
+
( q

2n

)κ 2n

(κ+ 1)!
+
κ · q
2n
≤ n q

2n
.

The first inequality holds for any κ ∈ N, while the second assumes n ≥ 4.

Proof. By the same argument as Thm. 11, the scheme is perfectly secure with regards to any adversary
restricted to single block queries. What remains is bounding the probability that an adversary with access
to two pairs of oracles (one pair answering single block queries and one answering any longer queries)
can distinguish the scheme from random. For conciseness, we omit the single block oracles from our
notation, because at no point will it assist the adversary in distinguishing between the worlds being
compared or setting bad flags.

Throughout the remainder of this proof, Ai, Bi are blocks and |Xi| = m − 2 for all i ∈ 1, . . . , 4,
where m = |M | is the length of M in blocks. The numbering scheme is represented in Figure 4. For
any string of blocks X ∈ ({0, 1}n)∗, define X such that B||A||X = L(X||A||B). Again, X could
conceivably depend on A or B (cf. similar notation used by Thm. 11), but this dependence does not
invalidate the proofs (since the map is blockwise linear and publicly computable) and so is omitted for
clarity.

We use a sequence of games,W0, . . . ,W3 as provided in Appendix C.3. Firstly,W0 directly encodes
theΠL

3 construction. Then, after a series of identical until bad switches, we reachW3, which is perfectly
indistinguishable from an ±PRP until bad. Next, we proceed to explicitly bound the probability of the
various bad flags, using auxiliary gamesW4 toW6. Let badji be the event that an adversary interacting
with worldWj is able to set flag badi, and define badj :=

∨6
i=1 bad

j
i .

Claim (1). Adv±prp
ΠL

3
≤ P

[
bad3

]
.

Proof. W0 directly encodes the ΠL
3 construction, whileW1 simple expands this and adds code to sup-

port the bad flags.
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Transitioning fromW1 toW2 we perform a number of swaps, exchanging single block calls to the
online cipher with tweakable random functions. An adversary cannot distinguish these switches until
either the random function outputs the same value twice (which corresponds to repeating a tweak-output
pair), or the inverse is called on a point that is already in the image of the random function. Explicitly:
the first switch in the Enc oracle cannot be detected before bad1, the second before bad3 and the third
before bad5. Similarly, the decryption switches are undetectable: the first or second switches cannot be
detected before bad4 and the third before bad6.

As long as the tweak–input pair does not repeat, the output from a tweakable random function
is independently uniformly sampled. Until one of the bag flags is set, this holds for the six tweakable
random function calls used inW2. Explicitly, ordering the six calls by their occurance in the code ofW2,
the input to the call is unique until (respectively) the event bad3, bad1, bad3, bad2, bad4 or bad4 occurs.
Thus until bad occurs, we may replace the tweakable random functions with independent samplings,
which is preciselyW3.

We observe that W3 is a random function with inverse. The Enc oracle samples A3||X3||B4 uni-
formly at random, which (as X4||A4 is the image of A3||X3 under a permutation) is equivalent to sam-
pling X4||A4||B4 uniformly at random. Similarly, the Dec oracle samples A2||X2||B1 which is equiv-
alent to sampling X1||A1||B1 uniformly at random. Now, a random function with inverse is perfectly
indistinguishable from a random permutation until either one of the oracles repeats an output, or the out-
put of one oracle corresponds an the input the adversary already made to the other. The output from the
Enc oracle does not invalidate either of these requirements without first setting the flag bad5, and Dec
oracle does not without setting the bad6 flag. Therefore, until bad3, W3 is perfectly indistinguishable
from a ±PRP.

Combining these results, the worlds are all identical until the event bad occurs, and thus the advan-
tage is at most P

[
bad3

]
. �

Claim (2). P
[
bad35 ∨ bad36

]
≤ q(q−1)

2·2mn

Proof. When the tests are made on the ith query that might set the flags bad5 or bad6, the lists are of
length |LA| = |LD| = i− 1. This query is either an encryption or a decryption query, but in either case
the flag is set if a uniformly sampled element of {0, 1}mn is present in the appropriate list, which occurs
with probability i− 1/2mn. Taking a union bound to sum across all queries gives the required result. �

Claim (3). P
[
(qE , qD) queries : bad31 ∨ bad32

]
= P

[
(qD, qE) queries : bad33 ∨ bad34

]
Proof. For clarity, consider W4 rather than W3, which differs only in that superfluous code has been
removed. Then, by a simple symmetry argument we observe that bad1 acts within the Enc oracle equiv-
alently to how bad4 does within the Dec oracle, and similarly bad2 mirrors bad3. Thus any strategy
for triggering bad1 ∨ bad2 that makes qE encryption queries and qD decryption queries can be used to
trigger bad3 ∨ bad4 with the same probability, after making qD encryption queries and qE decryption
queries Since the relationship is symmetric, the opposite also holds and so the probabilities are equal. �

Claim (4). P
[
bad33 ∨ bad34

]
≤ q(q−1)

2·22n + P
[
bad6

]
Proof. Firstly, let us simplify the rather complexW3, by removing any code that cannot possible assist
in setting bad3 ∨ bad4. Since uniform sampling commutes with applying permutations, we can modify
the decryption algorithm to sample X1 directly, (rather than X2). Making the simplifications and this
change yieldsW5. Thus, !P

[
bad33 ∨ bad34

]
= P

[
bad53 ∨ bad54

]
.

Now, since the encryption oracle ofW5 does not return anything, the adversary learns nothing from
making Enc queries. Thus for any adversary there exists an equivalent one that makes his qD decryption
queries first (since these may affect his future inputs), and then makes qE = q − qD encryption queries.
It is this adversary we shall consider.

So, bad4 can only be set as the result of two colliding Dec queries. bad4 is set if two different calls to
Dec repeat the pair (A2, B2). Two values of B2 collide if and only if they were decrypted from colliding
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B3 values. Now, B3 = DD3(X4||A4)
3 (B4) is the output of an online cipher call for which the tweak–input

pair must be unique (because the adversary never repeats M = X4||A4||B4). So, by the same logic as
Lemma 9, colliding values of B3 (and thus B2) is at least as hard as colliding independent uniformly
random n-bit strings. Moreover, colliding values of A2 is precisely that of colliding a one block uniform
string, and is independent of the probability of colliding B2.
So, P [bad4] = P [Collide (A2, B2)] ≤ qD(qD−1)

2·22n .
Next, let us consider bad3. This is set when either the variables colliding between two different

encryption queries or during an encryption query they collide with those from a decryption query. The
second of these is precisely the game described in W8, and as such is bounded by P

[
bad8

]
. The pair

(A2, B2) is set by A2||B2 ← EX1
1 (A1||B1). Since the adversary never repeats inputs, we can again

repeat the logic of Lemma 9, bounding this event by qE(qE−1)
2·22n .

Summing up,

P
[
bad33 ∨ bad34

]
= P

[
bad53 ∨ bad54

]
≤ qD(qD − 1)

2 · 22n +
qE(qE − 1)

2 · 22n + P
[
bad6

]
≤ q(q − 1)

2 · 22n + P
[
bad6

]
This simplifies to the claimed bound since qD(qD − 1) + qE(qE − 1) ≤ q(q − 1). �

Claim (5). For an adversary making qD decryption queries followed by qE encryption queries and any
κ ∈ N, P

[
bad6

]
≤ ( qD2n )κ 2n

(κ+1)! + qE ·κ
2n

Proof. Let us consider the actions an adversary will take (given the information he knows from his
decryption queries) to decide which encryption queries to make. The output he has (a series of X1||A1

strings) can be used to force a collision on theA2 = EX1
1 (A1) value with one from a Dec query, but if he

does this he does not know anything about the possible value of the corresponding B2 value. Since he is
never provided with the output of an E1 call, he cannot use this information to assist him in colliding on
B2 values. As such, there is no more effective strategy than ensuring he collides A2 values and hopes to
be lucky and collide the B2 value.

So, assuming the adversary can always collide theA2 component, what is the probability he succeeds
in setting bad on any particular query? A B2–collision between any single encryption Xe||Ae||Be and
some decryption query Xd||Ad||Be occurs if D2(DXd||Ad

3 (Bd)) = EXe||Ae

1 (Be). Since E1 is a secure
online cipher (and independent of D2,D3), this happens simply with the probability of colliding two
independently uniformly sampled values: 1/2n. Thus for each encryption query, the probability that the
adversary manages to set bad can be upper bounded (via union bound) by the number of B2 values
corresponding to the appropriate A2 bound. Assuming #LC [A2] ≤ κ, we can union bound once again
(this time across all encryption queries) to deduce the probability an adversary triggers bad is at most
P [bad | #LC [A2] ≤ κ] ≤ κ · qE · 2−n.

Consider then the probability that any of the LC [x] contains more than κ elements. This corresponds
to the number of times anA2 value repeats during the adversary’s Dec queries. SinceA2 is independently
uniformly sampled by each Dec query, it follows from a standard balls and bins argument that for any
x ∈ {0, 1}n, P [#LC [x] > κ] ≤

( qD
2n

)κ 1
(κ+1)! . Union bounding across all x, P [∃x : #LC [a] ≥ κ] ≤

( qD2n )κ 2n

(κ+1)! . Summing this with the bound from the previous paragraph proves the claim. �

Claim (6). Combining these results, we have proven the stated result.

Proof. Firstly, combining the results from Claims (4) and (5),

P
[
bad33 ∨ bad34

]
≤ q(q − 1)

2 · 22n +
(qD

2n

)κ 2n

(κ+ 1)!
+
κ · qE

2n

So, applying the symmetry result of Claim (3),

P

[
4∨
i=1

bad3i

]
≤ q(q − 1)

22n
+
qD

κ + qE
κ

2nκ
· 2n

(κ+ 1)!
+
κ · q
2n
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? ? ?

? ? $→ !

! ? ?

! $ $

$ $ !

$ $ $

E

L

E

L

E

L1 A1 R1

L2 A2 R2

L3 R3

L4 A4 R4

L5 R4

L6 A6 R6

Key:

? Strings of blocks whose distribution is unknown/irrelevant.

! Strings of k blocks that do not repeat too frequently.

$ Strings of blocks that are uniformly sampled.

$→ ! Strings of blocks that are uniformly sampled and so don’t re-
peat too frequently.

Intuition: In this diagram, the units are strings of blocks, rather
than simply blocks as in others, with first and last boxes on each line
k blocks long, the middle as appropriate.

Since inputs are unique, the final k blocks from the first call are
almost certainly unique. Thus the second call has a unique prefix,
so samples independently and uniformly. This means the majority
of the output is sampled uniformly at random, and since random k
block string is (with high probability) unique, the final output blocks
have a unique prefix and so are sampled as required.

1

Fig. 5. Intuition behind the ±PRP security of Π rev
3 (Theorem 14)

The second term in this can be upper bounded since qDκ + qE
κ ≤ qκ. Finally, we pull the whole bound

together using Claims (1) and (2):

Adv±prpΠ3
(q) ≤ P

[
bad3

]
≤ P

[
bad35 ∨ bad36

]
+ P

[
∨i=4
i=1bad

3
i

]
≤ q(q − 1)

2 · 2mn +
q(q − 1)

22n
+
( q

2n

)κ
· 2n

(κ+ 1)!
+
κ · q
2n

≤ 1.5
q(q − 1)

22n
+
κ · q
2n

+
( q

2n

)κ 2n

(κ+ 1)!

This completes the proof of the more specific result. �

To write this more succinctly, suppose q/2n ≤ 1
α for some α > 0. Then,

Adv±prp
ΠL

3
≤ q

2n

[
3

2
· 1

α
+ κ+

1

ακ−1
· 2n

(κ+ 1)!

]
≤ q

2n

[
3

2α
+ κ+

eκ · 2n
ακ−1(κ+ 1)κ+1

]
. (1)

Let us also assume n ≥ 4, since blocksize security is meaningless if the blocks are this small anyway,
and set κ = n− 1 and α = 4. This means ακ−1 > eκ, and (κ+ 1)κ+1 ≥ 4n ≥ 2 · 2n, and thus the final
term is upper bounded by 1

2 . Thus the overall bound is less than n q
2n . We observe that if q/2n > 1/α,

this bound is vacuously true, completing the theorem. ut

For any given n, if one wishes to find the maximal q such that Adv±prp
ΠL

3
is still sufficiently small,

this can be done by numerically selected (κ, α) to optimise Equation 1. In the common case of n = 128,
putting κ = 19 and α = 16 provides Adv±prp

ΠL
3

(q) ≤ q2−123.7.

4.3 Three layer reverse: a ±PRP beyond the blocksize

So, the Π rev
3 construction is a secure ±PRP up until roughly 2n−log(n) queries, but if n is small this

might not suffice. We address this shortcoming by proving that the scheme is in fact arbitrarily secure,
as long as messages are sufficiently long. The intuition behind the proof is presented in Figure 5.

Theorem 14. If all messages are at least 2k blocks long, the adversarial advantage of distinguishing
Π3 = Π rev

3 from an ±PRP within q queries is Adv±prpΠ3
(q) ≤ 3q(q+1)

2kn
.
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Proof (Of Thm. 14). We will follow a sequence of worlds, depicted in Appendix C.4. FromW0 toW5,
we transition from the Π construction to a ±PRF. Then, Lemma 15 will use the further games to bound
the probability of a bad event. As before, we let badji be the event that the adversary sets flag badi whilst
interacting with worldWj and badj := ∨i badji .

Let M := rev(M) be the blockwise reversal of a string. In every oracle, setting m = |M |, we split
M into strings M = L1||A1||R1, notation we continue through each layer of the construction such that
|Li| = |Ri| = kn and |Ai| = (m− 2k)n for all i ∈ {1, . . . , 6}. The general concept behind the proof is
represented by Figure 5, with strings have been labelled where practical.

World W0 precisely encodes the Π rev
3 construction. Moreover, W0 and W1 are perfectly indistin-

guishable, since the only difference is in the expansion of the encryption calls, the introduction of a list
P and introducing bad flags.

WorldsW1 andW2 are indistinguishable until one of the bad flags is set. This is because, until one
of the four flags is set, every query made by the second or third internal online cipher calls has a unique
prefix. Thus until bad is set each online cipher call samples its output uniformly from all strings of the
appropriate length.

The worldsW2 through toW5 all encode the same two oracles, albeit with slightly naming for the
internal variables and modified code order. As such they behave identically, including the setting of the
various bad flags.

Now, although it might not be immediately clear,W5 is a ±PRF. The return value of Dec queries is
uniformly sampled on Line 33.21, and the Enc oracle uniformly samples the majority of its output on
Line 33.17. The remaining output is simply the image of a uniformly sampled variable (L5, Line 33.11)
under a permutation, which is itself uniformly sampled. Thus both oracles output is uniformly and
independently sampled: a ±PRF.

All together then,

Adv±prpΠ3
≤ ∆Π3

W0
+∆W0

W1
+∆W1

W2
+∆W2

W5
+∆W5

±prf +∆±prf±prp

≤ 0 + 0 + Pr[bad2] + 0 + 0 +∆±prf±prp

Since W2 and W5 behave identically, P
[
bad2

]
= P

[
bad5

]
. The final term, ∆±prf±prp, is simply the

±PRF–±PRP switch, as bounded in Lemma 5. Similarly, we can bound Pr[bad5] by Lemma 15. So,
assuming q ≤ 2kn (which we require for the final inequality),

Adv±prpΠ3
(q) ≤ Pr[bad5] +∆±prf±prp ≤

q

2kn

[
(3q + 1) +

q − 1

2kn+1

]
≤ q(3q + 2)

2kn+1
.

Noting this bound is vacuously true for q ≥ 2kn, we drop the limitation on q and simplify slightly to
reach the general result. ut

Lemma 15. With high probability, the event bad5 does not occur. Explicitly, P
[
bad5

]
≤ q(3q+ 1)2−kn

Proof. We split the problem up using P
[
bad5

]
≤ P

[
bad52 ∨ bad54

]
+ P

[
bad51 ∨ bad53

]
.

Consider the first of these terms. The event bad52 occurs if during an encryption query L5 ∈ P
on Line 33.13. Since L5 is uniformly sampled, this occurs with probability |P| · 2−kn, and similarly
for decryption queries setting bad54 on Line 33.32. Since every query increases |P| by 3, we observe
that when the decision point is reached on query i, |P | = 3i − 1. As each query is either encryption or
decryption, and the probability of each event is the same and independent of input, the overall probability
can be easily bounded by applying a union bound. Thus P

[
bad52 ∨ bad54

]
=
∑i=q

i=1(3i − 1)2−kn =

q(3q + 1)2−(kn+1).
The other term is rather more complicated to bound. Departing from the indistinguishability games,

we provide a sequence of games where the adversary is given oracle access to a world Wj and seeks
to trigger the event badj = badj1 ∨ badj3. They are again provided in Appendix C.4, and continue the
notation from Theorem 14.
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Since we no longer care about indistinguishability,W6 dispenses with the uniformly sampled outputs
of W5, restricting its output to variables used elsewhere. It also removes the code for setting the other
now irrelevant flags. Moreover, we now give the adversary direct control over the randomly sampled
elements that were added to the list P . As such, by randomly choosing these values, the adversary may
simulateW5 when given access toW6. Thus any strategy for setting bad5 may be used to set bad6, and
so P [bad5] ≤ P

[
bad6

]
.

Transitioning fromW6 toW7 we abstract out the remaining output into separate oracles, to which
we provide the adversary with arbitrary access. Given these Eε and Dε oracles, the adversary is able to
simulateW6 withW7, and thus P

[
bad6

]
≤ P

[
bad7

]
.

In world W8, rather than keeping track of P , we keep track of each element’s blockwise reversal.
This makes no difference for adversarially supplied elements (since he is aware of this), but simplifies
the Enc oracle. Moreover, defining x′ := Dε(x) for any kn bit string x, we may simplify the Dec
oracle also. Since the adversary has arbitrary oracle access to Dε, x 7→ x′ should be considered a public
permutation, something we imply by denoting it through notation rather than a function call.

Ignoring calculation of x′ then, we consider what value the extra oracles actually provide. They are
limited to kn bit inputs, but all remaining online cipher calls used in the construction have a prefix of
at least kn bits, and so their outputs are independent of those from the main E ,D oracles. So, the only
place might may be of use is choosing which prefix to query under. Thus we give the adversary direct
choice over which prefixes to query under, which can only assist the adversary. After these switches, the
Eε and Dε oracles can no longer help the adversary, and so their removal will not inhibit the adversary.
Overall then, P

[
bad7

]
= P

[
bad8

]
.

Since the adversary receives no output from their queries, adaptivity does not help in triggering
bad8. Thus we may assume he is non-adaptive, and this setting of the problem is presented byW9. The
adversary submits a list P of elements he hopes to collide with (as per V1, V5 input variables in W8),
along with lists of encryption and decryption queries in the form ofME ,MD and an order in which he
wishes these queries be evaluated order. The non-adaptive game may then precompute all the valuesRi
from encryption queries and Li from decryption queries. Having done so, we check for any collisions
between these values, or between an encryption/decryption value and a value suitably early in the list P .

Thus it remains to calculate P
[
bad9

]
explicitly, which we do through liberal use of the union bound.

Firstly, as per earlier proofs, we observe that no collisions may occur within either the list R or
L from two elements encrypted (or decrypted) under the same prefix. If the prefix is different, the
online ciphers are independent, and thus collisions occur simply with the probability of colliding two
uniformly sampled elements: 2−kn. Moreover, the probability of an element from R||L being equal to
any particular element of P is also 2−kn.

Finally, we are left to bound the probability that an element occurs in both L and R. Let Me =
Le||Ae||Re andMd = Ld||Ad||Re be a pair of encryption and decryption queries, and setR = ELe||Ae(Re)

and L = π(DLd||Ad
∗ (Rd)). If the prefixes (that is, the values of Le||Ae and Ld||Ad) are different, then

the encryption and decryption queries are independent, and so L independent of R. Thus the probability
of L = R is the probability of L being equal to some k block string: 2−kn. If the prefixes are the same,
both equal to some T = Le||Ae then

L = R ⇐⇒ ET (Re) = π(DT∗ (Rd))) ⇐⇒ Rd = E t(π−1(E t(Rd)))

Since E is a secure online cipher and the adversary is non-adaptive, this also occurs with the prob-
ability of hitting an arbitrary element at random. Thus in fact, each of these individual events occurs
with probability at most 2−kn, so it remains just to count the total number of events listed and bound the
overall value:

P
[
bad51 ∨ bad53

]
≤ P

[
bad9

]
≤ 1

2kn

[(
#(L||R)

2

)
+

q∑
i=0

2i

]
≤ 1

2kn

[(
q

2

)
+ q(q + 1)

]
=
q(3q + 1)

2kn+1
.

Combining this with the bound on the first term completes the proof. ut
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Extension through reduction: security with many layers. For completeness, we also consider what
can be achieved with many layers. Since the Π rev

3 already provides beyond birthday bound security (and
beyond blocksize security when messages are long enough), there is little utility in deriving ever higher
security bounds. Instead, we provide an explicit reduction from many round cases to the smaller versions
already studied, at the cost of requiring the ciphers be independent.

Lemma 16. When the online ciphers are independent, the ΠL
i construction is no more distinguishable

from a PRP or ±PRP than ΠL
i−1.

Proof (Of Lem. 16). Suppose there exists some adversary A who distinguishes ΠL
i from a PRP (or

±PRP). Let us construct an adversary B who distinguishes ΠL
i−1 from a PRP (or ±PRP).

Let Oe be the encryption oracle B is provided with (which may be real or random). B chooses EB
uniformly from all online ciphers, and then simulates theΠL

i encryption oracle with Π̃L
i := EB ◦L◦Oe

(and similarly for the decryption oracle in the ±PRP case).
The composition of a random permutation with an online cipher (itself a permutation) is again a

random permutation. Thus Π̃L
i exactly simulates ΠL

i if Oe was the cipher or is a random permutation if
Oe was. Therefore, B can run A against Π̃L

i and forward As result as his own, distinguishing with the
same success probabilities A. ut

5 Right Shifting towards a PRP

Two obvious candidates for the linear layer are the right and left rotations by one block, We denote
them right and left respectively, and clearly they are each other’s inverses. For messages of at least i+ 1
blocks, Π left

i is not a PRP, since the first output block cannot possibly depend on the final input block.
Moreover, this meansΠ right

i cannot be an±PRP, since its inverse is theΠ left
i scheme instantiated around

D. Indeed, for any linear layer L, ΠL
2 cannot be a secure PRP if the linear layer’s first output block is

independent of the final input block.4

Combining this limitation with Thm. 10 (two layer constructions cannot be indistinguishable from
a PRP with beyond birthday bound security), at best Π right

2 is a PRP up to the birthday bound. We
show this to be the case, and is formalised by Thm. 17. The proof is a direct simplification of that for
Theorem 11 and so omitted.

Theorem 17. Let L be an invertible linear layer that satisfies L(M [1]|| · · · ||M [m])[1] = M [m], such
as right. Then, theΠL

2 construction is indistinguishable from a PRP up to the birthday bound. Explicitly,
Advprp

ΠL
2

(q) ≤ 3 q(q−1)
2n+1 .

Before considering what security is achieved with more layers, we observe that there exists an attack
against the whole family of Π right

i constructions. If an ideal online cipher is called with two messages
that differ before the final block, the final ciphertext blocks are independently sampled. Now, if these
independent random variables collide (which is likely to occur roughly every 2n/2 queries) the right
layer will simply add a common prefix to both messages. From this observation, we build a distinguisher
against Π right

i (see proof of Lem. 18), following the logic shown in Figure 6.

Lemma 18. With Π = Π right
i for some i ≥ 2, as long as messages contain at least b32 ic blocks and

n ≥ 2, there exists an attack demonstrating Advprp
Π (q) ≥ q(q−1)

8·2(i−1)n for any q ≤ 2
i−1
2
n.

Proof (Of Lem. 18). Consider the adversary A that requests encryptions of malicious messages of the
form Mt = 〈0〉1||〈t〉a||〈0〉i−1, with a ≥ d(i− 1)/2e = bi/2c chosen to be minimal such that minimum
message lengths are met. He will vary t, allowing him up to 2a ≥ 2

i−1
2
n possible queries of this form

(hence the bound on q). After making his queries, he returns 1 if there were two queries for which the
ciphertexts began with the same i blocks. We claim A successfully distinguishes Π from an ideal PRP.

4 At least, as long as messages are less than i blocks long
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$→ = = ! $

= = ! $→ =

$→ = = = !

= = = !

E

L

E

L

E

Key:

= Blocks that are the same across all queries.

! Blocks that are unique across all queries.

? Blocks that may take any value.

$ Blocks that are uniformly sampled.

$→= Blocks that are uniformly sampled, but that we expect to col-
lide if we make enough queries.

Intuition: By making enough queries, we expect that the final blocks,
being uniformly sampled, will collide. If both layers collide at the
same time, we end up building a surprisingly long prefix of collid-
ing blocks, which is easily detectable from the output. Repeating the
process, we can extend the attack to any number of rounds.

1

Fig. 6. An attack against Π right
3

We first bound P
[
AΠ → 1

]
, by considering the internal variables when encrypting Mt. During the

first round, the first block is identical across all queries, and so encrypts to an identical value: Eε(0).
Since encryption is an online permutation, the online encryption of the first a+ 1 blocks must be unique
among all queries, since the counter was. As the first block is identical throughout, this in turn means
the next a blocks must be unique amongst all queries. Given this unique prefix, the encryptions of the
final (i− 1) blocks, E〈0〉1||〈t〉a(〈0〉i−1) are independently uniformly sampled.

Notice that with precisely the probability of colliding two strings of n random bits, we have a col-
lision on the final block. Thus, after the first linear layer, in which we shift the final block to the start,
with this same probability there exist queries in which the first two blocks repeat. Since this output again
consists of some repeated blocks, a unique section and then some arbitrary blocks, we may apply similar
analysis. We do this for all but the final layer, albeit noting on round r there are now r repeated blocks
rather than one, and i− r arbitrary blocks after the unique section.

So, with the probability of colliding the independent and uniformly sampled final blocks on each of
the first (i − 1), there are two queries for which the final block inputs collide on the first i blocks. As
the cipher is online, this leads to an i block collision in the output, triggering A → 1. So, P

[
AΠ → 1

]
is at least this probability. Since the variables are independently sampled, this is equivalent to colliding
a string of (i− 1)n independently sampled random bits, and so P

[
AΠ → 1

]
≥ q(q−1)

2(i−1)n+2 .

Alternatively, consider P
[
AW[Perm] → 1

]
, the probability of getting a collision on the first i blocks

of output from distinct calls to the ideal cipher. This is upper bounded by the probability of colliding
outputs from the equivalent random function, which is simply the probability of colliding i · n random
bits. Thus P

[
AW[Perm] → 1

]
≤ q(q−1)

2in+1 .
Combining these results,

Advprp
Π (q) ≥ ∆W[Perm]

Π (A) ≥ q(q − 1)

2(i−1)n+2
− q(q − 1)

2in+1
≥ q(q − 1)

2(i−1)n+2

[
1− 1

2n−1

]

Applying the hypothesis that n ≥ 2, we bound 1− 2−(n−1) ≥ 2−1 to yield the stated result. ut

We note that, by increasing a (and thus requiring greater message lengths) we may increase the
number of queries of this form, such that the attack succeeds with overwhelming probability.
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5.1 Three layer shift: a PRP to almost blocksize

As with the two layer version, Π = Π right
3 cannot hope to achieve good±PRP security, since its inverse

is trivially distinguishable. Applying Lem. 18, we see that for n ≥ 2 and messages of length at least
4 blocks, then Advprp

Π (q) ≥ q(q−1)
8·22n ≈ ( q

2n )2 for q ≤ 2n. Thus the best we can reasonably expect is
PRP security up to the blocksize, something we achieve, asymptotically matching the attack. Again, we
present the logic in a diagram (Fig. 7).

? ? ? ?

? ? ? $→ !

! ? ? ?

! ? ? $ (†)

$ (†) ! ? ?

$ (†) $ / ! $ $

E1

L

E2

L

E3

X1 A1 B1

X2 A2 B2

B3
X3 A3

A4 B4
X4

Key:

? Blocks whose distribution is unknown/irrelevant.

! Blocks that do not repeat too frequently.

$ Blocks that are uniformly sampled.

$→ ! Block that is uniformly sampled and so doesn’t repeat too fre-
quently.

$ (†) Blocks that are (perhaps surprisingly) independently uniformly
sampled.

Intuition: To achieve beyond birthday bound security, we can no
longer fail if single block collisions occur. Instead, we observe that,
since the ! block does not repeat “too frequently”, we can perform a
PRP–PRF switch on the final block of the second call. Thus the block
(†) is sampled uniformly, and crucially independently of !, leading to
the result.

Then, since the first two blocks input to the final call almost never
repeat (as a pair), the remaining blocks are uniform.

Since the linear layer is just a reordering, we use the same labels
as on the previous line.

1

Fig. 7. Intuition behind the PRP security of Π right
3 (Theorem 19)

Theorem 19. TheΠ = Π right
3 construction with independent online ciphers is a PRP, where Advprp

Π (q) ≤
q(q−1)
22n

.

Proof. We begin by splitting the adversary’s oracle in two: one that answers single block messages and
one that answers longer messages. Clearly this has no effect on the advantage, being just a notational
convenience. Since an online cipher on a single block is a random permutation, we have that (when
restricted to single block queries) ∆Perm(n)

Π (q) = 0.
So, if the first oracle is restricted to messages of one block and the second to messages of at least 2

blocks, with $ denoting the appropriate random permutation,

Advprp
Π (q) = ∆Π,Π

$ , $ (q) ≤ ∆Π,Π
Π, $ (q) +∆Π, $

$ , $ (q) = ∆Π,Π
Π, $ (q) + 0.

Thus it remains just to bound this final term. It roughly corresponds to Advprp
Π (q) if all queries have

length at least two blocks, except that the adversary is also given access to an oracle that simulates the
a one-block OPRP. It happens that this oracle is of no use to an adversary, since it is independent from
any of the important switches or calls made during the proof, so for conciseness we omit it from our
notations and games.

To provide the result, we split the internal variables into three sections. In this case, we do so such
that for an m block message M , we have |Ai| = |Bi| = 1 and |Xi| = m − 2, for all i ∈ {1, . . . , 4}.
We will start off with M = X1||A1||B1, and will “track” the ordering of these sections through the
linear layers. Each time the cipher is called, the appropriate blocks of its output will be labelled by the
same letter (after incrementing i), meaning the ciphertext C = A4||B4||X4. This labelling, and the logic
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described below, is represented in Figure 7, which shows how we convert from the Π right
3 scheme to a

random function, a standard switch away from a random permutation.
To formalise this, we use a sequence of game–hops, comparing 10 oracles (O0 to O9), presented

in Appendix C.2. While most of the transitions are simply bookkeeping, three will make significant
changes.

The key observation behind the proof will be that the prefix B2||X2 for the second layers final
block (encrypting A2 → A3) does not repeat “too frequently”. As such, we can perform a (tweakable)
PRP–PRF switch on the final block of the second layer and simplify the construction (the transition
O1 → O2). After this, we observe a similar situation occurs when encrypting B3 → B4, and so perform
a PRP–PRF switch here also (the transition O4 → O5). Having done so, we reach a scheme that is
indistinguishable from a PRF, and so a final switch completes the sequence. To formalise this process,
we will use a sequence of identical until bad transitions, keeping track of various bad flags, to bound the
difference between games. As such, we define badji to be the event that flag badi is set by oracle j.

To begin,O0 directly encodes theΠ construction, evaluating the linear layer implicitly by reordering
the blocks. It is perfectly indistinguishable fromO1, in which we partially expand the online cipher calls.
We continue by comparing sequential pairs of oracles.

In O2, we replace a tweakable PRP of O1 with a tweakable PRF. A tweakable PRF is simply a
family of PRFs indexed by the tweak, and so these two constructions are identical until there is an
output collision on one of the PRFs. Thus, these function calls are equivalent until O2 repeats a tweak-
output pair, which corresponds to the internal variables (B2||X2, A3). This is precisely the condition
required to set bad1, and thus the oracles are perfectly indistinguishable until the event bad21 occurs5.

There are three key differences between O2 and O3. Unlike O2, O3 samples A3 and X4 directly,
and keeps track of a different set of strings. Firstly, sampling A3 uniformly on Line 14.7 is perfectly
indistinguishable, because the adversary always makes unique queries. As such, the string B2||X2||A2

(which is the image of M under a permutation) must take a unique value on each query. Thus the
random function FB2||X2 is never called with the same parameter value A2, which means all outputs
are uniformly sampled. Secondly, until bad1 is set the pair (B2, A3) have not repeated. Thus (B3||A3)
cannot have repeated (B3 is the image of B2 under a permutation), and so X4 is set by an online cipher
with a unique prefix, which Corollary 8 tells us is uniformly sampled. Finally, instead of setting bad1
if there is a collision on the list of strings B2||X2, O3 keeps track of strings B2. Since B2 is clearly
a substring of B2||X2, a collision on B2||X2 implies a collision on B2. Thus any strategy that causes
event bad21 may be used to trigger bad31. Thus P [bad2] ≤ P [bad3], and the oracles are adversarially
indistinguishable until this event occurs.

Oracles O3 and O4 are perfectly indistinguishable, since the only difference is a removal of super-
fluous internal variables and reordering of code. Also, O4 and O5 are perfectly indistinguishable until
bad2 is set, for exactly the same logic as the transition fromO1 toO2. Thus inO5,B4 is set as the output
of a tweakable random function, tweaked by A3.

The difference from O5 to O6 is that we replace the random function with a uniform sampler. This
would be distinguishable only if the adversary queries the random function with the same tweak and
parameter, which means repeating the pair (A3, B3). However, since values of B3 are in bijection with
those of B2, this is equivalent to repeating (A3, B2), which is the requirement to set bad1. Thus until an
input sequence that would trigger bad61 occurs, the oracles O5 and O6 are perfectly indistinguishable.
Moreover, any sequence of queries triggering bad51 will trigger bad61. Thus until the event bad61 occurs,
the oracles are equivalent.

Since A4 is uniquely determined by A3, keeping track of A3 values is equivalent to keeping track
of A4. Moreover, rather than sampling A3 and defining A4 ← Eε3(A3), we may sample A4 and set
A3 ← Dε3(A4). Performing these changes to O6 form O7, and thus have that O6 and O7 are perfectly
indistinguishable.

5 Formally, they are indistinguishable until a sequence of queries is made to the oracle that would trigger bad21 if the oracle
was O2
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Set O8 to be simply a reordering and simplification of O7, which is done in such a way that O8 is
clearly a random function. Thus O7 and O8 compute exactly the same function, and so are perfectly
indistinguishable.

Oracle O9 is perfectly indistinguishable from an ideal cipher until bad92 occurs (when two outputs
collide). Clearly the outputs of O8 and O9 are indistinguishable, and any strategy that sets bad92 may be
used to set bad82. Thus O8 is perfectly indistinguishable from an ideal cipher until bad82 occurs.

Since the probability of bad occurring does not decrease in any of the transitions up toO8, wherever
it makes sense P

[
badji

]
≤ P

[
bad8i

]
. So, putting these together and writing Collide X for the event that

an adversary interacting with O8 can find two distinct inputs such that the variable X takes the same
value during each calculation,

Advprp
Π ≤ ∆Π

O8
+∆O8

prp ≤ P
[
bad81

]
+ P

[
bad82

]
= P [Collide (A4||B2)] + P [Collide (A4||B4)] .

Since both A4 and B4 are independently uniformly sampled, a the collision events on A4||B4 is simply
birthday collision over a 22n block. Similarly, as discussed in Lemma 9, collision of independent ran-
dom samples upper bounds the probability of colliding strings B2. So, as A4 is independent of B2, the
probability of Collide A4||B2 is also bounded by a birthday collision on a 22n block. Thus both values
are bounded by the probability of this collision, namely q(q−1)

22n+1 , and substituting this into the formula
above yields the stated result. ut

6 Conclusion

We have shown how one can efficiently turn an online cipher in a fully fledged cipher, using two types
of mixing layer: reversing which leads to ±prp security, and a right cyclic shift, providing prp security.
For birthday bound security using two calls to the online cipher suffices, whereas for close to blocksize
security three calls are both necessary and sufficient. As far as we are aware, the construction of online
ciphers with beyond birthday bound security itself is still an open problem. We hope our work will spur
on the study of these versatile primitives.

Extensions and reformulations. Our results extend to tweakable online ciphers, forming tweakable
ciphers with the tweaks and bounds of the non-tweak setting (this is mainly an exercise in notation).
Similarly, our proofs can easily be adapted to cover a large set of mixing layers: in particular bit-,byte-
or word-wise reversal maps can be used in place of blockwise reversal (for any word size dividing the
block size). Generalising the results to cover incomplete final blocks should not be too arduous, although
the notation becomes rather cumbersome.

Our characterisation of an online cipher (due to Bellare et al. [4]) is at its most general. The more
specific definition of Rogaway et al. [33] additionally imposes a finite amount of state that the online
cipher may use. Our results may be recast into this context by considering the state as a hash of the
prefix, for the penalty of an adversary colliding two states.

There are several schemes for converting a true cipher into an authenticated encryption scheme
(e.g. [6]), and even to achieve the recent, stronger goal of robust authenticated encryption [21]. By
instantiating these modes with our construction, one can build a very secure scheme from an online
cipher.

Further research. All our results are stated relative to an indistinguishability notion. A stronger notion
is the indifferentiability framework [27], where an adversary would also have access to the online cipher
itself (in addition to the cipher one attempts to construct). Indifferentiability is a much more challenging
goal, and existing impossibility results relating to the self-composition of hash functions [13] extend to
the PRP case of online ciphers (curiously, the ±PRP situation seems less straightforward). We provide
a more detailed discussion in Appendix A.
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From the CMC and EME constructions, it is clear that more involved mixing layers may reduce
the security required of the cryptographic primitive. An interesting question is whether our work can be
extended to show beyond birthday security of a ‘CMCMC’ or ‘EMEME’ like construction. Relatedly,
how much can we relax the security notion of the underlying primitive and still retain good security (this
question is relevant for practical key wrap schemes). Another question is whether changing the mixing
layer will boost security when using three calls to an online cipher. We conjecture that among blockwise
linear schemes, the scheme Π rev

3 is essentially optimal. The level of security achieved by a shift-based
scheme with more layers than blocks remains a tantalizing open problem: conceivably they may achieve
±PRP security.
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A Impracticality of Indifferentiability

The security definitions given in Section 2.1 are the standard indistinguishability notions for symmetric
primitives, but are less strong than the indifferentiability notions of Maurer et al. [27]. In the indistin-
guishability game, the adversary is provided with oracle access to the overall construction (and possibly
its inverse) or the ideal construction. In contrast, the indifferentiability game provides the adversary
with access to the overall construction and also the internal primitive, or to the ideal construction and a
simulator of the internal primitive. Thus the indifferentiability setting of the prp security game for the
Π = ΠL

i construction instantiated around the online cipher E is ∆π,S[π]
E[E],E , where S[·] is a simulator that

provided with access to the permutation π simulates an online cipher S[π].
Allowing leakage on the intermediate layers of the construction would allow the adversary to query

the online cipher and overall construction in a somewhat independent manner, effectively allowing them
to play the indifferentiability game.

Recent work by Dodis et al. [13] showed that the composition of two calls to a hash function is
not indifferentiable from the original hash unless the simulator makes an unreasonably large number of
queries. Broadly speaking, their attack depends on calling the random oracle to derive a chain of secret
values. Then, with using two calls to the primitive, this is used to generate a second,non-overlapping
chain. In the real world, to ensure this relationship holds, any simulator must make a large number of
queries, effectively by calculating such chains themselves.

A similar result can be found when we consider whether theΠL
i construction is indifferentiable from

a in ideal cipher (with respect to the online cipher). We assume L(M)[1] is linearly dependant on M [m]
for all M ∈ {0, 1}mn, since otherwise the scheme is trivially distinguishable. Then, the distinguisher
can simply consider H(M) := L ◦ E(M), from which (with high probability) the first output block is
uniformly sampled. Using this, he can conduct an equivalent experiment, efficiently building two long
chains and forcing the simulator to link them. Since the simulator is not provided with access to the
inverse permutation, they are unable to invert the chains, leading to a similar analysis.

Let us denote the simulator of E by S[·], with inverse T [·], taking as parameters the oracles to which
it is provided access, the ΠL

i scheme instantiated with online cipher E by E[E ] with inverse D[D],
and an ideal cipher by π with inverse π−1. Then, by the above attack, ∆π,S[π]

E[E],E , which corresponds to
indifferentiability from an ideal cipher, is large (in terms of simulator queries).

However, a simulator can defend against this attack with only a small number of queries if pro-
vided with the inverse of the permutation, since he may “unwind” any chains the adversary created.
Thus, ∆ π , π−1 ,S[π,π−1],T [π,π−1]

E[E],D[D], E , D (corresponding to indifferentiability from an ideal cipher under the
±PRP game) cannot be bounded below by this attack. This leaves the rather counter-intuitive situation
that a scheme might be indifferentiable from an ideal cipher with inverse, yet not from an ideal cipher
when not provided with inverse acess. Other situations exist, such as bounding ∆ π ,S[π,π−1],T [π,π−1]

E[E], E , D ,
which reflects the scenario of a system providing interfaces for both directions of the online cipher, but
only provides an interface for encryption queries of the true cipher. Whilst we suspect it unlikely, these
constructions may yet be proven indifferentiable, but such results are beyond the scope of this paper.

Overall then, there are impossibility results limiting the scope for security under the indifferentiabil-
ity game in this area. As such, there are clear limitations for when access can be provided to the online
cipher under the same keying scheme as to the overall construction. Thus for viable security results, we
are limited to the indistinguishability setting, meaning any instantiations of the ΠL

i construction should
be keyed (or tweaked) independently from interfaces provided to the online cipher.

B Security Definitions

We provide here the formal security notions described in Section 2.1. Let E be a cipher on n bits, Ẽ a
tweakable block cipher with n-bit blocks and tweakspace T and E an online cipher, all with keyspaceK.
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Then, advantage of some adversary A against the security goals of the various schemes are as follows:

Adv prp
E (A) := P

[
k←$K : AEk → 1

]
− P [π←$ Perm(n) : Aπ → 1]

Adv ±prpE (A) := P
[
k←$K : AEk,E

−1
k → 1

]
− P

[
π←$ Perm(n) : Aπ,π−1 → 1

]
Adv tprp

Ẽ
(A) := P

[
k←$K : AẼk → 1

]
− P

[
π̃←$ Perm(T , n) : Aπ̃ → 1

]
Adv±tprp

Ẽ
(A) := P

[
k←$K : AẼk,Ẽ

−1
k → 1

]
− P

[
π̃←$ Perm(T , n) : Aπ̃,π̃−1 → 1

]
Adv oprp

E (A) := P
[
k←$K : AEk → 1

]
− P [π∗←$ OPerm(n) : Aπ∗ → 1]

Adv±oprpE (A) := P
[
k←$K : AEk,E−1

k → 1
]
− P

[
π∗←$ OPerm(n) : Aπ∗,π−1

∗ → 1
]

Adv prf
F (A) := P

[
k←$K : AFk → 1

]
− P

[
φ←$ Func(n) : Aφ → 1

]
Adv ±prfF (A) := P

[
k←$K : AFk,F

−1
k → 1

]
− P

[
φ, φ′←$ Func(n) : Aφ,φ′ → 1

]
Note that since the adversary is prevented from making queries to which he already knows the answer,

this definition of an±PRF is equivalent to that presented in the main body of the paper and much simpler
to work with. These are generalised to functions of the number of queries by defining

Advxxx
W1

:= max
Adversaries A
A makes q queries

∣∣Advxxx
W1

(A)
∣∣

A primitive P is a secure xxx if Advxxx
P (q) is sufficiently small.

C Games & Oracles

In this appendix we provide the code for the oracles and games used in the proofs. Wherever possible,
line numbers have been preserved between pairs of games in a sequence. In these cases, lines which
change in the transition from one world to the next are indicated on the first of these by “. . .” at the
end of the line. If no lines are marked as such, the code has been rearranged or simplified, and making
such a comparison is meaningless.

This paper makes use of the indistinguishability game, where an adversary is provided access to an
unknown world and must distinguish which world he is communicating with. The other game used is
the SetBad game, in which the adversary communicates with a single world and aims to set the flag bad.

Internal Oracles. At times, the oracles may themselves call out to internal oracles, modelling standard
primitives, access to which is not given to the adversary. To minimise repetition, such oracles provided
here, and are available to all oracles and games in the paper. Internal variables are shared between sets
of private oracles given in the same algorithm box, but not between different instantiations or primitives.
Following on from our decision to omit the key from our notation, we use the lower index to specify an
independent instantiation of a primitive.
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Alg. 0: (Tweakable) Random Function with in-
verse
0.01: for T ∈ ({0, 1}n)∗ do
0.02: FT ← ∅
0.03: end for
0.04: function F T (M )
0.05: C←$ {0, 1}n
0.06: if ∃x s.t. (M,x) ∈ FT then
0.07: C ← x
0.08: end if
0.09: FT ←∪ (M,C)
0.10: return C
0.11: end function
0.12: function F−1(C)
0.13: M ←$ {0, 1}n
0.14: if ∃x s.t. (x,C) ∈ FT then
0.15: M ← x
0.16: end if
0.17: FT ←∪ (M,C)
0.18: return M
0.19: end function

Alg. 1: Tweakable Block Cipher (Ẽ, D̃)
1.01: for T ∈ ({0, 1}n)∗ do
1.02: πT ← ∅ ⊂ {0, 1}n × {0, 1}n
1.03: end for
1.04: function ẼT (M )
1.05: if M /∈ Dom(πT ) then
1.06: C←$ {0, 1}n \ Im(πT )
1.07: πT ←∪ (M,C)
1.08: end if
1.09: return πT (C)
1.10: end function
1.11: function D̃T (C)
1.12: if C /∈ Im(πT ) then
1.13: M ←$ {0, 1}n \Dom(πT )
1.14: πT ←∪ (M,C)
1.15: end if
1.16: return π−1T (C)
1.17: end function

Alg. 2: Online en/de-cryption oracles ET ,DT
2.01: function ET (M )
2.02: m← |M |/n
2.03: for i← 1 . . .m do
2.04: Ti ← T ||M [1..(i− 1)]
2.05: Ci ← ẼTi(M [i])
2.06: end for
2.07: return C1|| . . . ||Cm
2.08: end function
2.09: function DT (C)
2.10: m← |C|/n
2.11: M0 ← ε
2.12: for i← 1 . . .m do
2.13: Ti ← T ||Mi−1
2.14: Mi ←Mi−1||D̃Ti(C[i])
2.15: end for
2.16: return Mm

2.17: end function
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C.1 Π rev
2 is a ±PRP

This appendix provides a thorough list of worlds
used in the proof of Theorem 11. Throughout,
|Li| = |Ri| = 1 for all i, with |Ai| = (m − 2),
where m is the length of |M | in blocks.
Alg. 3:W0 is the Π2 construction
3.01: function ENC(M )
3.02: L1||A1||R1 ←M
3.03: L2||A2||R2 ← Eε(L1||A1||R1)
3.04: L3||A3||R3 ← R2||A2||L2

3.05: L4||A4||R4 ← Eε(L3||A3||R3)
3.06: return L4||A4||R4

3.07: end function
3.08: function DEC(M )
3.09: L4||A4||R4 ←M
3.10: L3||A3||R3 ← Dε(L4||A4||R4)
3.11: L2||A2||R2 ← R3||A3||L3

3.12: L1||A1||R1 ← Dε(L2||A2||R2)
3.13: return L1||A1||R1

3.14: end function

Alg. 4:W1 and W2

4.01: P ← ∅
4.02: function ENC(M )
4.03: L1||A1||R1 ←M
4.04: L2||A2 ← Eε(L1||A1) . . .
4.05: R2 ← EL1||A1(R1)
4.06: P ←∪ L1

4.07: L3 ← R2

4.08: A3||R3 ← A2||L2 . . .
4.09: L4 ← Eε(L3)
4.10: if L3 ∈ P then
4.11: bad← true

4.12: L3←$ {0, 1}n \ P
4.13: end if
4.14: A4||R4 ← EL3(A3||R3) . . .
4.15: P ←∪ L3

4.16: return L4||A4||R4

4.17: end function
4.18: function DEC(M )
4.19: L4||A4||R4 ←M
4.20: L3||A3 ← Dε(L4||A4)
4.21: P ←∪ L3

4.22: R3 ← DL3||A3(R4)
4.23: L2 ← R3

4.24: A2||R2 ← A3||L3 . . .
4.25: L1 ← Dε(L2)
4.26: if L1 ∈ P then
4.27: bad← true

4.28: L1←$ {0, 1}n \ P
4.29: end if
4.30: A1||R1 ← DL1(A2||R2) . . .
4.31: P ←∪ L1

4.32: return L1||A1||R1

4.33: end function

Alg. 5: W3 andW4

5.01: P ← ∅
5.02: function ENC(M )
5.03: L1||A1||R1 ←M
5.04:
5.05: R2 ← EL1||A1(R1)
5.06: P ←∪ L1

5.07: L3 ← R2

5.08:
5.09: L4 ← Eε(L3)
5.10: if L3 ∈ P then
5.11: bad← true

5.12: L3←$ {0, 1}n \ P
5.13: end if
5.14: A4||R4←$ {0, 1}(m−1)n
5.15: P ←∪ L3

5.16: return L4||A4||R4

5.17: end function
5.18: function DEC(M )
5.19: L4||A4||R4 ←M
5.20: L3||A3 ← Dε(L4||A4)
5.21: P ←∪ L3

5.22: R3 ← DL3||A3(R4)
5.23: L2 ← R3

5.24:
5.25: L1 ← Dε(L2)
5.26: if L1 ∈ P then
5.27: bad← true

5.28: L1←$ {0, 1}n \ P
5.29: end if
5.30: A1||R1←$ {0, 1}(m−1)n
5.31: P ←∪ L1

5.32: return L1||A1||R1

5.33: end function
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Alg. 6: W5 and W6

6.01: P ← ∅
6.02: function ENC(M )
6.03: L1||A1||R1 ←M
6.04: R2 ← EL1||A1(R1)
6.05: P ←∪ L1

6.06: L4 ← Eε(R2) F (R2) . . .

6.07: if R2 ∈ P then
6.08: bad← true

6.09: end if
6.10: A4||R4←$ {0, 1}(m−1)n
6.11: P ←∪R2

6.12: return L4||A4||R4

6.13: end function
6.14: function DEC(M )
6.15: L4||A4||R4 ←M
6.16: L3||A3 ← Dε(L4||A4)
6.17: P ←∪ L3

6.18: R3 ← DL3||A3(R4)

6.19: L1 ← Dε(R3) F−1(R3) . . .

6.20: if L1 ∈ P then
6.21: bad← true

6.22: end if
6.23: A1||R1←$ {0, 1}(m−1)n
6.24: P ←∪ L1

6.25: return L1||A1||R1

6.26: end function

Alg. 7:W7: A PRF with inverse
7.01: P ← ∅
7.02: function ENC(M )
7.03: L1||A1||R1 ←M
7.04: R2 ← EL1||A1(R1)
7.05: P ←∪ L1

7.06: L4←$ {0, 1}n . . .

7.07: if R2 ∈ P then
7.08: bad← true

7.09: end if
7.10: A4||R4←$ {0, 1}(m−1)n . . .
7.11: P ←∪R2

7.12: return L4||A4||R4 . . .
7.13: end function
7.14: function DEC(M )
7.15: L4||A4||R4 ←M
7.16: L3||A3 ← Dε(L4||A4) . . .
7.17: P ←∪ L3

7.18: R3 ← DL3||A3(R4) . . .

7.19: L1←$ {0, 1}n
7.20: if L1 ∈ P then
7.21: bad← true

7.22: end if
7.23: A1||R1←$ {0, 1}(m−1)n . . .
7.24: P ←∪ L1

7.25: return L1||A1||R1 . . .
7.26: end function

Alg. 8:W8: P
[
bad7

]
= P

[
bad8

]
8.01: P ← ∅
8.02: function ENC(M )
8.03: L1||A1||R1 ←M
8.04: R2 ← EL1||A1(R1)
8.05: P ←∪ L1

8.06:
8.07: if R2 ∈ P then
8.08: bad← true

8.09: end if
8.10:
8.11: P ←∪R2

8.12:
8.13: end function
8.14: function DEC(M )
8.15: L4||A4||R4 ←M
8.16: L3 ← Dε(L4)
8.17: P ←∪ L3

8.18:
8.19: L1←$ {0, 1}n
8.20: if L1 ∈ P then
8.21: bad← true

8.22: end if
8.23:
8.24: P ←∪ L1

8.25:
8.26: end function



32
E

lena
A

ndreeva,G
uy

B
arw

ell,D
an

Page
&

M
artijn

Stam

Alg. 9:W9: P
[
bad8

]
≤ P

[
bad9

]
9.01: P ← ∅,L ← ∅,R ← ∅
9.02: function ENC(M )
9.03: L1||A1||R1 ←M
9.04: R2 ← EL1||A1(R1)
9.05: P ←∪ L1

9.06: if R2 ∈ P ∪ L ∪R then
9.07: bad← true

9.08: end if
9.09: R←∪R2

9.10: end function
9.11: function DEC(L3)
9.12: P ←∪ L3

9.13: L1←$ {0, 1}n
9.14: if L1 ∈ P ∪ L ∪R then
9.15: bad← true

9.16: end if
9.17: L←∪ L1

9.18: end function

Alg. 10:W10: Adversary non-adaptive
Require: |P| = q,qE + qD = q, |M| = qE .
Require: order ∈ {E,D}q
10.01: L,R empty lists
10.02: function CHALLENGE(P,M, order)
10.03: for i ∈ [1, . . . , qE ] do
10.04: L1||A1||R1 ←M[i]
10.05: Ri ← EL1||A1(R1)
10.06: end for
10.07: for i ∈ [1, . . . , qD] do
10.08: Li←$ {0, 1}n
10.09: end for
10.10: if List L||R contains repeats then
10.11: bad← true

10.12: end if
10.13: for i ∈ [1, . . . , q] do
10.14: if order[i] = E then
10.15: if ∃j ≤ i s.t. Pj = Re then
10.16: bad← true

10.17: end if
10.18: e← e+ 1
10.19: else
10.20: if ∃j ≤ i s.t. Pj = Ld then
10.21: bad← true

10.22: end if
10.23: d← d+ 1
10.24: end if
10.25: end for
10.26: end function

C.2 Π right
3 is a PRP

This appendix provides the oracles used during the
proof of Theorem 19. Ai, Bi are blocks, with Xi the
appropriate length to ensure |M | = |(Xi||Ai||Bi)|.
We evaluate the shift implicitly, by reordering
blocks in the following query.

Alg. 11: O0 is the Π = Π right
3 construction

11.01: function ENC(M )
11.02: X1||A1||B1 ←M
11.03: X2||A2||B2 ← Eε1(X1||A1||B1)
11.04: B3||X3||A3 ← Eε2(B2||X2||A2)
11.05: A4||B4||X4 ← Eε3(A3||B3||X3)
11.06: return A4||B4||X4

11.07: end function
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Alg. 12: O1 expands out O0

12.01:
12.02: function ENC(M )
12.03: X1||A1||B1 ←M
12.04: X2||A2 ← Eε1(X1||A1)

12.05: B2 ← EX1||A1

1 (B1)
12.06: B3||X3 ← Eε2(B2||X2)

12.07: A3 ← EB2||X2

2 (A2) . . .
12.08: . . .
12.09: . . .
12.10: . . .
12.11: . . .
12.12: A4||B4 ← Eε3(A3||B3)

12.13: X4 ← EA3||B3

3 (X3)
12.14: return A4||B4||X4

12.15: end function

Alg. 13: O2: TPRF switch on E2 final block
13.01: C ← ∅
13.02: function ENC(M )
13.03: X1||A1||B1 ←M
13.04: X2||A2 ← Eε1(X1||A1)

13.05: B2 ← EX1||A1

1 (B1)
13.06: B3||X3 ← Eε2(B2||X2)

13.07: A3 ← F
B2||X2

2 (A2) . . .
13.08: if (B2||X2, A3) ∈ C then . . .
13.09: bad1 ← true

13.10: end if
13.11: C ←∪ (B2||X2, A3) . . .
13.12: A4||B4 ← Eε3(A3||B3)

13.13: X4 ← EA3||B3

3 (X3) . . .
13.14: return A4||B4||X4

13.15: end function

Alg. 14: O3: Identical to O2 until bad1
14.01: C ← ∅
14.02: function ENC(M )
14.03: X1||A1||B1 ←M
14.04: X2||A2 ← Eε1(X1||A1)

14.05: B2 ← EX1||A1

1 (B1)
14.06: B3||X3 ← Eε2(B2||X2)
14.07: A3←$ {0, 1}n
14.08: if (B2, A3) ∈ C then
14.09: bad1 ← true

14.10: end if
14.11: C ←∪ (B2, A3)
14.12: A4||B4 ← Eε3(A3||B3)
14.13: X4←$ {0, 1}(m−2)n
14.14: return A4||B4||X4

14.15: end function
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Alg. 15: O4: Simplify & reorder
15.01: C ← ∅
15.02: function ENC(M )
15.03: X1||A1||B1 ←M
15.04: A3←$ {0, 1}n
15.05: X4←$ {0, 1}(m−2)n
15.06: B2 ← EX1||A1

1 (B1)
15.07: B3 ← Eε2(B2)
15.08: if (B2, A3) ∈ C then
15.09: bad1 ← true

15.10: end if
15.11: C ←∪ (B2, A3)
15.12: A4 ← Eε3(A3)
15.13: B4 ← EA3

3 (B3) . . .
15.14: . . .
15.15: . . .
15.16: . . .
15.17: . . .
15.18: return A4||B4||X4

15.19: end function

Alg. 16: O5: TPRP–TPRF switch on E3
16.01: C, C′ ← ∅
16.02: function ENC(M )
16.03: X1||A1||B1 ←M
16.04: A3←$ {0, 1}n
16.05: X4←$ {0, 1}(m−2)n
16.06: B2 ← EX1||A1

1 (B1)
16.07: B3 ← Eε2(B2)
16.08: if (B2, A3) ∈ C then
16.09: bad1 ← true

16.10: end if
16.11: C ←∪ (B2, A3)
16.12: A4 ← Eε3(A3)
16.13: B4 ← FA3

3 (B3) . . .
16.14: if (A3, B4) ∈ C′ then
16.15: bad2 ← true

16.16: end if
16.17: C′←∪ (A3, B4)
16.18: return A4||B4||X4

16.19: end function

Alg. 17: O6: Sample B4 uniformly
17.01: C, C′ ← ∅
17.02: function ENC(M )
17.03: X1||A1||B1 ←M
17.04: A3←$ {0, 1}n . . .
17.05: X4←$ {0, 1}(m−2)n
17.06: B2 ← EX1||A1

1 (B1)
17.07: B3 ← Eε2(B2)
17.08: if (B2, A3) ∈ C then . . .
17.09: bad1 ← true

17.10: end if
17.11: C ←∪ (B2, A3) . . .
17.12: A4 ← Eε3(A3) . . .
17.13: B4←$ {0, 1}n
17.14: if (A3, B4) ∈ C′ then . . .
17.15: bad2 ← true

17.16: end if
17.17: C′←∪ (A3, B4) . . .
17.18: return A4||B4||X4

17.19: end function
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Alg. 18: O7: Sample A4 not A3

18.01: C, C′ ← ∅
18.02: function ENC(M )
18.03: X1||A1||B1 ←M
18.04: A4←$ {0, 1}n
18.05: X4←$ {0, 1}(m−2)n
18.06: B2 ← EX1||A1

1 (B1)
18.07: B3 ← Eε2(B2)
18.08: if (B2, A4) ∈ C then
18.09: bad1 ← true

18.10: end if
18.11: C ←∪ (B2, A4)
18.12: A3 ← Dε3(A4)
18.13: B4←$ {0, 1}n
18.14: if (A4, B4) ∈ C′ then
18.15: bad2 ← true

18.16: end if
18.17: C′←∪ (A4, B4)
18.18: return A4||B4||X4

18.19: end function

Alg. 19: O8: Simplify & reorder
19.01: C, C′ ← ∅
19.02: function ENC(M )
19.03: X1||A1||B1 ←M
19.04: A4←$ {0, 1}n
19.05: B4←$ {0, 1}n
19.06: X4←$ {0, 1}(m−2)n
19.07: B2 ← EX1||A1

1 (B1) . . .
19.08: if (B2, A4) ∈ C then . . .
19.09: bad1 ← true . . .
19.10: end if . . .
19.11: C ←∪ (B2, A4) . . .
19.12: if (A4, B4) ∈ C′ then . . .
19.13: bad2 ← true

19.14: end if
19.15: C′←∪ (A4, B4) . . .
19.16: return A4||B4||X4

19.17: end function

Alg. 20: O9: A PRP until bad2
20.01: C′ ← ∅
20.02: function ENC(M )
20.03: X1||A1||B1 ←M
20.04: A4←$ {0, 1}n
20.05: B4←$ {0, 1}n
20.06: X4←$ {0, 1}(m−2)n
20.07:
20.08:
20.09:
20.10:
20.11:
20.12: if (A4||B4||X4) ∈ C′ then
20.13: bad2 ← true

20.14: end if
20.15: C′←∪ (A4||B4||X4)
20.16: return A4||B4||X4

20.17: end function
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C.3 Πrev
3 is a ±PRP

These are the worlds used in the proof of Theo-
rem 13. Throughout this section, Ai, Bi are blocks
and |Xi| = m− 2 for all i ∈ 1, . . . , 6, where m is
the length of M in blocks. For any string of blocks
X ∈ ({0, 1}n)∗, X is the blockwise reversal of X .

Alg. 21:W0 is the Πrev
3 construction

21.01: function ENC(M )
21.02: X1||A1||B1 ←M
21.03: X2||A2||B2 ← Eε(X1||A1||B1)
21.04: B3||A3||X2 ← Eε(B2||A2||X2)
21.05: X4||A4||B4 ← Eε(X3||A3||B3)
21.06: return X4||A4||B4

21.07: end function
21.08: function DEC(M )
21.09: X4||A4||B4 ←M
21.10: X3||A3||B3 ← Dε(X4||A4||B4)
21.11: B2||A2||X2 ← Dε(B3||A3||X3)
21.12: X1||A1||B1 ← Dε(X1||A2||B2)
21.13: return X1||A1||B1

21.14: end function

Alg. 22:W1 expands outW0

22.01: LA,LB,LC ,LD ← ∅
22.02: function ENC(M )
22.03: X1||A1||B1 ←M
22.04: X2||A2||B2 ← Eε1(X1||A1||B1)
22.05: B3 ← Eε2(B2)
22.06: A3 ← EB2

2 (A2) . . .

22.07: X3 ← EB2||A2

2 (X2) . . .
22.08: X4||A4 ← Eε3(X3||A3)

22.09: B4 ← EX3||A3

3 (B3) . . .
22.10: if (B2, A3) ∈ LB then
22.11: bad1 ← true

22.12: end if
22.13: if (B2, A2) ∈ LC then
22.14: bad3 ← true

22.15: end if
22.16: if (X3||A3, B4) ∈ LD then
22.17: bad5 ← true

22.18: end if
22.19: LA←∪ (X1||A1, B1)
22.20: LB ←∪ (B2, A3)
22.21: LC ←∪ (B2, A2)
22.22: LD←∪ (X3||A3, B4)
22.23: return X4||A4||B4

22.24: end function
22.25: function DEC(M )
22.26: X4||A4||B4 ←M
22.27: X3||A3||B3 ← Dε3(X4||A4||B4)
22.28: B2 ← Dε2(B3)
22.29: A2 ← DB2

2 (A3) . . .

22.30: X2 ← DB2||A2

2 (X3) . . .
22.31: X1||A1 ← Dε1(X2||A2)

22.32: B1 ← DX1||A1

1 (B2) . . .
22.33: if (B2, A3) ∈ LB then
22.34: bad2 ← true

22.35: end if
22.36: if (B2, A2) ∈ LC then
22.37: bad4 ← true

22.38: end if
22.39: if (X1||A1, B1) ∈ LA then
22.40: bad6 ← true

22.41: end if
22.42: LA←∪ (X1||A1, B1)
22.43: LB ←∪ (B2, A3)
22.44: LC ←∪ (B2, A2)
22.45: LD←∪ (X3||A3, B4)
22.46: return X1||A1||B1

22.47: end function
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Alg. 23:W2: ±PRP–±PRF switch on E2
23.01: LA,LB,LC ,LD ← ∅
23.02: function ENC(M )
23.03: X1||A1||B1 ←M
23.04: X2||A2||B2 ← Eε1(X1||A1||B1)
23.05: B3 ← Eε2(B2)

23.06: A3 ← FB2
2 (A2) . . .

23.07: X3 ← F
B2||A2

2 (X2) . . .
23.08: X4||A4 ← Eε3(X3||A3)

23.09: B4 ← F
X3||A3

3 (B3) . . .
23.10: if (B2, A3) ∈ LB then
23.11: bad1 ← true

23.12: end if
23.13: if (B2, A2) ∈ LC then
23.14: bad3 ← true

23.15: end if
23.16: if (X3||A3, B4) ∈ LD then
23.17: bad5 ← true

23.18: end if
23.19: LA←∪ (X1||A1, B1)
23.20: LB ←∪ (B2, A3)
23.21: LC ←∪ (B2, A2)
23.22: LD←∪ (X3||A3, B4)
23.23: return X4||A4||B4

23.24: end function
23.25: function DEC(M )
23.26: X4||A4||B4 ←M
23.27: X3||A3||B3 ← Dε3(X4||A4||B4)

23.28: B2 ← Dε2(B3)

23.29: A2 ← GB2
2 (A3) . . .

23.30: X2 ← G
B2||A2

2 (X2) . . .
23.31: X1||A1 ← Dε1(X2||A2)

23.32: B1 ← G
X1||A1

1 (B2) . . .
23.33: if (B2, A3) ∈ LB then
23.34: bad2 ← true

23.35: end if
23.36: if (B2, A2) ∈ LC then
23.37: bad4 ← true

23.38: end if
23.39: if (X1||A1, B1) ∈ LA then
23.40: bad6 ← true

23.41: end if
23.42: LA←∪ (X1||A1, B1)
23.43: LB ←∪ (B2, A3)
23.44: LC ←∪ (B2, A2)
23.45: LD←∪ (X3||A3, B4)
23.46: return X1||A1||B1

23.47: end function
F1,F2,G2,G3 are tweakable random functions.

Alg. 24:W3: They’re actually samplings
24.01: LA,LB,LC ,LD ← ∅ . . .
24.02: function ENC(M )
24.03: X1||A1||B1 ←M
24.04: X2||A2||B2 ← Eε1(X1||A1||B1) . . .
24.05: B3 ← Eε2(B2) . . .

24.06: A3←$ {0, 1}n
24.07: X3←$ {0, 1}(m−2)n
24.08: X4||A4 ← Eε3(X3||A3)

24.09: B4←$ {0, 1}n . . .
24.10: if (B2, A3) ∈ LB then
24.11: bad1 ← true

24.12: end if
24.13: if (B2, A2) ∈ LC then
24.14: bad3 ← true

24.15: end if
24.16: if (X3||A3, B4) ∈ LD then . . .
24.17: bad5 ← true . . .
24.18: end if . . .
24.19: LA←∪ (X1||A1, B1) . . .
24.20: LB ←∪ (B2, A3)
24.21: LC ←∪ (B2, A2)
24.22: LD←∪ (X3||A3, B4) . . .
24.23: return X4||A4||B4 . . .
24.24: end function
24.25: function DEC(M )
24.26: X4||A4||B4 ←M
24.27: X3||A3||B3 ← Dε3(X4||A4||B4) .

. .
24.28: B2 ← Dε2(B3)

24.29: A2←$ {0, 1}n
24.30: X2←$ {0, 1}(m−2)n
24.31: X1||A1 ← Dε1(X2||A2)

24.32: B1←$ {0, 1}n . . .
24.33: if (B2, A3) ∈ LB then
24.34: bad2 ← true

24.35: end if
24.36: if (B2, A2) ∈ LC then
24.37: bad4 ← true

24.38: end if
24.39: if (X1||A1, B1) ∈ LA then . . .
24.40: bad6 ← true . . .
24.41: end if . . .
24.42: LA←∪ (X1||A1, B1) . . .
24.43: LB ←∪ (B2, A3)
24.44: LC ←∪ (B2, A2)
24.45: LD←∪ (X3||A3, B4) . . .
24.46: return X1||A1||B1 . . .
24.47: end function
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Alg. 25:W4: Remove Superfluous Code
25.01: LB,LC ← ∅
25.02: function ENC(M )
25.03: X1||A1||B1 ←M
25.04: A2||B2 ← EX1

1 (A1||B1)
25.05:
25.06: A3←$ {0, 1}n . . .
25.07: X3←$ {0, 1}(m−2)n . . .
25.08: X4||A4 ← Eε3(X3||A3) . . .
25.09:
25.10: if (B2, A3) ∈ LB then . . .
25.11: bad1 ← true . . .
25.12: end if . . .
25.13: if (B2, A2) ∈ LC then
25.14: bad3 ← true

25.15: end if
25.16:
25.17:
25.18:
25.19:
25.20: LB ←∪ (B2, A3) . . .
25.21: LC ←∪ (B2, A2)
25.22:
25.23: return X4||A4

25.24: end function
25.25: function DEC(M )
25.26: X4||A4||B4 ←M

25.27: A3||B3 ← DD3(X4)
3 (A4||B4) . . .

25.28: B2 ← Dε2(B3)
25.29: A2←$ {0, 1}n
25.30: X2←$ {0, 1}(m−2)n
25.31: X1||A1 ← Dε1(X2||A2)
25.32:
25.33: if (B2, A3) ∈ LB then . . .
25.34: bad2 ← true . . .
25.35: end if . . .
25.36: if (B2, A2) ∈ LC then
25.37: bad4 ← true

25.38: end if
25.39:
25.40:
25.41:
25.42:
25.43: LB ←∪ (B2, A3) . . .
25.44: LC ←∪ (B2, A2)
25.45:
25.46: return X1||A1

25.47: end function

Alg. 26:W5: Focus on bad3, bad4; sample X1

26.01: LC ← ∅
26.02: function ENC(M )
26.03: X1||A1||B1 ←M
26.04: A2||B2 ← EX1

1 (A1||B1)
26.05: if (A2, B2) ∈ LC then
26.06: bad3 ← true

26.07: end if
26.08: LC ←∪ (A2, B2)
26.09: end function
26.10: function DEC(M )
26.11: X4||A4||B4 ←M

26.12: B3 ← DD3(X4||A4)
3 (B4)

26.13: B2 ← Dε2(B3)
26.14: A2←$ {0, 1}n
26.15: X1←$ {0, 1}(m−2)n
26.16: A1 ← DX1

1 (A2)
26.17: if (A2, B2) ∈ LC then
26.18: bad4 ← true

26.19: end if
26.20: LC ←∪ (A2, B2)
26.21: return X1||A1

26.22: end function

In the final game, the adversary makes
qd Dec queries, followed by qe Enc queries.
Alg. 27:W8: Final game E ↪→ D
27.01: ∀a ∈ {0, 1}n : LC [a]← ∅
27.02: function DEC(M )
27.03: X4||A4||B4 ←M

27.04: B3 ← DD3(X4||A4)
3 (B4)

27.05: B2 ← Dε2(B3)
27.06: A2←$ {0, 1}n
27.07: X1←$ {0, 1}(m−2)n
27.08: A1 ← DX1

1 (A2)
27.09: LC [A2]←∪B2

27.10: return X1||A1

27.11: end function
Then. . .

27.12: function ENC(M )
27.13: X1||A1||B1 ←M
27.14: A2 ← EX1

1 (A1)

27.15: B2 ← EX1||A1

1 (B1)
27.16: if B2 ∈ LC [A2] then
27.17: bad← true

27.18: end if
27.19: end function
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C.4 Πrev
3 with long messages

These are the worlds used in the proof of Theo-
rem 14. Throughout, |Li| = |Ri| = k for all i ∈
1, . . . , 6, with |Ai| = (m − 2k), where m = |M |
is the length of M in blocks.

Alg. 28:W0 is the Πrev
3 construction

28.01: function ENC(M )
28.02: L1||A1||R1 ←M
28.03: L2||A2||R2 ← Eε(L1||A1||R1)
28.04: L3||A3||R3 ← R2||A2||L2

28.05: L4||A4||R4 ← Eε(L3||A3||R3)
28.06: L5||A5||R5 ← R4||A4||L4

28.07: L6||A6||R6 ← Eε(L5||A5||R5)
28.08: return L6||A6||R6

28.09: end function
28.10: function DEC(M )
28.11: L6||A6||R6 ←M
28.12: L5||A5||R5 ← Dε(L6||A6||R6)
28.13: L4||A4||R4 ← R5||A5||L5

28.14: L3||A3||R3 ← Dε(L4||A4||R4)
28.15: L2||A2||R2 ← R3||A3||L3

28.16: L1||A1||R1 ← Dε(L2||A2||R2)
28.17: return L1||A1||R1

28.18: end function

To keep both worlds each of the main transitions
on the same page as each other, this column is in-
tentionally blank.
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Alg. 29:W1 expands outW0 and is equivalent
29.01: P ← ∅
29.02: function ENC(M )
29.03: L1||A1||R1 ←M
29.04: L2||A2 ← Eε(L1||A1)
29.05: P ←∪ L1

29.06: R2 ← EL1||A1(R1)
29.07: L3 ← R2

29.08: A3||R3 ← A2||L2

29.09: L4 ← Eε(L3)
29.10: if L3 ∈ P then
29.11: bad1 ← True
29.12: end if
29.13: P ←∪ L3

29.14: A4||R4 ← EL3(A3||R3) . . .
29.15: L5 ← R4

29.16: A5||R5 ← A4||L4

29.17: L6 ← Eε(L5)
29.18: if L5 ∈ P then
29.19: bad2 ← True
29.20: end if
29.21: P ←∪ L5

29.22: A6||R6 ← EL5(A5||R5) . . .
29.23: return L6||A6||R6

29.24: end function
29.25: function DEC(M )
29.26: L6||A6||R6 ←M
29.27: L5||A5 ← Dε(L6||A6)
29.28: P ←∪ L5

29.29: R5 ← DL5||A5(R6)
29.30: L4 ← R5

29.31: A4||R4 ← A5||L5

29.32: L3 ← Dε(L4)
29.33: if L3 ∈ P then
29.34: bad3 ← true

29.35: end if
29.36: P ←∪ L3

29.37: A3||R3 ← DL3(A4||R4) . . .
29.38: L2 ← R3

29.39: A2||R2 ← A3||L3

29.40: L1 ← Dε(L2)
29.41: if L1 ∈ P then
29.42: bad4 ← true

29.43: end if
29.44: P ←∪ L1

29.45: A1||R1 ← DL1(A2||R2) . . .
29.46: return L1||A1||R1

29.47: end function

Alg. 30:W2 is identical toW1 until bad
30.01: P ← ∅
30.02: function ENC(M )
30.03: L1||A1||R1 ←M
30.04: L2||A2 ← Eε(L1||A1) . . .
30.05: P ←∪ L1

30.06: R2 ← EL1||A1(R1)
30.07: L3 ← R2

30.08: A3||R3 ← A2||L2 . . .
30.09: L4 ← Eε(L3) . . .
30.10: if L3 ∈ P then
30.11: bad1 ← True
30.12: end if
30.13: P ←∪ L3

30.14: A4||R4←$ {0, 1}(m−k)n . . .
30.15: L5 ← R4

30.16: A5||R5 ← A4||L4 . . .
30.17: L6 ← Eε(L5)
30.18: if L5 ∈ P then
30.19: bad2 ← True
30.20: end if
30.21: P ←∪ L5

30.22: A6||R6←$ {0, 1}(m−k)n
30.23: return L6||A6||R6

30.24: end function
30.25: function DEC(M )
30.26: L6||A6||R6 ←M
30.27: L5||A5 ← Dε(L6||A6)
30.28: P ←∪ L5

30.29: R5 ← DL5||A6(R6)
30.30: L4 ← R5

30.31: A4||R4 ← A5||L5 . . .
30.32: L3 ← Dε(L4)
30.33: if L3 ∈ P then
30.34: bad3 ← true

30.35: end if
30.36: P ←∪ L3

30.37: A3||R3←$ {0, 1}(m−k)n . . .
30.38: L2 ← R3

30.39: A2||R2 ← A3||L3 . . .
30.40: L1 ← Dε(L2)
30.41: if L1 ∈ P then
30.42: bad4 ← true

30.43: end if
30.44: P ←∪ L1

30.45: A1||R1←$ {0, 1}(m−k)n
30.46: return L1||A1||R1

30.47: end function
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Alg. 31:W3: Remove superfluous code
31.01: P ← ∅
31.02: function ENC(M )
31.03: L1||A1||R1 ←M
31.04:
31.05: P ←∪ L1

31.06: R2 ← EL1||A1(R1)
31.07: L3 ← R2

31.08:
31.09:
31.10: if L3 ∈ P then
31.11: bad1 ← True
31.12: end if
31.13: P ←∪ L3

31.14: R4←$ {0, 1}kn . . .
31.15: L5 ← R4 . . .
31.16:
31.17: L6 ← Eε(L5)
31.18: if L5 ∈ P then
31.19: bad2 ← True
31.20: end if
31.21: P ←∪ L5

31.22: A6||R6←$ {0, 1}(m−k)n
31.23: return L6||A6||R6

31.24: end function
31.25: function DEC(M )
31.26: L6||A6||R6 ←M
31.27: L5||A5 ← Dε(L6||A6)
31.28: P ←∪ L5

31.29: R5 ← DL5||A5(R6)
31.30: L4 ← R5

31.31:
31.32: L3 ← Dε(L4)
31.33: if L3 ∈ P then
31.34: bad3 ← true

31.35: end if
31.36: P ←∪ L3

31.37: R3←$ {0, 1}kn . . .
31.38: L2 ← R3 . . .
31.39:
31.40: L1 ← Dε(L2) . . .
31.41: if L1 ∈ P then
31.42: bad4 ← true

31.43: end if
31.44: P ←∪ L1

31.45: A1||R1←$ {0, 1}(m−k)n
31.46: return L1||A1||R1

31.47: end function

Alg. 32:W4: Sampling commutes with perm.
32.01: P ← ∅
32.02: function ENC(M )
32.03: L1||A1||R1 ←M
32.04:
32.05: P ←∪ L1

32.06: R2 ← EL1||A1(R1)
32.07: L3 ← R2

32.08:
32.09:
32.10: if L3 ∈ P then
32.11: bad1 ← True
32.12: end if
32.13: P ←∪ L3

32.14:
32.15: L5←$ {0, 1}kn
32.16:
32.17: L6 ← Eε(L5)
32.18: if L5 ∈ P then
32.19: bad2 ← True
32.20: end if
32.21: P ←∪ L5

32.22: A6||R6←$ {0, 1}(m−k)n
32.23: return L6||A6||R6

32.24: end function
32.25: function DEC(M )
32.26: L6||A6||R6 ←M
32.27: L5||A5 ← Dε(L6||A6)
32.28: P ←∪ L5

32.29: R5 ← DL5||A5(R6)
32.30: L4 ← R5

32.31:
32.32: L3 ← Dε(L4)
32.33: if L3 ∈ P then
32.34: bad3 ← true

32.35: end if
32.36: P ←∪ L3

32.37:
32.38:
32.39:
32.40: L1←$ {0, 1}kn
32.41: if L1 ∈ P then
32.42: bad4 ← true

32.43: end if
32.44: P ←∪ L1

32.45: A1||R1←$ {0, 1}(m−k)n
32.46: return L1||A1||R1

32.47: end function
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Alg. 33:W5: Simplify & reorder: A ±PRF
33.01: P ← ∅
33.02: function ENC(M ) . . .
33.03: L1||A1||R1 ←M
33.04: P ←∪ L1

33.05: R2 ← EL1||A1(R1)
33.06: L3 ← R2

33.07: if L3 ∈ P then
33.08: bad1 ← True
33.09: end if
33.10: P ←∪ L3

33.11: L5←$ {0, 1}kn . . .
33.12: L6 ← Eε(L5)
33.13: if L5 ∈ P then . . .
33.14: bad2 ← True . . .
33.15: end if . . .
33.16: P ←∪ L5

33.17: A6||R6←$ {0, 1}(m−k)n . . .
33.18: return L6||A6||R6 . . .
33.19: end function
33.20: function DEC(M ) . . .
33.21: L6||A6||R6 ←M
33.22: L1||A1||R1←$ {0, 1}mn . . .
33.23: L5||A5 ← Dε(L6||A5)
33.24: P ←∪ L5

33.25: R5 ← DL5||A5(R6)
33.26: L4 ← R5

33.27: L3 ← Dε(L4)
33.28: if L3 ∈ P then
33.29: bad3 ← true

33.30: end if
33.31: P ←∪ L3

33.32: if L1 ∈ P then . . .
33.33: bad4 ← true . . .
33.34: end if . . .
33.35: P ←∪ L1

33.36: return L1||A1||R1 . . .
33.37: end function

Alg. 34:W6: Remove useless output
34.01: P ← ∅
34.02: function ENC(M,L5)
34.03: L1||A1||R1 ←M
34.04: P ←∪ L1

34.05: R2 ← EL1||A1(R1)
34.06: L3 ← R2

34.07: if L3 ∈ P then
34.08: bad1 ← true

34.09: end if
34.10: P ←∪ L3

34.11:
34.12: L6 ← Eε(L5)
34.13:
34.14:
34.15:
34.16: P ←∪ L5

34.17:
34.18: return L6

34.19: end function
34.20: function DEC(M,L1)
34.21: L6||A6||R6 ←M
34.22:
34.23: L5||A5 ← Dε(L6||A6)
34.24: P ←∪ L5

34.25: R5 ← DL5||A5(R6)
34.26: L4 ← R5

34.27: L3 ← Dε(L4)
34.28: if L3 ∈ P then
34.29: bad3 ← true

34.30: end if
34.31: P ←∪ L3

34.32:
34.33:
34.34:
34.35: P ←∪ L1

34.36:
34.37: end function
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Alg. 35:W7: Additional Oracles & simplify
35.01: P ← ∅
35.02: function ENC(M,V1, V5)
35.03: P ←∪ V1
35.04: P ←∪ V5
35.05: L1||A1||R1 ←M
35.06: R2 ← EL1||A1(R1)
35.07: L3 ← R2 . . .
35.08: if L3 ∈ P then . . .
35.09: bad1 ← True
35.10: end if
35.11: P ←∪ L3

35.12: end function
35.13: function DEC(M,V1, V5)
35.14: P ←∪ V1
35.15: P ←∪ V5
35.16: L6||A6||R6 ←M
35.17: L5||A5 ← Dε(L6||A6) . . .
35.18: R5 ← DL5||A5(R6)
35.19: L4 ← R5 . . .
35.20: L3 ← Dε(L4) . . .
35.21: if L3 ∈ P then
35.22: bad3 ← true

35.23: end if
35.24: P ←∪ L3

35.25: end function
35.26:
35.27: function E -ACCESS(S)
35.28: ENSURE(|S| = kn)
35.29: return Eε(S)
35.30: end function
35.31: function D-ACCESS(S)
35.32: ENSURE(|S| = kn)
35.33: return Dε(S)
35.34: end function

Alg. 36:W8: Additional Oracles do not help
36.01: P ← ∅
36.02: function ENC(M,V1, V5)
36.03: P ←∪ V1
36.04: P ←∪ V5
36.05: L1||A1||R1 ←M
36.06: R2 ← EL1||A1(R1)
36.07:
36.08: if R2 ∈ P then
36.09: bad1 ← True
36.10: end if
36.11: P ←∪ L3

36.12: end function
36.13: function DEC(M,V1, V5)
36.14: P ←∪ V1
36.15: P ←∪ V5
36.16: L6||A6||R6 ←M
36.17: L5||A5 ← L6||A6

36.18: R5 ← DL5||A5(R6)
36.19:
36.20: L3 ← (R5)

′ . x′ := Dε(x)
36.21: if L3 ∈ P then
36.22: bad3 ← true

36.23: end if
36.24: P ←∪ L3

36.25: end function
36.26:
36.27: function E -ACCESS(S)
36.28: ENSURE(|S| = kn)
36.29: return Eε(S)
36.30: end function
36.31: function D-ACCESS(S)
36.32: ENSURE(|S| = kn)
36.33: return Dε(S)
36.34: end function
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Alg. 37:W9: Adversary non-adaptive
Require: |P| = 2q, |ME | = qE , |MD| = qD
Require: order ∈ {E,D}q
37.01: R,L empty lists
37.02: function CHALLENGE(P,ME ,MD)
37.03: for i ∈ [1, . . . , qE ] do
37.04: L1||A1||R1 ←ME [i]
37.05: Ri ← EL1||A1(R1)
37.06: end for
37.07: for i ∈ [1, . . . , qD] do
37.08: L1||A1||R1 ←MD[i]

37.09: L2 ← DL1||A1
∗ (R1)

37.10: Li ← π(L2)
37.11: end for
37.12: if List L||R contains repeats then
37.13: bad← true

37.14: end if
37.15: for i ∈ [1, . . . , q] do
37.16: if order[i] = E then
37.17: ifRe ∈ P[1..2i] then
37.18: bad← true

37.19: end if
37.20: e← e+ 1
37.21: else
37.22: if Ld ∈ P[1..2i] then
37.23: bad← true

37.24: end if
37.25: d← d+ 1
37.26: end if
37.27: end for
37.28: end function
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