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Abstract

We study the achievability of different forms of obfuscation and related primitives A,B
through relations of the form A ⇒ ¬B —this says that A,B cannot both exist— or A ⇒ B
—this says that if A exists so does B or if B does not exist then neither does A. Specifically: (1)
We show that VGBO (Virtual Grey Box Obfuscation) for all circuits, which has been conjectured
to be achieved by candidate constructions, would imply the failure of Canetti’s 1997 AI-DHI1
(auxiliary input DH inversion) assumption and corresponding AIPO (Auxiliary-Input Point-
function Obfuscation) scheme (2) We recover AIPO via a variant AI-DHI2 assumption, certain
forms of UCE (Universal Computational Extractors), and a construction from any auxiliary-
input OWF (3) We show that iO (indistinguishability Obfuscation) for all circuits implies the
impossibility of certain forms of leakage-resilient encryption and other forms of UCE.
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1 Introduction

Cryptographic theory is being increasing bold with regard to assumptions and conjectures. This
is particularly true in the area of obfuscation, where candidate constructions have been provided
whose claim to achieve a certain form of obfuscation is either itself an assumption [30] or is justified
under other, new and strong assumptions [41, 9, 33]. This is attractive and exciting because we
gain new capabilities and applications. But it behoves us also to be cautious and try to ascertain,
not just whether the assumptions are true, but whether the goals are even achievable.

But how are we to determine this? The direct route is cryptanalysis, and we have indeed
seen some success [38, 27, 32, 28]. But cryptanalysis can be difficult and runs into major open
complexity-theoretic questions. There is another rewarding route, that we pursue here. This is to
seek and establish relations, or connections, between different primitives and assumptions A,B in
the area. We can divide such relations into two types. First are “negative” relations, of the form
A ⇒ ¬B. This shows that A,B are not both achievable. We may not know which of the two
fails, but we cannot have both, which is valuable and sometimes surprising information. Second
are “positive” relations A ⇒ B, showing that if A is achievable then so is B. This has double
utility: If we believe A exists then we have increased confidence in the existence of B, but if we
believe B does not exist then we can conclude that A does not either.

Several prior works have used iO as a starting point to obtain intriguing negative relations
iO ⇒ ¬B, for different choices of B [11, 18, 20, 19, 4, 35]. GGHW [31] use “special-purpose
obfuscation” as a starting point to conclude ¬diO. In this paper, we ask what is possible given a
different starting point, namely VGBO (Virtual Grey Box Obfuscation) [8]. We show that VGBO
rules out the AI-DHI1 assumption, and thus the primary existing construction of another form
of obfuscation, AIPO. This leads us to seek and provide new constructions for AIPO. Finally we
provide some new and improved negative relations with starting point iO. The results we obtain
shed light on whether or not VGBO for all circuits is possible and further clarify which primitives
or assumptions can co-exist. Our results are summarized in Fig. 1 and we now discuss them further.

VGBO vs AI-DHI1. We show that VGBO⇒ ¬AI-DHI1. That is, if Virtual Grey Box Obfuscation
(VGBO) of all circuits is possible then Canetti’s 1997 AI-DHI1 (Auxiliary-Input DH Inversion)
assumption [22, 12] fails. Equivalently, if the AI-DHI1 assumption is true, then VGBO obfuscation
of all circuits is not achievable. We do not know which of the two fails, but at least one must. (Of
course it could be that both fail.) Let us now back up to provide more information on the objects
involved and the proof.

The study of obfuscation began with VBBO (Virtual Black Box Obfuscation) [36, 3], which
asks that for any PT adversary A given the obfuscated circuit, there is a PT simulator S given an
oracle for the original circuit, such that the two have about the same probability of returning 1.
The impossibility of VBBO [3, 34, 13] has lead to efforts to define and achieve weaker forms of
obfuscation. VGBO [8] is a natural relaxation of VBBO allowing the simulator S to be compu-
tationally unbounded but restricted to polynomially-many oracle queries. This bypasses known
VBBO impossibility results while still allowing interesting applications. Furthermore BCKP [9, 10]
show that VGBO for NC1 is achievable (under a novel assumption). They then say “existing candi-
date indistinguishability obfuscators for all circuits [30, 16, 2] may also be considered as candidates
for VGB obfuscation, for all circuits” [10, Section 1.1]. This would mean, in particular, that VGBO
for all circuits is achievable. In this paper we ask if this VGB conjecture is true. Towards obtaining
answers, we study the implications of the conjecture through relations.

The AI-DHI1 assumption [22, 12] says that there is an ensemble G = {Gλ : λ ∈ N} of prime-order
groups such that, for r, s chosen at random from Gλ, no polynomial-time adversary can distinguish
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VGBO: Virtual Grey Box Obfuscation; AIPO:
Auxiliary-Input Point-function Obfuscation; iO:
Indistinguishability Obfuscation; AI-DHI1,
AI-DHI2: Auxiliary-Input DH Inversion
Assumptions; PRIV1-AI-DPKE: Auxiliary-
Input, single-message Deterministic PKE;
KM-LR-SE: Key-Message Leakage-resilient
Symmetric Encryption; AI-OWF: Auxiliary-
Input One-Way Function; UCE[S]: Universal
Computational Extractor for class of sources
S; Ssplt: Class of split sources; Scup: Class
of computationally unpredictable sources; S1:
Class of sources making only one oracle query.

Figure 1: Relations established in this paper. A⇒ ¬B means that if A exists or is true then
B is not; A ⇒ B means that if A exists or is true then so is B; ¬A ⇒ ¬B means that if A does
not exist then neither does B, and is equivalent to B⇒ A.

between (r, rx) and (r, s), even when given auxiliary information a about x, as long as this informa-
tion a is “x-prediction-precluding,” meaning does not allow one to just compute x in polynomial
time. The assumption has been used for oracle hashing [22], point-function obfuscation [12] and
zero-knowledge proofs [12].

Recall that our result is that VGBO⇒ ¬AI-DHI1: If VGBO for all circuits is possible then
the AI-DHI1 assumption is false. To prove this, we take any ensemble G = {Gλ : λ ∈ N} of
prime-order groups. For random x, we define a way of picking the auxiliary information a such
that (1) a is x-prediction-precluding, but (2) there is a polynomial-time adversary that, given a,
can distinguish between (r, rx) and (r, s) for random r, s. Consider the circuit Cx that on input u, v
returns 1 if v = ux and 0 otherwise. The auxiliary information a will be a VGB obfuscation C of
Cx. Now (2) is easy to see: the adversary, given challenge (u, v), can win by returning C(u, v). But
why is (1) true? We first use the assumed VGB security of the obfuscator to reduce (1) to showing
that no, even unbounded, simulator, given an oracle for Cx, can extract x in a polynomial number
of queries. The latter is then shown through an information-theoretic argument that exploits the
group structure.

AI-DHI2. If the VGB conjecture is true, then our result above says we lose AI-DHI1 and all results
and constructions based on it. To recover these, we suggest a modification (weakening) of AI-DHI1
that we call AI-DHI2. The modification is simple. Recall that in AI-DHI1, the ensemble contains
a single group Gλ for every value of the security parameter λ. We allow a finite family of groups
for each value of λ, the description 〈G〉 of a particular group G to be picked by a polynomial-time
generator algorithm GG on input 1λ. We consider a parameterized assumption AI-DHI2[GG] that
says that, for 〈G〉 generated by GG, and for r, s then chosen at random from G, no polynomial-time
adversary can distinguish between (r, rx) and (r, s), even when given 〈G〉 and auxiliary information
a about x, as long as this information a is x-prediction-precluding. A key element of this formulation
is that the auxiliary information a does not depend on G. Finally the AI-DHI2 assumption is that
there exists GG such that the AI-DHI2[GG] assumption holds.

The two criteria for a good assumption are plausibility and utility. In our present context the first
corresponds to asking whether our methods can be extended to show that VGBO⇒ ¬AI-DHI2.
We find that whether or not our attack works depends on the generator. For some GG satisfying a
property we call “verifiability,” we can show that VGBO⇒ ¬AI-DHI2[GG]. However, there are
GG that do not appear to be verifiable, leaving AI-DHI2 a viable assumption even if VGBO for
all circuits is possible. This is a step forward but not by itself enough; the utility we want is that
applications that used AI-DHI1 can use AI-DHI2. Below we will show this and more.

4



One might say it is premature to introduce and use AI-DHI2, since we do not know that VGBO
is possible, and AI-DHI1 may be true. But notice that AI-DHI2 is a weaker assumption than
AI-DHI1. That is, AI-DHI1⇒ AI-DHI2. (GG could always output the single group Gλ on input
1λ.) So using AI-DHI2 in place of AI-DHI1 is a win-win situation. If VGBO is not possible and
AI-DHI1 is true, then so is AI-DHI2, but if VGBO is possible and AI-DHI1 is thus false, AI-DHI2
and applications based on it may still be standing.

AIPO results. A point function with target k is the circuit Ik that on input k′ returns 1 if k′ = k
and 0 otherwise. When, faced with the impossibility of VBBO for all circuits, researchers asked
whether one could obfuscate particular classes of circuits, point functions emerged as the canonical
target, due both to their being so basic and to their obfuscation having many applications [22, 39,
43, 34, 24, 25, 8, 12, 40, 20].

AIPO is a strong formalization of security for point-function obfuscation from [34, 12]. It
asks that the obfuscations of Ik0 and Ik1 be indistinguishable even given k1-prediction-precluding
auxiliary information a where k0, k1 are drawn from some common distribution. This formulation
has been used for 3-round ZK [12] and certain forms of UCE [21]. Achieving it has however been
(surprisingly) difficult. The primary construction is from AI-DHI1 [22, 12]: to obfuscate Ik, pick a
random r from the group Gλ, let s = rk and return the circuit Cr,s that on input k′ returns 1 if
rk
′

= s and 0 otherwise.

If the VGB conjecture is true, then our result above says we lose the AI-DHI1-based construction
of AIPO. In fact, it is not just that the assumption fails; our attack directly shows that the con-
struction itself fails. This calls AIPO into question and in particular leads us to ask whether VGBO
and AIPO can co-exist. We suggest that they can by providing several alternative constructions of
AIPO under different assumptions that as far as we know can co-exist with VGBO.

We give four constructions that are summarized in the second set of relations in Fig. 1 and
that we now discuss. (1) AI-DHI2 ⇒ AIPO: We show that the weakening AI-DHI2 of AI-
DHI1 we introduced above, and that as far as we know can co-exist with VGBO, is enough to
guarantee AIPO. The construction is as from AI-DHI1 except that the group is chosen dynamically
by the obfuscator, anew for each invocation. (2) UCE[Scup ∩ Ssplt ∩ S1] ⇒ AIPO: We provide a
construction of AIPO based on function families satisfying an assumption in the UCE (Universal
Computational Extractor) class of assumptions of [5], namely UCE for the class Scup ∩ Ssplt ∩ S1

of computationally unpredictable split sources making only one oracle query. The definitions are
recalled in Appendix A, but what is most relevant here is that the strength of a UCE assumption is
very sensitive to the choice of class of sources that parameterizes the assumption, and UCE[Scup ∩
Ssplt ∩ S1] is a conservative choice that evades the BFM iO-based attacks against UCE[Scup] [18].
(3) PRIV1-AI-DPKE ⇒ AIPO: We construct AIPO from deterministic public-key encryption
(DPKE) schemes that are secure even given message-prediction-precluding auxiliary information
(AI), as defined by Brakerski and Segev [17]. We only require security for a single message (PRIV1)
so the negative result of [45] does not apply. (4) AI-OWF+iO ⇒ AIPO: We construct AIPO
from the weakest primitive in the auxiliary-information domain, namely a function that is one-way
even given input-prediction-precluding auxiliary information. The construction additionally uses
iO.

Negative relations from iO. Indistinguishability Obfuscation (iO) [3, 30] for all circuits has already
been the starting point for negative relations iO ⇒ ¬B, for different choices of B [11, 18, 20, 19,
4, 35]. This last segment of our paper provides further iO-based negative relations, depicted at the
bottom of Fig. 1, that broaden and improve prior ones.

DKL [29] and CKVW [25] provide key leakage resilient symmetric encryption (K-LR-SE)
schemes: they retain security even when the adversary has any key-prediction-precluding auxil-
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iary information about the key. We consider a generalization: In key-message leakage resilient
symmetric encryption (KM-LR-SE), the auxiliary information is allowed to depend not just on
the key but also on the message, the requirement however still being that it is key-prediction-
precluding. The enhancement would appear to be innocuous, because the strong semantic-security
style formalizations of encryption that we employ in any case allow the adversary to have a priori
information about the message. However, we show that this goal is impossible to achieve if iO
for all circuits is possible. That is, iO ⇒ ¬KM-LR-SE. We use the technique introduced by
Brzuska and Mittelback (BM1) [20] to show that iO⇒ ¬MB-AIPO and our result is essentially a
reformulation of the latter, but, besides being of interest from the perspective of leakage-resilience,
this reformulation will be the basis of a further negative result as we discuss below.

BFM [18] showed that iO ⇒ ¬UCE[Scup]. That is, if iO for all circuits is possible, then
no family of functions can achieve UCE security relative to the class Scup of all computationally
unpredictable sources. This lead BHK [5] to propose further restricting attention to “split” sources.
Such sources can leak information about an oracle query and its answer separately, but not together,
which circumvents the BFM attack. Indeed, UCE[Scup ∩ Ssplt] appeared plausible. However here
we show that UCE[Scup ∩ Ssplt] ⇒ KM-LR-SE, meaning we can build a key-message leakage
resilient symmetric encryption scheme given any UCE[Scup ∩ Ssplt]-secure function family. But we
saw above that iO⇒ ¬KM-LR-SE and can thus conclude that iO⇒ ¬UCE[Scup ∩ Ssplt]. That
is, if iO for all circuits is possible, then UCE[Scup ∩ Ssplt]-security is not achievable.

In UCE[Scup ∩ Ssplt], the source is allowed a polynomial number of oracle queries. Our attacks
do not threaten UCE[Scup ∩ Ssplt ∩ S1], the assumption we used above to get AIPO, because
here the source is only allowed one oracle query. In fact we are not aware of any applications
assuming UCE[Scup ∩ Ssplt]; prior applications [5, 4] have also either used UCE[Scup ∩ Ssplt ∩ S1]
or quite different classes like UCE[Ssup], and neither of these is at risk. However our iO ⇒
¬UCE[Scup∩Ssplt] result is of interest towards understanding the achievability of UCE assumptions
and the effectiveness of different kinds of restrictions (in this case, splitting) on sources.

Discussion and further related work. Our above-mentioned PRIV1-AI-DPKE⇒ AIPO result mo-
tivates achieving PRIV1-AI-DPKE. BS [17] target this goal and provide schemes based on standard
assumptions such as DLIN and subgroup indistinguishability, but they only achieve security if the
message is subexponentially unpredictable from the auxiliary information while we need security
even when it is only polynomially unpredictable from the auxiliary information.

Wee [43] provides a point-function obfuscator based on a fixed permutation about which a novel
assumption is made. This construction does not target AIPO, but one can ask whether or not it
achieves it. Goldwasser and Kalai [34] show that it does not. BP [12] consider the construction
with a family of permutations rather than a fixed one, and show, under a novel assumption, that
in this case it does achieve AIPO. BP [12] also note that this construction cannot be proven AIPO
based only on the assumption that the underlying permutation is a AI-OWF. In this light it is
interesting that we obtain AIPO from an arbitrary AI-OWF under the additional assumption of
iO.

Brzuska and Mittelbach (BM1) [20] show that iO ⇒ ¬MB-AIPO. The latter, multi-bit
auxiliary-input point-function obfuscation [40], seems to be quite a bit stronger than AIPO itself
and in particular this result does not rule out AIPO.

Brzuska and Mittelbach (BM2) [21] show that iO + AIPO ⇒ UCE[Scup ∩ Ssplt ∩ S1]. From
this and our constructions of AIPO we obtain iO + AI-DHI2 ⇒ UCE[Scup ∩ Ssplt ∩ S1], a
construction of UCE[Scup ∩ Ssplt ∩ S1] function families from iO and an algebraic assumption.
We also obtain iO + AI-OWF ⇒ UCE[Scup ∩ Ssplt ∩ S1]. These positive results further validate
the UCE[Scup ∩ Ssplt ∩ S1] assumption.
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BHK [5] use UCE to construct point obfuscators providing security when the target is statisti-
cally unpredictable given the auxiliary input. AIPO requires more, namely security even when the
target is only computationally unpredictable given the auxiliary input.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary representation. We
denote the size of a finite set X by |X|. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i]
denotes its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. We let ε denote the empty
string. If s is an integer then Pads(C) denotes circuit C padded to have size s. We say that
circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree on all inputs. If x is a vector then
|x| denotes the number of its coordinates and x[i] denotes its i-th coordinate. If X is a finite
set, we let x←$X denote picking an element of X uniformly at random and assigning it to x.
Algorithms may be randomized unless otherwise indicated. Running time is worst case. “PT”
stands for “polynomial-time,” whether for randomized algorithms or deterministic ones. If A is an
algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y←$A(x1, . . .) be the result of picking r at random and letting
y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with
inputs x1, . . .. We say that f : N → R is negligible if for every positive polynomial p, there exists
λp ∈ N such that f(λ) < 1/p(λ) for all λ > λp. We use the code based game playing framework of
[6]. (See Fig. 2 for an example.) By GA(λ) we denote the event that the execution of game G with
adversary A and security parameter λ results in the game returning true.

Function families. A family of functions F specifies the following. PT key generation algorithm
F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where F.kl: N → N is the key length function
associated to F. Deterministic, PT evaluation algorithm F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and
an input x ∈ {0, 1}F.il(λ) to return an output F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N → N
are the input and output length functions associated to F, respectively. We say that F is injective
if the function F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective for every λ ∈ N and every
fk ∈ [F.Kg(1λ)]. Notions of security for function families that we will use are UCE and AI-OWF,
defined in Appendix A and Section 4 respectively.

Auxiliary information generators. Auxiliary information leaving some quantity computationally un-
predictable is common to many of the notions we consider and it is convenient to abstract this out.
An auxiliary information generator X specifies a PT algorithm X.Ev that takes 1λ to return a target
k ∈ {0, 1}X.tl(λ), a payload m ∈ {0, 1}X.pl(λ) and auxiliary information a, where X.tl,X.pl: N → N
are the target and payload lengths, respectively. Consider game PRED of Fig. 2 associated to X
and a predictor adversary Q. For λ ∈ N let Advpred

X,Q(λ) = Pr[PREDQX (λ)]. We say that X is unpre-

dictable if Advpred
X,Q(·) is negligible for every PT adversary Q. We say that X is uniform if X.Ev(1λ)

picks the target k ∈ {0, 1}X.tl(λ) and the payload m ∈ {0, 1}X.pl(λ) uniformly and independently.
Note that the auxiliary information a may depend on both the target k and the payload m, but
unpredictability refers to recovery of the target k alone.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a circuit C returns a circuit
C such that C ≡ C. (That is, C(x) = C(x) for all x.) We refer to the latter as the correctness
condition. In the sequel we consider various notions of security for obfuscators, namely VGBO,
AIPO and iO.
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Game PREDQX (λ)

(k,m, a)←$ X.Ev(1λ)

k′←$Q(1λ, a)

Return (k = k′)

Game VGB1AObf,Smp(λ)

C←$ Smp(1λ)

C←$ Obf(1λ,C)

b′←$A(1λ,C)

Return b′

Game VGB0SSmp,q(λ)

C←$ Smp(1λ) ; i← 0

b′←$ SCIRC(1λ) ; Return b′

CIRC(x)

i← i+ 1

If i > q(λ) then return ⊥
y ← C(x) ; Return y

Figure 2: Game defining unpredictabilty of auxiliary information generator X and games defining
VGB security of obfuscator Obf.

3 VGBO and the AI-DHI assumptions

BCKP [9] conjecture that candidate constructions of iO also achieve VGBO and thus in particular
that VGB obfuscation for all circuits is possible. Here we explore the plausibility of this VGB
conjecture. We show that it implies the failure of Canetti’s AI-DHI1 assumption. Either this
assumption is false or VGBO for all circuits is not possible. (In fact, our result refers to an even
weaker VGBO assumption.) We then suggest a weakening of AI-DHI1 that we call AI-DHI2 that
is parameterized by a group generator. We show that our attack on AI-DHI1 extends to rule out
AI-DHI2 for group generators satisfying a property we call verifiability. However there are group
generators that do not appear to be verifiable, making AI-DHI2 a viable alternative to AI-DHI1.
In later sections we will show how to recover, under AI-DHI2, the most important application of
AI-DHI1, namely AIPO.

Definitions. Let Obf be an obfuscator as defined in Section 2. We define what it means for it to be
a VGB obfuscator. We will use a weak variant of the notion used in some of the literature [8, 9],
which strengthens our results since they are negative relations with starting point VGBO.

A sampler Smp in this context is an algorithm that takes 1λ to return a circuit C. Let q be a
polynomial, A an adversary and S a (not necessarily PT) algorithm called a simulator. For λ ∈ N
let

Advvgb
Obf,Smp,q,A,S(λ) =

∣∣Pr
[

VGB1AObf,Smp(λ)
]
− Pr

[
VGB0SSmp,q(λ)

]∣∣
where the games are in Fig. 2. Let SAMP be a set of samplers. We say that Obf is a VGB
obfuscator for SAMP if for every PT adversary A there exists a (not necessarily PT) simulator S
and a polynomial q such that Advvgb

Obf,Smp,q,A,S(·) is negligible for all Smp ∈ SAMP.

We note that [9] use a VGB variant stronger than the above where the advantage measures the
difference in probabilities of A and S guessing a predicate π(C), rather than just the probabilities of
outputting one, which is all we need here. Also note that our VGB definition is trivially achievable
whenever |SAMP| = 1, since S can simulate game VGB1AObf,Smp(λ) for any fixed choice of A and
Smp. Our applications however use a SAMP of size 2.

The AI-DHI1 assumption. Let G = {Gλ : λ ∈ N} be an ensemble of groups where for every λ ∈ N
the order p(λ) of group Gλ is a prime in the range 2λ−1 < p(λ) < 2λ. We assume that relevant
operations are computable in time polynomial in λ, including computing p(·), testing membership
in Gλ and performing operations in Gλ. By G∗λ we denote the non-identity members of the group,
which is the set of generators since the group has prime order. An auxiliary information generator
X for G is an auxiliary information generator as per Section 2 with the additional property that
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Game AIDHI1AG,X(λ)

b←$ {0, 1}
(k, ε, a)←$ X.Ev(1λ)

g←$ G∗λ ; K1 ← gk ; K0←$ Gλ
b′←$A(1λ, g,Kb, a)

Return (b = b′)

Game AIDHI2AGG,X(λ)

b←$ {0, 1} ; 〈G〉 ←$ GG(1λ)

(k, ε, a)←$ X.Ev(1λ)

g←$ Gen(G) ; K1 ← gk ; K0←$ G
b′←$A(1λ, 〈G〉, g,Kb, a)

Return (b = b′)

Figure 3: Games defining the AI-DHI1 and AI-DHI2 assumptions.

the target k returned by X.Ev(1λ) is in Zp(λ) (i.e. is an exponent) and the payload m is ε (i.e. is
effectively absent).

Now consider game AIDHI1 of Fig. 3 associated to G,X and an adversary A. For λ ∈ N let
Advaidhi1

G,X,A(λ) = 2 Pr[AIDHI1AG,X(λ)]− 1. We say that G is AI-DHI1-secure if Advaidhi1
G,X,A(·) is negligible

for every unpredictable X for G and every PT adversary A. The AI-DHI1 assumption [22, 12] is
that there exists a family of groups G which is AI-DHI1 secure.

VGBO⇒ ¬AI-DHI1. The following says if VGB obfuscation is possible then the AI-DHI1 assumption
is false: there exists no family of groups G that is AI-DHI1 secure. Our theorem only assumes a
very weak form of VGB obfuscation for a class with two samplers (given in the proof).

Theorem 3.1 Let G be a family of groups. Then there is a pair Smp, Smp0 of PT samplers (defined
in the proof) such that if there exists a VGB-secure obfuscator for the class SAMP = {Smp,Smp0},
then G is not AI-DHI1-secure.

Proof of Theorem 3.1: Let Obf be the assumed obfuscator. Let X be the auxiliary information
generator for G defined as follows:

Algorithm X.Ev(1λ)

k←$ Zp(λ)

C←$ Obf(1λ,C1λ,k)

Return (k, ε,C)

Circuit C1λ,k(g,K)

If (g 6∈ G∗λ or K 6∈ Gλ) then return 0
If (gk = K) then return 1
Else return 0

The auxiliary information a = C produced by X is an obfuscation of the circuit C1λ,a shown on

the right above. The circuit has 1λ and the target value k embedded inside. The circuit takes
inputs g,K and checks that the first is a group element different from the identity —and thus a
generator— and the second is a group element. It then returns 1 if gk equals K, and 0 otherwise.

We first construct a PT adversary A∗ such that Advaidhi1
G,X,A∗(·) is non-negligible. On input 1λ, g,Kb,C,

it simply returns C(g,Kb). That is, it runs the obfuscated circuit C on g and Kb to return the
outcome. If the challenge bit b in game AIDHI1A

∗
G,X(λ) is 1 then the adversary always outputs

b′ = 1. Otherwise, the adversary outputs b′ = 1 with probability 1/p(λ). We have Advaidhi1
G,X,A∗(λ) =

1− 1/p(λ) ≥ 1− 21−λ, which is not negligible.

We now show that the constructed auxiliary information generator X is unpredictable. In particular,
for any PT adversary Q we construct a PT adversary A and samplers Smp, Smp0 such that for all
simulators S and all polynomials q,

Advpred
X,Q(λ) ≤ Advvgb

Obf,Smp,q,A,S(λ) + Advvgb
Obf,Smp0,q,A,S

(λ) +
q(λ)

2λ−1
. (1)

9



Concretely, the adversary A and the samplers Smp,Smp0 operate as follows:

Algorithm Smp(1λ)

k←$ Zp(λ)

Return C1λ,k

Algorithm Smp0(1λ)

Return C0

Adversary A(1λ,C)

k′←$Q(1λ,C)
ḡ←$ G∗λ
Return C(ḡ, ḡk

′
)

Here, in Smp0, the circuit C0 takes as input a pair group elements g, g′ from Gλ and always returns
0.

To show Equation (1), we first note that by construction

Advpred
X,Q(λ) = Pr

[
VGB1AObf,Smp(λ)

]
, (2)

because an execution of PREDQX (λ) results in the same output distribution as in VGB1AObf,Smp(λ).
The only difference is that in the latter, the check of whether the guess is correct is done via the
obfuscated circuit C. Therefore, for all simulators S and polynomials q, we can rewrite Equation (2)
as

Advpred
X,Q(λ) = Pr

[
VGB1AObf,Smp(λ)

]
− Pr

[
VGB0SSmp,q(λ)

]
+ Pr

[
VGB0SSmp,q(λ)

]
− Pr

[
VGB0SSmp0,q

(λ)
]

+ Pr
[

VGB0SSmp0,q
(λ)
]
− Pr

[
VGB1AObf,Smp0

(λ)
]

+ Pr
[

VGB1AObf,Smp0
(λ)
]
.

To upper bound Advpred
X,Q(λ), we first note that

Pr
[

VGB1AObf,Smp(λ)
]
− Pr

[
VGB0SSmp,q(λ)

]
≤ Advvgb

Obf,Smp,q,A,S(λ)

and

Pr
[

VGB0SSmp0,q
(λ)
]
− Pr

[
VGB1AObf,Smp0

(λ)
]
≤ Advvgb

Obf,Smp0,q,A,S
(λ) .

Moreover, Pr
[

VGB1AObf,Smp0
(λ)
]

= 0, since by constructionA never outputs 1 in VGB1AObf,Smp0
(λ),

as it is given an obfuscation of the constant circuit C0.

We are left with upper bounding the difference between Pr
[

VGB0SSmp,q(λ)
]

and Pr
[

VGB0SSmp0,q
(λ)
]
.

Note that S is allowed to issue at most q(λ) queries to the given circuit, which is either C1λ,k for a

random k←$ Zp(λ) or C0. Denote by Hit the event that S makes a query (g,K) in VGB0SSmp,q(λ)

such that gk = K. Then, by a standard argument,

Pr
[

VGB0SSmp,q(λ)
]
− Pr

[
VGB0SSmp0,q

(λ)
]
≤ Pr [ Hit ] .

Namely, to compute Pr [ Hit ], we move from VGB0SSmp,q(λ) to the simpler VGB0SSmp0,q
(λ), where all

of S’s queries are answered with 0. We extend the game to sample a random key k←$ Zp(λ), and

we define Hit′ as the event that for one of S’s queries (g,K) we have gk = K. It is not hard to see
that Pr

[
Hit′

]
and Pr [ Hit ] are identical, as both games are identical as long as the corresponding

events do not occur. Since there are at most q(λ) queries, and exactly one k can produce the answer
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1 for each query, the union bound yields

Pr [ Hit ] = Pr
[

Hit′
]
≤ q(λ)

p(λ)
≤ q(λ)

2λ−1
,

which concludes the proof.

The AI-DHI2 assumption. We now suggest a relaxation AI-DHI2 of the AI-DHI1 assumption given
above. The idea is that for each value of λ there is not one, but many possible groups. Formally, a
group generator is a PT algorithm GG that on input 1λ returns a description 〈G〉 of a cyclic group G
whose order |G| is in the range 2λ−1 < |G| < 2λ. We assume that given 1λ, 〈G〉, relevant operations
are computable in time polynomial in λ, including performing group operations in G and picking
at random from G and the set Gen(G) of generators of G. An auxiliary information generator X
for GG is an auxiliary information generator as per Section 2 with the additional property that the
target k returned by X.Ev(1λ) is in Z2λ−1 —this makes it a valid exponent for any group G with
〈G〉 ∈ [GG(1λ)]— and the payload m is ε (i.e. is effectively absent).

Now consider game AIDHI2 of Fig. 3 associated to GG,X and an adversary A. For λ ∈ N
let Advaidhi2

GG,X,A(λ) = 2 Pr[AIDHI2AGG,X(λ)] − 1. We say that GG is AI-DHI2-secure if Advaidhi2
GG,X,A(·)

is negligible for every unpredictable X for GG and every PT adversary A. The (new) AI-DHI2
assumption is that there exists a group generator GG which is AI-DHI2 secure.

A verifier for group generator GG is a deterministic, PT algorithm GG.Vf that can check whether
a given string d is a valid description of a group generated by the generator GG. Formally, GG.Vf
on input 1λ, d returns true if d ∈ [GG(1λ)] and false otherwise, for all d ∈ {0, 1}∗. We say that GG is
verifiable if it has a verifier and additionally, in time polynomial in 1λ, 〈G〉, where 〈G〉 ∈ [GG(1λ)],
one can test membership in G and in the set Gen(G) of generators of G. The following extends
Theorem 3.1 to say that if VGBO is possible then no verifiable group generator is AI-DHI2 secure.

Theorem 3.2 Let GG be verifiable group generator. Then there is a pair Smp,Smp0 of PT samplers
such that if there exists a VGB-secure obfuscator for the class SAMP = {Smp,Smp0}, then GG is
not AI-DHI2-secure.

We omit a full proof, as it is very similar to the one of Theorem 3.1. We only note that to adapt
the proof, we require X.Ev(1λ) to output a random k in Z2λ−1 together with the obfuscation of
the following circuit C1λ,k. The circuit C1λ,k takes as input a string d expected to be a group

description, together with two strings g and K. It first runs GG.Vf on input 1λ, d to check whether
d ∈ [GG(1λ)], returning 0 if the check fails. If the check succeeds, so that we can write d = 〈G〉,
it further checks that g ∈ Gen(G) and K ∈ G, returning 0 if this fails. Finally the circuit returns
1 if and only if gk = K in the group G. The crucial point is that for every valid input (d, g,K),
there is at most one k ∈ Z2λ−1 which satisfies gk = K in the group described by d. This uses the
assumption that G is cyclic.

Many group generators are cyclic and verifiable. For example, consider a generator GG that on
input 1λ returns a description of G = Z∗p for a safe prime p = 2q − 1. (That is, q is also a prime.)
The verifier can extract p, q from 〈G〉 and check their primality in PT. For such generators, we may
prefer not to assume AI-DHI2-security, due to Theorem 3.2. However there are group generators
that do not appear to be verifiable and where Theorem 3.2 thus does not apply. One must be
careful to note that this does not mean that VGBO would not rule out AI-DHI2 security for these
group generators. It just means that our current proof method may not work. Still at this point,
the AI-DHI2 assumption, which only says there is some group generator that is AI-DHI2-secure,
seems plausible. We will see in Section 4 that it allows us to recover AIPO, for which the primary
existing construction was from AI-DHI1, and we will also give several other constructions of AIPO.
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Game AIPOAObf,X(λ)

b←$ {0, 1}
(k0,m0, a0)←$ X.Ev(1λ)

(k1,m1, a1)←$ X.Ev(1λ)

P←$ Obf(1λ, Ikb) ; b′←$A(1λ,P, a1)

Return (b = b′)

Game AIOWFFF (λ)

fk←$ F.Kg(1λ)

(k,m, a)←$ X.Ev(1λ)

y ← F.Ev(1λ, fk, k)

k′←$ F(1λ, fk, y, a)

Return (y = F.Ev(1λ, fk, k′))

Figure 4: Games defining AIPO security of obfuscator Obf and auxiliary-input one-wayness of
function family F.

4 Achieving AIPO

Auxiliary-input point-function obfuscation (AIPO) [34, 12] has been difficult to achieve. In fact,
only two constructions have been proved AIPO secure. One is Canetti’s [22], based on AI-DHI1.
Also, BP [12] show AIPO security of Wee’s construction [43] under an ad-hoc assumption much
stronger than that of an AI-OWF, and it is not clear how it can be weakened. There are other
constructions of point obfuscators [26, 5] but they do not achieve AIPO or are in the ROM [39].

In Section 3 we showed that if VGBO is possible then AI-DHI1 fails. In light of this and the
above we are motivated to look for alternative AIPO constructions, particularly ones that can co-
exist with VGBO. In this section, we provide four of them, starting with one based on the AI-DHI2
assumption we introduced in Section 3, and then going on to constructions from UCE, DPKE and
AI-OWFs (cf. Fig. 1). We view the last as the most interesting.

Definitions. If k is a bit-string then Ik: {0, 1}|k| → {0, 1} denotes a canonical representation of the
circuit that on input k′ ∈ {0, 1}|k| returns 1 if k = k′ and 0 otherwise. It is assumed that given
Ik, one can compute k in time linear in |k|. A circuit C is called a point circuit if there is a k,
called the circuit target, such that C ≡ Ik. Let Obf be an obfuscator. The correctness condition
we gave in Section 2 guarantees that on input 1λ, Ik, it returns a point circuit with target k,
which is the condition for calling it a point-function obfuscator. We say that Obf has target length
Obf.tl: N→ N if the correctness condition is only required on inputs Ik with k ∈ {0, 1}Obf.tl(λ).

Let X be an auxiliary input generator. Let Obf be a point function obfuscator with Obf.tl = X.tl.
We say that Obf is AIPO[X]-secure if Advaipo

Obf,X,A(·) is negligible for every PT A, where for λ ∈ N
we let Advaipo

Obf,X,A(λ) = 2 Pr[AIPOAObf,X(λ)] − 1 where game AIPOAObf,X(λ) is defined in Fig. 4. We
say that Obf is AIPO-secure if it is AIPO[X]-secure for all unpredictable X with X.tl = Obf.tl.

AI-DHI2⇒ AIPO. Let GG be a group generator. We construct a point-function obfuscator Obf as
follows. Let Obf.tl(λ) = λ− 1 for all λ ∈ N, and

Algorithm Obf(1λ, Ik)

〈G〉 ←$ GG(1λ) ; g←$ Gen(G)
K ← gk ; Return C〈G〉,g,K

Circuit C〈G〉,g,K(k)

If (gk = K) then return 1
Else return 0

The following says this achieves AIPO under AI-DHI2. The proof is straightforward and is given
in Appendix B.

Theorem 4.1 Let GG be an AI-DHI2-secure group generator. Let Obf be as defined above. Then
Obf is an AIPO-secure point-function obfuscator.

UCE[Scup ∩ Ssplt ∩ S1]⇒ AIPO. We now construct an AIPO-secure point-function obfuscator from

UCE[Scup ∩ Ssplt ∩ S1], which is a relatively weak assumption in the UCE [5] class recalled in
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Appendix A. Note that in an earlier work, BM [21] showed that UCE[Scup ∩ Ssplt ∩ S1]-security is
achievable assuming iO and AIPO. It follows from our result that UCE[Scup∩Ssplt∩S1] and AIPO
are equivalent, assuming iO.

Let H be a family of functions as per Section 2. Associate to it the point obfuscator Obf defined
as follows. Let Obf.tl = H.il, and

Algorithm Obf(1λ, Ik)

hk←$ H.Kg(1λ) ; y ← H.Ev(1λ,hk, k)
Return C1λ,hk,y

Circuit C1λ,hk,y(k
′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1 else return 0

The following theorem shows that UCE[Scup ∩ Ssplt ∩ S1] implies AIPO-security of the above con-
struction.

Theorem 4.2 Let H be an injective family of functions that is UCE[Scup ∩ Ssplt ∩ S1]-secure.
Assume that 2−H.ol(·) is negligible. Let Obf be as defined above. Then Obf is an AIPO-secure point
function obfuscator.

The injectivity of H is assumed in order to meet the correctness condition of a point-function
obfuscator. It is not important for security. We note that the perfect correctness we have required
for point-function obfuscators can be relaxed to a computational correctness requirement, namely
that given an obfuscation P of a point function Ik, no PT adversary can find k′ 6= k such that
P(k′) = 1 holds with better than a negligible probability. This relaxed form of correctness can be
achieved assuming nothing but UCE, meaning the injectivity requirement can be dropped.

Due to lack of space in the body, the proof of Theorem 4.2 is in Appendix C. Briefly, one first
bounds the aipo advantage of an adversary against an auxiliary information generator X by the
advantage of a source-distinguisher pair where the source is split and makes only one query. One
then proves that the source is computationally unpredictable based on the unpredictability of X.

PRIV1-AI-DPKE⇒ AIPO. We show that PRIV1-secure auxiliary-input deterministic public-key en-
cryption [17] implies AIPO-secure point-function obfuscation. Note that [17, 44, 46] provide con-
structions achieving this security, but only for subexponentially hard to invert auxiliary inputs.

In Appendix D we recall the definitions following [17]. Now let D-PKE be an auxiliary-input de-
terministic public-key encryption scheme. We construct an obfuscator Obf with Obf.tl = D-PKE.ml
as follows:

Algorithm Obf(1λ, Ik)

(pk, sk)←$ D-PKE.Kg(1λ)
c← D-PKE.Enc(1λ,pk, k) ; Return C1λ,pk,c

Circuit C1λ,pk,c(k)

If (D-PKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

Note that the decryption correctness of D-PKE implies the correctness of the obfuscator, but this re-
mains true even if decryption is not PT. The proof of the following theorem is quite straightforward
and is given in Appendix D.

Theorem 4.3 Let D-PKE be a PRIV1-secure auxiliary-input deterministic public-key encryption
scheme. Let Obf be as defined above. Then Obf is an AIPO-secure point-function obfuscator.

AI-OWF+iO⇒ AIPO. We view this as our most interesting construction. In the class of primitives
providing security in the presence of auxiliary inputs, the simplest and most basic is an auxiliary-
input one-way function (AI-OWF). This simply means a family of functions which is one-way even
in the presence of auxiliary information that leaves the input computationally hard to compute.
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Games G0, G1

b←$ {0, 1} ; (k0,m0, a0)←$ X.Ev(1λ) ; (k1,m1, a1)←$ X.Ev(1λ)
fk←$ F.Kg(1λ) ; y ← F.Ev(1λ, fk, kb) ; P←$ Obf∗(Pads(λ)(C

1
1λ,fk,y)) // G0

P←$ Obf∗(Pads(λ)(C
2)) // G1

b′←$A(1λ,P, a1) ; Return (b = b′)

Circuit C1
1λ,fk,y(k)

If (y = F.Ev(1λ, fk, k)) then return 1 else return 0

Circuit C2(k)

Return 0

Figure 5: Games for proof of Theorem 4.4.

Can we obtain AIPO from an arbitrary AI-OWF? We show that one can if we additionally assume
iO [3, 30, 42, 15, 1].

Let F be a family of functions and let X be an auxiliary information generator with X.tl = F.il
(cf. Section 2). We say that F is AIOWF[X]-secure if Advai-owf

F,X,F (·) is negligible for all PT adversaries

F , where Advai-owf
F,X,F (λ) = Pr[AIOWFFF,X(λ)] and game AIOWFFF,X(λ) is defined in Fig. 4. We say

that F is AIOWF-secure if it is AIOWF[X]-secure for all unpredictable X.
Previously a similar condition was required as a part of the definition of an auxiliary-input

extractable one-way function [23]. We stress that we require only one-wayness; we do not require
extractability.

BP [12] remark that the point-function obfuscator of [43] would not achieve AIPO security
assuming only AIOWF-security of the underlying function. Our result is in some sense an answer,
showing that even an arbitrary AIOWF function family yields AIPO if used in our construction
with iO.

Let F be a family of functions. Let Obf∗ be an indistinguishability obfuscator and let s : N→ N.
We construct a point-function obfuscator Obf with Obf.tl = F.il as follows:

Algorithm Obf(1λ, Ik)

fk←$ F.Kg(1λ) ; y ← F.Ev(1λ, fk, k)

P←$ Obf∗(Pads(λ)(C1λ,fk,y)) ; Return P

Circuit C1λ,fk,y(k
′)

If (y = F.Ev(1λ, fk, k′)) then return 1
Else return 0

The following says this construction works if Obf∗ is iO-secure.

Theorem 4.4 Let F be an injective family of functions that is AIOWF-secure. Then there is a
polynomial s such that the following is true. Let Obf∗ be an indistinguishability obfuscator. Then
Obf constructed above from F, s,Obf∗ is an AIPO-secure point-function obfuscator.

As with our construction from UCE[Scup∩Ssplt], here we only assume that F is injective in order to
satisfy the (perfect) correctness requirement of an obfuscator. This assumption is required neither
for “computational” correctness nor for security. We will exploit the fact that iO security of an
obfuscator implies its diO security if the circuits differ on only one input [15]. Relevant definitions
are recalled in Appendix A. Proof of Theorem 4.4: The injectivity of F implies that Obf satisfies

the correctness condition of a point-function obfuscator. We now prove security. We define s as
follows: for any λ let s(λ) be a polynomial upper bound on max(|C1

1λ,fk,y
|, |C2|), where the circuits

are defined in Fig. 5 and the maximum is over all fk ∈ [F.Kg(1λ)] and y ∈ {0, 1}F.ol(λ). Let X be an
auxiliary information generator. Let A be a PT adversary. Consider the games and the associated
circuits of Fig. 5. Lines not annotated with comments are common to all games. Game G0 is
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equivalent to AIPOAObf,X(λ), and Pr[G1] = 1/2 because the inputs to A in game G1 do not depend
on the challenge bit b. It follows that

Advaipo
Obf,X,A(λ) = 2(Pr[G1] + Pr[G0]− Pr[G1])− 1 = 2(Pr[G0]− Pr[G1]).

We now show that Pr[G0]− Pr[G1] is negligible, which implies that Advaipo
Obf,X,A(·) is negligible and

hence proves the theorem. We construct a circuit sampler S∗ and an iO-adversary O as follows:

Circuit Sampler S∗(1λ)

d←$ {0, 1} ; fk←$ F.Kg(1λ) ; (k0,m0, a0)←$ X.Ev(1λ)
(k1,m1, a1)←$ X.Ev(1λ) ; y ← F.Ev(1λ, fk, kd)
C1 ← Pads(λ)(C

1
1λ,fk,y) ; C0 ← Pads(λ)(C

2)

aux ← (d, a1) ; Return (C0,C1, aux )

Adversary O(1λ,C, aux )

(d, a1)← aux
d′←$A(1λ,C, a1)
If (d = d′) then return 1
Else return 0

It follows that Pr[G0]−Pr[G1] = Advio
Obf,S∗,O(λ). Next, we show that S∗ ∈ Sdiff(1). (See Appendix A

for notation.) By applying the result of BCP [15] saying that any indistinguishability obfuscator is
also a Sdiff(1)-secure obfuscator, we get that Advio

Obf∗,S∗,O(·) is negligible by the iO-security of Obf∗.

Given any PT difference adversary D against S∗, we build a PT adversary F against AIOWF[X]-
security as follows:

Adversary F(1λ, fk, y, a)

d←$ {0, 1} ; C1 ← Pads(λ)(C
1
1λ,fk,y

) ; C0 ← Pads(λ)(C
2)

aux ← (d, a) ; k′←$D(C1,C0, aux ) ; return k′

Note that the constructed adversary has to guess the challenge bit d that is sampled in the circuit
sampler S∗. The distinguisher is only guaranteed to behave in the same way when the guess is
correct, hence a factor of 1/2 is introduced. We have Advai-owf

F,X,F (λ) ≥ Advdiff
S∗,D(λ)/2, and hence the

difference-security of S∗ follows from the assumption that F is AIOWF[X]-secure.

Does VGBO break AIPO? A natural question is whether our VGBO-based attacks on the AI-DHI
assumptions from Theorems 3.1 and 3.2 can be extended to rule out AIPO itself, calling all our
AIPO constructions above into question. At the moment we do not know how to provide such
attacks. But we note that for each of these constructions as well as the construction of Wee [43] we
can give VGBO attacks that rule out security if the underlying primitives satisfy certain verifiability
conditions, akin to Theorem 3.2. Since there exist candidate choices of the primitives that do not
satisfy these conditions we do not universally break the constructions, but this shows that one must
be careful in instantiation and many natural choices will not co-exist with VGBO.

5 Impossibility results from iO

We refer to a symmetric encryption scheme as K-leakage-resilient if it retains security in the presence
of any leakage about the key that leaves the key computationally unpredictable [29]. Such schemes
have been designed in [29, 25]. Here, we extend the model by allowing the leakage to depend
not just on the key but also on the message, still leaving the key computationally unpredictable.
The extension seems innocuous, since the indistinguishability style formalizations used here already
capture the adversary having some information about the message. But we show that the resulting
KM-leakage-resilience is not achievable if iO for all circuits exists.

BFM [18] showed that UCE[Scup]-security is not possible if iO exists. We improve this to show
that UCE[Scup ∩Ssplt]-security is not possible if iO exists. We obtain this by giving a construction
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of a KM-leakage-resilient symmetric encryption scheme from UCE[Scup ∩ Ssplt] and then invoking
our above-mentioned result.

This shows that our result about KM-leakage-resilience has double utility. First it is of direct
interest with regard to understanding what is and is not achievable in leakage-resilient cryptography.
Second, it is a tool to obtain other negative relations with starting point iO: to rule out X we can
show that X implies KM-leakage-resilient symmetric encryption.

We use standard definitions of UCE-secure function families [5], indistinguishability obfusca-
tion [3, 30, 42, 15, 1] and pseudorandom generators [14, 47], as provided in Appendix A.

iO⇒ ¬KM-LR-SE. A symmetric encryption scheme SE specifies the following. PT encryption al-
gorithm SE.Enc takes 1λ, a key k ∈ {0, 1}SE.kl(λ) and a message m ∈ {0, 1}SE.ml(λ) to return a
ciphertext c, where SE.kl, SE.ml: N → N are the key length and message length functions of SE,
respectively. Deterministic PT decryption algorithm SE.Dec takes 1λ, k, c to return a plaintext
m ∈ {0, 1}SE.ml(λ). Note that there is a key length but no prescribed key-generation algorithm. In
Appendix E we define what it means for SE to be X-KM-leakage resilient where X is an auxiliary
information generator. We say that SE is KM-leakage-resilient if it is X-KM-leakage resilient for
all unpredictable, uniform X (cf. Section 2 for definition of latter). We also specify a weaker-than-
normal correctness condition. Making the correctness and security requirements as weak as possible
strengthens our result since it is negative. Also the weaker the notion, the easier to show that other
notions imply it, making the result a more powerful tool towards obtaining further negative re-
sults. The following says that KM-leakage-resilient symmetric encryption is not achievable if iO
and one-way functions exist.

Theorem 5.1 Let SE be a symmetric encryption scheme. Let Obf be an indistinguishability ob-
fuscator. Let R be a PR-secure PRG with R.sl = SE.ml. Assume that 2−SE.kl(λ) and 2−R.sl(λ) are
negligible. Then there exists a uniform auxiliary information generator X such that the following
holds: (1) X is unpredictable, but (2) SE is not X-KM-leakage resilient.

The proof, in Appendix E, mainly follows [20] with some new elements. The idea is that the
auxiliary information generator X picks a key k and message m uniformly and independently at
random and lets C be the circuit that embeds k and the result y of the PRG on m. On input
a ciphertext c, circuit C decrypts it under k and then checks that the PRG applied to the result
equals y. The auxiliary information is an obfuscation C of C. The attack showing claim (2) of
Theorem 5.1 is straightforward but its analysis is more work and exploits the security of the PRG.
The bulk of the proof is to show that iO-security of the obfuscator coupled with security of the
PRG implies claim (1), namely the unpredictability of X. See Appendix E for details.

UCE[Scup ∩ Ssplt]⇒ KM-LR-SE. We give a construction of a KM-leakage resilient symmetric encryp-

tion scheme from a UCE[Scup ∩Ssplt] family H, which will allow us to rule out such families under
iO. Assume for simplicity that H.il is odd, and let ` = (H.il−1)/2. We call the symmetric encryption
scheme SE = H&C[H] that we associate to H the Hash-and-Check scheme. It is defined as follows.
Let SE.kl(λ) = SE.ml(λ) = `(λ) for all λ ∈ N. Let the encryption and decryption algorithms be as
follows:

Algorithm SE.Enc(1λ, k,m)

hk←$ H.Kg(1λ)
For i = 1, . . . , |m| do

y[i]← H.Ev(1λ,hk, k‖m[i]‖〈i〉`(λ))

Return (hk,y)

Algorithm SE.Dec(1λ, k, (hk,y))

For i = 1, . . . , |y| do
If (H.Ev(1λ,hk, k‖1‖〈i〉`(λ)) = y[i])

Then m[i]← 1 else m[i]← 0
Return m
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Here 〈i〉`(λ) = 1i0`(λ)−i denotes a particular, convenient encoding of integer i ∈ {1, . . . , `(λ)} as a
string of `(λ) bits, and m[i] denotes the i-th bit of m. The ciphertext (hk,y) consists of a key hk
for H chosen randomly and anew at each encryption, together with the vector y whose i-th entry
is the hash of the i-th message bit along with the key and index i. This scheme will have perfect
correctness if H is injective, but we do not want to assume this. The following theorem says that
the scheme is KM-leakage resilient and also has (somewhat better than) weak correctness under
UCE-security of H. The definitions of KM-leakage resilience and Advdec

SE (·) are in Appendix E. The
proof of the following is in Appendix F.

Theorem 5.2 Let H be a family of functions that is UCE[Scup ∩ Ssplt]-secure. Assume H.il(·) ∈
Ω((·)ε) for some constant ε > 0 and 2−H.ol(·) is negligible. Let SE = H&C[H]. Then (1) symmetric
encryption scheme SE is KM-leakage resilient, and (2) 1− Advdec

SE (·) is negligible.

iO⇒ ¬UCE[Scup ∩ Ssplt]. In the BFM [18] iO-based attack on UCE[Scup], the source builds a circuit
which embeds an oracle query x and its answer y, and outputs an obfuscation of this circuit in
the leakage. Splitting is a restriction on sources introduced in BHK [5] with the aim of preventing
such attacks. A split source cannot build the BFM circuit because the split structure denies it the
ability to leak information that depends both on a query and its answer. Thus, the BFM attack
does not work for UCE[Scup ∩ Ssplt]. However, we show that in fact UCE[Scup ∩ Ssplt]-security is
still not achievable assuming iO. This is now a simple corollary of Theorems 5.1 and 5.2 that in
particular was the motivation for the latter:

Theorem 5.3 Let H be a family of functions such that H.il(·) ∈ Ω((·)ε) for some constant ε > 0
and 2−H.ol(·) is negligible. Assume the existence of an indistinguishability obfuscator and a one-way
function. Then H is not UCE[Scup ∩ Ssplt]-secure.

We believe this result is interesting towards understanding the achievability of different forms of
UCE and the effectiveness of different restrictions on sources (in this case, splitting) towards this
end, but we note that we are not aware of any applications of UCE[Scup ∩ Ssplt]. Our results do
not threaten UCE[Scup ∩ Ssplt ∩ S1], which we assume in Theorem 4.2 and is also assumed in [5],
or UCE[Ssup], which is assumed in [5, 4].

BM [21] show that UCE[Scup∩Ssplt∩S1]-security and UCE[Ssup∩Ssplt]-security are achievable
assuming iO and AIPO. Our negative result of Theorem 5.3 does not contradict this, and in fact
complements it to give a full picture of the achievability of security for split sources.
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A Standard definitions

UCE security. We recall the Universal Computational Extractor (UCE) framework of BHK [5]. Let
H be a family of functions. Let S be an adversary called the source and D an adversary called
the distinguisher. We associate to them and H the game UCES,DH (λ) in the left panel of Fig. 6.
The source has access to an oracle HASH and we require that any query x made to this oracle
have length H.il(λ). When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev
under a key hk that is chosen by the game and not given to the source. When b = 0 (the
“random” case) it responds as a random oracle. The source then leaks a string L to its accomplice
distinguisher. The latter does get the key hk as input and must now return its guess b′ ∈ {0, 1}
for b. The game returns true iff b′ = b, and the uce-advantage of (S,D) is defined for λ ∈ N via
Advuce

H,S,D(λ) = 2 Pr[UCES,DH (λ)]− 1. If S is a class (set) of sources, we say that H is UCE[S]-secure
if Advuce

H,S,D(·) is negligible for all sources S ∈ S and all PT distinguishers D.
It is easy to see that UCE[S]-security is not achievable if S is the class of all PT sources [5].

To obtain meaningful notions of security, BHK [5] impose restrictions on the source. A central
restriction is unpredictability. A source is unpredictable if it is hard to guess the source’s HASH
queries even given the leakage, in the random case of the UCE game. Formally, let S be a source
and P an adversary called a predictor and consider game PREDPS (λ) in the middle panel of Fig. 6.

For λ ∈ N we let Advpred
S,P (λ) = Pr[PREDPS (λ)]. We say that S is computationally unpredictable if

Advpred
S,P (·) is negligible for all PT predictors P, and let Scup be the class of all PT computationally

unpredictable sources. We say that S is statistically unpredictable if Advpred
S,P (·) is negligible for

all (not necessarily PT) predictors P, and let Ssup ⊆ Scup be the class of all PT statistically
unpredictable sources.

BFM [18] show that UCE[Scup]-security is not achievable assuming that indistinguishability
obfuscation is possible. This has lead applications to either be based on UCE[Ssup] or on subsets of
UCE[Scup], meaning to impose further restrictions on the source. UCE[Ssup], introduced in [5, 18],
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Game UCES,DH (λ)

b←$ {0, 1} ; hk←$ H.Kg(1λ)

L←$ SHASH(1λ)

b′←$D(1λ,hk, L)

Return (b′ = b)

HASH(x)

If T [x] = ⊥ then

If b = 0 then T [x]←$ {0, 1}H.ol(λ)

Else T [x]← H.Ev(1λ,hk, x)

Return T [x]

Game PREDPS (λ)

X ← ∅
L←$ SHASH(1λ)

x′←$ P(1λ, L)

Return (x′ ∈ X)

HASH(x)

If T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [x]

Source SHASH(1λ)

(L0,x)←$ S0(1λ)

For i = 1, . . . , |x| do

y[i]←$ HASH(x[i])

L1←$ S1(1λ,y)

L← (L0, L1)

Return L

Figure 6: Games defining UCE security of function family H, unpredictability of source S, and
the split source S = Splt[S0,S1] associated to S0,S1.

seems at this point to be a viable assumption. In order to restrict the computational case, one can
consider split sources as defined in BHK [5]. Let S0,S1 be algorithms, neither of which have access
to any oracles. The split source S = Splt[S0,S1] associated to S0,S1 is defined in the right panel
of Fig. 6. Algorithm S0 returns a pair (L0,x). Here x is a vector over {0, 1}H.il(λ) all of whose
entries are required to be distinct. The first adversary creates the oracle queries for the source S,
the latter making these queries and passing the replies to the second adversary to get the leakage.
In this way, neither S0 nor S1 have an input-output pair from the oracle, limiting their ability to
create leakage useful to the distinguisher. A source S is said to belong to the class Ssplt if there
exist PT S0,S1 such that S = Splt[S0,S1], meaning is defined as above. The class of interest is now
UCE[Scup ∩ Ssplt], meaning UCE-security for computationally unpredictable, split sources.

Another way to restrict a UCE source is by limiting the number of queries it can make. Let
Sq be the class of sources making q(·) oracle queries. This allows to consider Scup ∩ Ssplt ∩ S1, a
class of computationally unpredictable split sources that make a single query. BM [21] show that
UCE[Scup ∩ Ssplt ∩ S1]-security is achievable assuming iO and AIPO.

Indistinguishability obfuscation. We use the definitional framework BST [7] which allows us to capture
indistinguishabilty obfuscation, differing-inputs obfuscation and other variant notions via classes of
circuit samplers. Let Obf be an obfuscator. A sampler in this context is a PT algorithm S that on
input 1λ returns a triple (C0,C1, aux ) where C0,C1 are circuits of the same size, number of inputs
and number of outputs, and aux is a string. If O is an adversary and λ ∈ N we let Advio

Obf,S,O(λ) =

2 Pr[IOOObf,S(λ)]− 1 where game IOOObf,S(λ) is defined in Fig. 7. Now let S be a class (set) of circuit

samplers. We say that Obf is S-secure if Advio
Obf,S,O(·) is negligible for every PT adversary O and

every circuit sampler S ∈ S . We say that circuit sampler S produces equivalent circuits if there
exists a negligible function ν such that Pr

[
C0 ≡ C1 : (C0,C1, aux )←$ S(1λ)

]
≥ 1− ν(λ) for all

λ ∈ N. Let Seq be the class of all circuit samplers that produce equivalent circuits. We say that
Obf is an indistinguishability obfuscator if it is Seq-secure [3, 30, 42].

We say that a circuit sampler S is difference secure if Advdiff
S,D(·) is negligible for every PT

adversary D, where Advdiff
S,D(λ) = Pr[DIFFDS (λ)] and game DIFFDS (λ) is defined in Fig. 7. Difference

security of S means that given C0,C1, aux it is hard to find an input on which the circuits differ [3,
15, 1]. Let Sdiff be the class of all difference-secure circuit samplers. We say that circuit sampler S
produces d-differing circuits, where d: N→ N, if C0 and C1 differ on at most d(λ) inputs with an
overwhelming probability over (C0,C1, aux )←$ S(1λ) for all λ ∈ N. Let Sdiff(d) be the class of all
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Game DIFFDS (λ)

(C0,C1, aux )←$ S(1λ)

x←$D(C0,C1, aux )

Return (C0(x) 6= C1(x))

Game IOOObf,S(λ)

b←$ {0, 1}
(C0,C1, aux )←$ S(1λ)

C←$ Obf(1λ,Cb)

b′←$O(1λ,C, aux )

Return (b = b′)

Game PRGRR (λ)

b←$ {0, 1}
m←$ {0, 1}R.sl(λ)

y1 ← R.Ev(1λ,m)

y0←$ {0, 1}2·R.sl(λ)

b′←$R(1λ, yb)

Return (b = b′)

Figure 7: Games defining difference-security of circuit sampler S, iO-security of obfuscator Obf and
PR-security of pseudorandom generator R.

Games G0–G1

b←$ {0, 1} ; (k0,m0, a0)←$ X.Ev(1λ) ; (k1,m1, a1)←$ X.Ev(1λ)
〈G〉 ←$ GG(1λ) ; g←$ G∗
K ← gkb // G0

K←$ G // G1

P← C〈G〉,g,K ; b′←$A(1λ,P, a1) ; Return (b = b′)

Circuit C〈G〉,g,K(k)

If (gk = K) then return 1
Else return 0

Figure 8: Games for proof of Theorem 4.1.

difference-secure circuit samplers that produce d-differing circuits, so that Seq ⊆ Sdiff(d) ⊆ Sdiff .
The interest of this definition is the following result of BCP [15] that we use:

Proposition A.1 If d is a polynomial then any Seq-secure circuit obfuscator is also a Sdiff(d)-
secure circuit obfuscator.

PRGs. A pseudorandom generator R [14, 47] specifies a deterministic PT algorithm R.Ev where
R.Ev(1λ, ·): {0, 1}R.sl(λ) → {0, 1}2·R.sl(λ) for all λ ∈ N, where R.sl: N→ N is the seed length function
of R. We say that R is PR-secure if the function Advpr

R,R(·) is negligible for every PT adversary R,

where for λ ∈ N we let Advpr
R,R(λ) = 2 Pr[PRGRR (λ)]− 1 and game PRG is specified in Fig. 7.

B Proof of Theorem 4.1

First, we claim that Obf satisfies the correctness condition for all Ik with k ∈ {0, 1}λ−1. Note that
GG on input 1λ returns a description 〈G〉 of a cyclic group G with an order greater than 2λ−1.
So for any generator g ∈ Gen(G), the exponentiation gk defined for k ∈ {0, 1}λ−1 is an injective
function. The correctness follows.

We now prove the security of Obf. Let A be a PT adversary. Let X be any unpredictable
auxiliary information generator for GG. Consider the games and associated circuit of Fig. 8.
Lines not annotated with comments are common to both games. Game G0 is equivalent to game
AIPOAObf,X(λ), whereas Pr[G1] = 1

2 because no inputs to the adversary A depend on the challenge
bit b in G1. Hence,

Advaipo
Obf,X,A(λ) = 2(Pr[G1] + Pr[G0]− Pr[G1])− 1 = 2(Pr[G0]− Pr[G1]). (3)
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We now show that Pr[G0]− Pr[G1] is negligible, hence proving the theorem.

Consider the following PT adversary B against the AIDHI2-security of GG with respect to X:

Adversary B(1λ, 〈G〉, g,K, a1)

d←$ {0, 1} ; (k0,m0, a0)←$ X.Ev(1λ)

P← C〈G〉,g,K ; d′←$A(1λ,P, ad)

If (d = d′) then return 1 else return 0

Let b denote the challenge bit in game AIDHI2BGG,X(λ), and let b′ denote the bit returned by B in
the same game. We claim that

Pr[ b′ = 1 | b = 1 ] = Pr[G0] and Pr[ b′ = 1 | b = 0 ] = Pr[G1] .

We have Pr[G0] − Pr[G1] = Advaidhi2
GG,X,B(λ), which is negligible by the assumed AI-DHI2 security of

GG. The AIPO[X] security of Obf now follows from Equation (3).

C Proof of Theorem 4.2

Correctness of the obfuscator, meaning that the output of Obf(1λ, Ik) is a point circuit with target
k, follows from the assumed injectivity of H. We now prove AIPO security under the UCE[Scup ∩
Ssplt ∩ S1] assumption on H. Let S = Scup ∩ Ssplt ∩ S1. Let X be any unpredictable auxiliary
information generator with X.tl = H.il. Given a PT adversary A against the AIPO[X]-security of
Obf, we construct a split source S = Splt[S0,S1] ∈ Ssplt ∩ S1 and a PT distinguisher D against the
UCE[S]-security of H as follows:

Algorithm S0(1λ)

d←$ {0, 1}
(k0,m0, a0)←$ X.Ev(1λ)
(k1,m1, a1)←$ X.Ev(1λ)
L0 ← (d, a1) ; x[1]← kb
return (L0,x)

Algorithm S1(1λ, y)

return y

Circuit C1λ,hk,y(k
′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1
Else return 0

Distinguisher D(1λ,hk, L)

((d, a1), y)← L

P← C1λ,hk,y

d′←$A(1λ,P, a1)
If (d = d′) then return 1
Else return 0

Let b denote the challenge bit in game UCES,DH (λ), and let b′ denote the bit returned by D in the
same game. We claim that

Pr[ b′ = 1 | b = 1 ] = Pr[AIPOAObf,X(λ)] and Pr[ b′ = 1 | b = 0 ] =
1

2
.

The first equation holds by construction. The second equation is true because the value y is chosen
uniformly at random, and hence D runs A with inputs P and a1 independent of the challenge bit
d. It follows that Advuce

H,S,D(λ) = Advaipo
Obf,X,A(λ)/2.

To conclude the proof, it remains to show that S ∈ Scup. Let P be a PT adversary against the
computational unpredictability of S. Then we build a PT adversary Q against the unpredictability
of X as follows:

Adversary Q(1λ, a)

d←$ {0, 1} ; y←$ {0, 1}H.ol(λ)

L← ((d, a), y) ; k′←$ P(1λ, L)
Return k′
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Game PRIV1AD-PKE,X(λ)

b←$ {0, 1}
(pk, sk)←$ D-PKE.Kg(1λ)

(k0,m0, a0)←$ X.Ev(1λ)

(k1,m1, a1)←$ X.Ev(1λ)

c← D-PKE.Enc(1λ,pk, kb)

b′←$A(1λ,pk, a1, c)

Return (b = b′)

Figure 9: Game defining PRIV1-security of auxiliary-input deterministic public-key encryption
scheme D-PKE.

We have Advpred
X,Q(λ) = Advpred

S,P (λ). Since X is unpredictable, it follows that S is also computationally

unpredictable. And thus, by the above, if H is UCE[Scup ∩Ssplt ∩S1]-secure, then Obf is AIPO[X]-
secure.

D PRIV1-AI-DPKE⇒ AIPO

The study of deterministic public-key encryption schemes that are secure with respect to auxiliary
inputs (AI-DPKE) was initiated in [17]. As a result, [17] presented AI-DPKE constructions based
on d-linear assumption and subgroup indistinguishability assumptions. Subsequently, [44] provided
a unifying framework for constructing AI-DPKE schemes from a number of standard assumptions,
encompassing both constructions from [17] and also achieving an LWE-based construction. Another
LWE-based construction was concurrently suggested in [46].

In Section 4, we construct an AIPO-secure point-function obfuscator from an AI-DPKE scheme
that is secure for a single message. The security notion we require is slightly weaker than the
original PRIV1 notion for AI-DPKE that was defined in [17]. Specifically, we require both challenge
messages to be from the same efficiently samplable distribution of plaintext messages, whereas [17]
also require the scheme to be secure with respect to different message distributions.

Definition. A deterministic public-key encryption scheme D-PKE specifies the following. PT key
generation algorithm D-PKE.Kg takes 1λ to return a public encryption key pk and a secret de-
cryption key sk. Deterministic PT encryption algorithm D-PKE.Enc takes 1λ, pk and a message
m ∈ {0, 1}D-PKE.ml(λ) to return a ciphertext c, where D-PKE.ml: N→ N is the message length func-
tion associated to D-PKE. Deterministic PT decryption algorithm D-PKE.Dec takes 1λ, sk, c to re-
turn a plaintext message m ∈ {0, 1}D-PKE.ml(λ). Correctness requires that for all λ ∈ N, all (pk, sk) ∈
[D-PKE.Kg(1λ)] and all m ∈ {0, 1}D-PKE.ml(λ) we have D-PKE.Dec(1λ, sk,D-PKE.Enc(1λ, pk,m)) =
m.

Let D-PKE be a deterministic public-key encryption scheme, and let X be an auxiliary informa-
tion generator with X.tl = D-PKE.ml. We say that D-PKE is PRIV1[X]-secure if Advpriv1

D-PKE,X,A(·) is

negligible for all PT adversaries A, where Advpriv1
D-PKE,X,A(λ) = 2 Pr[PRIV1AD-PKE,X(λ)]− 1 and game

PRIV1AD-PKE,X(λ) is defined in Fig. 9. We say that D-PKE is PRIV1-secure if it is PRIV1[X]-secure
for all unpredictable X.

Proof of Theorem 4.3. The correctness of Obf follows from the decryption correctness of D-PKE,
however it does not require the decryption algorithm D-PKE.Dec to be PT. We now prove that
Obf is AIPO-secure. Let A be a PT adversary. Let X be any unpredictable auxiliary information
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Game INDASE,X(λ)

b←$ {0, 1}
(k,m1, a)←$ X.Ev(1λ)

m0←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,mb)

b′←$A(1λ, a, c)

Return (b = b′)

Game DECSE(λ)

k←$ {0, 1}SE.kl(λ)

m←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,m)

m′ ← SE.Dec(1λ, k, c)

Return (m = m′)

Figure 10: Games defining X-KM-leakage resilience of symmetric encryption scheme SE and de-
cryption correctness of symmetric encryption scheme SE.

generator with X.tl = D-PKE.ml. Consider the following PT adversary B against the PRIV1[X]
security of D-PKE:

Adversary B(1λ, pk, a, c)

P← C1λ,pk,c ; b′←$A(1λ,P, a)

Return b′

By construction, we have

Advaipo
Obf,X,A(λ) = Advpriv1

D-PKE,X,B(λ) .

The AIPO[X] security of Obf follows from the assumed PRIV1-security of D-PKE.

E Impossibility of KM-leakage-resilient encryption

We define KM-leakage-resilient symmetric encryption and prove Theorem 5.1.

Definitions. We define security of symmetric encryption in the presence of leakage about the key and
the message. A symmetric encryption scheme SE specifies the following. PT encryption algorithm
SE.Enc takes 1λ, a key k ∈ {0, 1}SE.kl(λ) and a message m ∈ {0, 1}SE.ml(λ) to return a ciphertext
c, where SE.kl, SE.ml: N→ N are the key length and message length functions of SE, respectively.
Deterministic PT decryption algorithm SE.Dec takes 1λ, k, c to return a plaintext m ∈ {0, 1}SE.ml(λ).
Both security and correctness will be non-standard and are discussed in turn. Note that there is a
key length but no prescribed key-generation algorithm.

For security, let X be an auxiliary information generator with X.tl = SE.kl and X.pl = SE.ml.
Consider game INDASE,X(λ) of Fig. 10 associated to SE,X and adversary A. The message m0 is
picked uniformly at random. The adversary A must determine which message has been encrypted,
given not just the ciphertext but auxiliary information a on the key and message m1. For λ ∈ N we
let Advind

SE,X,A(λ) = 2 Pr[INDASE,X(λ)] − 1. We say that SE is X-KM-leakage resilient if the function

Advind
SE,X,A(·) is negligible for all PT adversaries A. This is of course not achievable if a allowed the

adversary to compute k, so we restrict attention to unpredictable X. Furthermore, weakening the
definition, we restrict attention to uniform X, meaning k and m1 are uniformly and independently
distributed. Thus we say that SE is KM-leakage-resilient if it is X-KM-leakage resilient for all
unpredictable, uniform X.

The above requirement is strong in that security is required in the presence of (unpredictable)
leakage on the key and first message. But beyond that, in other ways, it has been made weak,
because this strengthens our negative results. Namely, we are only requiring security on random
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messages, not chosen ones, with the key being uniformly distributed, and the key and the two mes-
sages all being independently distributed. Furthermore, in contrast to a typical indistinguishability
definition, the adversary does not get the messages as input.

The standard correctness condition would ask that SE.Dec(1λ, k, SE.Enc(1λ, k,m)) = m for all
k ∈ {0, 1}SE.kl(λ), all m ∈ {0, 1}SE.ml(λ) and all λ ∈ N. We call this perfect correctness. We formulate
and use a weaker correctness condition because we can show un-achievability even under this and
the weakening is crucial to our applications building KM-leakage-resilient encryption schemes to
obtain further impossibility results. Specifically, we require correctness only for random messages
and random keys with non-negligible probability. Formally, consider game DECSE(λ) of Fig. 10
associated to SE, and for λ ∈ N let Advdec

SE (λ) = Pr[DECSE(λ)] be the decryption correctness
function of SE. We require that Advdec

SE (·) be non-negligible.
We use standard definitions of UCE-secure function families, indistinguishability obfuscation

and pseudorandom generators, as provided in Appendix A.

Proof of Theorem 5.1. The construction and proof extend ideas of [20]. Let a uniform auxiliary
information generator X be specified as follows:

Algorithm X.Ev(1λ)

k←$ {0, 1}SE.kl(λ)

m←$ {0, 1}SE.ml(λ) ; y ← R.Ev(1λ,m)

C← Pads(λ)(C1λ,k,y) ; C←$ Obf(1λ,C)

Return (k,m,C)

Circuit C1λ,k,y(c)

m← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y = y′) then return 1
Else return 0

The circuit C1λ,k,y takes as input a ciphertext c, decrypts it under the embedded key k to get back
a SE.ml(λ)-bit message m, applies the PRG to m to get a string y′, and returns 1 iff y′ equals the
embedded string y. The auxiliary information generator creates this circuit as shown and outputs
its obfuscation.

We define s as follows: For any λ ∈ N let s(λ) be a polynomial upper bound on max(|C1
1λ,k,y

|, |C2|)
where the circuits are defined in Fig. 11 and the maximum is over all k ∈ {0, 1}SE.kl(λ) and
y ∈ {0, 1}2·R.sl(λ).

Let us first present an attack proving (2). Below we define an adversary A against the X-KM-
leakage resilience of SE and an adversary R against the PR-security of R:

Adversary A(1λ,C, c)

b′ ← C(c)
Return b′

Adversary R(1λ, y)

k←$ {0, 1}SE.kl(λ) ; m0←$ {0, 1}SE.ml(λ)

c←$ SE.Enc(1λ, k,m0) ; m← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y′ = y) then g′ ← 1 else g′ ← 0 ; Return g′

Adversary A has input 1λ, the auxiliary information (leakage) which here is the obfuscated circuit
C, and a ciphertext c. It simply computes and returns the bit C(c) = C1λ,k,y(c). For the analysis,

consider game INDASE,X(λ) of Fig. 10. If the challenge bit b is 1 and the decryption performed by

C is correct then y′ = y, so

Pr[ b′ = 1 | b = 1 ] ≥ Advdec
SE (λ) . (4)

In the case b = 0, the corresponding analysis in [20] for the insecurity of MB-AIPO relied on
the fact that PRGs have low collision probability on random seeds. This will not suffice for us
because of our weak correctness condition. The latter means that when b = 0, we do not know that
SE.Dec(1λ, k, c) equals m0 and indeed have no guarantees on the distribution of decrypted plaintext
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Games G0–G3

k←$ {0, 1}SE.kl(λ) ; m←$ {0, 1}SE.ml(λ)

y ← R.Ev(1λ,m) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G0

y←$ {0, 1}2·R.sl(λ) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G1

y←$ {0, 1}2·R.sl(λ) ; C←$ Obf(1λ,Pads(λ)(C
2)) // G2

k′←$Q(1λ,C) ; Return (k = k′)

Circuit C1
1λ,k,y(c)

m← SE.Dec(1λ, k, c) ; y′ ← R.Ev(1λ,m)
If (y = y′) then return 1 else return 0

Circuit C2(c)

Return 0

Figure 11: Games for proof of claim (1) from Theorem 5.1.

message. Instead, we directly exploit the assumed PR-security of the PRG. Thus, consider game
PRGRR (λ) with adversary R as above. Letting g denote the challenge bit in the game, we have

Advpr
R,R(λ) = Pr[ g′ = 1 | g = 1 ]− Pr[ g′ = 1 | g = 0 ]

≥ Pr[ b′ = 1 | b = 0 ]− 2−R.sl(λ) . (5)

From Equation (5) and Equation (4), we have

Advind
SE,X,A(λ) = Pr[ b′ = 1 | b = 1 ]− Pr[ b′ = 1 | b = 0 ]

≥ Advdec
SE (λ)− Advpr

R,R(λ)− 2−R.sl(λ) . (6)

Our weak correctness condition says the first term of Equation (6) is non-negligible. On the other
hand, the second and third terms are negligible. This means Advind

SE,X,A(·) is not negligible, proving
claim (2) of Theorem 5.1.

We proceed to prove claim (1). Let Q be a PT adversary. Consider the games and associated
circuits of Fig. 11. Lines not annotated with comments are common to all three games. Game G0

is equivalent to PREDQX (λ), so

Advpred
X,Q(λ) = Pr[G2] +

1∑
i=0

(Pr[Gi]− Pr[Gi+1]) . (7)

We have Pr[G2] = 2−SE.kl(λ), where the latter is assumed to be negligible, because k is uniformly
random and the circuit C passed to adversary Q does not depend on k. We now show that
Pr[Gi] − Pr[Gi+1] is negligible for i ∈ {0, 1}, which by Equation (7) implies that Advpred

X,Q(·) is
negligible and hence proves the claim.

First, we construct a PT adversary R against PRG R, as follows:

Adversary R(1λ, y)

k←$ {0, 1}SE.kl(λ) ; C←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y

)) ; k′←$Q(1λ,C)

If (k = k′) then return 1 else return 0

We have Pr[G0]−Pr[G1] = Advpr
R,R(λ), where the advantage is negligible by the assumed PR-security

of R.

Next, we construct a circuit sampler S∗ and an iO-adversary O, as follows:
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Circuit Sampler S∗(1λ)

k←$ {0, 1}SE.kl(λ) ; y←$ {0, 1}2·R.sl(λ)

C1 ← Pads(λ)(C
1
1λ,k,y

) ; C0 ← Pads(λ)(C
2)

Return (C0,C1, ε)

Adversary O(1λ,C, aux )

k′←$Q(1λ,C)
If (k = k′) then return 1
Else return 0

It follows that Pr[G1] − Pr[G2] = Advio
Obf,S∗,O(λ). We now show that S∗ ∈ Seq, and hence

Advio
Obf,S∗,O(λ) is negligible by the assumed iO-security of Obf. Specifically, note that C1

1λ,k,y
and

C2 are not equivalent only if y belongs to the range of R, which contains at most 2R.sl(λ) values.
However, y is sampled uniformly at random from a set of size 22·R.sl(λ). It follows that

Pr
[

C0 ≡ C1 : (C0,C1, aux )←$ S∗(1λ)
]
≥ 1− 2−R.sl(λ),

where 2−R.sl(λ) is assumed to be negligible, and hence S∗ ∈ Seq.

Corollaries. A consequence of Theorem 5.1 is the following.

Corollary E.1 Let SE be a symmetric encryption scheme such that SE.ml(·) ∈ Ω((·)ε) for some
constant ε > 0. Assume the existence of an indistinguishability obfuscator and a one-way function.
Then SE is not KM-leakage resilient.

Proof of Corollary E.1: The assumption on SE.ml implies that there exists a PR-secure PRG
R with R.sl = SE.ml [37]. To conclude we apply Theorem 5.1.

F Proof of Theorem 5.2

Assuming for simplicity as in the construction that H.il is odd, let `(·) = (H.il(·) − 1)/2. We now
prove part (1). Let X be an unpredictable, uniform auxiliary information generator. Let A be a
PT adversary. We build a PT source S ∈ Scup ∩ Ssplt and a PT distinguisher D such that

Advind
SE,X,A(λ) ≤ 2 · Advuce

H,S,D(λ) (8)

for all λ ∈ N. The assumption that H is UCE[Scup ∩ Ssplt]-secure now implies part (1) of the
theorem.

We proceed to build S,D. We let S be the split source S = Splt[S0,S1], where algorithms S0,S1

are shown below, along with distinguisher D:

Algorithm S0(1λ)

(k,m1, a)←$ X.Ev(1λ)

m0←$ {0, 1}`(λ) ; d←$ {0, 1}
For i = 1, . . . , `(λ) do

x[i]← k‖md[i]‖〈i〉`(λ)

Return ((d, a),x)

Algorithm S1(1λ,y)

Return y

Distinguisher D(1λ,hk, L)

((d, a),y)← L ; c← (hk,y)
d′←$A(1λ, a, c)
If (d = d′) then b′ ← 1
Else b′ ← 0
Return b′

Here S0 calls the auxiliary information generator X to produce a key, a plaintext message and the
corresponding auxiliary input. It then picks another plaintext message and the challenge bit d at
random, and lets x consist of the inputs on which the hash function would be applied to create the
challenge ciphertext. It leaks the challenge bit and auxiliary information. Algorithm S1 takes as
input the result y of oracle HASH on x, and leaks the entire vector y. The distinguisher gets the
leakage from both stages, together with the key hk. Using the latter, it can create the ciphertext
c, which it passes to A to get back a decision. Its output reflects whether A wins its game.
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Letting b denote the challenge bit in game UCES,DH (λ), we claim that

Pr[ b′ = 1 | b = 1 ] =
1

2
+

1

2
Advind

SE,A(λ) and Pr[ b′ = 1 | b = 0 ] =
1

2
,

from which Equation (8) follows. The first equation above should be clear from the construction.
For the second, when b = 0, we know that HASH is a random oracle. But the entries of x are all
distinct, due to the 〈i〉`(λ) components. So the entries of y are uniform and independent, and in
particular independent of the challenge bit d.

This however does not end the proof: We still need to show that S ∈ Scup ∩ Ssplt. We have
ensured that S ∈ Ssplt by construction. The crucial remainig step is to show that S ∈ Scup. This
will exploit the assumed unpredictability of X. Let P be a PT predictor. We build PT adversary
Q such that

Advpred
S,P (λ) ≤ Advpred

X,Q(λ) (9)

for all λ ∈ N. The assumption that X is unpredictable now implies that S ∈ Scup. The construction
of Q is as follows:

Adversary Q(1λ, a)

For i = 1, . . . , `(λ) do y[i]←$ {0, 1}H.ol(λ)

d←$ {0, 1} ; x′←$ P(1λ, ((d, a),y)) ; k ← x′[1..`(λ)] ; Return k

Adversary Q computes leakage ((d, a),y) distributed exactly as it would be in game PREDPS (λ),
where HASH is a random oracle. It then runs P to get a prediction x′ of some oracle query of S. If
game PREDPS (λ) returns true, then x′ must have the form k‖md[i]‖〈i〉`(λ) for some i ∈ {1, . . . , `(λ)},
where k, d are the key and challenge bit, respectively, chosen by S. Adversary Q can then win its
PREDQX (λ) game by simply returning k, which establishes Equation (9).

This completes the proof of part (1) of the theorem. We prove part (2) by building a PT source
S ∈ Ssup ∩ Ssplt and a PT distinguisher D such that

1− Advdec
SE (λ) ≤ Advuce

H,S,D(λ) +
`(λ)

2H.ol(λ)
(10)

for all λ ∈ N. But we have assumed that H is UCE[Scup∩Ssplt]-secure, so it is also UCE[Ssup∩Ssplt]-
secure. We have also assumed 2−H.ol(·) is negligible. Part (2) of the theorem follows.

We proceed to build S,D. We let S be the split source S = Splt[S0,S1], where algorithms S0,S1

are shown below, along with distinguisher D:

Algorithm S0(1λ)

k←$ {0, 1}`(λ)

For i = 1, . . . , `(λ) do
x[2i− 1]← k‖1‖〈i〉`(λ)

x[2i]← k‖0‖〈i〉`(λ)

Return (ε,x)

Algorithm S1(1λ,y)

Return y

Distinguisher D(1λ,hk, (ε,y))

b′ ← 0
For i = 1, . . . , `(λ) do

If (y[2i− 1] = y[2i])
Then b′ ← 1

Return b′

Letting b denote the challenge bit in game UCES,DH (λ), we claim that

Pr[ b′ = 1 | b = 1 ] ≥ 1− Advdec
SE (λ) and Pr[ b′ = 1 | b = 0 ] ≤ `(λ)

2H.ol(λ)
,

from which Equation (10) follows. The first equation above is true because decryption errors only
happen when hash outputs collide for different values of the message bit. For the second, when
b = 0, we know that HASH is a random oracle. But the entries of x are all distinct. So the entries
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of y are uniform and independent. The chance of a collision of two entries is thus 2−H.ol(λ), and the
equation then follows from the union bound.
S is a split source by construction. To conclude the proof we need to show that S ∈ Ssup.

In the case HASH is a random oracle, the distinctness of the oracle queries of S means that the
entries of y are uniformly and independently distributed. Since there is no leakage beyond y, the
leakage gives the predictor P no extra information about the entries of x. The uniform choice of k
by S then means that Advpred

S,P (·) ≤ 2−`(·), even if P is not restricted to PT. But our assumption on

H.il(·) in the theorem statement implies that 2−`(·) is negligible.
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