
Turning Online Ciphers Off
Elena Andreeva1, Guy Barwell2, Ritam Bhaumik3, Mridul Nandi3, Dan

Page2 and Martijn Stam2

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium.
elena.andreeva@esat.kuleuven.be ,

2 Department of Computer Science, University of Brlistol,
Merchant Venturers Building, Woodland Road,

Brlistol, BS8 1UB, United Kingdom.
{guy.barwell,daniel.page,martijn.stam}@bris.ac.uk ,

3 Indian Statistical Institute, Kolkata.
{bhaumik.ritam,mridul.nandi}@gmail.com

Abstract.
CAESAR has caused a heated discussion regarding the merits of one-pass encryption
and online ciphers. The latter is a keyed, length preserving function which outputs
ciphertext blocks as soon as the respective plaintext block is available as input. The
immediacy of an online cipher affords a clear performance advantage, but it comes at
a price: ciphertext blocks cannot depend on later plaintext blocks, limiting diffusion
and hence security. We show how one can attain the best of both worlds by providing
provably secure constructions, achieving full cipher security, based on applications of
an online cipher around blockwise reordering layers.
Explicitly, we show that with just two calls to the online cipher, prp security up to
the birthday bound is both attainable and maximal. Moreover, we demonstrate that
three calls to the online cipher suffice to obtain beyond birthday bound security. We
provide a full proof of this for a prp construction, and, in the ±prp setting, security
against adversaries who make queries of any single length. As part of our investigation,
we extend an observation by Rogaway and Zhang by further highlighting the close
relationship between online ciphers and tweakable blockciphers with variable-length
tweaks.
Keywords: beyond birthday bound · online ciphers · modes of operation · provable
security · pseudorandom permutation · tweakable blockcipher

mailto:elena.andreeva@esat.kuleuven.be
mailto:guy.barwell@bris.ac.uk, daniel.page@bris.ac.uk, martijn.stam@bris.ac.uk
mailto:bhaumik.ritam@gmail.com, mridul.nandi@gmail.com

2 Turning Online Ciphers Off

Contents
1 Introduction 3

1.1 Our Contribution . 4
1.2 Applications . 5
1.3 Related Work . 5
1.4 Context and Caveats . 6

2 Preliminaries 6
2.1 Notation . 6
2.2 Primitives . 7
2.3 Composition Constructions . 9

3 Initial Observations and Standard Results 10
3.1 Standard Proof Techniques . 10
3.2 Equating Online Ciphers and Tweakable Block Ciphers 12
3.3 Ideal Online Permutations . 14
3.4 An Identical Until Bad Funnel . 17

4 Two Layer Constructions 18
4.1 Right Shifting Towards a prp . 19
4.2 Two Layers Versus ±prp Security . 20

5 Three Round Constructions: Moving Beyond the Birthday Bound 22
5.1 Three Layer Shift: A prp to Almost Blocksize 22
5.2 Three Layer Reverse: ±prp Beyond the Birthday Bound 25

6 Towards Security with Many Layers 30

7 Conclusion 31
7.1 Extensions and Reformulations . 32
7.2 Further Research . 32

8 Acknowledgments 32

A Impracticality of Indifferentiability 33

B Security Definitions 34

C Changelog 34
C.1 Spring 2016 . 34
C.2 Winter 2017 . 35

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 3

E1

L

E2

E1

L

E2

L

E3

1

Figure 1: Examples of the construction. On the left is the two layer right shift scheme,
and on the right the three layer reversing instantiated with independent ciphers.

1 Introduction
Modern understanding of symmetric cryptology has come a long way from a straightforward
adaptation (cf. [?, Def. 3.30]) of the seminal definitions of probabilistic (public key)
encryption [?]. In particular, both authenticated encryption (AE) and variable input
length ciphers have emerged as noteworthy primitives. From an efficiency perspective, a
scheme is ideally one-pass and online, outputting ciphertexts as plaintext becomes available.
In this paper, we concentrate on turning online ciphers into fully fledged ciphers using
only two or three passes (depending on the desired security level).

Authenticated encryption provides both confidentiality and integrity (including of
associated data [?]). Modern AE schemes are deterministic and rely on a nonce to ensure
that encrypting the same message twice produces two unrelated ciphertexts: as long as
nonces do not repeat, security is guaranteed. Once nonces do repeat, leaking plaintext
equality patterns is inevitable, but for many schemes the damage is much worse [?, ?].
The security goal of misuse resistant AE [?] considers whether and how the security of
an AE scheme degrades when a nonce is no longer used just once. There are many ways
to construct authenticated encryption schemes [?, ?], but the number of options reduces
drastically when misuse resistance is required. One approach is the encode-then-encipher
(or pad-then-encipher) paradigm [?, ?, ?], where (public) redundancy is added to the
message before it is being enciphered using a variable input length strong pseudorandom
permutation (±prp cipher).

Variable input length (VIL) ciphers (either ±prp or prp secure) are interesting in their
own right, especially in scenarios where encryption has to occur in situ [?]. One example is
adding confidentiality to an existing networking standard, where packet sizes are fixed and
the expansion implicit when using authenticated encryption cannot be afforded; another
application is disk encryption (possibly using tweaks so sectors can still be accessed
independently).

A prp cipher will yield completely different ciphertexts if there is any difference between
plaintexts. This forces at least two passes: one to read the plaintext and one to write
the ciphertext. Once the length of the input increases, a one-pass or online cipher might
strike a better balance between the conflicting goals of efficiency and robust security. An
online cipher [?] is a variable input length keyed permutation based on a blockcipher

4 Turning Online Ciphers Off

Table 1: Simplified upper bounds on adversarial advantage against our constructions, where
a small advantage implies a secure scheme. Results are parametrised by the maximum
number of queries q of total length σ blocks, the blocksize N and n = logN . Security
bounds for adversaries making variable input length (VIL) or arbitrary input length (AIL)
queries. A bound is “tight” if there exists an attack that asymptotically (in q, σ,N) matches
the security bound.

Construction Goal Security

Linear Layer Ciphers Access Inputs Advantage Proof Tight?

Right-shift 2 prp VIL 1.5 q2/N Theorem 2 Lemma 8

Right-shift 3 prp VIL 1.5(σ/N)2 Theorem 4 Lemma 11

Reversal 2 ±prp VIL Insecure — Lemma 9

Reversal 2 ±prp AIL q2/N Corollary 1 Lemma 8

Reversal 3 ±prp AIL n q/N Theorem 5

that outputs a ciphertext block as soon as it receives a plaintext block (but still based on
all preceding plaintext blocks). In other words, it allows instant processing of plaintext
and outputting ciphertext on the fly. Since online ciphers cannot be prp secure, relaxed
security notions exist that capture “best possible” security. Online ciphers play a key role
in achieving a similarly relaxed notion of online authenticated encryption with graceful
security degradation against nonce reuse [?].

We believe there are many scenarios where an online cipher’s security limitations are
outweighed by their efficiency, but at the same time there will be situations where full cipher
security is paramount. One could create tailor-made solutions for each of the primitives,
but often it is more desirable to share components. In some circumstances, this might
be solved by using two modes of operation on say AES, but this is not always possible.
For example, HSMs do not generally allow direct access to their internal primitives, so
direct access to the underlying blockcipher (or making single-block calls) may become
prohibitively expensive (as each query typically carries a noticeable latency cost). So,
when black-box use of an online cipher is already available (such as via an existing API),
we are tasked to create a true cipher based on the access to the online cipher only.1

1.1 Our Contribution
We consider schemes formed by composing calls to an online cipher with a simple (publicly
known) mixing layer, and aim to minimize the number of calls made to the online cipher
(Definition 5). We restrict the mixing layer to be blockwise-linear (defined in Section 2.1),
with particular focus on linear layers that simply reorder the blocks, since these can
be implemented most efficiently. Figure 1 highlights two typical constructions under
consideration. Note that neither reversing the blocks nor cycling the final block to the
front is itself is novel: both ideas have been suggested in one way or the other, using more
traditional IV-based encryption schemes [?] or in the context of key-wrap schemes [?].
The novelty of our contribution stems from using an online cipher as underlying primitive,
and what we are able to prove as a result. Table 1 provides a summary of our results.
The security bounds are simplifications of those in the paper, compromising tightness in
favour of clarity (for stricter bounds please refer to the relevant theorems). As a boon, we

1 Obviously if one had direct access to whatever primitive underlies the online cipher, more efficient
(and known) variable input length ciphers could be constructed. Nonetheless, minimizing the number of
calls as imposed by an API is a metric that has previously shown its worth in the context of authenticated
encryption [?].

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 5

describe an explicit correspondence between tweakable blockciphers and online ciphers
(Theorem 1), extending an observation by Rogaway and Zhang [?].

If one is not concerned about an adversary making queries of the construction’s inverse,
then only two calls to the online cipher are required to achieve security up to the birthday
bound, in terms of indistinguishability from a random permutation. Indeed, it suffices
for the linear layer to move the final block to the start (Theorem 2), as long as the map
remains invertible. If one requires security beyond the birthday bound (something most
symmetric schemes do not provide), one must make at least three queries to the online
cipher (Lemma 8). Perhaps surprisingly, we find that three suffices: again using simply a
right shift between layers leads to security until almost the blocksize (Theorem 4).

Security against adversaries making inverse queries (i.e. ±prp) is provided by using a
linear layer that reverses the message. Unlike the prp case, using just two online cipher
calls is not sufficient (Lemma 9), but security can be recovered by using a slightly modified
construction (Theorem 3) or restricting the adversary to only making queries of a single
length (Corollary 1). When three rounds are used, security is achieved beyond the birthday
bound (Theorem 5), against adversaries who make queries of just a single length. We are
not aware of any attacks matching this bound, and believe it to also hold in the VIL case
(where adversaries may make queries of variable lengths), leaving these as open problems.

1.2 Applications
We provide a concrete way for converting an online cipher into a true cipher. Our methods
can trivially be extended to form tweakable ciphers from tweakable online ciphers with
the tweaks and bounds of the non-tweak setting, or indeed from a non-tweakable online
cipher to a tweakable cipher. There exist many ways to turn a true cipher into a secure
AE scheme (e.g. encode-then-encipher [?, ?]). Moreover, Hoang et al. demonstrate that
with a tweakable cipher one may achieve the even stronger goal of Robust Authenticated
Encryption [?, Theorem 5] (itself implying full misuse-resistant security [?]). Incorporating
our results plugs the gap, allowing one to turn a secure online cipher into an Authenticated
Encryption scheme meeting the strongest of security objectives.

This further reinforces the assertion that online ciphers are an interesting object,
meriting future study. As discussed by Hoang et al., there exist times when a user has to
compromise security in return for other savings [?, Section 1: “Ciphertext Expansion”]
such as reduced power consumption. Our construction provides a method by which real
world devices may do this without requiring multiple primitives. This reduces the number
of possible failure points and may reduce hardware or code footprint, while decreasing the
cost and complexity of certification or verification. When optimal security is not required,
the online cipher may be used directly. However, when security must be maximised, one
may instead use our construction to provide Robust AE security.

1.3 Related Work
The concept of an online cipher was first studied by Bellare et al. [?], providing the initial
security definitions, against which they investigate some CBC variants. The security
definitions and their relationships were developed through a number of papers [?, ?, ?, ?].

Later, Rogaway and Zhang exposed the close relationship between tweakable block-
ciphers and online ciphers [?], an observation that has since been exploited by others,
yielding several explicit constructions (e.g. McOE [?]). There now exist a wide range of
online cipher constructions, such as COPE [?], POE [?] and ELmE [?], the majority of
which achieve birthday bound security. We are not aware of any online ciphers whose
security might extend beyond the birthday bound; we consider this an interesting open
problem in its own right, for which our research provides additional motivation.

6 Turning Online Ciphers Off

As part of our study, we investigated some constructions similar to the CMC-core [?]
(Section 4.2), finding that upgrading the CBC sections to secure online ciphers was not
sufficient to allow removal of the mixing layer. One of the three round constructions
is similar to the PIV construction of Shrimpton and Terashima [?], but as discussed in
Section 5 their results cannot be applied in our setting due to the structure available to
the adversary from the internal online cipher.

The original AESKW algorithm [?] follows a similar design, since it can be decomposed
into a series of calls to an online cipher and a linear layer, but is provided without proof;
the KW1 algorithm [?] uses the cyclic shift instead. Our results are a step towards proving
the security of these standardized key wrap mechanisms, but are not directly applicable
since their constructions also carry forward the state of the internal cipher.

As an alternative to our approach based on an online cipher, one can build a variable
length cipher directly from a blockcipher (as TET [?] or AEZ [?] do), or extend the domain
of a tweakable blockcipher (e.g. Minematsu’s construction [?]). One could use an online
cipher to emulate the blockcipher or tweakable blockcipher in these constructions but this
would require excessively many calls to the online cipher, considerable less efficient than the
three calls of our construction. If the online cipher itself is bootstrapped from a blockcipher
to which a designer has direct access, arguably comparison in terms of blockcipher calls
and overhead would be more relevant.

1.4 Context and Caveats
We will model the online cipher as an ideal online permutation, leading to an information-
theoretic proof. Instantiating the scheme with any specific online cipher construction
incurs an extra term (expressing the online-cipher security of the chosen primitive). We
will assume that the online ciphers are independent for every layer. This approximates
the real constructions, and can itself be easily implemented with a single online cipher
courtesy of the close relationship between tweakable blockciphers with arbitrary length
tweaks and online ciphers (e.g. by prefixing each call with a marker corresponding to the
appropriate cipher), or, alternatively keying or tweaking the ciphers independently suffices.

We express our results in terms of the blocks Σ of a blockcipher, since most online
ciphers are built around some internal block cipher, which is explicitly reflected in their
syntax and security notions. Essentially, this means we consider ciphers with domain
Σ∗, as opposed to the preferable {0, 1}∗. For schemes bootstrapped from AES, we have
Σ = {0, 1}128, which implies that our ciphers operate on input sizes that are a multiple of
128 bits. We ignore this subtle (but practically relevant) shortcoming, that has haunted
other work on online ciphers as well [?, ?], and remark that existing domain completion
techniques are not without issue.

2 Preliminaries
2.1 Notation
Arrays and lists are indexed from 1, and initialised empty. Within proofs and explanations,
X := Y means that X is defined to be Y . In the context of pseudocode, T ← U means
variable T takes value U . If L is a (finite) set, then L←∪ x is shorthand for L← L ∪ {x},
whereas X ←$ L means that the variable X samples uniformly from L. |L| denotes the
number of elements of L. The symbol ? denotes a wildcard that may take any value from
the appropriate set.

We define bad as the union of bad events badi, so a game sets bad if badi is triggered
for any i. At times badj (similarly badji) will be used to denote the event of triggering bad
(resp. badi) while interacting with the world or oracle j as appropriate.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 7

To aid verifiability and clarity, longer proofs will be broken up into a number of claims:
each proof of a claim will end with �, and will denote the end of the overall proof.

Finally, we will use the terms encryption and decryption (or variants thereof) to describe
forward and backward queries to the construction. We will use the notation ET to refer to
a cipher with tweak T , and E−T will be the inverse of the cipher under this same tweak
(the negation should be viewed as acting on the E rather than on the tweak).

Blocks and strings The results in this paper are intrinsically block oriented, with an
exclusive focus on Σ∗ rather than the more general {0, 1}∗, and we allow this to guide
our definitions. The set of blocks is a finite set Σ, where the blocksize N = |Σ| is often
inherited from some underlying blockcipher—usually N = 2128.

A string of blocks (or simply string) is an element S ∈ Σ∗, where Σ∗ :=
⋃∞
n=0 Σn. The

length of a string |S| is its length in blocks. For a string X, denote by X[i] the ith block
of X. Let X[i..j] := X[i]|| . . . ||X[j], or the empty string ε if j < i, where || denotes the
concatenation of strings. Conversely, X is the blockwise reversal of X, so if m = |X| then
X := X[m]||X[m − 1]|| . . . ||X[1]. We will also let dXek := X[1..k] be the first k blocks
of X (its so-called prefix). The set of non-empty strings is Σ+ :=

⋃∞
n=1 Σn, and thus

Σ+ = {Σ||x : x ∈ Σ∗}.
For any x ∈ {0, . . . , Nm − 1}, denote by 〈x〉m an m-block string that unambiguously

encodes x (the choice of encoding is not important, as long as it is injective). A function
f : Σ∗ → Σ∗ is length preserving if |f(X)| = |X| for any string X. It is blockwise linear if
each output block is a linear combination of the input blocks.

2.2 Primitives
We use a number of standard primitives, in particular the notions of a cipher (e.g. [?]),
tweakable blockcipher [?] and online cipher [?]. The keyspace (which we will assume to
be the same for all our ciphers) is denoted by K, and we assume all ciphers to be length
preserving.

Definition 1 (Cipher). A cipher E is a family of permutations Ek on inputs X ∈ X ⊂ Σ∗
indexed by a key k ∈ K. If X = Σ, we say it is a block cipher. If X = Σ+ and the
construction is length preserving, it is a cipher acting on blocks.

Definition 2 (Tweakable blockcipher). A tweakable blockcipher Ẽ is a family of permuta-
tions of Σ, indexed by both a key k ∈ K and a tweak T ∈ T , where T is the tweak space.
We denote application of this permutation to block M ∈ Σ by M ′ ← ẼTk (M), and its
inverse by M ← D̃T

k (M ′) or M ← Ẽ−Tk (M ′).

Thus a tweakable blockcipher (TBC) can be thought of as a collection of blockciphers,
an instance of which is chosen by the tweak.

Definition 3 (Online cipher). An online cipher is a cipher for which the ith block of
ciphertext depends only on the first i blocks of plaintext. Thus it is a family E̊ of
permutations on Σ+ indexed by some k ∈ K, where for any A,B ∈ Σ∗, E̊k(A||B)[1..|A|] =
E̊k(A).

This formalisation of an online cipher (due to Bellare et al. [?]) describes a construction
that can output ciphertext blocks as soon as the corresponding plaintext blocks are
available. The final type of cipher we define is not widely studied in and of itself, but often
occurs internally as part of the constructions of authenticated encryption modes based on
online ciphers (e.g. [?]), since it is less susceptible to length extension attack.

Definition 4 (Online-but-last cipher). An online-but-last cipher is a cipher that is online
for all but the final block. Thus it is a family E of permutations on Σ+ indexed by some

8 Turning Online Ciphers Off

function $T (M)
C←$ Σ|M |
if (T,M, ?) ∈ F then

C ← FT (M)
F ←∪ (T,M,C)
return C

function $−T (C)
M ←$ Σ|C|
if (T, ?, C) ∈ F then

M ← F−T (M)
F ←∪ (T,M,C)
return M

Figure 2: A lazily sampled tweakable random function with inverse, with internal table F .

k ∈ K, where for any m > 0 and A ∈ Σm, Ek(A||B)[1..(m− 1)] = Ek(A)[1..(m− 1)] for
all B ∈ Σ∗.

In a purely syntactical sense, an online cipher is also online-but-last. However, a ran-
domly sampled online-but-last cipher E is unlikely to be online, since w.h.p. Ek(A||B)[m] 6=
Ek(A)[m] for any B ∈ Σ+. To pre-empt ourselves somewhat, this means a secure online
cipher is not a secure online-but-last cipher when queries can be made of multiple lengths
(the VIL setting). However, when queries can only be made of a single length (AIL), the
definitions coincide.

Ideal Objects An online permutation on blocks Σ is a length preserving permutation from
π̊ : Σ∗ → Σ∗ such that π̊(A||B)[1..|A|] = π̊(A) for all A,B ∈ Σ∗. Define OPerm(Σ) as the
set of all online permutations π̊ with blocks Σ. Then the ideal online permutation samples a
permutation from OPerm(Σ) uniformly, making every possible online permutation equally
likely.

Similarly, we define the ideal primitives for random functions, tweakable block ciphers
and ciphers by first defining the set of all such objects, following standard terminology
neatly collated by Halevi and Rogaway [?]. Define Perm(Σ∗) as the set of all length-
preserving permutations π : Σ∗ → Σ∗; Func(Σ∗) to be the set of all length-preserving
functions $: Σ∗ → Σ∗; Func(T ,Σ) the set of all functions $: T × Σ → Σ where for any
T ∈ T the map M → π̃(T,M) is length-preserving; and Perm(T ,Σ) the set of functions
π̃ : T × Σ → Σ, where for any T ∈ T the map M → π̃(T,M) is a length-preserving
permutation. In each case the ideal construction samples an element from the set uniformly
at random.

Slightly more involved is the ideal (tweakable) random function with inverse, in which
the encryption and decryption interfaces are instantiated with independently sampled
(tweakable) random functions, subject to the condition that they never contradict onean-
other. This is commonly done by “lazy sampling”, where values for the function (or
its inverse) are selected as required: with each query, if the value is already defined it
is returned, and if not a value is uniformly sampled and recorded (see Figure 2 for a
code-based definition).

2.2.1 Security Notions

Intuitively, a cipher is secure if even given a large number of input–output pairs, virtually
nothing is known about its behaviour on other values: every permutation that does not
contradict already known information is equally likely. We measure this in terms of the
probability an adversary can distinguish between the real scheme and an idealised version.

Adversarial advantages. To capture indistinguishability, we will provide an adversary
access to one of two worlds; the adversary’s task is to determine with which he is commu-
nicating. Each world is a collection of oracles—in this paper interfaces to a function (such

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 9

as a permutation) and possibly its “inverse” . Eventually an adversary A interacting with
W will terminate with output x, which we denote by AW → x.

Adversaries are computationally unbounded, but only allowed a limited number of
queries to the available oracles. Without loss of generality, we assume these information
theoretic adversaries are deterministic and minimal (so do not make queries equivalent to
those already made, such as repeating queries).

The distinguishing advantage for adversary A between worlds W0 and W1 is

∆
A

(
W0

W1

)
:=
∣∣P [AW0 → 1

]
− P

[
AW1 → 1

]∣∣ .
We generalise this to classes of adversaries by taking the maximum advantage of any
adversary in the class. In particular, the maximum advantage for all adversaries making
at most q queries is

∆
q

(
W0

W1

)
:= max

A∈Adversaries
A makes ≤q queries

∆
A

(
W0

W1

)
.

Standard security notions The security notions of prf, prp, tprf, tprp and oprp are defined
by the adversarial advantage in distinguishing a primitive from the ideal random function,
ideal permutation, ideal tweakable permutation and ideal online permutation respectively
(when provided with oracle access to just the encryption interface). Analogously, we define
±prf, ±prp, ±tprf, ±tprp, ±oprp by providing oracle access to both the forward and inverse
interfaces. We delay the security definitions for an online-but-last cipher to Section 3.2.
The complete list is provided in Appendix B, but as an example,

Advoprp
E̊ (A) := P

[
k←$K : AE̊k → 1

]
− P

[̊
π←$ OPerm(n) : Aπ̊ → 1

]
.

For some goal xxx, Advxxx
P (q) is defined as the maximum across all adversaries making q

queries. Informally, we say a scheme P is a secure xxx if Advxxx
P (q) is sufficiently small.

AIL and VIL For constructions allowing variable input lengths (such as online ciphers),
the default security notions allow an adversary to make queries of any (adaptively chosen)
lengths. This security notion is referred to as the Variable Input Length (VIL) setting
(e.g. [?]). The Arbitrary Input Length (AIL) setting is a restriction of this, allowing the
adversary to make queries of any single length. Effectively, the first query an adversary
makes, fixes this length.

The AIL flavour can be thought of as a point-wise security definition, in that it holds for
any (single) length, but not necessarily multiple lengths at once. The stronger VIL notion
corresponds to a uniform security definition, holding across all lengths simultaneously. We
differentiate between the two settings by denoting AIL instances by (for example) ±prp•,
letting ±prp denote the VIL case.

2.3 Composition Constructions
We seek a framework for efficiently converting a secure online cipher into a fully secure
cipher, ideally using only a small number of calls to the online cipher, sandwiched together
around some highly efficient invertible mixing layer(s). We ignore pre- or post-whitening
layers, because an adversary can trivially remove them.

Our proofs will be in the standard model, and will all begin by switching out the online
cipher for an ideal online permutation. This step is essentially unavoidable, and requires
the online cipher be secure against adversaries with the access corresponding to that which

10 Turning Online Ciphers Off

they will have to the overall construction. To construct a ±prp, we require the online
cipher be an ±oprp; for a prp it suffices for the online cipher to be an oprp. Henceforth, we
will take this step as read, and instead directly bound the remaining term: the advantage
of distinguishing a construction built around ideal online permutations from a true cipher.

Together, these observations motivate the following definition:

Definition 5 (The ΠL
i construction). Define ΠL

i to be the composition of i calls to ideal
online permutations E1, . . . , Ei around (i− 1) applications of a public family of blockwise
linear layers L.

So, for example, ΠL
2 (M) = E2 ◦ L ◦ E1(M). By considering various combinations of

(L, i), we will observe that some combinations lead to schemes with prp or ±prp• security.
When clear, we may omit the linear layer from the notation.

Just using one call to the online permutation layer implies there is no linear layer, thus
Π1 equals E1, and so is online. Thus it can be trivially distinguished from a prp• with
two queries. Explicitly, the ciphertexts of 〈0〉1||〈0〉1 and 〈0〉1||〈1〉1 will always agree on
the first block of output for an online cipher, yet rarely for a true prp. Similarly, when
L is the identity function, for any i the composition ΠL

i is simply that of multiple online
permutation calls, and thus also an online permutation, meaning the same attack applies.

Candidate linear layers The most obvious candidates for linear layers are blockwise
permutations: maps that simply reorder the blocks. In this paper we will focus on the
blockwise reversal map rev as the simplest map that may reasonably lead to a ±prp.
Inspired by the choices of AESKW [?], we will also consider the right circular shift right
and by association its inverse, the left circular shift left. Formally, for any M ∈ Σm, these
maps are defined by:

right(M) := M [m] || M [1] || . . . || M [m− 2] || M [m− 1]
left(M) := M [2] || M [3] || . . . || M [m] || M [1]
rev(M) := M [m] || M [m− 1] || . . . || M [2] || M [1] .

3 Initial Observations and Standard Results
Before our main investigation, we first cover a number of auxiliary results that later proofs
will build on. After recalling a number of well-known results, we move on to explore the
close relationship between online ciphers and tweakable blockciphers.

3.1 Standard Proof Techniques
3.1.1 Classical Bounds

To bound various collision events, we’ll use the well-known birthday bound (Lemma 1).
Lemma 2 reproduces the ±prp–±prf switching lemma by Halevi and Rogaway [?, Ap-
pendix C], which we use in several proofs to hop from a random permutation to a random
function with inverse.

Lemma 1 (Birthday bound). The probability that a list of q independent random variables
sampled uniformly from Σm contains a repeat is bounded. Explicitly,

q(q − 1)
4 ·Nm

≤ P [a1, . . . , aq←$ Σm : ∃i 6= j s.t. ai = aj] ≤
q(q − 1)
2 ·Nm

where the lower bound requires q ≤
√

2Nm, and the upper bound holds for all q.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 11

Lemma 2 (±prp–±prf switch). One cannot distinguish a random permutation from a
random function with inverse any better than achieving collisions in the random function,
even when given access to both interfaces. Therefore, if the shortest queries are m blocks
long, ∆

q

(
π , π−1

$, $−1

)
≤ 1

2q(q − 1)/Nm.

3.1.2 Game-Based Proof Techniques and Lazy Sampling

In this section we discuss a number of game-based proof techinques, based on work by
Bellare and Rogaway [?]. We will model standard primitives through “Lazy Sampling”,
where random elements are only sampled when required. Internal variables of a construction
are shared between the corresponding forward and backward interfaces. As an example,
Figure 3 defines an oracle that implements an ideal tweakable permutation through lazy
sampling, with both Ẽ and D̃ having access to the same internal table π that records
previously determined values. Similarly, we will later encounter Figure 5, defining a lazily
sampled ideal online permutation.

Triples as functions To concisely describe the partial state of a lazily sampled function,
we will allow sets of triples to represent partially defined tweakable functions, slightly
overloading the notation. Specifically, the current state of the lazily sampled, tweakable
function π is identified with the set π representing its internal table, so πT (M) = C ⇐⇒
(T,M,C) ∈ π and similarly π−T (C) = M ⇐⇒ (T,M,C) ∈ π. Note that neither π as a
set nor as a function incorporate any lazy sampling on its own: any changes to π will have
to be explicit (and we’ll use separate notation to denote the function which additionally
takes care of the sampling). In this work, all functions represented in this way will be of the
form π : Σ∗ × Σ → Σ (the syntax of a tweakable blockcipher introduced in Definition 2),
so we will introduce the following shorthand, allowing ourselves to add a string of blocks
in one go. For any k and M,C ∈ Σk, and any T ∈ Σ∗, we let π←∪ (T,M,C) concisely
represent “For every i ∈ {1, . . . , k}, π←∪ (T ||dMei−1,M [i], C[i])”.

Identical-until-bad Several of our proofs will demonstrate two worlds are indistinguishable
until the adversary triggers some event bad, known as identical-until-bad. This allows us to
bound the (in)security of the construction by bounding the probability that an adversary
communicating with either of the two (until this point identical) games can cause a bad
event. We generalise the traditional terminology somewhat, defining what it means for two
worlds to be identical-until-bad, and being less restrictive on our definition of “identical”.

Bellare and Rogaway define identical-until-bad as two code-based games that only
differ in branches that necessarily set bad. We soften this demand by instead requiring
that the games act identically until a query that sets bad. This means that, until bad is
set, all output variables are identically distributed, as are any variables made available to
other oracles or interfaces, such as bad flags or internal tables π. This subtle difference
allows us to merge the identical-until-bad and code-reordering steps of the seminal work,
and allows us to consider a whole sequence of games to be identical-until-bad, as long as
every one of them acts identically until bad is set.

Two worlds are identical-until-bad if for any adversary the games induced by the
adversary interacting one of the worlds are identical-until-bad. We might also refer to
two oracles being identical-until-bad, in which case the corresponding worlds that are
identical-until-bad should be clear from the context.

Implications A direct result of using lazy sampling is that it becomes apparent how
similar several of the ideal primitives are to one-another. Our next lemma states this,
providing an alternative description of the afore-mentioned ±prp–±prf switch in terms
of actual code-based games, as well as incorporating tweaks: it is this version we will

12 Turning Online Ciphers Off

function ẼT (M)
if (T,M, ?) /∈ π then

C←$ Σ \ image(πT)
π←∪ (T,M,C)

return πT (M)

function D̃T (C)
if (T, ?, C) /∈ π then

M ←$ Σ \ domain(πT)
π←∪ (T,M,C)

return π−T (C)

Figure 3: Modelling the tweakable blockcipher Ẽ with inverse D̃ via lazy sampling.

use for the actual switching within later proofs. The associated code, given in Figure 4,
defines a tweakable random permutation, a random function, or a pair of random samplers,
depending on which sections of optional code are included. Moreover, since the oracles
given are all identical-until-bad, any combination of the four bad events can be used for
switching. Thus one may switch a random permutation for something that is a random
permutation in the forward direction, and a random sampler in the inverse direction.

If the bad events are bounded directly this technique often leads to excessively large
adversarial advantages (discussed further in Section 3.3). However, when carefully combined
such that bad events align between switches it can be an effective and efficient tool.

Lemma 3 (Code-based ±prp switches). Until either tweak–input or tweak–output pairs
repeat, an ideal tweakable permutation is indistinguishable from a pair of tweakable random
samplers. Moreover, a partial switch can also be performed to exchange the two oracles of
an ideal tweakable permutation for a tweakable random permutation in one direction and a
random sampler in the other. In particular, let π̃ be an ideal tweakable permutation, $ an
ideal tweakable function, and r̃ a tweakable random sampler. Then, for any adversary A,

∆
A

(
π̃, π̃−1

$, $−1

)
≤ P [bad2 ∨ bad4] ,

∆
A

(
π̃, π̃−1

r̃, r̃−1

)
≤ P [bad1 ∨ bad2 ∨ bad3 ∨ bad4] ,

∆
A

(
π̃, π̃−1

π̃, r̃−1

)
≤ P [bad3 ∨ bad4] ,

and similarly for other combinations.

Proof. This result follows by inspection of Figure 4.

3.2 Equating Online Ciphers and Tweakable Block Ciphers
Online ciphers can be formed from a chain of tweakable blockciphers, an observation that
allowed Rogaway and Zhang to simplify the analysis of online ciphers [?]. We observe that
an even closer relationship exists: an online cipher is a tweakable blockcipher with variable
length tweak. That an online cipher induces a tweakable blockcipher is simply setting a
result of Bellare et al. into modern terminology [?, Proposition 1], while the converse is an
extension of the result of Rogaway and Zhang. So, the result is not particularly surprising,
but is nonetheless worth highlighting, since it yields neater terminology to study online
ciphers.

We introduce some additional notation to better expose the relationship. Let E̊(·)
be an online cipher and A,B ∈ Σ∗ with |A| = a and |B| = b. Then, define E̊A(B) :=
E̊(A||B)[(a+ 1)..(a+ b)]. So, E̊A(B) returns the output blocks corresponding to B when
processed with a prefix of A. By the online property, E̊(A||B) = E̊ε(A)||E̊A(B). If we

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 13

function ẼT (M)
C←$ Σ
if (T,M, ?) ∈ π then

bad1 ← true
C ← πT (M)

else if (T, ?, C) ∈ π then
bad2 ← true
C←$ Σ \ image(πT)

π←∪ (T,M,C)
return C

function D̃T (C)
M ←$ Σ
if (T, ?, C) ∈ π then

bad3 ← true
M ← π−T (C)

else if (T,M, ?) ∈ π then
bad4 ← true
M ←$ Σ \ domain(πT)

π←∪ (T,M,C)
return M

Figure 4: Comparing tweakable random functions. The list π is initialised empty. To be
a uniform sampler, we include none of the boxed code. A tweakable random function
includes the unboxed code and also the code in dashed boxes. Finally, a tweakable random
permutation uses all of the code. Thus we see the three constructions (and the various
hybrids of them) are all identical-until-bad.

think of E̊·(·) as a tweakable cipher, A is the tweak under which B is encrypted, and in
the online context, we refer to A as the prefix under which B is encrypted. Thus the prefix
is similar to the state in the incremental online cipher characterisation [?], except that
prefixes may be arbitrarily large, whereas states have fixed length.

Similarly, we define D̊A(B) := D̊(E̊(A)||B)[(a+1)..(a+b)], which is the inverse of E̊A(B),
as D̊A(E̊A(B)) = B. Computing D̊A(·) is not unreasonably onerous, since to calculate
D̊(A||B) one first calculates M = D̊(A), then D̊(A||B) = M ||D̊M (B), something an online
cipher tends to do internally anyway. Our notation emphasises the correspondence with
tweakable blockciphers, since is A the tweak under which B is decrypted.

Theorem 1. There is a security-preserving, one-to-one correspondence between online
ciphers on blocks Σ and tweakable blockciphers on Σ with tweak space Σ∗.

Proof. We begin by defining a map f from the set of online ciphers to the set of such
tweakable blockciphers. The tweakable blockcipher will call the online cipher on T ||M ,
before discarding all but the final block, effectively using the bulk of the cipher call
preprocessing the tweak. So, if E̊ is an online cipher then f(E̊) is the tweakable blockcipher
f(E̊)Tk (M) := E̊Tk (M) for any M ∈ Σ and T ∈ Σ∗.

Conversely, the map g from tweakable blockciphers to online ciphers will call the
tweakable blockcipher on each block, using previous blocks as the tweak. So, for tweakable
blockcipher Ẽ, the online cipher g(Ẽ) is defined for all M ∈ Σ∗ with m = |M | by

g(Ẽ)k(M) := Ẽεk(M [1])||ẼM [1]
k (M [2])|| . . . ||ẼM [1..(m−1)]

k (M [m]).

We observe that for any tweakable blockcipher Ẽ and online cipher E̊ we have f(g(Ẽ))k = Ẽk
and g(f(E̊))k = E̊k. Thus the maps are in fact inverses, defining a correspondence.

With the correspondence established, we move on to proving it preserves security. The
key observation is that, because the map defines a correspondence between elements, it
must map the set of all tweakable blockciphers onto the set of all online ciphers, and
vice versa. That is, f(OPerm(Σ)) = Perm(Σ∗,Σ) and g(Perm(Σ∗,Σ)) = OPerm(Σ). So,
if an online cipher is distinguishable from the ideal online cipher, by applying f we see
that the corresponding tweakable blockcipher is distinguishable from the ideal tweakable
blockcipher, and vice versa. Thus, security of one implies security of the other.

14 Turning Online Ciphers Off

function EP (M)
C←$ Σ
if (P,M [1], ?) ∈ π̊ then

C ← π̊P (M [1])
else if (P, ?, C) ∈ π̊ then

C←$ Σ \ image(̊πP)
π̊←∪ (P,M [1], C)
C ′ ← EP ||M [1](M [2..|M |])
return C||C ′

function DP (C)
M ←$ Σ
if (P, ?, C[1]) ∈ π̊ then

M ← π̊−P (C[1])
else if (P,M, ?) ∈ π̊ then

M ←$ Σ \ image(̊πP)
π̊←∪ (P,M,C[1])
C ′ ← DP ||M (C[2..|C|])
return M ||M ′

Figure 5: A mechanism for lazily sampling an ideal online permutation E with inverse D
and internal table π̊ after processing prefix P . The table π̊ is initialised empty. We observe
that if (P,M, ?) /∈ π̊ then (P ||M,?, ?) /∈ π̊ (because of how π̊ is filled in). The routines
above could be simplified by directly sampling from outside the image of π̊ rather than
first sampling uniformly; this mechanism was chosen because to highlight the relationship
with tweakable permutations and facilitate later switches.

Online-but-last ciphers An online-but-last cipher is a cipher that is online for all but
the final block. We can expose this feature by extending the tweakable blockcipher
correspondence by adding a second tweakable blockcipher for the final block. So, an
online-but-last cipher Oobl is the concatenation of an online cipher E̊, and a separate
tweakable block cipher Ẽ . That is, for a query M ∈ Σm,

Oobl(M) = E̊(M [1..(m− 1)])||ẼM [1..(m−1)](M [m]).

3.3 Ideal Online Permutations
For the remainder of the paper, let E be the encryption routine of a lazily sampled ideal
online permutation, with inverse D, and internal (partial) table π̊. Figure 5 presents a
code-based definition for how E and D operate and use π̊ internally. When multiple ciphers
Ei are used, the corresponding internal tables will be denoted π̊i.

Immediate properties of ideal online permutations Applying the correspondence be-
tween tweakable blockciphers and online ciphers, we can view an ideal online permutation
as an ideal tweakable single-block permutation. Consequently, after processing a fresh
prefix, the (remaining) output will appear uniformly random: if no call to E has been
made explicitly or implicitly tweaked by A, then EA(B) is uniformly sampled from all
strings of length |B|. That is, if the adversary has not yet queried EA(·), either directly or
indirectly as part of a longer query, the output is uniformly random. Moreover, we can
ensure independence between two calls to an ideal online permutation E by taking care
with the length of tweaks: as long as |t| ≥ |u|+ |y|, Et(x) is independent of Eu(y).

Even if tweaks repeat, the final blocks behave sufficiently random to derive meaningful
results. Explicitly, when called with distinct inputs the final output blocks collide with
probability at most that of colliding two blocks sampled uniformly at random.

Lemma 4. Let R = (R1, . . . , Rq) be a list of q blocks, where each Ri = Eti(xi) is the
output of the encryption of a unique input by a random online permutation E, meaning
ti||xi 6= tj ||xj for any i 6= j. Then, the probability of a collision in the list (that Ri = Rj
for i 6= j) is bounded, with P [∃i 6= j s.t. Ri, Rj ∈ R] ≤ 1

2q(q − 1)/N , where the probability
is taken over the choice of online permutation E.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 15

Proof. Let i 6= j. Then, by construction, Ri = Rj ⇐⇒ Eti(xi) = Exj (sj). If ti = tj ,
then Ri = Rj implies that xi = xj , which contradicts the assumption that all inputs were
unique, and so cannot happen. If ti 6= tj , the tweakable cipher has different tweaks in
instance, and so the two distributions are independent of oneanother. Thus Ri and Rj
are both sampled uniformly at random and independently, and so collide with probability
N−1. So, in either case, P [Ri = Rj | i 6= j] ≤ N−1. Applying the union bound, we get the
required result.

3.3.1 Identical-until-bad switching lemmas

Compared to the previous results, the next two lemmas are slightly more cumbersome to
define, but are essentially the extension of Lemma 3 (the code-based ±tprp-±tprf switches)
into the online setting. They will allow us to replace an ideal online permutation with an
alternative routine that is easier to reason about such that the replacement is undetectable
until a bad event occurs. Lemma 5 demonstrates that we may switch between the oracles
of Figure 6, and use O2 instead of O1, while Lemma 6 shows that the oracles of Figure 7
may be exchanged, in particular allowing O4 to replace O3, as long as bad does not occur.

We will require that all queries have a prefix of length p, and total length at least
p+ 1, and will simplify the code by assuming that the prefix–message pair does not repeat,
capturing this unwanted behaviour with a bad event. In each case, we begin by parsing the
input into a triple (P,Q,R) such that |P | = p and |Q| = 1. The choice of variable names
(P,Q,R) is inspired partially by using P for “prefix”, but also to reduce the number of
variables using the same names in later results, making it easier to state which variable in
the lemmas corresponds to which variable in the later theorems.

Direct and indirect adversaries An adversary with direct unrestricted access to any of
the oracles O1, O2, O3 or O4 can easily trigger bad. Taking O1 as an example, querying
(P,Q,R) then (P,Q,R′) will trigger badA. So, when we apply these lemmas, we cannot
simply bound the probability of bad in an abstract setting, and sum it with other partial
bounds. Rather, we must more clearly describe the access the relevant adversary has,
before bounding their ability of triggering bad.

Ultimately, we will be interested in the indistinguishability of constructions built around
calls to ideal online permutations. An adversary will then only have access to the overall
construction which itself triggers internal calls to the ideal online permutation, the inputs
to which are not wholly controlled by the adversary. Lemma 5 and 6 tell us that it is
acceptable to replace these ideal online permutation calls with slightly different objects, so
long as the bad events do not occur. In this significantly more restricted setting, we will
find that the events are sufficiently hard to trigger that they lead to meaningful security
results.

Unique prefix queries Lemma 5 compares O1, which essentially describes access to E ,
with O2, which replaces the second and third sections of the online permutation call with
simpler routines. So, the lemma essentially allows replacement the later parts of an online
permutation call with random sampling, as long as the prefix and first non-prefix block do
not repeat.

Lemma 5. Fix p ≥ 0, let E be an ideal online permutation with internal table π, and let
O1 and O2 be the routines given in Figure 6. Consider an adversary A with access to
either O1 or O2. Assume all queries are at least p+ 1 blocks in length, parsed such that
|P1| = p and |Q1| = 1. Then, the oracles O1 and O2 are identical-until-bad.

Proof. O1 is simply the result of separating out a call to the random permutation via the
online property. O2 replaces the second and third of these permutation calls with random
sampling, neglecting to carry over the consistency checks.

16 Turning Online Ciphers Off

function O1(P1||Q1||R1)
π̊′ ← π̊
P2 ← Eε(P1)
Q2 ← EP1(Q1)
R2 ← EP1||Q1(R1)
if (P1, Q1, ?) ∈ π̊′ then

badA ← true
if (P1, ?,Q2) ∈ π̊′ then

badA′ ← true

return P2||Q2||R2

function O2(P1||Q1||R1)

P2 ← Eε(P1)
Q2←$ Σ
R2←$ Σ|R1|

if (P1, Q1, ?) ∈ π̊ then
badA ← true

if (P1, ?,Q2) ∈ π̊ then
badA′ ← true

π̊←∪ (P1, Q1||R1, Q2||R2)
return P2||Q2||R2

Figure 6: The oracles O1 and O2 are identical until bad. In each case they have access
to the ideal online permutation E and its internal table π̊ (See Figure 5). The bad events
are equivalent, with the duplicate table π̊′ only used because the E calls in O1 update π̊,
rather than it being updated after the bad tests. O1 is simply the result of expanding out
the call to an online cipher via the online property, while O2 expands out some of the
calls before simplifying to something that is identical-until-bad. We use shorthand from
Section 3.1.2 to describe adding each input-output pair to π̊ under the appropriate tweak,
and use a blank line in O1 to keep corresponding code aligned.

The first of these switches (that Q2 may be uniformly sampled) is precisely the case
bad1 ∨ bad2 of Lemma 3. Since (P1, Q1) was fresh (else badA was set), R1 is encrypted
under a new prefix and thus sampled uniformly at random. Finally, these values are added
to the table π̊ to ensure any future calls to the inverse function are consistent. Together,
until bad occurs, O2 is identical to O1, as required.

Random prefix queries Lemma 6 extends lemma 5 showing that if the prefix is randomly
chosen outside the adversary’s control then the output is essentially uniformly sampled
from all strings of the appropriate rate.

The most useful application of it is that if the first p blocks of a message are randomly
selected outside of the adversary’s control, the output is indistinguishable from that of a
random permutation until a collision occurs in LA or LA′ . A collision in LA′ is simply a
random event, occurring with probability roughly q2/|Σ|p+1. Our constructions will be
such that in general it is hard for an adversary to force a collision on Q1 without ensuring
uniqueness of P1, meaning that the best strategy for triggering badA will also be a random
collision, occurring with roughly the same probability. Thus, by ensuring the conditions
for Lemma 6 are met, it will lead to an overall security bound of around q2/|Σ|p+1 for
some appropriate value of p.

Lemma 6. Fix p ≥ 0, let E be an ideal online permutation with internal table π and inverse
D, and let O3 and O4 be the routines described in Figure 7. Consider an adversary A who
may repeat queries, given access to either O3 or O4, making queries of at least 1 block in
length, parsed such that |Q1| = 1. Then, the oracles O3 and O4 are identical-until-bad.
Moreover, until bad, the outputs of O3 or O4 are randomly sampled and non-repeating.

Proof. Oracle O3 is the same as O1 except for an additional line that randomly samples P1.
So, applying Lemma 5, we can swap the corresponding code for the contents of O2. Now,
since P1 is sampled uniformly and E is a permutation with inverse D, we can equivalently
sample P2 and calculate P1. This yields O4, completing the first part of the claim.

For the second, we observe that O4 is a random function, since the output is inde-
pendently uniformly sampled in three sections. Moreover, any output collisions imply

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 17

function O3(Q1||R1)
π̊′ ← π̊
P1←$ Σp
P2 ← Eε(P1)
Q2 ← EP1(Q1)
R2 ← EP1||Q1(R1)
if (P1, Q1, ?) ∈ π̊′ then

badA ← true
if (P1, ?,Q2) ∈ π̊′ then

badA′ ← true

return P2||Q2||R2

function O4(Q1||R1)

P2←$ Σp
P1 ← Dε(P2)
Q2←$ Σ
R2←$ Σ|R1|

if (P1, Q1, ?) ∈ π̊ then
badA ← true

if (P1, ?,Q2) ∈ π̊ then
badA′ ← true

π̊←∪ (P1, Q1||R1, Q2||R2)
return P2||Q2||R2

Figure 7: Oracles O3 and O4 are identical-until-bad. E is an ideal online permutation,
with inverse D and internal table π̊. As with figure 6, π̊′ duplicates π̊ to ensure tests are
run against the input list, not an updated one. Inputs are at least 1 block long, parsed such
that |Q1| = 1, and p ≥ 0 is a parameter. Oracle O3 corresponds to calling an ideal online
permutation with a randomised prefix. The output of Oracle O4 is randomly sampled
from Σp+1+|R1|, the set of strings p blocks longer than its input. It does not repeat an
output until bad, and until bad the output of O4 is indistinguishable from the output of a
random permutation on p+ 1 + |R1| blocks.

repeated values of (P2, Q2), which implies that (P1, Q2) must have repeated because P1 is
the image of P2 under a permutation. This would have set badA′ , meaning outputs do not
collide until badA′ occurs. Thus O4, and so also O3, is identical-until-bad to a random
permutation.

3.4 An Identical Until Bad Funnel
Suppose we wish to bound the advantage A has at distinguishing two worlds W0 and W2.
Assume we already have that W0 and W1 are identical-until-bad with bad event badA,
and W1 and W2 are identical-until-bad with bad event badB. Applying the traditional
game-hopping mechanism, one would then apply the triangle inequality to bound

∆
A

(
W0

W2

)
≤ ∆

A

(
W0

W1

)
+ ∆

A

(
W1

W2

)
≤ P

[
bad1

A

]
+ P

[
bad1

B

]
.

The identical-until-bad funnel mechanism is based on the observation that until badA∨badB
occurs, W1 is identical to both W0 and W2. Thus, we can more directly bound their
distinguishing distance, with

∆
A

(
W0

W2

)
≤ P

[
bad1

A ∨ bad1
B

]
= P

[
bad2

A ∨ bad2
B

]
≤ P

[
bad2] .

In cases where badA and badB are independent this might not gain us anything, but if
badA and badB are statistically dependent this immediately leads to an improved security
bound. Applying induction to this result leads to the following wholly unsurprising (but
certainly useful) result.

Lemma 7 (Identical-until-bad funnels). Let W0, . . . ,Wn be oracles or worlds. Suppose
for all i ∈ {1, . . . , n} and any adversary A the worlds Wi−1 and Wi are identical-until-bad

18 Turning Online Ciphers Off

= = = !

= = = !

! ? ? ?

! $ $ $

M

X

Y

C

E

L

E

Key:

= Blocks that are the same across all queries.

! Blocks that are unique across all queries.

$ Blocks that are uniformly sampled.

? Blocks whose distribution is unknown/irrelevant.

Intuition: Since the first block output by L depends linearly on
the final input block, varying only this block ensures that for the
construction the first block of all ciphertexts will be distinct.

1

Figure 8: An attack against the prp• security of ΠL
2 (Lemma 8)

for some bad event bad1 ∨ · · · ∨ badi. Then,

∆
A

(
W0

Wn

)
≤ P [bad1 ∨ · · · ∨ badn] ≤ P [badn] .

We term the mechanism a funnel because each step further restricts the region over
which the equivalences all hold, “funneling” us into a more restrictive region bounded by
all the bad events. Observe that a requirement for this routine is that each step beyond
the first preserves every bad events used previously, so that all required events continue to
make sense. That said, maintaining the previous requirements is not entirely unhelpful.

Firstly, the funnel allows us to delay bounding the probability of the bad event until
the final oracle, which tends to be simpler to reason about.

It also allows the designer to “reuse” previous bad events “for free”, without collecting
additional terms into our final security bound. To illustrate this, suppose W0 and W1
are identical until badA; W1 and W2 are identical until badA ∨ badB ; W2 and W3 are also
identical until badA ∨ badB ; and W3 and Wε are identical until badA ∨ badB ∨ badC . Then,

∆
A

(
W0

Wε

)
≤ P

[
bad3

A ∨ bad3
B ∨ bad3

C

]
≤ P

[
bad3] ,

which may be substantially smaller than the four terms present in the traditional bound.

4 Two Layer Constructions
In this section we ask the natural question: what can be achieved using two layers? The
most intuitive candidate for a ±prp is Πrev

2 , but in Lemma 9 we show that this construction
is not secure against adversaries who can vary input lengths. By instead using an online-
but-last permutation as our primitive, we are able to achieve full ±prp security (Theorem 3),
even against variable length queries. This implies the prp• security of the original Πrev

2
construction (Corollary 1).

First, in Lemma 8 we show that using two calls to the online cipher (and irrespective of
the mixing layer), the best one can achieve is security up to the birthday bound. Effectively
we reverse the logic of the previous attack, moving from guaranteed collisions in the first
block of output to a scenario where the construction never collides on those blocks. When
instantiating the linear layer with a simple one-block right shift, we get prp security up to
this bound (Theorem 2).

Lemma 8. The Π = ΠL
2 construction cannot achieve beyond birthday bound security for

message lengths greater than 1, no matter what map is chosen for the blockwise linear
layer L. In particular, Advprp•

Π (q) ≥ q(q−1)
8·N for all q ≤

√
N .

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 19

Proof. Suppose L(X)[1] is independent of X[m] for messages of length m = |X|. Then
the first input block to the second round is independent of the final input block. Thus the
system can trivially be distinguished by querying two messages differing only in the final
block and checking if they share the same first ciphertext block. Henceforth, we assume
that L(X)[1] depends on X[m].

Let M t := 〈0〉m−1||〈t〉1, where m ≥ 2 is chosen arbitrarily to meet length requirements.
The adversary A will vary t to make q ≤ N queries of this form, and A → 1 iff all q
ciphertexts have distinct first blocks. Since A makes q queries, we have that Advprp•

Π (q) ≥
P
[
AΠ → 1

]
− P [Aπ → 1], terms we now bound directly.

We begin by calculating P
[
AΠ → 1

]
, following the logic shown in Figure 8, and label the

internal variables as M,X, Y,C as per the diagram. By the online property, Xt = E(M t)
begins with m − 1 blocks that are the same across all queries. Since the final block is
encrypted under the same prefix each time, the values of Xt[m] are distinct between
queries. By assumption on L, Y t[1] = L(Xt)[1] depends on Xt[m]. Since the other blocks
of Xt are constant through all queries, we must have that Y t[1] = A ⊕Xt[m] for some
A that is independent of t. An online cipher called on just one block is a permutation,
so equality of C[1] blocks occurs if and only if there is equality in Y [1] variables. Overall
then,

t = u ⇐⇒ M t = Mu ⇐⇒ Xt[m] = Xu[m] ⇐⇒ Y t[1] = Y u[1] ⇐⇒ Ct[1] = Cu[1].

So, if for all pairs t 6= u, the first blocks of the ciphertexts will differ and thus P
[
AΠ → 1

]
=

1.
On the other hand, for a random permutation onm > 1 blocks, one expects collisions on

the first output block after enough queries. In particular, the probability all q ciphertexts
have distinct first blocks is simply the product of the probabilities that the first collision
does not occur on the ith query for all i ≤ q. Thus, in the ideal case,

P [Aπ → 1] =
q∏
i=1

(
1− (i− 1)(Nm−1 − 1)

Nm − (i− 1)

)
≤
q−1∏
i=0

(
1− i

2N

)
≤ 1− q(q − 1)

8 ·N .

It is for the final inequality that we require the bound on q.
Taking the difference between these terms, we have Advprp•

Π (q) ≥ q(q−1)
8·N , as claimed.

4.1 Right Shifting Towards a prp
Two obvious candidates for the linear layer are the right and left rotations by one block.
For messages of at least i+ 1 blocks, Πleft

i is not a prp•, since the first output block cannot
possibly depend on the final input block. Moreover, this means Πright

i cannot be an ±prp•,
since its inverse is the Πleft

i scheme instantiated around D unless the message length is
smaller than the number of rounds.

Combining this limitation with Lemma 8 (two layer constructions cannot be indistin-
guishable from a prp• with beyond birthday bound security), Πright

2 is at best a prp up to
the birthday bound. This is in fact the case, a statement formalised as follows:

Theorem 2. Let L be an invertible linear layer that satisfies L(M [1]|| · · · ||M [m])[1] =
M [m], such as right. Then, the ΠL

2 construction is indistinguishable from a random
permutation up to the birthday bound. Explicitly, Advprp

ΠL
2

(q) ≤ q(q−1)
N .

Proof. We will use a very simple identical-until-bad style argument, moving from the real
world to the ideal world. Assume that the final block of output from the first online
permutation call is always unique (at the cost of a birthday bound collision term, by

20 Turning Online Ciphers Off

P1 P2 P3

X1 X2 X3

X3 X2 X1

C3 C2 C1

P ′
2 P ′

3

X2 X3

X3 X2

C3 C2

P1 P2

X1 X2

X2 X1

C ′
2 C ′

1

P ′
2

X2

X2

C ′
2

Figure 9: Attack against Πrev
2 , as described in Lemma 9. The adversary A makes the four

queries shown in this diagram, and returns 1 if the two values labelled C ′2 agree. Shown in
the diagram are the internal variables corresponding to this in the real case, demonstrating
that the collision will always occur, an event that almost never occurs in the ideal case.

Lemma 4). Then, by assumption on the linear layer, the first input block to the second
online permutation call is unique. Thus we can apply Lemma 6 in the case p = 0 to switch
out the second online permutation call for routine whose output is uniformly sampled
and non-repeating (moving from the O3 case to the O4 case). After this switch, the
construction is identical-until-bad to an ideal permutation.

Therefore, it remains to measure the two bad events from the application of Lemma 6.
The first bad event from the lemma is that the first block of input repeats, which by
assumption never occurs. The second bad event is that the first block of output repeats,
which is again a birthday bound collision event.

Thus the construction is identical-until-bad to a random permutation until either of
these two birthday bound collision events occur, and their sum gives the claimed result.

4.2 Two Layers Versus ±prp Security
We move on to consider ±prp security. Such a scheme will still be susceptible to the
birthday attack given in Lemma 8, but what are the minimum properties required of the
linear layer to meet this bound? To prevent a similar attack to the single layer construction,
where certain message blocks could be changed without affecting large portions of the
ciphertext, the linear layer must move blocks to and from each end of its input. This
means that for any strings X,Y ∈ Σm, L(X)[1] must depend on X[m], and L−1(Y)[1]
must depend on Y [m].

So, the most intuitive candidate is Πrev
2 : the two layer construction instantiated around

a linear layer that reverses the order of the blocks. However this turns out to be insecure
in the VIL setting, as shown by the following attack.

Lemma 9. The ±prp advantage against Πrev
2 is Adv±prp

Πrev
2

(q) ≥ 1−N−1 for all q ≥ 4.

Proof. We will provide an explicit adversary A, making 4 queries, each of at most 3
blocks. Note that the attack can be easily generalised to comply with most reasonable
message-length requirements by replacing the blocks P1, P2 and P3 with strings of blocks
of an appropriate length.

Let Π and Π−1 be oracles corresponding to the construction, and let E be the internal
online permutation. We will use “Enc” to refer to the adversaries forward oracle, and “Dec”
for their inverse oracle.

Adversary A makes four queries of varying lengths to the construction, as visualised in
Figure 9. First, A picks an arbitrary three-block string P1||P2||P3, and queries C1||C2||C3 ←

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 21

? ? ? ?

? ? ? $ → !

! ? ? ?

! $ $ $

E1

L

E2

A1 X1 B1

A2
X2 B2

A2B2

B3 X3 A3

Key:

? Blocks whose distribution is unknown/irrelevant.

! Blocks that are unique across all queries.

$ Blocks that are uniformly sampled.

$ → ! Block takes different values with high probability.

Intuition: Inputs must be distinct, so with high probability the fi-
nal block from the first layer is unique. If so, the first input block
to the second layer is unique, and so the remaining output is sam-
pled uniformly. By symmetry, a similar argument can be applied for
inverse queries, checking for collisions in the equivalent place.

1

Figure 10: Intuition behind the AIL-±prp security of Πrev
2 , as shown by the VIL security

of an Online-but-last scheme (Theorem 3).

Enc(P1||P2||P3). Next, A queries P ′2||P ′3 ← Dec(C3||C2) and then C ′2||C ′1 ← Enc(P1||P2).
Finally, A queries α← Enc(P ′2) and returns 1 if and only if α = C ′2.

As shown in the figure, we will always have AΠrev
2 → 1. Let X1||X2||X3 := E(P1||P2||P3).

Then, by the online property, C3||C2 = E(X3||X2). So, P ′2||P ′3 = E−1(rev(E−1(C3||C2)) =
E−1(X2||X3), and thus P ′2 = E−1(X2). Similarly, C ′2||C ′1 = E(rev(E(P1||P2))) = E(X2||X1),
and so C ′2 = E(X2). Therefore Π(P ′2) = E(rev(E(P ′2))) = E(X2) = C ′2.

In the ideal case, when interacting with an ideal permutation π rather than the
construction Π, the coincidence will almost certainly not occur, with P

[
Aπ,π−1 → 1

]
=

N−1. Taking the difference between these two terms, we see that A almost always
distinguishes the scheme from an ideal permutation.

A natural follow-up question is what minor modifications are required to make the
scheme secure. To answer this, we show that the scheme is secure if built around an
“online-but-last” permutation. This is a permutation acting on blocks where the final block
acts like an independent tweakable permutation for each query length, but is online for all
previous blocks.

Since an online permutation is identical to an online-but-last permutation when only
queried with messages a fixed length, this proves the AIL security of Πrev

2 .

Theorem 3. The two round construction Π, built from an online-but-last permutation
around the linear layer that reverses the order of the blocks, is a secure VIL–±prp up to
the birthday bound. Explicitly, Adv±prp

Π (q) ≤ q(q − 1)/N .

Corollary 1. Πrev
2 is a secure ±prp• until the birthday bound, Adv±prp•

Πrev
2

(q) ≤ q(q− 1)/N .

Proof of Theorem 3. We will use an identical-until-bad proof mechanism, following the
intuition shown in Figure 10 and using the variable naming given there. So, upon query M ,
we set B||X1||A←M , where |X1| = |M | − 2 and |A| = |B| = 1. Note that this excludes
single-block queries, but an adversary can learn nothing from these since single-block
queries to an online-but-last cipher are independent from queries of any other length.

Consider first the encryption routine. As discussed in Section 3.2, an online-but-last
cipher is an online cipher whose final block call has been replaced with an independent
TBC, and we swap out this independent TBC for a TPRF. Since the adversary never
repeats a query, the inputs to the TBC never repeat, and so its output (B2) is uniformly
sampled, independent of the input. This means that the second call to the online-but-last
cipher always begins with a uniformly sampled block, and so (by the online-but-last version
of Lemma 6 with x = 0), its output (B3||X3) is indistinguishable from the output of a
random permutation until there is a collision on B2.

22 Turning Online Ciphers Off

The equivalent switches in decryption are undetectable until the adversary either can
distinguish the tprp–tprf switch or collide on the randomly sampled A2. Making both sets
of switches at the same time we reach a scheme that is indistinguishable from a ±prp, so it
remains to bound the probability of detecting these switch events. The tprp-tprf switches
are (collectively) bounded by Lemma 2, since the bound is maximised by an adversary who
makes only queries of a single length. The probability of colliding the random variables
with those from any previous query (encryption or decryption) is bounded by Lemma 1.
Summing these two terms, the overall advantage is bounded by q(q − 1)/N .

5 Three Round Constructions: Moving Beyond the Birth-
day Bound

We have shown that birthday bound security is the best possible with just two layers. A
natural question is whether security increases with more calls to the online cipher. We
find in the affirmative: there exist schemes making three calls to the online cipher that
achieve markedly better security. In particular, Πright

3 achieves prp security beyond the
birthday bound, and Πrev

3 achieves ±prp• security up until almost the blocksize.

Similarity to PIV The Πrev
3 construction can be rephrased in a way that is similar to the

PIV wide-block tweakable blockcipher design of Shrimpton and Terashima [?], and the
proofs follow a similar overall design. In each case, the first round encrypts a few blocks
of input tweaked by the whole message: either through an explicit tweakable blockcipher
(as in PIV) or implicitly via the final blocks of the online cipher (as with Πrev

3). These
encrypted blocks are then used as a unique tweak to encrypt the remaining message blocks,
before the encrypted blocks are then re-encrypted to ensure the system cannot be broken
with inverse queries. Their result is not directly applicable because the final blocks of an
online cipher are not a secure ±prp: they may leak plaintext repetition patterns. As such,
if messages are too short, a PIV-style construction would also leak these patterns.

5.1 Three Layer Shift: A prp to Almost Blocksize
As with the two layer version, Π = Πright

3 cannot hope to achieve good ±prp security
because its inverse is trivially distinguishable. Moreover, there exists an attack against the
prp• security of all the Πright

i schemes (described later as Lemma 11), and substituting in
the appropriate parameters shows that if N ≥ 4 and messages are at least 4 blocks long,
Advprp•

Π (q) ≥ q(q−1)
8N2 ≈ (qN)2 for q ≤ N . Thus the best we can reasonably expect is prp

security up to the blocksize, something we now demonstrate is attainable. This constitutes
a significant improvement over Theorem 2’s birthday bound. Again, we present the logic
behind our proof in a diagram (Figure 11).

The key observation behind the proof is that B2 does not repeat “too frequently”,
allowing us to perform a (tweakable) random permutation–random function switch on the
final block of the second layer and simplify the construction. Then we apply Lemma 6 to
demonstrate the scheme similar to a random permutation, and measure the appropriate
events.

Theorem 4. The Π = Πright
3 construction is a variable input length prp, where for all

adversaries making queries totalling at most σ blocks, Advprp
Π (σ) ≤ 1.5σ(σ−1)

N2 .

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 23

? ? ? ?

? ? ? $ → !

! ? ? ?

! ? ? $

$! ? ?

$ $ / ! $ $

E1

L

E2

L

E3

X1 A1 B1

X2 A2 B2

B3
X3 A3

A4 B4
X4

Key:

? Blocks whose distribution is unknown/irrelevant.

! Blocks that do not repeat too frequently.

$ Blocks that are uniformly sampled.

$ → ! Block that does not repeat frequently.

Intuition: To achieve beyond birthday bound security, we can no
longer fail if single block collisions occur. Instead, we observe that,
since B2 does not repeat “too frequently”, we can perform a PRP–
PRF switch on the call defining A3. Thus the block A3 is sampled
uniformly, and independently of B2. Then, since the first two blocks
input to the final call almost never repeat (as a pair), the remaining
blocks are uniform.

1

Figure 11: Intuition behind the prp security of Πright
3 (Theorem 4)

Proof. We split the internal variables into three sections (Ai, Xi and Bi) such that for
an m block message M , |Ai| = |Bi| = 1 and |Xi| = m− 2, for all i ∈ {1, . . . , 4}. We set
X1||A1||B1 ← M , and “track” the ordering of these sections through the linear layers.
Each time the permutation is called, the appropriate blocks of its output will be labelled
by the same letter (and incremented index), meaning the ciphertext C = A4||B4||X4. We
label the three ideal online permutations E1, E2, E3, and they will be lazily sampled, with
internal tables π̊1, π̊2, π̊3. This labelling, and the logic described below, are represented in
Figure 11, which sketches how we convert from the Πright

3 scheme to a random function, a
standard switch away from a random permutation.

Formally, we consider a series of claims and use an identical-until-bad style argument,
stepping between collections of oracles, before applying the funnelling techinque to bound
the adversarial advantage. First we justify that single block queries do not assist the
adversary (Claim 1). Next, we define a routine (Figure 12) and demonstrate it identical-
until-bad to one of the random permutations in the construction (Claim 2). Then, we show
that substituting this into Πright

3 and applying Lemma 6 leads to a construction perfectly
secure until bad is set (Claim 3). Finally, we measure the probability of bad (Claim 4) to
complete the proof.

We will assume before querying any long messages, the adversary first queries on
all prefix strings. This assumption allows us to make statements about the freshness
of inputs/outputs of the final block of a query, but it leads to a loss of tightness when
considering adversaries who do not make queries of many (if any) different lengths. We
assumed the adversary first queried all prefixes of their chosen query, so to switch back
our overall bound must be given in term of the total number of blocks σ, rather than the
number of queries q.

Claim 1. Single block queries do not assist the adversary. For any adversary A there
exists an adversary B making no queries of length 1 such that Advprp

Π (A) = Advprp
Π (B).

Proof. First, B samples a random single-block permutation P . Then, B runs A, answering
single-block queries with P and forwarding all of As longer queries to his own oracle. When
A terminates, B forwards the response as his own.

In the ideal case, B perfectly simulates the ideal world for A, and so P [Aπ → 1] =
P [Bπ → 1]. In the real case, we observe that the restriction of an ideal online permutation

24 Turning Online Ciphers Off

function Ẽ2(B2||X2||A2)
B3 ← E2(B2)
X3 ← EB2

2 (X2)
A3←$ Σ
if (B2, A2) ∈ LA then

badA ← true
if (B2, A3) ∈ LB then

badB ← true
LA←∪ (B2, A2)
LB ←∪ (B2, A3)
π̊2←∪ (B2||X2, A2, A3)
return B3||X3||A3

Figure 12: The function Ẽ2 is identical-until-bad to E2. As well as updating the lists
LA,LB to track bad events, Ẽ2 must record the sampled output A3 in π̊2 in case a later
(longer) query is made for which this is a prefix.

to a single block is an ideal permutation. Since all the later claims are independent of the
distribution of the first block of E1, we may switch this for a random permutation without
loss. Thus B also perfectly simulates the real world to A, and P

[
AΠ → 1

]
= P

[
BΠ → 1

]
.

Taking the difference completes the claim. �

Henceforth, we assume that the adversary never makes single block queries, and thus
label the internal variables as in Figure 11, with the possibility that |Xi| = 0.

Claim 2. Ẽ2 (Figure 12) is identical to E2 until bad.

Proof. Ẽ2 expands the online permutation call slightly, separating the final block and then
applying a random permutation to random function switch. Thus it replaces the line
A3 ← EB2||X2

2 (A2) with A3←$ Σ and updates the table π̊2 accordingly. Until (B2, A2)
repeats (setting badA), either the input or tweak is fresh, and thus the output is not
pre-determined.2 The check for badB confirms that the output has not been chosen to
contradict the permutation property. Thus until bad is set, this is identical to the random
online permutation E2. �

Claim 3. Consider the oracles given in Figure 13. Until bad is set, Π behaves identically
to both the random function defined by Π′′ and a random permutation.

Proof. To move from Π to Π′ one substitutes Ẽ2 in for E2, since all the bad events are
already provided by the CheckForBad procedure. Thus by Claim 2, until bad is set
these two routines are identical. Now, consider the later part of Π′: the lines A3←$ Σ
and its successor, which applies E3. These are the form required to apply Lemma 6
with p = 1, where the bad events of that lemma are equivalent to badC and badout
of the CheckForBad procedure. So, Π′ is identical-until-bad to Π′′, and thus Π is
identical-until-bad to Π′′.

Similar to the second part of Lemma 6, Π′′ is a random function and thus a random
permutation until the output repeats, which would be captured by the badout event, since
a repeated output of A4||B4||X4 necessarily implies repetition of (A4, B4). �

2 Indeed, this is true until (B2||X2, A2) repeats, but we chose to record the smaller (more probable)
event as it lines up more neatly with other bad events we will consider.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 25

function Π(M)
X1||A1||B1 ←M
X2||A2||B2 ← E1(X1||A1||B1)
B3||X3||A3 ← E2(B2||X2||A2)
A4||B4||X4 ← E3(A3||B3||X3)
CheckForBad(*)
return A4||B2||X4

procedure CheckForBad(*)
if (B2, A2) ∈ LA then

badA ← true
if (B2, A3) ∈ LB then

badB ← true
if (A3, B3) ∈ LC then

badC ← true
if (A4, B4) ∈ Lout then

badout ← true
LA←∪ (B2, A2)
LB ←∪ (B2, A3)
LC ←∪ (A3, B3)
Lout←∪ (A4, B4)

function Π′(M)
X1||A1||B1 ←M
X2||A2||B2 ← E1(X1||A1||B1)
B3 ← E2(B2)
X3 ← EB2

2 (X2)
A3←$ Σ
A4||B4||X4 ← E3(A3||B3||X3)
π̊2←∪ (B2||X2, A2, A3)
CheckForBad(*)
return A4||B2||X4

function Π′′(M)
X1||A1||B1 ←M
X2||A2||B2 ← E1(X1||A1||B1)
B3 ← E2(B2)
X3 ← EB2

2 (X2)
A4←$ Σ
A3 ← D3(A4)
B4←$ Σ
X4←$ Σm−2

π̊2←∪ (B2||X2, A2, A3)
CheckForBad(*)
return A4||B4||X4

Figure 13: Π is the code for the original scheme, with the online permutation calls
separated and the blocks reordered according to right. Moving from Π to Π′ corresponds
to expanding out the second permutation call and substituting Ẽ2 in for E2. The switch
from Π′ to Π′′ is application of Lemma 6 to the line A3←$ Σ and the call to E3. Overall,
Π is identical to both Π′ and Π′′ until procedure CheckForBad triggers bad.

Claim 4. The probability an adversary interacting with Π′′ sets bad is P [bad] ≤ 1.5q(q −
1)/N2.

Proof. The event badA is that of colliding on the last two blocks output by an online
permutation. By the same argument as Lemma 4, the probability of this event is bounded
by 1

2q(q − 1)/N2. The probability of colliding on B2 on any particular query is at most
N−1, and also for A3 since they are independent. Thus the probability of badB is at
most 1

2q(q − 1)/N2. Since B3 is the image of B2 under a permutation, collisions on B3
imply collisions of B2. So, badC cannot occur without badB first occurring. Finally, badout
occurs if the pair (A4, B4) repeats, which is simply a collision of independently sampled
values, again at the cost of 1

2q(q − 1)/N2. Collecting these values,

P [bad] ≤ P [badA] + P [badB] + P [badout] ≤ 3 · q(q − 1)
2N2 . �

All together then, the difference between Π and a random permutation is at most that
of setting bad, which is bounded as stated.

5.2 Three Layer Reverse: ±prp Beyond the Birthday Bound
So, by Theorem 4, there exist three layer constructions with security beyond the birthday
bound, and in this section we investigate whether the Πrev

3 construction is a ±prp beyond

26 Turning Online Ciphers Off

? ? ? ?

? ? $→ ! $→ !

! ! ? ?

! $ $ $

$ $ $!

$ $ $ $

X1 A1 B1

X2 A2 B2

B3 A3
X3

X4 A4 B4

E1

L

E2

L

E3

Key:

? Strings of blocks whose distribution is unknown/irrelevant.

! Strings of k blocks that do not repeat too frequently.

$ Strings of blocks that are uniformly sampled.

$→! Strings of blocks that are uniformly sampled and so don’t re-
peat too frequently.

Intuition: The key observation behind the proof is that, until cer-
tain pairs of blocks repeat, the online ciphers act like tweakable
random functions, which themselves act like independent uniform
samplers. To formalise this, perform a sequence of switches on the
scheme, demonstrating it is an ±PRP until certain bad events occur.

The diagram to the left provides a representation of this, and il-
lustrates the naming system used in the proof. Each Ai, Bi is a single
block, Xi a string of blocks of length |Xi| = |M | − 2. The most im-
portant collision event is on (A2, B2). Finally, we prove it is hard for
an adversary to trigger one of these events.

1

Figure 14: Intuition behind the ±prp security of Πrev
3 (Theorem 5)

the birthday bound. Similar to the previous result, we will prove the construction secure
until a birthday-style collision on pairs of blocks, and so achieve security up to almost the
blocksize.

We will provide a proof for the AIL case, because, perhaps surprisingly, the VIL
case appears significantly more nuanced. Roughly speaking, this is because an adaptive
adversary can perform an attack similar to that against the two-round construction
(Lemma 9), which force any modelling or simulation attempts within our proofs to define
internal variables early, then make later queries in which the proof depends on freshness of
these values. Unlike the two-round case however, we have not been able to extend this into
an attack against the actual scheme, leaving the question of VIL security open at present.

As such, we will provide an AIL proof that we hope can eventually be extended to the
VIL case: the majority of the internal claims are true in both settings, hopefully leaving a
smaller problem for future work. Given this limitation, we favour clarity over tightness,
meaning our bound can trivially be improved by a small factor.

Theorem 5. Set Π3 = Πrev
3 to be the construction built from three independent online

permutations, around two calls of rev. Then the adversarial advantage in distinguishing Π3
from a AIL random permutation is bounded. For any adversary making q ≤ N/8 queries,

Adv±prp•
Π3

(q) ≤ q

N
log2N.

Proof. Applying Lemma 5 to Π3, we will derive a construction (Figure 15) that is identical-
until-bad to both Πrev

3 and a random permutation (Claim 1). Then, we bound the
probability of bad, (Claims 2 to 5) to complete the result.

The variable naming scheme and parsing will follow those given in Figure 14. E1 is
an ideal random permutations with inverse D1 and will be lazily sampled with internal
table π̊1, and similarly for E2 and E3. The case where |M | = 1 is trivially secure, since the
restriction of an ideal online permutation to a single block is a random permutation, so
assume all queries are of at least two blocks. Then, parsing of M is done such that for a
message of length m ≥ 2, |X| = m− 2 and |A| = |B| = 1.

Claim 1. The pair (Enc,Dec) given in Figure 15 are identical-until-bad to the appropriate
routines of Πrev

3 . Moreover, they are identical-until-bad to a random permutation.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 27

function Π(M)
X1||A1||B1 ←M
X2||A2||B2 ← Eε1(X1||A1||B1)
B3||A3||X3 ← Eε2(B2||A2||X2)
X4||A4||B4 ← Eε3(X3||A3||B3)
return X4||A4||B4

function Π−1(M)
X4||A4||B4 ← C
X3||A3||B3 ← Dε3(X4||A4||B4)
B2||A2||X2 ← Dε2(B3||A3||X3)
X1||A1||B1 ← Dε1(X2||A2||B2)
return X1||A1||B1

function Enc(M)
X1||A1||B1 ←M
- - - - - - - - - - - - - - -
X2||A2 ← Eε1(X1||A1)
B2 ← EX1||A1

1 (B1)
- - - - - - - - - - - - - - -
B3 ← Eε2(B2)
A3←$ Σ
X3←$ Σ|M |−2

if (B2, A2, ?) ∈ π̊2 then
badB ← true

if (B2, ?, A3) ∈ π̊2 then
badB′ ← true

π̊2←∪ (B2, A2||X2, A3||X3)
- - - - - - - - - - - - - - -
X4||A4 ← Eε3(X3||A3)
B4←$ Σ
if (X3||A3, B3, ?) ∈ π̊3 then

badC ← true
if (X3||A3, ?, B4) ∈ π̊3 then

badC′ ← true
π̊3←∪ (X3||A3, B3, B4)
- - - - - - - - - - - - - - -
return X4||A4||B4

function Dec(M)
X4||A4||B4 ←M
- - - - - - - - - - - - - - -
X3||A3 ← Dε3(X4||A4)
B3 ← DX3||A3

3 (B4)
- - - - - - - - - - - - - - -
B2 ← Dε2(B3)
A2←$ Σ
X2←$ Σ|M |−2

if (B2, A2, ?) ∈ π̊2 then
badB ← true

if (B2, ?, A3) ∈ π̊2 then
badB′ ← true

π̊2←∪ (B2, A2||X2, A3||X3)
- - - - - - - - - - - - - - -
X1||A1 ← Dε1(X2||A2)
B1←$ Σ
if (X1||A1, ?, B2) ∈ π̊1 then

badA ← true
if (X1||A1, B1, ?) ∈ π̊1 then

badA′ ← true
π̊1←∪ (X1||A1, B1, B2)
- - - - - - - - - - - - - - -
return X1||A1||B1

Figure 15: The scheme Πrev
3 as oracles (E,D), followed by a construction (Enc,Dec) that

is identical-until-bad. To generate (Enc,Dec) out of (E,D) one applies Lemma 5 to swap
out E2, D2, E3 and D1. The dashed lines are for guidance only, and separate the elements
of the routine coming from each of the three ideal online permutations. The parsing of M
is done such that for a message of length m, |X| = m− 2 ≥ 0 and |A| = |B| = 1. Since
(Enc,Dec) are identical to random permutation until bad, bounding bad also bounds the
distinguishing advantage against Πrev

3 .

Proof. We will prove that the pair (Enc,Dec) in Figure 15 is identical to Πrev
3 , shown as

(Π,Π−1) in the same figure, until an adversary can trigger one of the bad events given
in (Enc,Dec). Converting from (E,D) to the (Enc,Dec) is achieved through repeated
application of Lemma 5. To swap out E2 we use the case p = 1, and thus (P1, Q1, R1) =
(B3, A3, X3), We also switch out E3, using the case p = |M | − 1, which corresponds
to setting (P1, Q1, R1) = (X3||A3, B3, ε), then removing the superfluous code. We also
apply the corresponding switches to D2 and D1. Since each of these (four) switches was
identical-until-bad, applying all of them is as well.

Following the same logic used in Lemma 6, (Enc,Dec) are a random function with
inverse, since their outputs are sampled uniformly and independent of input. In the
Enc case, B4 is sampled directly, while (X4||A4) is the image of (X3||A3), which is itself

28 Turning Online Ciphers Off

uniformly sampled. Similarly, in Dec B1 is sampled directly, with X1||A1 the the image
of a uniformly sampled variable under permutation. Moreover, output collisions do not
occur without triggering bad, specifically badC′ for Enc and badA′ for Dec. Thus it is also
a random permutation until bad. �

Claim 2. Assuming ¬badB∧¬badB′ , the probability of setting badA∨badA′∨badC∨badC′
is small, with P [badA ∨ badA′ ∨ badC ∨ badC′ |¬badB ∧ ¬badB′] ≤ 1

2q(q − 1)/N2.

Proof. We observe a symmetry between the two pairs of bad events: only encryption can
trigger badC or badC′ , and only decryption can trigger badA or badA′ . Let us assume
the ith query is made to Enc, and that no bad events have yet triggered, to bound the
probability of setting badC ∨ badC′ . We consider two cases, depending on |M |.

Firstly, consider the case |M | > 2, and thus |X| ≥ 1. Then, the probability of setting
badC ∨ badC′ is upper bounded by that of colliding on the prefix (X3||A3), since without
a prefix collision neither event can occur. Thus badC ∨ badC′ requires that X3||A3 takes a
value that it has taken previously, the probability of which is upper bounded by (i− 1)/N2

since X3 and A3 are uniformly sampled.
Alternatively, suppose |M | = 2 and thus |X| = 0. Then, the probability of setting

badC′ is (i− 1)/N2, since it requires the pair of uniformly sampled blocks (A3, B4) to take
a value already present in a list of length i − 1. The event badC can only occur if on a
previous query A3||B3 occurred as internal variables. Since B3 is the image of B2 under a
permutation, this implies that the pair (B2, A3) also repeated, meaning badB′ had already
been set. Given the assumption on badB′ , this cannot occur, and thus such queries cannot
trigger badC .

So, in either case, the probability of an encryption query setting badC ∨ badC′ is at
most (i− 1)/N2.

Applying the same logic to decryption queries, we also bound the probability the ith

query is a decryption query and triggers badA ∨ badA′ by (i− 1)/N2. Since every query is
either encryption or decryption, but not both, the probability of any single query triggering
any one of the four events must also be this value, and applying the union bound completes
the claim. �

Claim 3. For any α ∈ N, the probability of setting badB ∨ badB′ on the ith query if it has
not previously been set is bounded, with

P [badB ∨ badB′ first set on query i] ≤ α

N
+ α

N − i+ 1 + 1
(α+ 1)!

(
i− 1
N

)α+1
.

Proof. For all j, let Aj1 be the value A1 took on the jth query, and similarly for all other
variables. Let Qi :=

{
(Aj2, A

j
3) | j < i ∧Bj2 = Bi2

}
. Finally, let α ∈ N be a parameter,

which will bound how large we expect the largest of the Qis to be.
With this notation in hand, we can rewrite the event probability that an adversary

interacting with (Enc,Dec) can trigger badB or badB′ on their ith query, and upper bound
it by

P [badB ∨ badB′ first set on query i]
= P

[
(Ai2, ?) ∈ Qi ∨ (?,Ai3) ∈ Qi

]
≤ P

[
(Ai2, ?) ∈ Qi

]
+ P

[
(?,Ai3) ∈ Qi

]
≤ P

[
(Ai2, ?) ∈ Qi|#Qi ≤ α

]
+ P

[
(?,Ai3) ∈ Qi|#Qi ≤ α

]
+ P [#Qi > α] .

We now bound these terms for an encryption query, as decryption is equivalent.
Immediately, as Ai3 is sampled uniformly at random on every query we can bound the

first term, with P
[
(?,Ai3) ∈ Qi|#Qi ≤ α

]
≤ α/N .

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 29

Given the adversary does not repeat queries, for any j such that (Aj2, ?) ∈ Qi then
Xi

1||Ai1 6= Xj
1 ||A

j
1, because otherwise the online property would ensure B2 6= Bj2 (and thus

Aj2 6= Qi). Now, if X1 = Xj
1 this means that A1 6= Aj1, and so by the online property

A2 6= Aj2. So, the only way (Ai2, ?) ∈ Qi is if there exists a previous query j with Bi2 = Bj2
such that Xi

1 6= Xj
1 and EXi

1(Ai1) = EX
j
1 (Aj1).

The adversary cannot detect a collision Ai2 = Aj2 if there was not also a collision on
either X2 or B2. By assumption this is the first time badB has occurred, and we know that
Xi

1 6= Xj
1 , so the adversary has no information that can further assist them in triggering

this collision.3 So, this is simply the probability that an element of a partial random
permutation with at most i − 1 terms defined is already specified in a separate list of
length at most α, which is upper bounded by α/(N − i).

Finally, we bound P [#Qi > α]. It is maximised if each query is made with a different
prefix Xi

1||Ai1, since for any two queries sharing a prefix the online property forces the
final output blocks to differ. So, P [#Qi > α] ≤

(
i−1
N

)α+1
/(α+ 1)! by a standard collision-

counting argument.
Collecting these three terms together gives the claimed bound. �

Claim 4. Assume q ≤ N/8 and let n = log2N . Then the probability of setting badB∨badB′
within q queries is bounded, with P [badB ∨ badB′] ≤ q

N

(5n
7 + 1

2
)
.

Proof. By assumption, q/N ≤ 1/8. So, by Claim 3, we can upper bound the probability
of setting badB ∨ badB′ by

P [badB ∨ badB′ first set on query i] ≤ α

N
+ α

N − q
+ 1

(α+ 1)!

(q
N

)α+1

≤ α

N
+ α

N
· 8

7 + 1
(α+ 1)! · 8α+1 .

So, applying the union bound and collecting like terms,

P [badB ∨ badB′] ≤
15α

7 · q
N

+ 1
8α+1(α+ 1)!q.

Wemay assume n = log2N ≥ 3, since otherwise q ≤ N/8 would imply q = 0 and P [bad] = 0.
So, fixing α = bn/3c, we have that 8α+1 ≥ 8n/3 ≥ N and (α+1)! ≥ α+1 ≥ 2. Substituting
these in yields P [badB ∨ badB′] ≤ q

N

(5n
7 + 1

2
)
, which is the bound claimed. �

Claim 5. Let n = log2N . Then the probability of setting bad within q < N/8 queries is
bounded, with P [bad] ≤ n q

N .

Proof. We will bound bad by

P [bad] ≤ P [badB ∨ badB′] + P [badA ∨ badA′ ∨ badC ∨ badC′ |¬badB ∧ ¬badB]

Substituting in the bounds from Claim 2 and Claim 4,

P [bad] ≤ q

N

(
5n
7 + 1

2

)
+ q(q − 1)

2N2 ≤ q

N

(
5n
7 + 1

2 + 1
16

)
≤ n q

N
,

where we have used that (q − 1)/N ≤ 1/8 for the second inequality, and for the third we
have used that (since q ≤ N/8) either n ≥ 3 or q = 0. �

Combining Claim 1 (Π3
rev is identical-until-bad to an ±prp) with Claim 5 (bounding

the probability of bad) completes the theorem.

3 This step that does not hold in the VIL case. If the adversary may make variable length queries, it is
conceivable that they may make a length-extension style attack: first finding a pair X1||A1 and X′

1||A′
1

that lead to a collision EX1 (A1) = EX′1 (A′
1). With this in hand, varying values B1, B′

1 until the collision
extends to EX1 (A1||B1) = EX′1 (A′

1||B′
1) despite only ever having collisions between two elements.

30 Turning Online Ciphers Off

6 Towards Security with Many Layers
For completeness, let us consider what can be achieved by the Πrev scheme by using many
layers. Since the Πrev

3 already provides beyond birthday bound security, there is little
utility in deriving ever higher security bounds. Instead, we provide an explicit reduction
from many round cases to the smaller versions already studied, demonstrating that the
larger schemes inherit the security of their smaller counterparts.

Lemma 10. The ΠL
i construction is no more distinguishable from a random permutation

than ΠL
i−1. For any adversary A, there exists adversary B running within similar resources

(up to a constant factor) such that

Adv±prp
ΠL

i

(A) = Adv±prp
ΠL

i−1
(B)

and similarly for prp, ±prp• and prp•.

Proof. We will proof just the prp case: the other three cases are similar.
Let A be a prp adversary. Let us construct an adversary B who uses A to distinguish

ΠL
i−1 if A can distinguish ΠL

i .
Let Enc be the encryption oracle B is provided with (which may be real or random).

B constructs an ideal online permutation EB via lazy sampling, and then simulates a ΠL
i

encryption oracle with Π̃L
i := EB ◦ L ◦ Enc (and similarly for the decryption oracle in the

±prp case). To distinguish the scheme, B runs A, answering all of As oracle queries with
Π̃L
i , then forwards As result as his own.
The composition of a random permutation with an online cipher (itself a permutation)

is again a random permutation. So, P [Bπ → 1] = P
[
Aπ′ → 1

]
. Conversely, if Enc = ΠL

i−1,

then Π̃L
i = ΠL

i , and so P
[
BΠL

i−1 → 1
]

= P
[
AΠL

i → 1
]
. Taking the difference between the

these terms completes the bound.

We observe that there exists an attack against the whole family of Πright
i constructions.

If an ideal online permutation is called with two messages that differ before the final
block, the final ciphertext blocks are independently sampled. Now, if these independent
random variables collide (which is likely to occur roughly every

√
N queries) the right

layer will simply add a common prefix to both messages. From this observation, we build
a distinguisher against Πright

i , following the logic shown in Figure 16.

Lemma 11. Consider Πright
i for some i, and assume we may make queries of at least a+c+i

blocks, with c such that N c ≥ 4. Then for any q ≤ min(Na, N (i−1)/2), Advprp•
Π (q) ≥ q(q−1)

8Ni−1 .

Proof. Consider the adversary A that requests encryptions of malicious messages of the
form Mt = 〈0〉c+1||〈t〉a||〈0〉i−1. He will vary t, allowing him up to Na possible queries of
this form (hence the first bound on q). After making his queries, he returns 1 if there
were two queries for which the ciphertexts began with the same i+ c blocks. We claim A
successfully distinguishes Π from an ideal prp.

We first bound P
[
AΠ → 1

]
, by considering the internal variables when encrypting Mt.

During the first round, the first c blocks are identical across all queries, and so encrypts to
an identical value: Eε(〈0〉c+1). Since E is an online permutation, the online encryption of
the first a+ c+ 1 blocks must be unique among all queries, since the counter t was. Then,
as the first c + 1 blocks are identical throughout, this in turn means the next a blocks
must be unique amongst all queries. Given this unique prefix, the encryptions of the final
(i− 1) blocks, E〈0〉c+1||〈t〉a(〈0〉i−1) are independently uniformly sampled.

Notice that with precisely the probability of colliding two strings of n random bits,
we have a collision on the final block. Thus, after the first linear layer, in which we shift
the final block to the start, with this same probability there exist queries in which the

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 31

= ! ? ?

= ! $ $ →=

$ →= = ! $

= = ! $ →=

$ →= = = !

= = = !

E

L

E

L

E

Key:

= Blocks that are the same across all queries.

! Blocks that are unique across all queries.

? Blocks that may take any value.

$ Blocks that are uniformly sampled.

$ →= Blocks that are uniformly sampled, but that we expect to col-
lide if we make enough queries.

Intuition: By making enough queries, we expect that the final blocks,
being uniformly sampled, will collide. If both layers collide at the
same time, we end up building a surprisingly long prefix of collid-
ing blocks, which is easily detectable from the output. Repeating the
process, we can extend the attack to any number of rounds.

1

Figure 16: An attack against Πright
3 .

first two blocks repeat. Since this output again consists of some repeated blocks, a unique
section and then some arbitrary blocks, we may apply similar analysis. We do this for all
but the final layer, albeit noting that at the rth layer there are now c+ r repeated blocks
rather than c+ 1, and i− r arbitrary blocks after the unique section.

So, with the probability of colliding the independent and uniformly sampled final blocks
on each of the (i − 1) internal rounds, there are two queries for which the final block
inputs collide on the first i+ c blocks. As the cipher is online, this leads to an i+ c block
collision in the output, triggering A→ 1. So, P

[
AΠ → 1

]
is at least this probability. Since

the variables are independently sampled, this is equivalent to colliding a string of (i− 1)
independently sampled blocks, P

[
AΠ → 1

]
≥ q(q−1)

4Ni−1 as long as q ≤
√

2N i−1 (Lemma 1).
Alternatively, consider P [Aπ → 1]. the probability of getting a collision on the first

i+ c blocks of output from distinct calls to the ideal cipher. This is upper bounded by the
probability of colliding outputs from the equivalent random function, which is simply the
probability of colliding i+ c random blocks. Thus P [Aπ → 1] ≤ q(q−1)

2Ni+c .
Combining these results,

Advprp
Π (q) ≥ P

[
AΠ → 1

]
− P [Aπ → 1] ≥ q(q − 1)

4N i−1 −
q(q − 1)
2N i+c = (1− ε)q(q − 1)

4N i−1 ,

where ε = 2/N c+1 is small for reasonable parameter sizes. Applying the hypothesis that
N c+1 ≥ 4, we have that ε ≤ 1/2 yielding the stated result. In the common N = 2128 case,
ε ≤ 2−127.

7 Conclusion
We have shown how one can (relatively) efficiently turn an online cipher in a fully fledged
cipher, using two types of mixing layer. To achieve birthday bound security, only two
calls to the online cipher are required, with a linear layer that shifts blocks one step right
achieving prp security, and blockwise reversal leading to a ±prp•. For close to blocksize
security three calls to the online cipher are both necessary and sufficient; a right-shift
mixing layer yields a prp, while reversing achieves ±prp• security. As far as we are aware,
the construction of online ciphers with beyond birthday bound security itself is still an
open problem. We hope our work will spur on the study of these versatile primitives.

32 Turning Online Ciphers Off

7.1 Extensions and Reformulations
Our results extend to tweakable online ciphers, forming tweakable ciphers with the tweaks
and bounds of the non-tweak setting (this is mainly an exercise in notation). Similarly, our
proofs can easily be adapted to cover a large set of mixing layers: in particular bit-,byte-
or word-wise reversal maps can be used in place of blockwise reversal (for any word size
dividing the block size).

Our characterisation of an online cipher (due to Bellare et al. [?]) is at its most general.
The more specific definition of Rogaway et al. [?] additionally imposes a finite amount
of state that the online cipher may use. Our results may be recast into this context by
considering the state as a hash of the prefix, for the penalty of an adversary colliding
two states. There are several schemes for converting a true cipher into an authenticated
encryption scheme (e.g. [?]), and even to achieve the recent, stronger goal of robust
authenticated encryption [?]. By instantiating these modes with our construction, one can
build a very secure scheme from an online cipher.

7.2 Further Research
The most important open problem left by this work is the security of the three round reversal
scheme under variable input length attacks, without any additional restrictions on the
lengths of these queries. Resolving this is an important step towards truly understanding
the utility of an online cipher as a base primitive.

All our results are stated relative to an indistinguishability notion. A stronger notion
is the indifferentiability framework [?], where an adversary would also have access to the
online cipher itself (in addition to the cipher one attempts to construct). Indifferentiability
is a much more challenging goal, and existing impossibility results relating to the self-
composition of hash functions [?] appear to extend to the prp case of online ciphers
(curiously, the ±prp situation seems less straightforward). We provide a more detailed
discussion in Appendix A.

From the CMC and EME constructions, it is clear that more involved mixing layers
may reduce the security required of the cryptographic primitive. An interesting question
is whether our work can be extended to show beyond birthday security of a ‘CMCMC’ or
‘EMEME’ like construction. Similarly, how much can we relax the security notion of the
underlying primitive and still retain good security (this question is relevant for practical
key wrap schemes). Similarly, the requirement of independence between the cipher calls
is probably unnecessary, but removing it leads to a much more complicated setup, itself
necessitating more complex security arguments.

Another question is whether changing the mixing layer will boost security when using
three calls to an online cipher. We conjecture that among blockwise linear schemes, the
scheme Πrev

3 is essentially optimal. The level of security achieved by a shift-based scheme
with more layers than blocks remains a tantalizing open problem: conceivably they may
achieve ±prp security.

8 Acknowledgments
The authors would like to thank Daniel Martin for thoughtful comments on early drafts of
this document. We are also grateful to the reviews of Asiacrypt2015 for their comments
on suggestions on a previous version.

Elena Andreeva is supported by a Postdoctoral Fellowship of the Research Foundation
Flanders (FWO). This work was conducted whilst Guy Barwell was a PhD student at the
University of Brlistol, supported by an EPSRC grant.

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 33

A Impracticality of Indifferentiability
The security definitions given in Section 2.2.1 are the standard indistinguishability notions
for symmetric primitives, but are less strong than the indifferentiability notions of Maurer
et al. [?]. In the indistinguishability game, the adversary is provided with oracle access to
the overall construction (and possibly its inverse) or the ideal construction. In contrast,
the indifferentiability game provides the adversary with access to the overall construction
and also the internal primitive, or to the ideal construction and a simulator of the internal
primitive. Thus the indifferentiability setting of the prp security game for the Π = ΠL

i

construction instantiated around the online cipher E is ∆
(
π,S[π]
E[E],E

)
, where S[·] is a simulator

that provided with access to the permutation π simulates an online cipher S[π].
Allowing leakage on the intermediate layers of the construction would allow the

adversary to query the online cipher and overall construction in a somewhat independent
manner, effectively allowing them to play the indifferentiability game.

Recent work by Dodis et al. [?] showed that the composition of two calls to a hash
function is not indifferentiable from the original hash unless the simulator makes an
unreasonably large number of queries. Broadly speaking, their attack depends on calling
the random oracle to derive a chain of secret values. Then, using two calls to the primitive,
this is used to generate a second,non-overlapping chain. In the real world, to ensure this
relationship holds, any simulator must make a large number of queries, effectively by
calculating such chains themselves.

A similar result can be found when we consider whether the ΠL
i construction is

indifferentiable from an ideal cipher (with respect to the online cipher). We assume
L(M)[1] is linearly dependant on M [m] for all M ∈ Σm, since otherwise the scheme is
trivially distinguishable. Then, the distinguisher can simply consider H(M) := L ◦ E(M),
from which (with high probability) the first output block is uniformly sampled. Using this,
he can conduct an equivalent experiment, efficiently building two long chains and forcing
the simulator to link them. Since the simulator is not provided with access to the inverse
permutation, they are unable to invert the chains, leading to a similar analysis.

Let us denote the simulator of E by S[·], with inverse T [·], taking as parameters the
oracles to which it is provided access. Let E[E] be the ΠL

i construction scheme instantiated
with online cipher E , and its inverse be D[D]. Finally, let π be the ideal cipher, with inverse
π−1. Then, by the above attack, ∆

(
π,S[π]
E[E],E

)
is large (in terms of number of simulator

queries), and corresponds to insecurity under indifferentiability from an ideal cipher.
However, a simulator can defend against this attack with only a small number of queries

if provided with the inverse of the permutation, since he may “unwind” any chains the
adversary created. Thus security of the notion

∆

(
π , π−1 , S[π, π−1] , T [π, π−1]

E[E] , D[D] , E , D

)

(corresponding to indifferentiability from an ideal cipher under the ±prp game) cannot be
bounded below by this attack. This leaves the rather counter-intuitive situation that a
scheme might be indifferentiable from an ideal cipher with inverse, yet not from an ideal
cipher when not provided with inverse access. Other situations exist, such as a system
providing interfaces for both directions of the online cipher, but only an interface for
encryption queries of the true cipher. Whilst we find it unlikely, these constructions may
yet be proven indifferentiable, but such results are beyond the scope of this paper.

Overall then, there are impossibility results limiting the scope for security under the
indifferentiability game in this area. As such, there are clear limitations for when access
can be provided to the online cipher under the same keying scheme as to the overall
construction. Thus for viable security results, we are limited to the indistinguishability

34 Turning Online Ciphers Off

setting, meaning any instantiations of the ΠL
i construction should be keyed (or tweaked)

independently from interfaces provided to the online cipher.

B Security Definitions
We provide here the formal security notions described in Section 2.2.1. Let E be a cipher
on acting on Σt, a string of blocks of length t. Let Ẽ a tweakable block cipher with blocks
Σ and tweakspace T and E̊ an online cipher acting on blocks Σ, all with keyspace K. Then,
the advantage of some adversary A against the security goals of the various objects are as
follows:

Adv prp
E (A) := P

[
k←$K : AEk → 1

]
− P

[
π←$ Perm(Σt) : Aπ → 1

]
Adv±prp

E (A) := P
[
k←$K : AEk,E

−1
k → 1

]
− P

[
π←$ Perm(Σt) : Aπ,π

−1
→ 1

]
Adv tprp

Ẽ
(A) := P

[
k←$K : AẼk → 1

]
− P

[
π̃←$ Perm(T ,Σt) : Aπ̃ → 1

]
Adv±tprp

Ẽ
(A) := P

[
k←$K : AẼk,Ẽ

−1
k → 1

]
− P

[
π̃←$ Perm(T ,Σt) : Aπ̃,π̃

−1
→ 1

]
Adv oprp

E̊ (A) := P
[
k←$K : AE̊k → 1

]
− P

[̊
π←$ OPerm(Σ) : Aπ̊ → 1

]
Adv±oprp

E̊ (A) := P
[
k←$K : AE̊k,E̊−1

k → 1
]
− P

[̊
π←$ OPerm(Σ) : Aπ̊,̊π

−1
→ 1

]
Adv prf

F (A) := P
[
k←$K : AFk → 1

]
− P

[
$←$ Func(Σt) : A$ → 1

]
Adv ±prf

F (A) := P
[
k←$K : AFk,F

−1
k → 1

]
− P

[
$, $−1←$ Func(Σt) : A$,$−1

→ 1
]

Adv±tprf
F (A) := P

[
k←$K : AFk,F

−1
k → 1

]
− P

[
$, $−1←$ Func(T ,Σt) : A$,$−1

→ 1
]

Note that since the adversary is prevented from making queries to which he already knows
the answer, this definition of an ±prf is equivalent to that presented in the main body
of the paper and much simpler to work with. These are generalised to functions of the
number of queries by defining

Advxxx
W1

(q) := max
Adversaries A
A makes q queries

∣∣Advxxx
W1

(A)
∣∣ ,

and where appropriate provision for variable input lengths by sampling an element for
each length t. A primitive P is a secure xxx if Advxxx

P (q) is sufficiently small.

C Changelog
C.1 Spring 2016
The original version of this paper ([?], version 20150521:200909) contained a flaw that was
pointed out by Bhaumik and Nandi [?]. They provided an attack against the Πrev

2 scheme,
demonstrating it cannot achieve ±prp security as a VIL cipher, along with an alternative
two-layer scheme, and H-coefficient security proofs for the later constructions. Although
their attack is presented in terms of small queries, it can be generalised to longer minimum
message lengths by replacing each “block” with an appropriately long “string of blocks”.
This work has now been incorporated into Section 4.2.

Upon further investigation, we were able to generalise the Bhaumik–Nandi counterex-
ample into a more general attack on the proof technique used throughout the earlier
draft, and identified flaws in their alternative proofs. That is, while we did not construct

https://eprint.iacr.org/2015/485/20150521:200909

Andreeva, Barwell, Bhaumik, Nandi, Page & Stam 35

attacks against the other schemes (and we expect their security still holds), we were able to
demonstrate that the previous proofs were inaccurate due to poor handling of VIL attacks.

Motivated by these flaws and comments from the ASIACRYPT 2015 reviewers, the
paper has been substantially rewritten using a different proof style, that better exposes
the reasoning behind it. Our new results are highly modular, separated into a series of
smaller claims.

The delay in providing this new draft stems predominantly from the extra research
required, that only became apparent during the process of solving what initially appeared
to be small proof bugs. That said, we apologise for the delay in posting this amended
version and any misunderstandings this may have caused.

C.2 Winter 2017
The work was submitted for consideration for the IACR Transactions on Symmetric
Cryptology 2017 Issue 2, in a form very similar to a recent ePrint version ([?], ver-
sion 20160903:182510). The reviewers identified a number of areas that were not suffi-
ciently clear, and encouraged us to remedy this and resubmit. Along with a number of
typographical errors, two key points were highlighted for improvement, our responses to
which are given below. In this updated document, we have incorporated the reviewers
advice, and would like to thank them for their input.

Use cases and relevance Firstly, the reviewers suggested we explicitly incorporate the
possible use-case of HSM-based setting, where a designer might not have direct access
to the traditional toolkit of primitives. We have updated Section 1 to include the HSM
example from our initial rebuttal.

Lemma 6 More significantly, Lemma 5 and Lemma 6 were unclear, both in their statement
and use. We made significant modifications for the current revision to clarify both lemmas
and added additional context.

Lemma 5 has been slightly modified, predominantly to remove poorly written sections.
Lemma 6 has been completely rewritten. The previous version was heavily parameterised,
this had been done in a somewhat cumbersome manner and made the result itself unclear.
The new version is now defined through explicit code-based games, and is more specific in
what it aims to achieve. An additional discussion paragraph has been added to explain
the ideas behind the lemma, and how it will be used. As part of this, the variable names
used for Lemmas 5 and 6 were changed to use P,Q,R. This allowed us to more directly
state which variables in the theorems correspond to which variables in the lemma This
also lead to renaming the internal tables of our ideal online permutations from P to π̊.

Clarification of identical-until-bad terminology While applying the reviewers comments
and percolating the effects of this, it was identified that the work was at times a bit sloppy
with use of terminology, using “online cipher” instead of “ideal online permutation” in the
later sections. We believe this correction has been propogated through the work, but may
have missed instances.

The second piece of particularly unclear terminology was the way in which identical-
until-bad arguments were applied. We acknowledge that this was not the standard use
of the term, and have added a section to describe our mechanism (Section 3.4). As part
of this, we also clarified what we meant for two oracles to be identical-until-bad: that no
adversary could distinguish between interacting with one from interactions with the other
without first setting bad (Section 3.1.2).

https://eprint.iacr.org/2015/485/20160903:182510

36 Turning Online Ciphers Off

Proofs The proofs were all modified slightly to use the updated versions of the lemmas.
The most significant changes were made to Theorem 4, most of which was rewritten to
improve readability.

	Introduction
	Our Contribution
	Applications
	Related Work
	Context and Caveats

	Preliminaries
	Notation
	Primitives
	Composition Constructions

	Initial Observations and Standard Results
	Standard Proof Techniques
	Equating Online Ciphers and Tweakable Block Ciphers
	Ideal Online Permutations
	An Identical Until Bad Funnel

	Two Layer Constructions
	Right Shifting Towards a prp
	Two Layers Versus prp Security

	Three Round Constructions: Moving Beyond the Birthday Bound
	Three Layer Shift: A prp to Almost Blocksize
	Three Layer Reverse: prp Beyond the Birthday Bound

	Towards Security with Many Layers
	Conclusion
	Extensions and Reformulations
	Further Research

	Acknowledgments
	Impracticality of Indifferentiability
	Security Definitions
	Changelog
	Spring 2016
	Winter 2017

