
How to detect unauthorised usage of a key

Jiangshan Yu
School of Computer Science
University of Birmingham, UK

jiangshan.yu@me.com

Mark Ryan
School of Computer Science
University of Birmingham, UK

m.d.ryan@cs.bham.ac.uk

Cas Cremers
Dept. of Computer Science

University of Oxford, UK
cas.cremers@cs.ox.ac.uk

Abstract

Encryption is useful only if the decryption key has not
been exposed to adversaries; in particular, it requires that
the device performing the crypto operations is free of mal-
ware. We explore ways in which some security guarantees
can be achieved even if an attacker has succeeded in ob-
taining access to all the keys in a device, e.g. by exploiting
software vulnerabilities.
We develop a new protocol concept that allows the device

owner to detect if another party is using the device’s long-
term key. We achieve this by making it necessary for uses of
the key to be inserted in an append-only log, which the de-
vice owner can interrogate. We propose a multi-device mes-
saging protocol that exploits our concept to allow users to
detect unauthorised usage of their device keys. We prove the
main properties of our protocol using the Tamarin prover.
The methods we introduce are not intended to replace

existing methods used to keep keys safe (such as hardware
devices or careful procedures). Rather, our methods provide
a useful and effective additional layer of security.

1. INTRODUCTION
Encryption is the main mechanism used to protect the

confidentiality of messages sent between computers. It re-
lies on the assumption that the computer end-points can
securely store and use cryptographic keys. If this assump-
tion does not hold, then encryption does not guarantee con-
fidentiality. Yet, this assumption is rather hard to justify
in practice. New software vulnerabilities [5] are discovered
every day, and malware is pervasive on mobile devices such
as phones and tablets [8] as well as on traditional platforms
like desktop PCs.
The security architecture of mobile devices running An-

droid and iOS is an improvement over the PC security ar-
chitecture, thanks to better security sandboxing of apps.
This sandboxing aims to contain the effects of malware, pre-
venting it accessing secrets of other apps and of the operat-
ing system. Unfortunately, the sandboxing model has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

shown to be insecure (e.g., [6]), allowing privilege escalation
attacks to take place. Android malware is very prevalent,
with 1200 samples being collected in a single year [20]. Al-
though new efforts at containing malware are much needed,
it does not seem likely that completely secure platforms will
be built soon.

We explore ways in which some security guarantees can be
obtained, even if the end-point devices have software vulner-
abilities that allow an attacker to obtain keys and/or control
the device.

If a device is compromised by exploiting software vulnera-
bilities, and is then made secure again, the attacker remains
in possession of secrets (such as keys) he obtained during the
compromise. Since victims do not know when compromises
take place, they are not motivated to revoke their keys. In
practice, it is impractical to ask users to revoke their keys
and distribute new ones after every security update.

We develop messaging protocols that allow users to de-
tect if their long-term keys have been compromised and are
being used by an attacker. It is clear that if a recipient’s
device becomes temporarily compromised and leaks all of
its secrets, it is impossible to ensure the secrecy of messages
sent during the compromised period. Informally speaking,
we achieve the following unique security guarantee: if an
attacker abuses compromised secrets to learn the contents
of messages sent during trustworthy periods, for example
by using the recipient’s long-term key to impersonate him,
then the recipient will detect this whenever he returns to a
trustworthy state.

Our proposal not only detects situations in which the ad-
versary has copied a key and uses it, but also situations in
which he has access to a key but is not able to copy it (for
example, if it is protected in a TPM).

We make use of two ideas in order to obtain our security
guarantees:

• We assume that devices are periodically trustworthy.
That is, a device may become vulnerable or infected
at any time, but at some later time it will be again
made secure. In other words, we assume that users
periodically successfully perform malware scans, oper-
ating system upgrades, and software updates, bringing
their devices back into a trustworthy state.

• If a user has multiple devices participating, e.g., in a
messaging application, then devices that are in a trust-
worthy state can help detect attacks brought about by
devices that are untrustworthy.

We minimise the burden placed on users: in particular,
reflecting the fact that it is perceived as a burden to do so,



we do not require that users routinely change passwords and
regenerate long-term keys. This means that an attacker that
has compromised a device and obtained its secrets continues
to possess the secrets even after the device has been restored
to a trustworthy state.

Contribution Our first contribution develops the idea of
malware damage containment. This recognises that no ar-
chitecture is immune from software vulnerabilities and con-
sequent malware, and therefore it is useful to find new ways
of limiting the impact that they have. We complement tra-
ditional software mitigation techniques (such as sandboxing
and privilege limitation) by enabling a victim to detect that
secret keys have been compromised. To make this precise,
we develop an attacker model in which platforms are period-
ically compromised. That means that they can be compro-
mised by the attacker at any time, but we assume that the
user periodically takes steps to remove malware and elimi-
nate vulnerabilities.
Second, we develop two protocols for Key Usage Detection

(KUD), in which a receiver with a long-term key can detect if
another party has obtained and is using his key. The first is a
basic protocol that makes strong assumptions about the par-
ticipants being simultaneously online, and serves mostly to
explain the concepts. The second protocol is a more fully de-
veloped messaging application, supporting multiple devices
per user and allowing the receiver to be offline at the time
the sender sends a message.
Our third contribution is the security analysis which shows

that the protocols satisfy precise properties expressing soft-
ware damage containment. Suppose that an attacker has
gained possession of a message receiver Robert’s long-term
private key. We prove that if the attacker uses this key,
then Robert will be able to detect that; and therefore will
be prompted to revoke the key and generate a new one. We
use the Tamarin prover to prove several key properties of
our protocol.

Key usage detection could be applied to solve other prob-
lems. One example is to apply it to identity-based signa-
tures (IBS) to mitigate the key escrow problem, as it allows
a signer to detect that an unauthorised signature (e.g. one
made by the identity provider) has been issued.
We proceed in the following way. In Section 2, we present

the background and related work. We detail our attacker
model in Section 3 and present our usage detection protocols
in Section 4. Our protocols depend on a log, whose imple-
mentation we detail in Section 5. We analyse the security
of our proposal in Section 6 and conclude in Section 7. The
Appendix describes our messaging protocol in full detail.

2. BACKGROUND AND RELATED WORK

Apple iMessage Apple iMessage is an encrypted messag-
ing service for iOS devices and Mac computers, with per-
device public keys. Although Apple asserts that it cannot
decrypt the data [2], this is not verifiable because the soft-
ware source code and all details beyond what is given in [2]
are proprietary and secret. Moreover, even with the archi-
tecture described in place, Apple could inspect the contents
of messages simply by creating additional public keys corre-
sponding to fake devices. Our paper builds on the iMessage
architecture by adding verifiable mechanisms to guarantee
that the security measures work.

Google account activity A Google account user can in-
spect her Google account activity to detect unauthorised
usages, based on information including date and time, IP
address, device identity, and device software versions. This
is useful to defend against third-party attackers, but obvi-
ously it does not defend against abuse by Google itself. Our
protocol builds on the account activity idea; we use it to
present usages of keys to the user. Additionally, our pro-
tocol includes verifiable mechanisms to guarantee that the
usage activity reported is complete, including possible us-
ages that may be mounted by the service provider.

FlipIt FlipIt is an abstract game-theoretic framework for
modelling security scenarios similar to the attacker model
of our paper. In the FlipIt game [19], the attacker player
moves by compromising a system, and the defender player
moves by recovering it into a secure state. The FlipIt paper
explores strategies for defender and attacker, based on an
abstract notion of costs associated with moves.

Certificate transparency (CT) Certificate transparency
(CT) [10] is a technique proposed by Google that aims to
efficiently detect fake public key certificates issued by cor-
rupt certificate authorities, by making certificate issuance
transparent. Certificates are stored using an append-only
Merkle tree log. This enables the log maintainer to provide
two types of verifiable cryptographic proofs: (a) a proof that
the log contains a given certificate, and (b) a proof that a
snapshot of the log is an extension of another snapshot (i.e.,
only appends have taken place between the two snapshot).
The time and size for proof generation and verification are
logarithmic in the number of certificates recorded in the log.
Domain owners can obtain the proof that their certificates
are recorded in the log, and provide the proof together with
the certificate to their clients, so the clients can get a guar-
antee that the received certificate is recorded in the log.

Extended certificate transparency (ECT) Extended
certificate transparency (ECT) [17] is a proposal for manag-
ing certificates for end-to-end encrypted email. It proposes
an idea to address the revocation problem left open by CT.
It provides transparent key revocation, and reduces reliance
on trusted parties by designing the monitoring role so that
it can be distributed among user browsers.

Gossip protocol A potential problem in CT or ECT arises
if an attacker shows different versions of the log to different
clients. This is sometimes called the “bubble” problem; two
clients in different bubbles could see different keys for the
same subject. A gossip protocol is a mechanism that allows
clients of a log to directly exchange digests of the log, in
order to ensure that they have the same view of the log.
If Alice holding digest dgA receives a digest dgB from Bob,
she can challenge the log maintainer to prove that dgA and
dgB are related by extension. Gossip protocols for log trans-
parency are currently being specified [14, 15].

3. ATTACKER MODEL

Assumptions We assume a role called sender, that sends
messages, and another one called receiver, that receives mes-
sages. Users can perform one or both of those roles. Each
user has one or more devices, and can pick any of his/her
devices to send a message, and can receive messages on any
of them. We use Sally and Robert to refer to an arbitrary
sender and receiver, respectively.



t1 t′
1 t2 t′

2
. . . . . .tn t′

n

Figure 1: A device is compromised at time t1, and
then restored into a secure state at time t′1. This cy-
cle is repeated. Thus, the device is in a compromised
state during the intervals {(tj , t

′

j) | j ∈ {1, 2, 3, . . .}}.

The attacker may compromise any user’s devices at any
time. After compromising a device, the attacker fully con-
trols it, and can retrieve and store all the data (including
secret keys) that are stored on it.
Periodically and routinely, users detect and remove mal-

ware on their devices, upgrade the operating system, and
install software patches that remove known vulnerabilities.
This puts the device back into a trustworthy state. The users
do not regenerate long-term keys or change passwords.
Thus, we assume that devices are periodically trustworthy.

An attacker compromises the device by exploiting a vulner-
ability, and sometime later the device owner restores it into
a secure state. This cycle repeats, as illustrated in Figure 1.

The problem Once a device is compromised, then the
victim’s secrets stored in the device are be exposed to the
attacker. Performing security updates and removing mal-
ware is insufficient to prevent the attacker masquerading as
the victim.

Security goals To solve this problem, our system detects
key usages by the attacker. We state our security goal here,
and explain how to achieve the goal in the following sec-
tions. In the security statements below, we assume a pa-
rameter ζ, which is a time period set by the user. A shorter
ζ brings greater security. However, devices are automati-
cally unregistered from the system if they are not used for
periods longer than ζ, and have to be re-registered. Thus, a
very short ζ reduces usability. Typically, ζ would be about
two days. We discuss ζ and other system parameters later.

• Basic KUD protocol.
Suppose receiver Robert’s device is compromised dur-
ing the periods {(tj , t

′

j) | j ∈ N}. Suppose a message
is sent by sender Sally at time t from a device in a
trustworthy state, and the plaintext is obtained by the
attacker. Robert can detect this attack provided his
device

– was well within a trustworthy state when the mes-
sage was sent; that is, t′j + ζ ≤ t ≤ tj+1 − ζ for
some j,

• Messaging application (many users each with
many devices).
Suppose Robert’s devices are periodically compromised,
as before: Di is compromised during the intervals
{(ti,j , t

′

i,j) | j ∈ N}. Suppose a message is sent by
Sally at time t from a device in a trustworthy state,
and the plaintext is obtained by the attacker. Robert
can detect this attack provided, for each of his devices
Di,

– Di was well within a trustworthy state when the
message was sent; that is, t′i,j + ζ ≤ t ≤ ti,j+1 − ζ

for some j, or
– Di was in a compromised state, but had not been

used by Robert since t− ζ.
The last condition reflects the fact that one can tell

that a device has been compromised if the device was
not being used at the time its key was used. Later, in
section 4.2, we show the user interface that allows a
user to check this.

4. OVERVIEW OF KUD
We present an overview of two protocols for Key Usage

Detection (KUD). In the first, the participants are a single
sender and a single receiver, assisted by a log maintainer.
This situation is too simple to be useful, but serves to il-
lustrate the core concepts. The second protocol is more
involved; there are multiple senders and receivers, and each
of them has multiple devices. This reflects a more realistic
situation, and the multiple devices assist in the detection of
attacks.

4.1 The basic KUD protocol

Bootstrapping phase The receiver Robert obtains or gen-
erates a long-term signing and verification key pair (skR, vkR),
and the sender Sally obtains an authentic copy of vkR. We
assume a log maintainer, which is capable of receiving data
and storing it in an append-only log. The log may sign its
outputs using its signing key skL, and Robert and Sally have
an authentic copy of the corresponding verification key vkL.
How these keys are securely distributed is not the subject of
this paper; we assume it can be done through PKIs such as
S/MIME [16], PGP [9, 18, 4], ECT [17], or CONIKS [12].

The log maintainer signs and publishes digests of the log.
We use ‘digest’ to denote the unique presentation of the log.
The maintainer is able to create cryptographic proofs that
given data is present or absent from the log. Data is never
deleted from the log, and the new added data is considered
to be the update of old ones. The log maintainer can also
create proofs that a given digest represents an append-only
extension of the log represented by a previous digest.

Sally and Robert track the digests issued by the log, all the
time checking the proofs issued by the log that later digests
represent extensions of earlier ones. Sally and Robert also
periodically exchange the digests they have received from
the log, and request and check proofs of extension of those
digests with respect to those they already have (“gossip pro-
tocol”).

The KUD protocol then runs as follows (see Figure 2).
• To prepare for receiving a message, Robert’s device

creates an ephemeral encryption and decryption key
pair (ek, dk), and certifies it with his long-term signing
key skR. He publishes the certificate CertskR

(R, ek) in
the log.

• To send a message, Sally’s device retrieves CertskR
(R, ek)

from the log along with a proof of its currency. She
encrypts the message with ek and sends it to Robert.

• Robert’s device receives the encrypted message and
decrypts it.

Additionally, Robert’s device periodically checks that all the
keys ek′ for which a certificate CertskR

(R, ek′) exists in the
log were put there by him. If he finds entries in the log
not corresponding to his actions, then he knows that his
long term credentials have been disclosed and abused by an
attacker.

The basic protocol assumes that Robert is online at the
time that Sally wants to send a message. In the messaging
application protocol below, we generalise this to work when
Robert is offline.



Sally Robert

- generate ephemeral (ek, dk)
- Create a certificate σ = CertskR

(R, ek)
- Sends σ to the log maintainer
for insertion in log

σ

- Request from the log maintainer
proofs that σ present in log

- verify obtained proofs
- Encrypt message m using ek

Encek(m)

- Use dk to decrypt message
- Request proofs from the log maintainer
to check that all keys in log for “Robert”
are genuine

Figure 2: The basic KUD protocol. Robert has a
pair (skR, vkR) of long term keys for signature sign-
ing and verification. He generates an ephemeral key
pair (ek, dk) for encryption, creates the certificate
σ = CertskR

(R, ek) on ek, and sends the certificate
to the log maintainer for insertion into the public
log. Meanwhile, Robert also sends the certificate to
Sally. After receiving σ, Sally requests from the log
maintainer proofs that the certificate is present in
the log. If the proof is valid, Sally sends a message
m to Robert encrypted with ek. Robert requests
proofs from the log maintainer to enable him to ver-
ify whether the log contains signatures that he did
not generate.

Properties of the log The security of the method requires
that an attacker cannot remove information from the log.
To achieve this, the log is typically stipulated to be append-
only. It is also a requirement that users of the log (including
Robert) can verify that no information has been deleted from
the log. For this purpose, the log can be organised as a
Merkle tree [13] in which data is inserted by extending the
tree to the right. Such a log was designed and introduced in
certificate transparency [10]. The log maintainer can provide
efficient proofs that (A) some particular data is present in
the log, and (B) the log is being maintained in an append-
only manner. Proof A is referred to as proof of presence
(PoP) and proof B is referred to as proof of extension (PoE).
Certificate transparency has been extended to provide proofs

that all data associated to some attribute (e.g. keys associ-
ated to a user identity) is absent from the log, and proofs
that some data associated to some attribute is the latest
valid data in the log. The former is referred to as proof of
absence, and the latter as proof of currency [17, 12].
It is also a requirement that the log maintainer cannot

maintain different versions of the log which it shows to dif-
ferent sets of users. Gossip protocols are a known technique
to ensure that.

4.2 Messaging application
The messaging application generalises the basic protocol,

allowing the users to have multiple devices. In terms of

functionality, it is inspired by Apple iMessage (see § 2), but
it adds key usage detection and verifiability of the security.
Sally can choose any of her devices to send a message, and
Robert is able to receive the message on all of his devices.
Although this makes the protocol a bit more complicated,
it also allows us to obtain a stronger security guarantee, be-
cause even if one of Robert’s devices is in an untrustworthy
state we are able to leverage security from the other ones.

As before, we assume a log, with the same capabilities
mentioned above; and we assume that senders and receivers
gossip and check digest extensions. We also assume that
Robert and the log maintainer have long-term signing and
verification key pairs (skR, vkR) (skL, vkL) respectively, and
all parties have authentic copies of the verification keys they
need.

The parameters δ, ǫ and ζ The protocol is parameterised
by three values:

• δ is the period between the times at which device reg-
istration requests are processed. It is set by the log
maintainer. We expect it to be typically one hour.

• ǫ is the period between the times at which key update
requests are processed. We refer to such periods as
“epochs”. It is also set by the log maintainer, and is
typically one day.

• ζ is the maximum lifetime of a key. It is set by the
user. Different users can choose different values of ζ,
subject to the constraint ǫ ≤ ζ. We expect it to be
about two or three days.

Enrolling a device To enroll a device Dℓ, Robert needs
to install skR onto it. We assume that skR is derived from
a passphrase that Robert types into Dℓ. Next, Dℓ needs
to create a device key and publish its certificate in the log.
More precisely:

• Dℓ generates a new ephemeral encryption key pair
(ekℓ, dkℓ) and sends the certificate CertskR

(R, ekℓ, tℓ)
to the log maintainer. Here, tℓ is the key creation time.
The key will be used from the current time until the
next epoch beginning, for the purpose of encrypting
messages for Robert’s device.

• After time δ, the log maintainer has inserted the cer-
tificate into the log and sends to Dℓ the list of device
certificates CertskR

(R, eki, ti) for Robert present in the
log, together with a proof that the list is complete, and
current in the log.

• Dℓ verifies the proof of currency for CertskR
(R, ekℓ, tℓ).

It displays the table (Di, ti) (for each i) to Robert, so
he can check that the devices mentioned are indeed
recently used. If Robert sees a device mentioned that
he has not recently used, it is evidence of an attack
(§ 4.4). Figure 3 presents an example of the envis-
aged GUI to show how the information is likely to be
presented to Robert.

The device is now ready to be used. When Sally encrypts
a message, her device will obtain all the current device keys
for Robert from the log, and encrypt the messages with each
of them.

Remark. The method of displaying on a user’s device the
user’s activities on other devices is well-known (for exam-
ple, in Gmail, a user can click “last account activity” to see
a table of the sessions open by other devices). A crucial
difference in our protocol is that the displaying device can
fully verify the veracity of the account activity provided by



Figure 3: An example of envisaged GUI that
presents the table (Di, ti) for i = {1, 2} to Robert.
Section 4.3 describes how Robert uses this informa-
tion. The figure gives an impression of the kind of
user interface we envisage. Usability is important
and difficult to get right, and we need to work with
HCI experts to design the interface fully.

the log maintainer.

Sending and receiving a message
• To send a message, Sally retrieves CertskR

(R, eki, ti)
(for each available i) from the log along with proofs of
currency. Her device encrypts a copy of the message
with a fresh symmetric key k, and encrypts k with
each received eki. It sends the encrypted message and
together with the encrypted k to each of Robert’s de-
vices.

• Robert picks up any of his devices, receives the en-
crypted message, and decrypts it.

Updating the keys Whenever Robert invokes the messag-
ing app on a device Dℓ, the device checks to see if it is the
first time it has run the app during that ǫ-long epoch. If so,
it generates a new device key which will become the key for
the following epoch. More precisely, on the first invocation
during an epoch:

• Dℓ requests and verifies proof of currency for all of the
current epoch’s device certificates CertskR

(R, eki, ti)
for each available i. It verifies that ekℓ is indeed the
one it created and sent the previous epoch; if this ver-
ification fails, it is evidence of an attack (§ 4.4). Dℓ

displays the table (Di, ti) (each i) to Robert, so he can
check that the devices mentioned are indeed recently
used. If Robert sees a device mentioned that he has
not recently used, it is again evidence of an attack.

• Dℓ next creates a new ephemeral encryption key pair
(ek′

ℓ, dk
′

ℓ) and sends the certificate CertskR
(R, ek′

ℓ, tℓ)
to the log maintainer. Here, tℓ is the key creation time.

• By the next epoch, the log maintainer has inserted into
the log all the device keys thus received. If a device
does not send a new key during an epoch, the old key
is retained in subsequent epochs until a period ζ has
elapsed. At that time, keys of devices that did not
send new keys are revoked.

• When a new key becomes valid, Dℓ securely removes
the old key in the device.

In other words, devices change their key every epoch, and
if they don’t do so (because the application is not invoked
during a particular epoch) then their key is reused for a

certain period, and then revoked. In this last case, the device
can’t be used until it re-registers.

4.3 Detecting attacks: examples
To provide intuition on how our protocol allows users to

detect attacks, we explain some potential attack detection
scenarios. We will present our formal security analysis in
Section 6.

Attacks from a third party Suppose one of Robert’s
devices, say his phone, is infected with malware, allowing an
adversary to mis-use all the keys stored on the device. The
adversary may decrypt messages encrypted with ephmeral
keys, and may create new signed ephemeral keys by using
the phone’s long term key and inserting them into the log.
While the phone remains under the control of the attacker,
the decryption activity is not detected. However, the long-
term key usage is detected if the user notices unexpected
usage of phone using the GUI of Figure 3. The figure shows
the GUI displayed on another device of Robert’s. It informs
him that (so far in the current epoch) the keys corresponding
to his phone and his ipad have been active. If Robert has
not used his phone in the epoch, then he learns that it has
been compromised. The GUI also confirms that the proofs
about the usage statement have been verified.

Suppose Robert regains control of his phone, through rou-
tine malware scanning and software patching. If the adver-
sary continues to use the phone’s long-term key to create
ephemeral keys, the phone can detect this activity via the
log, and report it to the user.

Attacks on or by the log maintainer Suppose the log
maintainer is malicious or compromised. It may provide fake
proofs, or provide no proofs at all. This is readily detected
by client software. It may maintain the log incorrectly, ei-
ther by not correctly recording signed ephemeral keys or by
incorrectly recording fake ephemeral keys. These attacks are
detected when the key owner requests a complete proof of
presence.

A more interesting attack arises if the log maintainer shows
different versions of the log to different users. A receiver
may see a version in which his ephemeral keys are correctly
recorded, while the sender sees a version in which attacker-
owned keys are present instead. This would allow the at-
tacker to play man-in-the-middle attacks. Such attacks will
be detected by the gossip protocol: the sender and receiver
can detect that the versions of the log they see are inconsis-
tent.

4.4 Responding to attacks
If Robert detects unexpected activity on a device, or some

verification fails, this is evidence of an attack. Robert’s re-
sponse should be to fix the software on his devices. He
should generate a new long-term key, in order to prevent
attacks occurring (and being detected) due to the disclosure
of his current long-term key. The corresponding public key
can be distributed using the method used in the boostrap-
ping phase. Furthermore, he can inform Sally that some of
her recent messages to him may have been compromised.

Robert can also detect failure when he verifies the actions
of the log maintainer. His response is to change to a different
provider.

5. LOG IMPLEMENTATION AND PROOFS



5.1 Log structure

h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

h(h(d1, d2), h(d3, d4))

h(d1, d2)

d1 := Root(T ′

1)

d2 := Root(T ′

2)

h(d3, d4)

d3 := Root(T ′

3)

d4 := Root(T ′

4)

h(d5, d6)

d5 := Root(T ′

5)

d6 := Root(T ′

6)

Merkle tree T

Figure 4: An example of the log containing six up-
dates {d1, d2, . . . , d6}. The log is maintained as an
append-only Merkle tree T whose leaves are ordered
chronologically.

The public log is organised as an append-only Merkle tree
[13], and the digest of a log is the root hash value and the
size of the tree. A Merkle tree is a tree in which every node
is labelled with the hash of the labels of its children nodes.
Suppose a node has two children labelled with hash values
h1, h2. Then the label of this node is h(h1, h2). Merkle
trees allow efficient proofs that they contain certain data.
To prove that a certain data item d is part of a Merkle tree
requires an amount of data proportional to the log of the
number of nodes of the tree. (This contrasts with hash lists,
where the amount is proportional to the number of nodes.)
If a Merkle tree is append-only, i.e. the only supported op-
eration is to append some data to the tree, then it supports
efficient proof that a version of the tree is extended from a
previous version. If items in a Merkle tree are ordered lex-
icographically, then the Merkle tree supports efficient proof
that some data is absent from the tree. The sizes of all the
above proofs are proportional to the log of the number of
nodes of the tree. More examples can be found in [10, 17].
Table 1 shows methods that a Merkle tree supports.

In more detail, our log is organised as a tree of trees. The
log is an append-only Merkle tree T (as shown in Figure
4), which records the entire update history. Items in T are
stored only in leaves and ordered chronologically, and each
leaf is labelled by the root hash value of another Merkle tree

Table 1: The methods supported by the Merkle tree.
Method Input Output

Size T The size of the Merkle tree T

Root T The root value of the Merkle tree T

Last T The data stored in the rightmost side leaf of Merkle
tree T

PoP (T, d) Proof of Presence: The proof that d is in T

PoC (T, d) Proof of Currency : The proof that d is the last leaf
in T

PoA (T, a) Proof of Absence: The proof that any data d hav-
ing attribute a is absent from the Merkle tree T .
This proof can only work if items in T are ordered
lexicographically according to the attribute.

PoE (T, dg′) Proof of Extension: The proof that the Merkle tree
T is an extension of another Merkle tree whose
digest is dg′. This proof can only work if T is
append-only.

h(1,7)

h(1,4)

h(1,2)

d′1 := (Alice, DA,1, tA,1, h(certA,1)
DA,2, tA,2, h(certA,2))

d′2 := (Bob, DB,1, tB,1, h(certB,1)
DB,2, tB,2, h(certB,2)

. . .

DB,5, tB,5, h(certB,5))

h(3,4)

d′3 d′4

h(5,7)

h(5,6)

d′5 d′6

d′7 := (Robert, DR,1, tR,1, h(certR,1)
DR,2, tR,2, h(certR,2)
DR,3, tR,3, h(certR,3)
DR,4, tR,4, h(certR,4))

Merkle tree T ′

6

Figure 5: An example of the data structure T ′

recording data in each update. Items in T ′ are or-
dered lexicographically. For all a, b ∈ [1, 7], h(a,b) is
the root hash value of a Merkle tree containing data
from d′a to d′b. For example, h(1,2) = h(d′1, d

′

2), and
h(1,7) = h(h(1,4), h(5,7)). Each leaf of T ′ is labelled by
(h(ID), (Dj , tj , h(certj))

n
j=1), such that certj is a cer-

tificate on (Dj , ekj , tj) issued by ID, where Dj is the
identity of the jth device of ID, ekj is an (ephemeral)
public encryption key, and tj is the issuing time.

T ′ (presented in Figure 5). Items in T ′ are also stored only
in the leaves, but ordered according to user identity. Each
leaf of T ′ is labelled by users’ identity and a list of ephemeral
certificates for different devices of the same user.

We give some examples base on Figure 4 and 5 to show
how the proof can be done with our log. We will explain
how to verify that the log is maintained correctly — i.e. the
log maintainer only appends data in T , and items in every
T ′ are ordered lexicographically — in §5.3.

Example of proof of presence To prove that data d′2 for
Bob is in T ′

6, the log maintainer only needs to give the data
needed to compute the label of parent node from d′2 to the
root of the tree.

PoP(T ′

6, d
′

2) = [w, d
′

1, h(3,4), h(5,7)]

where w = l·l·r is the path to d′2, and l (resp. r) indicates the
path to the left (resp. right) child. So, given d′2, Root(T

′

6),
and the proof PoP(T ′

6, d
′

2), one can verify the proof by recon-
structing the root value hT = h(h(h(d′1, d

′

2), h(3,4)), h((5, 7))).
If hT = Root(T ′

6), then the proof is valid.

Example of proof of currency The proof of currency
is the same as proof of presence, but there is an extra con-
straint for the verifier to check, namely that the path to the
node is of the form r · r . . . · r.

Example of proof of extension To prove that the cur-
rent version of the log represented by T is an extension
of a previous version (Told) containing four updates (i.e.
Root(Told) = h(h(d1, d2), h(d3, d4)) and Size(Told) = 4), the
log maintainer gives h(d3, d4) as the proof. Given the two
digests and this proof, the verifier can verify that T is ex-
tended from Told by reconstructing Root(T ). A well defined
algorithm of how to generate the proof in different cases is
presented in §5.1.2 of [10].

Example of Proof of absence To prove that no certifi-
cates for user identity ‘Bill’ is included in T ′

6, the log main-
tainer needs to prove that any node whose label containing
Bill is absent from T ′

6, by performing the following steps.



• Locate node A such that the user identity contained
in its label is lexicographically the largest one smaller
than Bill. In our example, the label of node A is d′1
which contains user identity ‘Alice’.

• Locate node B such that the user identity contained in
its label is lexicographically the smallest one greater
than Bill. In our example, the label of node B is d′2
which contains user identity ‘Bob’.

• Prove that d′1 and d′2 are present in T ′

6, and they are
siblings (so no node is placed in between of them). The
former is proved by using proof of presence, and the
latter one can be verified by checking the path to d′1
and d′2.

5.2 Updating the log
We detail how a log maintainer updates the log, and gen-

erate proofs for its clients.

5.2.1 Log update for “enrolling a device”

After each period of length δ, the log maintainer has re-
ceived a list of device enrollment requests

(Ri, (CertskRi
(Di,j , eki,j , ti,j))

P
j=1)

M
i=1

where Ri is the client identity, P is the number of devices
that a client has requested to enrolling this update, and M

is the total number of clients who have sent the enrollment
request for this update.
To update the log, the log maintainer retrieves the current

T ′

n, and creates T ′

n+1 by adding each request to the appro-
priate node of T ′

n, where n is the size of the current log. It
then extends T with a new rightmost node T ′

n+1.

In addition, the log maintainer proves that the list of cer-
tificates (including the ones in the enrollment request) for
Ri is complete, and current in the log. If Ri has previously
observed a digest dgold of the log, then log maintainer also
generates a proof of extension that the current log is ex-
tended from the log represented by dgold. To do so, the log
maintainer locates the node labelled with d′i for Ri in T ′

n+1,
and generates:

• PoP(Tn+1, d
′) that d′ is in present of T ′;

• PoC(T, T ′

n+1) that the root hash value of T ′

n+1 is the
label of the rightmost leaf in T ; and

• PoE(T, dgold) that the current log is extended from the
log represented by dgold.

So Ri can verify that d′i — which contains a full list of cer-
tificates for his devices (including the newly enrolled ones)
— are present in the latest update of the log.

5.2.2 Log update for “updating the keys”

Suppose in the current epoch, the log maintainer which
maintains the log (represented by T of size n) has the tree
T ′

n containing

(Alice, DA,1, tA,1, h(certA,1)

DA,2, tA,2, h(certA,2)),

(Bob, DB,1, tB,1, h(certB,1)

DB,2, tB,2, h(certB,2)

. . .

DB,5, tB,5, h(certB,5)),

. . . . . .

and receives

(Ri, (CertskRi
(Di,j , eki,j , ti,j))

P ′

j=1)
M′

i=1

for some identity Ri and certificates for its devices Di,j ,
where P ′ is the number of a user’s devices that has sent a
key update request, and M ′ is the total number of clients
who has sent the key update request in this epoch.

At the turn of the epoch, the log maintainer updates the
log by performing the following steps:
Step 1) creates a new tree T ′

n+1 by copying and pasting the
entire T ′

n;
Step 2) replaces the old certificates with the corresponding

new ones in T ′

n+1;
Step 3) checks if any un-replaced certificate is older than

ζ; if there is any, the log maintainer removes them
from T ′

n+1;
Step 4) extends T with a new rightmost node Root(T ′

n+1).
Similar to the idea explained in §5.2.1, the log maintainer

can provide the proof that the list of certificates (including
the ones in the key update request) for Ri is complete, and
current in the log; and the proof that the current log is an
extension of the log that Ri has previously observed.

5.3 Crowd-sourced verification
Since we want to guarantee some security even when the

log maintainer is not trusted, we need to monitor the log
maintainer’s behaviour to see if the log is maintained cor-
rectly. This can be easily verified if we introduce a trusted
party to monitor the entire log. Alternately, to avoid having
a trusted party, we can use crowd-sourced verification by
breaking the verification work into independent little pieces,
and distribute each piece to different devices.

First, we need to verify that the log update history recorded
in T is maintained in an append-only manner. This is achieved
by verifying the proof of extension performed in each of
above protocols, namely enrolling a device, updating the
keys, and sending/receiving a message. Hence, there is no
need for any additional verification.

Second, we need to verify that in each update T ′

i , items
are ordered lexicographically according to the user identity.
It can be verified by asking each device to pick a random leaf
in an update T ′

i , and verify that the user identity recorded in
its left (or right) neighbour leaf is lexicographically smaller
(resp. greater) than the user identity in the picked leaf.

Third, in our protocol a device only checks its latest certifi-
cate in the log, rather than verifies all certificates recorded in
the log. So, it cannot guarantee that no attacker-generated
certificates have been previously included in the log. To de-
tect such behaviour, we need to verify that the time of the
key generation for the same device in different updates of
the log only going forward. To verify this, each device picks
a random leaf for a user in an update Ti, and verifies that
the time in the node for the same device of the user in the
left (or right) neighbour update Ti−1 (or Ti+1) is no greater
(or no smaller) than the time in the picked leaf, respectively.
Additionally, if the two times are equal, then the hash val-
ues of the corresponding certificates should also be equal.
Moreover, if no leaf for the user is included in the neighbour
update, then a proof of absence that a node containing the
user identity is not included in the update is provided.

Last, to ensure that the log maintainer did not show dif-
ferent logs to different users, a gossip protocol is needed to
exchange the digest of the log that users observed.



Table 2: The size of messages in different protocols.
In which, sizeP is the size of proofs in the corre-
sponding message, and sizeM is the maximum size
of a message.

Message sizeP sizeM

Enrolling a device

request - 1.6 KB

response 2.2 KB 2.5 KB

Total 4.1 KB

Fetching keys from
log

request - 78 B

response 2.2 KB 9.9 KB

Total 10 KB

Updating the keys

request - 1.5 KB

response 2.2 KB 2.5 KB

Total 4 KB

crowd-sourced verifi-
cation

Total 5.3 KB 5.9 KB

5.4 Communication cost
To check if deployment might be feasible, we provide a

rough estimation on the expected cost of our protocol de-
sign. As an example, we consider the following scenario. We
assume that there are 109 users, each user has 5 devices, the
log has been operating for 100 years, the log update period δ

for registration request is 1 hour, and the log update epoch
ǫ for certificate update is 1 day.
In this scenario, the size of T will be 100 · 365+ 100 · 365 ·

24 = 912500 < 220, and the size of each T ′ is less than 230.
In addition, we assume that the size of a hash value is 256
bits (e.g. SHA256), the size of a signature is 64 Bytes (e.g.
ECDSA), and the size of a certificate is 1.5 KB.
In addition, we assume that the size of a user (or device)

identity is 12 Bytes, and time is in the 64-bit format, a
random number is 28 bytes (recommended by TLS 1.2 [7]),
each request identifier is 4 bits, and the size of a digest of a
log is 300 bits.

The size of proof of presence that some data is in T and is
in T ′ will be at most 640 bytes and 960 bytes, respectively;
the size of the proof that a version of the log is extended
from a previous version is at most 640 bytes. We present
the size of messages in the protocol in our example scenario
in Table 2.
From Table 2 we can see that up to 5 KB data are needed

to be transferred for both enrolling a device and updating
keys. The protocol for fetching keys from the log is the most
expensive one, as the sender has to download all certificates
for different devices of the same users. In our example, the
sender needs to download 5 certificates, the size of which is
already 7.5 KB. In the crowd-sourced verification, we have
excluded the gossip protocol in our calculation, as it depends
on how the gossip protocol is designed.
The results of our high-level analysis indicate that the cost

of our system is acceptable.

5.5 Privacy considerations

The public log may cause some privacy concerns. For
example, one may want to hide the user identities contained
in a log, the total number of communications of a user, or
the time distribution of a user’s communications, etc.

In the above examples, to hide the user identity, the log
maintainer can use a hash value of the signed user identity
in the labels of leaves in each log update, rather than con-
taining the user identity directly in the labels (see Figure
5). The signature scheme used should be deterministic and
unforgeable, as suggested in [12]. Hence, users that have the
recipient’s address can request the signed user identity from
the log maintainer, and verify the log; but an attacker who
has downloaded the entire log cannot recover the identity
of users, based on the unforgeability of the chosen signature
scheme. In this case, the nodes in each update tree T ′

i will
be ordered lexicographically according to the hash value of
the signed user identity. In addition, users can also make the
log to be only available to a fixed set of contacts. To hide the
real number of communications associated to a given client
of the log, the client can generate some noise — for exam-
ple, the client can make ‘spoof queries’ to the log maintainer
through an anonymous channel (e.g. Tor network).

There are many other possible solutions (e.g. server side
access control). We do not detail them here as they are not
the main focus of this paper.

6. SECURITY ANALYSIS
We provide all input files required to understand and re-

produce our security analysis at [1]. In particular, these
include the complete KUD models.

6.1 Security properties
Our protocol achieves both classical security properties

as well as novel ones. In a classical sense, Sally obtains
the guarantee that if Robert’s devices are not compromised,
then the attacker will not learn the messages she sends.

The more interesting properties are achieved in the cases
where Robert’s devices get compromised. In this case, we
cannot avoid that messages sent by Sally in the same epoch
are also compromised. However, we prove that if any of
Sally’s messages from different epochs are compromised, then
Robert will be able to detect this.

6.2 Formal analysis
We analyse the main security properties of the KUD pro-

tocol using the Tamarin prover [11]. The Tamarin prover is
a symbolic analysis tool that can prove properties of security
protocols for an unbounded number of instances and sup-
ports reasoning about protocols with mutable global state,
which makes it suitable for our log-based protocol. Protocols
are specified using multiset rewriting rules, and properties
are expressed in a guarded fragment of first order logic that
allows quantification over timepoints.

Tamarin is capable of automatic verification in many
cases, and it also supports interactive verification by man-
ual traversal of the proof tree. If the tool terminates with-
out finding a proof, it returns a counter-example. Counter-
examples are given as so-called dependency graphs, which
are partially ordered sets of rule instances that represent a
set of executions that violate the property. Counter-examples
can be used to refine the model, and give feedback to the
implementer and designer.

Modeling aspects We used several abstractions during



modeling. We model the Merkle hash trees as lists, similar
to the abstraction used in [3].
We model the protocol roles S (sender), R (receiver) and L

(log maintainer) by a set of rewrite rules. Each rewrite rule
typically models receiving a message, taking an appropriate
action, and sending a response message. Our modeling ap-
proach is similar to the one used in most Tamarin models.
Our modeling of the roles directly corresponds to the proto-
col descriptions in the previous sections. Tamarin provides
built-in support for a Dolev-Yao style network attacker, i.e.,
one who is in full control of the network. We additionally
specify rules that enable the attacker to compromise devices
and learn their long and short-term secrets.
The final KUD model consists of 450 lines for the base

model, and six main property specifications, examples of
which we will give below.

Proof goals We state several proof goals for our KUD
model, exactly as specified in Tamarin’s syntax. Since
Tamarin’s property specification language is a fragment of
first-order logic, it contains logical connectives (|, &, ==>,
not, ...) and quantifiers (All, Ex). In Tamarin, proof goals
are marked as lemma. The #-prefix is used to denote time-
points, and “E @ #i” expresses that the event E occurs at
timepoint i.
The first goal is a check for executability that ensures

that our model allows for the successful transmission of a
message. It is encoded in the following way.

lemma protocol_correctness:
exists-trace
" /* It is possible that */

Ex d R skR dkR m #i.
/* R received an encrypted message m on device d */
MsgReceived(d, R, skR, dkR, m) @ #i
/* without the adversary compromising any device. */

& not (Ex d2 A ltk dkR #j.
Compromise_Device(d2, A, ltk, dkR) @ #j)

"

The property holds if the Tamarin model exhibits a be-
haviour in which one of R’s devices received a message with-
out the attacker compromising any device. This property
mainly serves as a sanity check on the model. If it did not
hold, it would mean our model does not model the normal
(honest) message flow, which could indicate a flaw in the
model. Tamarin automatically proves this property in a few
seconds and generates the expected trace in the form of a
graphical representation of the rule instantiations and the
message flow.
We additionally proved several other sanity-checking prop-

erties to minimize the risk of modeling errors.
The second example goal is the core secrecy property with

respect to a classical attacker, and expresses that unless the
attacker compromises a key, he cannot learn any messages
sent by Sally. Note that K(m) is a special event that denotes
that the attacker knows m at this time.

lemma message_secrecy:
"All R skR ekR m #i.

/* If S sent a message m to R */
( MsgSent(R, skR, ekR, m) @ #i &

/* without the adversary compromising any device */
not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)
)
==>
( /* then the adversary cannot know m */

not ( Ex #j. K(m) @ #j)
)

"

Tamarin also proves this property automatically.
The above result implies that if Robert receives a message

that was sent by Sally, and the attacker did not compromise
his device during the current epoch, then the attacker will
not learn the message.

The next two properties encode the unique security guar-
antees provided by our protocol. If the attacker compro-
mises Robert’s device in an epoch, he can use the private
ephemeral key to decrypt Sally’s messages in that epoch.
The first main property we prove is that if he uses the com-
promised long-term key of Robert to learn messages sent by
Sally in other epochs, then he will be detected once Robert
checks the log.

lemma detect_usage_S_sends:
"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,
where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &
/* and the adversary knows m */
K(m) @ #i2 &
/* and the ephemeral key used by the sender

was not compromised, i.e., the compromise
occurred in a different epoch

*/
not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &
/* and Robert afterwards checks the log */
CheckedLog(d, R, detectionresult, k ) @ #i3 &
#i1 < #i3

)
==>
( /* then we detect a compromise */

(detectionresult = ’bad’)
)

"

The property states that if Sally sends a message, but
the attacker learns the message without compromising that
epoch’s ephemeral key, (which is based on impersonating
Robert), then the next verification of the log will contain
evidence of the misbehaviour.

The final property extends the previous for the messages
that Robert actually receives from Sally, and shows that this
also leads to detection of the key’s abuse.

lemma detect_usage_R_receives:
"All d skR dkR dkR2 m #i1 #i2 #i3 #i4 detectionresult R k.

/* If S sent to R an encrypted message m,
where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &
// /* and R receives it */
MsgReceived(d, R, skR, dkR2, m) @ #i2 &
/* and the adversary knows m */
K(m) @ #i3 &
/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise was in
a different epoch then when m was sent.

*/
not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &
/* and Robert afterwards checks the log */
CheckedLog(d, R, detectionresult, k ) @ #i4 &
#i2 < #i4

)
==>
( /* then we can detect a compromise */

(detectionresult = ’bad’)
)

"

The last two properties are proven automatically byTamarin

on a laptop within a few minutes.
Overall, the modeling effort was in the order of weeks,

with several iterations to debug both the abstract model
and the property specifications.



Our initial model and property specification could not be
automatically verified by Tamarin and we used the tool’s in-
teractive mode to determine the cause of non-termination.
Ultimately, this enabled us to use Tamarin’s lightweight
heuristics-influencing mechanism, which boils down to adding
two lines of code per property, to guide the prover to find the
proofs automatically and efficiently. This took several itera-
tions and also revealed errors in earlier specifications, which
made it clear that the complexity of the model required us
to specify and prove several sanity checks.
Overall, the process helped us not only to prove, but also

to refine the precise security properties of our protocol.

7. CONCLUSION
We have presented a novel messaging protocol that offers

security guarantees even when an attacker can access secret
keys in a user’s devices. In particular, (a) the protocol lim-
its the impact of a compromise, since the attacker can only
learn messages sent in the same epoch without being de-
tected, and (b) if the attacker uses compromised long-term
keys to impersonate users, then the protocol allows the par-
ticipants to detect this, and therefore to take remedial ac-
tion. Our protocol supports multiple devices per user, and
the multiplicity of devices helps detect attacks by intuitive
indicators to users about which (device) keys have recently
been active.
The methods we introduce are not intended to replace ex-

isting methods used to keep keys safe. Existing technologies
such as TPMs, smart-cards, and ARM TrustZone are all
useful for securing keys. However, none of these technolo-
gies are completely secure. For example, even if hardware
security is used, malware may be able to trigger usages of
the key without having the ability to copy the key. Our
methods can also detect such cases. Thus, KUD adds an
additional layer of security that allows users to detect when
other layers fail.

8. REFERENCES
[1] Anonymous. Tamarin models for the KUD protocol,

2015. https://www.dropbox.com/sh/
8cuvuo4x90wea0q/AABe3m8VTUEn4we2JQOt_Gxra?dl=0.

[2] Apple Inc. iOS Security. https://www.apple.com/ca/
fr/ipad/business/docs/iOS_Security_Feb14.pdf,
February 2014.

[3] D. A. Basin, C. J. Cremers, T. H. Kim, A. Perrig,
R. Sasse, and P. Szalachowski. ARPKI: attack resilient
public-key infrastructure. In ACM CCS, 2014.

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP Message Format. RFC 4880
(Proposed Standard), Nov. 2007. Updated by RFC
5581.

[5] Common vulnerabilities and exposures.
https://cve.mitre.org/cve/index.html, Retrieved
Feb. 2015.

[6] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on Android.
In Information Security, pages 346–360. Springer,
2011.

[7] T. Dierks and E. Rescorla. The transport layer
security (TLS) protocol version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[8] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A survey of mobile malware in the wild.
In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, pages
3–14. ACM, 2011.

[9] Internet Mail Consortium, S/MIME and OpenPGP.
http://www.imc.org/smime-pgpmime.html, Retrieved
Feb. 2015.

[10] B. Laurie, A. Langley, and E. Kasper. Certificate
Transparency. RFC 6962 (Experimental), 2013.

[11] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin.
The TAMARIN prover for the symbolic analysis of
security protocols. In Computer Aided Verification -
25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings,
pages 696–701, 2013.

[12] M. S. Melara, A. Blankstein, J. Bonneau, M. J.
Freedman, and E. W. Felten. CONIKS: A
privacy-preserving consistent key service for secure
end-to-end communication. IACR Cryptology ePrint
Archive, 2014.

[13] R. C. Merkle. A digital signature based on a
conventional encryption function. In CRYPTO, pages
369–378, 1987.

[14] L. Nordberg. Transparency gossip.
INTERNET-DRAFT, 2014.

[15] L. Nordberg. Transparency gossip HTTPS transport.
INTERNET-DRAFT, 2014.

[16] B. Ramsdell and S. Turner. Secure/multipurpose
internet mail extensions (S/MIME) version 3.2
message specification. RFC 5751 (Proposed Standard),
Jan. 2010.

[17] M. D. Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. in network and distributed
system security. In NDSS, 2014.

[18] R.Zimmermann. The official PGP userâĂŹs guide,
1995. MITPress, Cambridge, MA, USA.

[19] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
Flipit: The game of ”stealthy takeover”. J. Cryptology,
26(4):655–713, 2013.

[20] Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. In IEEE Symposium
on Security and Privacy, pages 95–109. IEEE, 2012.

A. Detailed protocol

This section provides the detailed protocols with figures.
It would help readers to see the exact exchanged messages.
In addition, it would help readers to understand ourTamarin
code provided at [1].

A.1 Enrolling a device

We assume that all Robert’s devices have shared his long-
term signing key skR. To enrol a device Dℓ, it generates a
new ephemeral certificate, and publishes it in the log. In
more detail:

• Dℓ generates a new ephemeral key pair (dkℓ, ekℓ) for de-
cryption and encryption, respectively. Then, Dℓ issues
a self-signed certificate CertskR

(Dℓ, ekℓ, tℓ) on (Dℓ, ekℓ, tℓ)
by using skR, where tℓ is the key creation time; and
sends the signed registration request
m1 = (req1, R, dgold,CertskR

(Dℓ, ekℓ, tℓ)) to the log,



where reg1 is the request identity, R is the identity
of Robert, and dgold = (Root(Told), Size(Told)) is the
digest of the log that Robert possibly has previously
stored (it is likely to happen if Robert is re-enrolling
his device Dℓ).

• After the log receives the request, it verifies the signa-
ture and the certificate, and that tℓ is in the time inter-
val of the current update epoch δ. If they are all valid,
it stores the request, and issues a signed confirmation
sign{Root(log),Size(log),CertskR

(Dℓ, ekℓ, tℓ)}skL
, where

log is organised as T , as explained in §5.1. If dgold is
provided, the log maintainer also generates a proof P
of extension that the current log is extended from the
log represented by dgold, and sends the proof together
with signed confirmation as the message m2 to Robert.

• Dℓ verifies signatures and proofs, and sends the request
m3 containing a request req′1, its identity Dℓ, and cur-
rent observed digest to the log maintainer after δ time.

• After each period of length δ, the log maintainer up-
dates the log as described in §5.2.1.

• Dℓ verifies the received proofs and signatures. Addi-
tionally, it displays the table (Di, ti) (for all i ∈ [1, P ])
to Robert, so he can check that the devices mentioned
are indeed recently used. If Robert sees a device men-
tioned that he has not recently used, it is evidence of
an attack that an attacker who has used his long-term
key without authorisation and has inserted a certificate
for him.

The device is now ready to be used. A similar process will
be used to un-register a device with the log maintainer.

A.2 Sending and receiving a message

To send a message to Robert, Sally’s device will retrieve all
the current device certificates for Robert from the log, and
encrypt the messages with each of them. More precisely (as
presented in Figure 6), to send a message:

• Sally sends request m1 = (req2, R, r, dgold) to the log,
where req2

1 is the request identity, R is the identity
of Robert, r is a random number, and where dgold =
(Root(Told), Size(Told)) is the digest of the log that Sally
received in the last session.

• After receives the request, the log maintainer locates
the leaf whose label d contains R in the latest update
T ′ (that is represented by the rightmost leaf of T ), and
generates the proof P1 that Root(T ′) is current in T ,
proof P2 that d is in T ′, and proof P3 that the cur-
rent log is an extension of the log that Sally has pre-
viously observed. It then sends m2 the signed mes-
sage (‘CertResp’, dgnew, Last(T ), P1, P2, P3, r,md, t) to
Sally, where ‘CertResp’ is a tag, dgnew = (Root(T ), Size(T )),
md = (R, (Dj , tj , ekj ,Certj)

P
j=1) is the data associated

to d, and t is the time to identify the current epoch.
• After receives the message from the log maintainer,

Sally verifies if t is corresponding to the current epoch,
and verifies the received signature, proofs, and certifi-
cates. If all verifications succeed, she replaces dgold and
σold
L by dgnew and σL, respectively, where σL is the sig-

nature from the log maintainer. Similar as what PGP
does, her device encrypts a copy of the message with
a fresh symmetric key k, and encrypts k with each re-
ceived eki. It sends the encrypted message and together

1This request corresponds to the ‘CertReq’ in our Tamarin
code.

with the encrypted k to each of Robert’s devices.
• Robert picks up any of his devices, receives the en-

crypted message, and decrypts it.
Note that in the protocol, if there is no certificate for

Robert in the latest update, then a proof of absence that
the identity of Robert is not in the latest update is provided
to the user.

Remark 1. The signed t is used to prevent attacks that
replay a selected version of the log from the (compromised)
log maintainer. Let x be the version of the log that Sally has
previously observed, and z be the latest update. The replay
attack is that the log maintainer picks and replays a version
y of the log, such that x < y < z, and Robert’s ephemeral key
that is valid in the version y is compromised by the attacker.
In this case, even with gossip protocol, all verification will
succeed (if without having tnew), because version y is a gen-
uine version of the log (though it is not the latest one).

Log maintainer

skL, log, vkR

Sally

dgold, σ
old
L , vkR, vkL

Di of Robert

skR, dki

- generate random number r

- dgold := (Root(Told),Size(Told))

- m1 = (req2, R, r, dgold)

m1

- Last(T ) := Root(T ′)

- find d in T ′ such that is contained in d

- P1 := PoC(T, Last(T ))

- P2 := PoP(T ′, d)

- P3 := PoE(T, dgold)

- md := all data associated to d

- dgnew = (Root(T ),Size(T ))

- mL := (dgnew, Last(T ), P1, P2, P3,md, t)

- σL := sign{mL, r}skL

- m2 := (mL, σL)

m2

- Verify t

- Verify σL

- Verify P1, P2, P3

- Verify received certificates

- dgold := dgnew

- σold
L := σL

- extract ephemeral encryption

key eki from each received certificates

- create symmetric key k

- m3 := ({m}k, {k}eki
) for all possible i

m3

- decrypts {k}eki
by using dki

- decrypts {m}k by using k

Figure 6: The protocol for sending and receiving
a message. In which, σold

L is the signature received
from the log maintainer in the last session. If any
of the stated verification fails, the agent aborts the
protocol.

A.3 Updating the keys

Devices change their key every epoch w.r.t. ǫ, and if they
don’t do so (because the application is not invoked on a



particular day), then their key will be reused for a certain
period (e.g. 3 more ǫ), and then will not be included in the
log for the next further update epoch. In this last case, the
device can’t be used for receiving and reading messages until
Robert uses the device again — it will re-register the device
automatically. So, after Robert can use this device again in
δ time (e.g. one hour). Note that if Robert has un-registered
the device, then the device will not automatically re-register
itself; and Robert has to re-register it manually in this case.
More precisely, whenever Robert invokes the messaging

app on a device Dℓ, the device checks to see if it is the first
time it has run the app during that epoch w.r.t. ǫ. If so,

• Dℓ creates a new ephemeral key pair (dkℓ, ekℓ), issues
a certificate CertskR

(Dℓ, ekℓ, tℓ), which will become the
valid key in next epoch, where tℓ is the key creation
time. Then, he sends the signed request
m1 = (req3, dgold,CertskR

(Dℓ, ekℓ, tℓ)) to the log main-
tainer, where req3

2 is the identity of update request,
dgold = (Root(Told), Size(Told)) is the digest of the log
that he observed in the last session.

• After receiving the request, the log maintainer verifies
the signature, time tℓ, and the received certificate. If
they all valid, then it generates a commitment σL =
sign{‘Confirmation’, dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

that it will put the received new certificate in the log
by the end of this epoch. The log maintainer locates
the node d for Robert in the latest update of the log,
and generates the proof P1 that the root hash value
of T ′ is the label of the rightmost leaf in T , proof P2

that d is in present of T ′, and the proof P3 that T is
an extension of the log that Robert has observed in the
last session. Note that P1 and P2 together form the
proof that d is the latest update for Robert in the log.
The log maintainer sends the generated signature and
proofs to Dℓ.

• Upon receiving the response, Dℓ verifies all signatures
and proofs. Additionally, it verifies that the hashed
certificate (contained in d) for Dℓ in the latest update
is indeed corresponding to the one it created and sent
in the previous epoch. This verification ensures that no
unauthorised request has been generated and recorded
in the current log. (We will explain in the §5.3 that
why we don’t need to require Dℓ to verify all history
certificates for Dℓ in the log are indeed generated by
Dℓ.) If all verifications succeed,Dℓ removes any expired
keys stored in Dℓ, replaces the stored digest of the log
with the new one, and displays the table (Di, ti) (for
each possible i) to Robert, so he can check that the
devices mentioned are indeed recently used. If Robert
sees a device mentioned that he has not recently used,
it is evidence of an attack.

• At the turn of the epoch, the log maintainer inserts
all received update request into the log, as described
in §5.2.2. If a device has not update ephemeral keys
and has been excluded from the latest update by the
log maintainer, then the device will automatically re-
register itself when the owner has used the device again,
so the device will be included in the log and be ready to
receive and decrypt messages in δ time (e.g. an hour).

2This request corresponds to the ‘UpdateReq’ in our
Tamarin code.

Robert

skR, dk
old
ℓ , Certold, dgold, σ

old
L

Log maintainer

skL, log

- Generate (dkℓ, ekℓ)

- issues CertskR
(Dℓ, ekℓ, tℓ)

- issues dgold = (Root(Told), Size(Told))

- m1 := (req3, dgold,CertskR
(Dℓ, ekℓ, tℓ))

m1

- verify the received certificate

- verify tℓ

- dgnew := (Root(T ),Size(T ))

- σL := sign‘Confirmation’, dgnew,

h(CertskR
(Dℓ, ekℓ, tℓ))skL

- Last(T ) := Root(T ′)

- find d in T ′ such that R is in d

- P1 := PoC(T, Last(T ))

- P2 := PoP(T ′, d)

- P3 := PoE(T, dgold)

- stores m1

- md := the label of d

- m2 := (dgnew,md, σL, {Pi}
3
i=1)

(m2)

- verify σL

- verify all received proofs

- verify that h(Certold) is in md

- dgold := dgnew

- σold
L := σL

- remove expired keys

- display all (Di, ti) to Robert

At the end of the epoch w.r.t. ǫ

- update the log

Figure 7: The protocol for updating keys. In the
protocol, dkold

ℓ is the current valid ephemeral secret
key, Certold is the corresponding certificate, dgold and
σold
L are the digest and signature received from the

log maintainer in the last session, respectively.


